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Abstract 

Agriculture constitutes a primary source of food production, economic growth and employment in 
India, but the sector is confronted with low farm productivity and yields aggravated by increased 
pressure on natural resources and adverse climate change variability. Efforts involving green 
revolution, land irrigations, improved seeds and organic farming have yielded suboptimal outcomes. 
The adoption of innovative computational solutions such as crop recommendation systems is 
considered as a new frontier to provide insights and help farmers adapt and address the challenge of 
low productivity. However, existing agricultural recommendation systems have predominantly 
focused on environmental factors and narrow geographical coverage in India, resulting in limited and 
robust predictions of suitable crops with both maximum yields and profits. This work incorporates 
both environmental and economic factors and 19 crop varieties across 15 states as input parameters 
to develop and evaluate two recommendation modules – Random Forest (RF) and Support Vector 
Machines (SVM) – using 10-fold Cross Validation, Time-series Split and Lag Variables approaches. 
Results show that the 10-fold cross validation approach produced exceptionally high accuracy (RF: 
99.96%, SVM: 94.71%), raising concerns of overfitting. However, the introduction of temporal order, 
which aligns more with real-world scenarios, reduces the model performance (RF: 78.55%, SVM: 
71.18%) in the Time-series Split approach. To further increase the model accuracy while maintaining 
the temporal order, the Lag Variables approach was employed, which resulted in improved 
performance (RF: 83.62%, SVM: 74.38%) compared to the 10-fold cross validation approach. Overall, 
the models in the Time-series Split and Lag Variable Approaches offer practical insights by handling 
temporal dependencies and enhancing its adaptability to changing agricultural conditions over time. 
Consequently, the study shows the Random Forest model developed based on the Lag Variables as 
the most preferred algorithm for optimal crop recommendation in the Indian context. 

Key words: Crop recommendation model; Random forest; Support vector machines; Indian 
agriculture; Exploratory data analysis   

1. Introduction  

Agriculture is not only fundamental for food production but also constitutes a primary source for 

economic growth, employment and improvement of the wellbeing of many people globally. For 

example, the World Bank reports that agriculture constitutes about 4% of the world's total gross 

domestic product (GDP), and in certain least developed nations, its contribution to GDP exceeds 25%. 

In India, agriculture accounts for 17% of total country’s GDP making it a critical sector for the country's 

long-term and inclusive economic growth (IBEF, 2023). The country leads in milk, spices, cotton, and 

pulses production globally, and it is recognised as the second-largest producer of fruits, vegetables, 
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rice and wheat (IBEF, 2023). India is also among the top exporters of rice, spices and meat (Gulati et 

al., 2023). However, despite this significant development, farmers in India are confronted with low 

farm productivity and yields aggravated by increased pressure on natural resources (e.g., soil, air and 

forest) and insufficient rainfall linked to adverse climate change variability (Ghost, 2019; Gorain et al., 

2024). Approximately, only 45% of the areas occupied by 145 million small farm landholdings in India 

receive proper rainfall suitable for growing crops (Manjunathan et al., 2020). The challenges of low 

productivity in Indian agriculture has put many people at the risk of experiencing food scarcity and 

financial difficulties, and farmers who are unable to repay loans taken from banks opt committing 

suicides (Garanayak et al., 2021). Significant efforts are made by the government of India to address 

the challenge of low productivity including the green revolution, land reforms, irrigation facilities, 

improved seeds, organic farming, water management and agriculture infrastructural investment. 

However, while these initiatives undeniably assist farmers throughout the agricultural cycle, the core 

challenge of low productivity persists particularly at the grassroots level.  

The adoption of innovative computational solutions such as crop recommendation systems is 

considered as a new frontier to help farmers adapt and address the challenge of low productivity. 

Crop recommendation system utilises algorithms and diverse data parameters such as weather data, 

on farm data, soil nutrients and market information to forecast suitable crops with maximum yields 

and profits (Garanayak et al.,2021; Pudumalar et al., 2017; Kumar et al., 2019). Research shows that 

crop recommendation systems have been successfully applied to recommend crops to farmers 

(Geetha et al., 2020), detect plant disease (Shoaib et al., 2023), provide financial help, irrigation 

facilities and insurance to the farmers’ crops (Jaiswal et al., 2020) and maximise crop yield (e.g. Elomda 

et al., 2014, Patel and Patel, 2020). Most crop recommendation systems incorporate one or more 

machine learning algorithms to make an efficient and accurate prediction of optimal crop to improve 

yield and profitability (Dey et al., 2024; Doshi et al., 2018; Lata and Chaudhari, 2019;Patel and Patel 

and;, 2020). For instance, Geetha et al., (2020) use Random Forest to generate a crop 

recommendation system with 97% accuracy.  Kavita and Mathur (2020) implement a recommendation 

system to predict a crop with the highest yield using Decision Tree, Linear Regression, Lasso Regression 

and Ridge Regression. Decision Tree provides a higher accuracy of 98.62% compared to the other 

algorithms. Lata and Chaudhari (2019) combine Random Forest, J48, Bayes Net and KStar to develop 

a recommendation system. Random Forest performs the best with an accuracy of 97.89%. In another 

study by Kumar et al., (2020) Support Vector Machine outperforms Random Forest, Decision Tree 

Logistic Regression with a highest accuracy of 89.66% while Random Forest gave only 88%.  Devi and 

Selvakumari (2022) designs a recommendation system based on three algorithms: Naïve Bayes, Linear 

Regression and Random Forest. Random Forest gave 99.09% accuracy compared with 90.9% of Naïve 

Bayes. Collectively, research into crop recommendation systems is growing but challenges remain to 

make the recommendation models more robust and provide accurate forecasts to farmers in diverse 

socio-economic and resource-constrained contexts.  

One of the most important challenges in developing accurate crop recommendation models involves 

selecting relevant input parameters or dataset for training the models. Without adequate, accurate 

and relevant data, even the most robust machine learning algorithms will not perform well to give the 

expected results (Patel and Patel, 2020; Rani et al., 2023). Across most of the studies (e.g., Aadithya. 

et al., 2016; Arooj et al., 2017; Doshi et al.,2018; Elomda et al., 2014; Rani et al., 2023 ), the 

environmental and economic features are the two broad categories of input parameters used 

separately for training crop recommendation models. For example, in a study conducted by Elomda 
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et al., (2014) crops are suggested taking into consideration temperature, water and soil as the main 

features of the model.  Jain and Ramesh (2020) developed a crop selection method to maximise crop 

yield and based on weather conditions and soil parameters like soil pH, soil nutrients and soil type 

while Patel and Patel (2020) developed their recommendation system considering only soil features 

like soil types, pH, electric conductivity, organic carbon, nitrogen, phosphorus, sulphur, zinc, boron, 

iron, manganese and copper. Similarly, few researchers (e.g., Aadithya. et al., 2016; Filippi et al., 2017; 

Raja et al., 2017) have also used the economic features, which constitute price, market conditions and 

crop cultivation costs, to develop models that recommend profitable crops to farmers. For instance, 

Aadithya et al., (2016) developed a crop recommendation model including cost as an economic 

parameter to recommend the most suitable crop to the farmers. Filippi et al.’s, (2017) 

recommendation model incorporated economic features such as the availability of tools and tractors, 

their operating costs and the working speeds along with environmental features like the area available 

for cultivation, the sequence of operations required to grow each crop and the corresponding time 

windows to optimise agriculture profits. In the Indian context, most studies have almost exclusively 

focused on the environmental attributes with limited consideration for the economic parameters 

(Reddy and Kumar, 2021; Pudumalar et al., 2017; Garanayak et al., 2021).  

The objective of this paper is to develop a more comprehensive and inclusive crop recommendation 

system that incorporates the necessary input parameters for suggesting a wide range of optimal crops 

to farmers in India. There are approximately 145 million landholdings in India (with an average farm 

size of 1.08 hectares) upon which diverse crops are cultivated (Manjunathan et al., 2020). The small 

land size implies that farmers need appropriate knowledge and information to cultivate the right crops 

that generate high profitable yields in the face of the increasing climate change variability, 

environmental challenges, market externalities and low productivity. To achieve this, we show that 

any recommendation system developed needs to be comprehensive and robust to forecast crop 

choices accurately for farmers across all geographical areas in India (Pudumalar et al., 2017, Reddy 

and Kumar, 2021; Patel and Patel, 2020).  We use eight environmental factors () along with major 

economic factors related to cost and price: operational cost, fixed cost, total cost of cultivation and 

minimum support price. In addition, the recommendation system involves 19 crops across 15 states 

as input parameters in India, extending the work of Pudumalar et al., (2017) and Reddy and Kumar 

(2021) who have used a narrow range of crops (approximately five to ten crops) within a district or 

state.  

2. Method  

This section describes the approaches for: (i) data collection and pre-processing, (ii) exploratory data 

analysis (iii) modelling, and (iv) performance evaluation. 

2.1 Data Collection and pre-processing 

We combined environmental and economic input parameters to develop and evaluate the accuracy 

of two machine-learning models (Random Forest and Support Vector Machines) for recommending 

high yield and profitable crops to farmers. The data were collected and merged from three sources: 

Kaggle1 for environmental parameters and the India Directorate of Economics and Statistics (DES)2 and 

Farmer’s Portal3 for economic parameters of cost and price. Following the work of Rani et al. (2023)  

                                                           
1 https://www.kaggle.com/datasets/vihith12/crop-yield recommendation-dataset 
2 https://eands.dacnet.nic.in/Cost_of_Cultivation.htm 
3 https://farmer.gov.in/mspstatements.aspx 

https://www.kaggle.com/datasets/vihith12/crop-yield-prediction-dataset
https://eands.dacnet.nic.in/Cost_of_Cultivation.htm
https://farmer.gov.in/mspstatements.aspx
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and other researchers (e.g. Kulkarni et al., 2018, Doshi, et al., 2018 and Kumar, et al., 2020), we 

consider a broad range of environmental parameters such as temperature, precipitation, wind speed 

and humidity  along with soil attributes such as nitrogen, phosphorous, potassium (NPK) and soil type. 

These environmental features are important for improving crop production rates and determining soil 

sustainability, and therefore provide necessary input parameters for crop recommendation systems 

(Rani et al., 2023). Similarly, we included Operational Cost (e.g. labour, seed, fertilizer cost, etc.), Fixed 

Cost (e.g. rental, capital, taxes, etc.) and Total Cost of crop cultivation along with the Minimum Support 

Price (MSP) set by the Government of India for certain agricultural commodities annually as the 

economic input parameters.  

Following data collection, we developed a data dictionary for both the environmental parameters 

(Tables 1) and economic parameters (Table 2) to aid in pre-processing and analysis and maintain 

consistency and better understanding of the data.  

Table 1: Data dictionary – environmental parameters 

Variable Name Variable Description Variable Type 

State Names State in which the crop is grown  Character 

District Names District in which the crop is grown Character 

Crop Year Year in which the crop is grown Numeric 

Season Names Season in which the crop is grown Character 

Crop Names Name of the crop Character 

Area Area in hectares in which the crop is 
grown 

Numeric 

Temperature Temperature in the area where the crop 
is grown 

Numeric 

Wind Speed  Wind speed in the area where the crop 
is grown 

Numeric 

Precipitation Precipitation in the area where the crop 
is grown 

Numeric 

Humidity Humidity in the are where the crop is 
grown 

Numeric 

Soil Type Soil type in the area where the crop is 
grown 

Numeric 

N Nitrogen content in the soil where the 
crop is grown  

Numeric 

P Phosphorous content in the soil where 
the crop is grown 

Numeric 

K Potassium content in the soil where the 
crop is grown 

Numeric 

Production Production of crop in tonnes Numeric 

 

The pre-processing steps involved merging dataset, dealing with missing values and handling outliers 

and skewness to ensure that the data is in comprehensive and usable formats for training and testing 

the models (Tanasa and Trousse, 2004). 

2.1.1 Merging dataset   

The dataset collected from the three sources were merged together in excel based on three common 

columns – State Names, Crop Year and Crop Names.  Along with this, we had four more columns 
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(Operational Cost, Fixed Cost, Total Cost and MSP). As shown in Table 2, a new variable – ‘Yield’ was 

computed by dividing the variable Production by Area (Yield = Production / Area) to incorporate both 

these variables into a single variable and added to the final dataset. However, before combining the 

datasets, basic cleaning was done in excel to correct inconsistencies in the data like typos, inconsistent 

spellings and data entry errors to maintain uniformity. It was essential that the spellings of the values 

in the variables - Crop Names and State Names are consistent across both the datasets as these were 

the common columns required to merge two datasets. For example, the state Chhattisgarh was 

spelled ‘Chhattisgarh’ in the data collected from Kaggle and ‘Chattisgarh’ in the data collected from 

DES. In addition, the crop Bajra was incorrectly written as ‘Bajar’ in a few instances indicating a typo, 

which was also corrected.  Additionally, we noticed that the years 2011-15 were common crop years 

for both the datasets but the crop year 2015 had entries of only one State – Odisha, and was also 

removed from the dataset to avoid data bias.  

Table 2: Data dictionary – economic parameters 

Variable 
Name 

Variable Description Variable Type 

Yield Yield of the crop cultivated Numeric 

Operational 
Cost 

Operational cost of cultivation in Rs. per 
hectare  

Numeric 

Fixed Cost Fixed cost of cultivation in Rs. per 
hectare 

Numeric 

Total Cost  Sum of operational cost and fixed of 
cultivation in Rs. per hectare 

Numeric 

MSP Minimum support price fixed by the 
government 

Numeric 

 

The combined dataset from all the three sources was reduced to 12,839 instances with 20 columns 

due to the limitation of R Studio to handle large dataset and slow down analysis with numerous 

features (Shah et al., 2022). It consists of 19 different crops across 15 states in India for the years 2011-

14 (common years) which were incorporated in the crop recommendation model. The 19 crops are - 

Arhar, Bajra, Barley, Cotton, Gram, Groundnut, Jowar, Jute, Maize, Moong, Paddy, Ragi, Rapeseed and 

Mustard, Safflower, Sesamum, Soyabean, Sunflower, Urad and Wheat. The 15 states are - Andhra 

Pradesh, Assam, Bihar, Chhattisgarh, Gujarat, Haryana, Karnataka, Madhya Pradesh, Maharashtra, 

Odisha, Punjab, Tamil Nadu, Uttar Pradesh, Uttarakhand and West Bengal.   

2.1.2 Handling Missing Values, Outliers and skewness 

The feature ‘Production’ consisted of 89 missing instances randomly with no specific patterns. This 

made it difficult to compute any measure of central tendency. Additionally, it consisted of only a tiny 

portion of the total dataset (0.6%) and, therefore, were deleted from the dataset, as generally, if less 

than 5% of values are missing then it is acceptable to ignore them (Schafer and Graham, 2002). There 

were no duplicated instances in the dataset that needed cleaning. However, a boxplot analysis 

coupled with the summary statistics confirmed the presence of outliers in all the numerical variables 

except MSP. It was unclear if the outliers were implausible values or in fact correctly recorded 

instances that deviated from the other values in the dataset, as the outliers were a significant part of 

the dataset. Thus, considering removing outliers could lead to potential loss of important instances, 

introduce bias and reduce the accuracy of the models, they were not discarded.  
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Histograms and skewness results revealed some amount of skewness present in all the variables but 

the variable ‘Yield’ had extremely high positive skewness. This implies that the majority of instances 

have very low yields, while a few instances show exceptionally high yields. Given that the skewness of 

the variable ‘Yield’ highly deviated from the rest of the values and seemed erroneous, it was deleted 

from the dataset. This reduced the skewness as shown in Figure 2.  

   

Figure 1: Skewness before removal                        Figure 2: Skewness after removal 

In all, following data cleaning, the size of the dataset reduced to 12749 instances and 20 variables. 

2.2 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is an initial crucial step in the data analysis process that offers a 

systematic examination and visualisation of the data to gain insights, discover patterns, and uncover 

relationships among variables (Sahoo et al., 2019). In this study, we carried out EDA in RStudio to 

explore the connections among multiple variables through correlation analysis, assessment of 

multicollinearity, and graphical examination. The objective was to identify key variables crucial for 

constructing the crop recommendation model and to eradicate less significant variables that could 

potentially lead to modelling issues. Detailed description and result of the EDA are presented in the 

result section below.  

2.3 Modelling 

We used R studio in this study to develop, train and validate Support Vector Machines and Random 

Forest and algorithms for accurately recommending optimal crops to farmers.  The models were 

trained and tested by splitting the dataset into 80% training and 20% testing data (Gholamy et al., 

2018). This section below describes the algorithms and approaches used to develop the 

recommendation models, and the resulting accuracies are presented in the result section of the 

paper.  

2.3.1 Machine learning models  

As observed in literature, Support Vector Machines and Random Forest offer complementary strength 

for crop recommendation systems (e.g. Geetha et al., 2020; Doshi et al., 2018; Dighe et al., 2018; 

Bondre and Mahagaonkar, 2019). SVM can handle both linear and non-linear data through kernel 

functions. They are particularly effective in high-dimensional spaces, making them suitable for 

complex datasets and mitigating the risk of overfitting due to their focus on maximising the margin 

between classes (Geetha et al., 2020). In the context of crop recommendation, SVMs can be applied 

to capture complex interactions between factors such as climate, soil type, and crop attributes (Dighe 
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et al., 2018). However, computational complexity can become an issue, particularly with large 

datasets. And SVM performance might degrade when dealing with noisy or overlapping classes, which 

is a common occurrence in real-world datasets. 

 In contrast, RF models excel in their robustness and ability to handle large datasets without 

overfitting. By aggregating multiple decision trees, they can provide high predictive accuracy and 

mitigate individual tree biases (Geetha et al., 2020). It can handle missing values, and its insensitivity 

to irrelevant features further enhances its suitability for real-world applications. The model's feature 

importance metrics also aid in selecting relevant variables for crop recommendation systems (Geetha 

et al., 2020; Doshi et al., 2018). Their adaptability to both classification and regression tasks is valuable 

in addressing the multifaceted aspects of agricultural data, ultimately leading to improved 

recommendation accuracy. However, the ensemble nature of RF models can make them less 

interpretable compared to individual decision trees and it might exhibit a bias towards categorical 

variables with more levels, affecting the accuracy of variable importance calculations (Varghese, 

2018). Further, the dataset's inherent characteristics, such as feature relationships and noise levels 

influence which model performs better. In all, considering the advantages and disadvantages of both 

the SVM and RF algorithms, we used them to build recommendation models, compared and evaluated 

the accuracy for forecast high yield and profitable crops for farmers.  

2.3.2 Three Approaches used 

The two algorithms –SVM and RF were trained using three approaches namely:  10-fold Cross 

Validation Approach (Approach 1), Time-series Split Approach (Approach 2) and Lag Variables 

Approach (Approach 3). Approach 1 builds the models using 10-fold cross validation technique and 

randomly creates the train and split dataset as generated by the software. Both the training and 

testing dataset consisted of randomly shuffled selected instances from 2011 to 2014. In k-fold cross-

validation, the dataset was partitioned into k subsets and the model was trained and assessed k times, 

with each fold serving as the validation set in turn. The performance metrics from each fold were 

averaged, offering an estimate of the model's overall effectiveness and reducing overfitting risk 

(Pandian, 2023).  However, since the dataset used for the study has observations from the years 2011 

to 2014 across five seasons – kharif, rabi, autumn, summer and winter – it was logical to treat the 

dataset as time-series data. Time series data is a collection of observations obtained through repeated 

measurements over time (Hayes, 2022). Therefore, it was crucial to build models maintaining the 

temporal order of the data and capture the fluctuations that occur in the variables over time. 

 In Time-series Split Approach 2, the observations were arranged in ascending order of year – 2011, 

2012, 2013, 2014 and, within each year, instances were arranged based on seasons in the order – 

winter, summer, kharif, autumn, rabi and whole year (6 categories of the variable Season in the 

dataset). Then, 80-20% train and test split were done in a way that the developed models were trained 

using the data from past years (2011-14) and the test data mostly included instances from the year 

2014. The split is a standard approach in time series analysis. It aims to stimulate how well the model 

would perform in predicting future values based on patterns observed in historical data while avoiding 

the pitfalls of data leakage and ensuring that the temporal order is preserved (Talagala et al., 2018).   

In the Lag variables Approach 3, along with the train and test split mentioned in Approach 2, lag 

features were created for Temperature, Precipitation, Humidity and Wind Speed based on the variable 

Seasons and for Operational Cost, Total Cost and for MSP based on the variable Year. This is because 

it is revealed through the EDA process that environmental variables in the dataset tend to fluctuate 
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with the seasons while economic variables with the years (more details in section 4.1). There is an 

evidently increasing pattern in cost and price variables over years, which is obvious considering the 

economic inflation every year. Creating lag variables is a fundamental technique in time series analysis 

that involves incorporating past values of a variable as features in a predictive model. These lagged 

variables capture temporal dependencies and patterns, allowing the model to consider how the 

variable's history influences its future values and are crucial for addressing autocorrelation, 

accounting for time delays in effects, and improving predictive accuracy (Shumway and Stoffer, 2011).  

2.4 Performance Evaluation  

The developed models were evaluated with the help of accuracy value, Kappa statistics and F1 score. 

Accuracy measures the percentage of correct recommendations made by the model. Many studies 

have used accuracy as an evaluation metric (e.g. Arooj et al., 2018).  

  

Figure 3: Accuracy Formula  

However, the Kappa statistic (Cohen's Kappa) is most of the times preferred over accuracy because it 

accounts for chance agreement between predicted and actual outcomes. It is less sensitive to class 

imbalances and provides a more balanced measure of model performance, helping to avoid 

misleading assessments and hence will be used as one of the performance metrics. Kappa values range 

from -1 (no agreement) to 1 (perfect agreement) (Shmueli, 2021). 

Additionally, accuracy often disregards the particular error types committed by the model and instead 

emphasizes overall correctness. It prioritizes a generalized correctness. To assess the model's 

competence in recognising and predicting True Positives, it is more appropriate to gauge F1 score that 

combines both precision and recall (EvidentlyAI, n.d). The F1 score is often referred to as the harmonic 

mean of precision and recall metrics and therefore is a single metric that weighs two ratios (Kranstren, 

2020).  

 

Figure 4: F1 score Formula 

Precision measures the proportion of correct positive recommendations (true positivies) out of all 

positive recommendations made by the model (Zhu, 2023).  
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Figure 5: Precision Formula 

Recall measures the proportion of correct positive recommendations out of all true positive instances 

in the data (Zhu, 2023).  

 

Figure 6: Recall Formula 

Hence, accuracy, kappa statistics and F1 scores were compared for the developed models through all 

the three approaches to recommend the most suitable modelling technique to the farmers to fulfil 

the research objective. 

Results  

3.1 Exploratory Data Analysis Results 

3.1.1 Scatter Plot Analysis 

The scatter plot analysis discovered a significant positive relationship between five pairs of variables - 

Temperature and Precipitation, Operational Cost and Total Cost, Total Cost and Fixed Cost, K and P 

and Production and Area. The temperature and precipitation exhibit a negative relationship while all 

other pairs depict strong positive relationship (Figures 7a, b, c, d and e). 

 

Figure 7a: Total Cost vs Fixed Cost                     Figure 7b: Precipitation vs Temperature 
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Figure 7c:  P vs K                                                     Figure 7d: Total Cost vs Operational Cost                                                                                                  

                                                               

Figure 7e: Production vs Area          

The relationship between the variables can indicate the presence of multicollinearity. Multicollinearity 

in machine learning algorithms can cause interpretability issues that might lead to the loss of reliability 

in determining the effects of individual features in the model (Bhandari, 2024). Hence, to confirm the 

presence of multicollinearity and mitigate the risk, we carried out correlation and multicollinearity 

analysis.  

3.1.2 Correlation and Multicollinearity Analysis 

Results in Figures 8a and 8b show significant correlations between the five pairs of variables associated 

with crop recommendation prediction. The Temperature and Precipitation variables shared a strong 

negative correlation of -0.85 while the Total Cost and Operational Cost and Total Cost and Fixed Cost 

features illustrate strong positive correlation of 0.95 and 0.76 respectively. K and P also have a strong 

positive correlation of 0.87 followed by Production and Area with a positive correlation of 0.74. 

Arguably, the significant correlations among multiple variables suggest the presence of 

multicollinearity between the variables, which can skew the results of the models (Shrestha, 2020). 

To confirm this, we carried out a multicollinearity test using the Variance Inflation Factor (VIF) 

technique. 
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Figure 8a: Correlation Plot Figure 8c: VIF values 

       

 Figure 8b: Correlation Values 

The Variance Inflation Factor test evaluates multicollinearity in multiple linear regression models by 

measuring the extent to which the differing variance of the estimated regression coefficient is inflated 

(Shrestha, 2020). VIF values < 5 suggests moderate multicollinearity while the VIF values ≥ 5 to 10 and 

above implies multicollinearity exists among the variables. This can be estimated as:  

 

                       VIF =  

 

In our study, a regression model was designed in RStudio using the numerical variables to test 

multicollinearity amongst them. The result demonstrates that while some correlation exists, it is not 

severe enough to cause significant issues in terms of parameter estimation and model performance. 

The values of VIF all variables are 1< VIF ≤ 5 except for the Yield (720.06), Operational Cost (154.23) 

1 

1  –  R2 

1 
Tolerance = 
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and Fixed Cost (1226.14) variables (Figure 8c). The high values suggest that there is a problem of 

collinearity with these three variables. However, based on the correlation values in Figures 8a and 8b, 

the Yield variable does not have any strong correlations with other variables but still exhibits high VIF 

value. This might be attributed to the fact that Yield is derived from two variables, namely Production 

and Area, which are strongly correlated (with a correlation value of 0.74).  

3.1.3 Bar Plot Analysis 

In the lag variables approach, it was essential to identify how different environmental and economic 

variables fluctuate with time-series variables – Years and Seasons. We used the bar plot analysis to 

capture these fluctuations. According to National Geographic (2023), each season has its own 

light, temperature and weather patterns, and these patterns repeat yearly. Hence, to understand how 

the environmental variables fluctuate with seasons, standard deviation barplots were plotted for each 

of the environmental variables - Temperature, Humidity, Wind Speed, and Precipitation against the 

variable – Season (Figures 9a, b, c and d). A careful observation of all these figures indicate that the 

bar heights of all these variables fluctuate with every season indicating seasonal fluctuations of 

environmental variables. 

 

 

Figure 9a :Temperature Fluctuations                   Figure 9b : Humidity Fluctuations with Seasons                                                      

with Seasons 

 

  

Figure 9c :Wind Speed Fluctuations                     Figure 9d : Precipitation with Seasons                                                 

Fluctuations with  Seasons 
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Similarly, to understand the inflationary trends of economic variables yearly, mean barplots of 

economic variables – MSP, Operational Cost and Fixed Cost were plotted against each year (Figures 

9e, f, g) and as seen, all the economic variables exhibit a yearly increasing pattern.  

 

  

Figure 9e : MSP increase                                         Figure 8f : Operational Cost increase with Years                                                   

with Years 

 

  

Figure 9g : Fixed Cost increase with Years 

In summary, the EDA results with the help of multicollinearity, correlation and scatter plot analysis 

identified the important variables for modelling and aimed to pinpoint highly correlated variables for 

tackling multicollinearity issues. Similarly, the barplot analysis established a relationship between 

multiple variables for successful formation of lag features. 

3.2 Modelling Results 

As mentioned in the methodology section, we used Support Vector Machines and Random Forest to 

develop the crop recommendation models using RStudio with three approaches – 10-fold Cross 

Validation Approach, Time-series Split Approach and Lag Variables Approach. The results of the three 

approaches are described as follow:  

3.2.1 10-fold Cross Validation Approach (Approach 1) 

The essence of the ten-fold cross-validation approach was to evaluate the performance of the models 

using the train and test split data. The dataset was first randomly shuffled before creating the train 

and test data. From the result, it is observed that RF performs better than SVM, although both exhibit 

high performance accuracy above 90% (Table 2).  
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Table 2: Performance metrics of 10-fold CV Approach   

Models Accuracy Kappa 

Random Forest 0.9966 0.9966 

Support Vector Machine 0.9573 0.9538 

 

Figure 8 displays the performance metrics of F1-score for each crop. The F1-score close to 1 indicates 

a strong performance with a good balance between precision and recall. Thus, as can be seen from 

Figure 10, the RF model can make accurate recommendations for the several crop classes compare 

with SVM. RF displays approximately the performance metrics of 1 F1-score for all crops.  

    

Figure 10: Approach 1 F1 scores for RF and SVM models 

In sum, the results of the 10-fold cross-validation shows that the RF model exhibits remarkably high 

performance across the metrics including accuracy, kappa and F1-scores. However, given that 

accuracy and kappa statistics align closely in value raises a concern about potential overfitting. It is 

likely that the model may have captured noise in the training dataset and might not generalise well to 

new data or unseen data (Priyadharshini et al., 2021). To be confident about the given accuracy, it was 

essential to evaluate the performance of all these models on a completely new or unseen dataset as 

described in Approach 2. 

3.2.2 Time-Series Split Approach (Approach 2) 

As outlined in the methodology, this approach arranged the observations in the chronological order 

of time and then partitioned the dataset into an 80% training and 20% testing ratio while maintaining 

the chronological sequence of instances, a common practice when handling time-series data to uphold 

the temporal coherence. Additionally, this partitioning ensured that the model is trained on historical 

observations (years 2011-13) while forecasting is done on completely unseen instances (year 2014). 
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Figure 11a: RF results Approach 2                       Figure 11b: SVM results Approach 2   

 

Figure 11c: Approach 2 F1 scores for RF and SVM models 

Surprisingly, when the models are tested on completely unseen data in Approach 2, the accuracy, 

kappa statistics and F1 scores drop significantly for both the models as shown in Figures 11a, b and c. 

The drop in these values can be seen to provide a more realistic evaluation of the model's performance 

compared to the previous approach. In real-world scenarios, models need to be able to generalise to 

new, unseen data. If the model's performance drops because it struggles to adapt to temporal changes 

or new patterns in test data, it indicates that the model is not overly optimistic in its recommendation. 

This drawback necessitated for more accurate model adaptation and retraining strategies to better 

capture temporal patterns and shifts and is discussed in Approach 3.  

3.2.3 Lag Variables Approach (Approach 3) 

Lag variables, also refer to time lag features, play a crucial role in capturing the historical patterns and 

temporal dependencies within the data through modelling relationships between past values and 

observations such as seasonality and long-term trends (Shumway and Stoffer, 2010). In our study, this 

helps uncover recurring patterns and overarching trends that are critical for accurate crop 

recommendation. The barplot analysis in Figure12a confirms that environmental variables – 

Temperature, Precipitation, Humidity and Wind Speed – fluctuate seasonally. Hence, we created lag 

variables for these variables based on seasons. Similarly, lag variables were also created based on Year 
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for economic variables – Operational Cost, Fixed Cost and for MSP – as the variables fluctuate with 

years.   

 

Figure 12a: Creation of Lag features 

As seen in Figure 12a, the number of lags for the variable Year was set to 5 while the number of lags 

for the variable Season was set to 7. We observed that any further creation of lags beyond these 

numbers failed to improve the accuracies of the model significantly. An evaluation of the results 

Figures 12b and c indicate an increase in the performance accuracy for the RF model from 78.55% to 

83.62% while the SVM model increases from 71.18% to 74.38%. Comparatively, the kappa statistics 

also rise from 76.4% to 82.01% for the RF model and from 68.86% to 72.03% for the SVM model. 

     

Figure 12b: RF results Approach 3                       Figure 12c: SVM results Approach 3 

The F1 scores in Figure 12d also comparatively indicate better model performance overall in Approach 

3 compared to approach 2. However, it is noteworthy that in this method too, RF surpasses SVM in 

terms of delivering superior model performance, achieving an accuracy rate of 83.62% compared to 

SVM's 74.38%. 
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Figure 12d: Approach 3 F1 scores for RF and SVM models 

Overall, as shown in the analysis of the three approaches, the accuracy of the developed models varies 

significantly, with the RF model consistently outperforming the SVM model across accuracy, kappa 

statistics and F1-Score performance metrics.   

4. Discussion 

4.1 Model performance  

In all the three approaches, RF outperforms the SVM algorithm confirming its suitability in building 

crop recommendation models. It exhibits a remarkable accuracy of 99.96% in Approach 1 followed by 

78.55 % in Approach 2 and 83.62% in Approach 3. This outcome aligns with the findings reported by 

Geetha et al (2020) and Lata and Chaudhary (2017) where RF emerged consistently as one of the most 

accurate algorithms for developing crop recommendation models among the other models employed. 

However, it diverges from the results obtained by Bondre and Mahagaonkar (2019) and Kumar et al. 

(2020) wherein the SVM algorithm outperformed the RF algorithm. This inconsistency in results can 

be attributed to the fact that both studies utilised datasets with limited features, as SVM tends to 

perform effectively with smaller datasets and fewer features (Varghese, 2018). Bondre and 

Mahagaonkar (2019) focused solely on soil parameters and crop yield while Kumar et al. (2020) only 

considered four parameters when constructing their recommendation model. The dataset utilised in 

our research included 15 features across weather, soil and market parameters, which may have 

introduced complexity for SVM in predicting optimal crops. On the other hand, as RF is robust to 

outliers and captures complexities in datasets with large features, it outperforms SVM for our 

recommendation model. 

However, as depicted in the result section, although RF consistently outperforms SVM in all the three 

approaches, there is a significant difference in the accuracies noted for RF in all the approaches. Our 

result in the 10-fold cross validation approach corroborates with the work of Geetha et al (2020) and 

Lata and Chaudhary (2017). In both studies, the RF algorithm yielded impressive accuracy rates of 97% 

and 97.89% respectively, which closely aligns with the accuracy results of only Approach 1. To our 

knowledge, no study has revealed low accuracy as shown in Approach 2 (Time-Series Split) and 
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Approach 3(Lag Variable) for RF.  Doshi et al. (2018) who also trained their models on time-series data 

accumulated over the thirty-year period (from 1957-58 to 1986-87) gave an RF accuracy of 90.43%, 

which is much higher than results of our approach 2 and 3. The differing accuracy could relate to the 

consequence of testing the model on completely unseen data (year 2014).  Unlike in Doshi et al’s 

(2018) work where the train and test split was done randomly, we tested the models on unseen or 

new data, producing lower RF accuracy of 78.55% and 71.18% for SVM compared to the results of 

Doshi et al’s (2018).  

Furthermore, Approach 2 introduced a chronological order to the dataset to adapt to temporal 

changes but displayed significantly reduced accuracy and performance. This indicates the need for 

more advanced evaluations for models to properly adapt to new, previously unseen data. In other 

words, models need to be generalised to new data so that it can make accurate predictions when used 

(Wang et al., 2022; Volpi et al., 2018). To this end, the Lag variables approach (Approach 3) was 

introduced and lag features were incorporated to account for advanced temporal dependencies and 

seasonality, which enhanced the models' predictive capabilities compared to Approach 2. However, 

this could not achieve high accuracy compared to Approach 1. Overall, although Approach 3 has lower 

accuracy and kappa statistics than Approach 1, we argue that it still appears to be the most promising 

of the three approaches. It tests the model on completely unseen data and addresses temporal 

dependencies, seasonality and historical patterns through lag variables, resulting in improved model 

performance compared to Approach 2.  

4.2 Input parameters 

Regarding input parameters, Sita et al (2023) state that environmental factors like weather conditions 

are necessary to build an efficient crop recommendation model. However, a careful look at the 

variable importance graphs of all three RF approaches reveal that the economic factors - Operational 

Cost, Fixed Cost and MSP are consistently placed at the top (Figures 13a, b and c), suggesting that 

these variables hold greater significance and exert more influence when it comes to making 

recommendations. This discovery challenges the beliefs of previous researchers like Jain and Ramesh 

(2020) and Patel and Patel (2020) who placed higher importance on environmental variables to predict 

the optimum crop. 

 

Figure 13a: RF variable importance                    Figure 13b: RF variable importance       
Approach 1                                                               Approach 2  
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 Figure 13c: RF variable importance 
Approach 3  
 
4.3 Performance evaluation metrics  

Many researchers including Kapoor and Verma (2017), Bondre and Mahagaonkar (2019) and 
Priyadarshini et al (2021) have traditionally relied solely on accuracy metrics to determine the most 
suitable crop recommendation model. Our study takes a more comprehensive approach by also 
incorporating Kappa statistics and F1 score for evaluating the developed models. The findings 
reported show that Kappa statistics is consistently lower than accuracy values for all the developed 
models across all the three approaches. For instance, in RF Approach 2, the accuracy stands at 78.55% 
whereas the Kappa score is 76.4%. This observation implies that while the accuracy may appear higher, 
the same model will give lower values of Cohen’s kappa when dealing with unbalanced datasets 
(Widmann, 2020). To this end, it is quite likely that if researchers (e.g., Kapoor and Verma, 2017; 
Bondre and Mahagaonkar, 2019) had incorporated Kappa statistics as well as a measure of 
performance evaluation, the accuracy of their developed models could have been reduced, as Kappa 
statistic provides a more balanced and reliable representation of model accuracy when adjusted for 
such class imbalances. Additionally, while researchers like Arooj et al.(2017) have applied precision 
(accuracy of positive crop recommendations) and recall (model’s ability to identify beneficial crops in 
relevant situations) independently as performance evaluation metrics.  Our study goes beyond the 
use of F1 score and considers the trade-off between precision and recall, making it a useful single 
metric to evaluate the overall performance of the crop recommendation model.  

5. Conclusion  

This work proposed comprehensive crop recommendation models to help farmers in India optimise 
their crop selection decisions and reduce risk of crop failure while maximising profitability. Currently, 
most existing crop recommendation systems primarily rely on just environmental factors, cover 
limited geographical areas and recommend only a handful of crops thus creating a research gap. The 
model incorporates both environmental and economic parameters and 19 crop varieties across 15 
different states. 
 
Two supervised machine-learning models (Random Forest and Support Vector Machines) were 

developed and evaluated using three approaches – 10-fold Cross Validation Approach (Approach 1), 

Time-series split approach (Approach 2) and Lag variables approach (Approach 3). The models' 

performance were evaluated using accuracy, Kappa statistics and F1 scores. Analysis reveals that the 

10-fold cross validation approach produced exceptionally high accuracy (RF: 99.96%, SVM: 94.71%), 

raising concerns of overfitting. However, the introduction of temporal order, which aligns more with 

real-world scenarios, reduces the model performance (RF: 78.55%, SVM: 71.18%) in the Time-series 
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Split approach. To further increase the model accuracy while maintaining the temporal order, the Lag 

Variables approach was employed, which resulted in improved performance (RF: 83.62%, SVM: 

74.38%) compared to the 10-fold cross validation approach.  

The models in the Time-series Split Approach and Lag Variable Approach offer practical insights by 

handling temporal dependencies and enhancing its adaptability to changing agricultural conditions 

over time. To this end, the study concludes that the Random Forest model developed based on the 

Lag Variables is the most preferred algorithm for optimal crop recommendation in the Indian context. 

The model maintains the temporal order of the dataset and captures fluctuations through lag 

variables resulting in more realistic crop recommendations. However, future work should employ 

advanced approaches to explore complex pattern recognition and improve prediction accuracy. 

Additionally, combining multiple algorithms or hybrid models that integrate traditional time series 

methods with machine learning approaches can yield improved performance in crop 

recommendation. 

Furthermore, the study demonstrates the importance of considering both economic and 
environmental factors as input parameters for developing crop recommendation models. However, 
although these parameters are crucial and offer market considerations in the recommendation model, 
other important features need to be considered to develop robust recommendation models. Features 
like market demand, market supply, retail prices and return on investment can provide comprehensive 
insights and cater to the diversity of Indian agricultural practices.  
 

Data availability – The data that support the findings of this study are openly available from three 

sources. The data: Kaggle (https://www.kaggle.com/datasets/vihith12/crop-yield recommendation-

dataset) for environmental parameters and the India Directorate of Economics and Statistics 

(https://eands.dacnet.nic.in/Cost_of_Cultivation.htm) and Farmer’s Portal for economic parameters 

of cost and price (https://farmer.gov.in/mspstatements.aspx). 
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