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Efficient Driving Behavior Narration and Reasoning
on Edge Device Using Large Language Models

Yizhou Huang , Yihua Cheng , Kezhi Wang, Senior Member, IEEE

Abstract—Large language models (LLMs) with robust reason-
ing capabilities have significantly advanced the development of
autonomous driving technologies, particularly in the narration
and reasoning of driving behaviors, which hold substantial
importance for accident analysis and traffic management. How-
ever, traditional deployment of these models relies on cloud
servers, resulting in high latency and training costs, making
it challenging to meet the stringent real-time requirements of
autonomous driving scenarios. Recent studies suggest that edge
computing, by deploying models closer to the data source, offers a
promising solution to these issues. While existing general-purpose
LLMs excel in video understanding and task reasoning, their
generalization capabilities in rapidly changing traffic scenarios
remain questionable. This paper provides a valuable reference
for deploying LLMs at the edge in autonomous driving contexts.
By leveraging real-world 5G networks for rapid deployment, we
validate the performance and response speeds of various models
in autonomous driving scenarios. Furthermore, we introduce an
innovative prompt engineering strategy that enhances model per-
formance by 25% without changing model parameters through
minimal prompt tuning. Experimental results demonstrate that
LLMs deployed on edge devices achieve satisfactory response
times. Tests on the OpenDV-YouTube dataset further confirm
that our prompt strategy significantly improves the performance
of driving behavior narration and reasoning.

Index Terms—Autonomous driving, Large language model,
Edge computing.

I. INTRODUCTION

IN the field of autonomous driving [1], deep learning models
[2] play a pivotal role due to the powerful feature learning

capabilities, end-to-end learning processes, and the ability
to integrate multi-modal data. These strengths contribute to
the increased reliability, safety, and efficiency of autonomous
driving technologies in real-world scenarios. Driving behavior
description [3], a critical sub-task within autonomous driving,
involves the deep understanding and precise interpretation of
vehicle behavior in various traffic environments. In this task,
LLMs [4]–[7] demonstrate exceptional performance, particu-
larly due to their strong reasoning and contextual understand-
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ing abilities. This makes LLMs highly effective for addressing
high-level decision-making challenges. Additionally, LLMs
possess the capability to combine driving rules with natural
language, enabling them to generate explanatory narratives for
driving behaviors.

Although LLMs have demonstrated remarkable perfor-
mance in autonomous driving scenarios, their deployment
typically relies on cloud servers. This reliance results in end-
to-end latency for cloud-based LLMs that often fails to meet
the stringent delay requirements [8] in autonomous driving
scenarios. Cloud-based LLM research, leveraging hardware
optimization [9], [10] and clustered computing power, has
demonstrated its potential for latency reduction, making real-
world deployment in autonomous driving feasible. In contrast,
edge computing addresses the high latency and computational
costs of LLMs by deploying resources closer to data sources,
enabling lightweight and efficient single-GPU solutions [11],
[12] as an alternative for autonomous driving tasks. On the
other hand, existing studies rely on simulated environments
for evaluation [13], [14], overlooking the impact of real-world
network conditions on LLM response time. This suggests
that the effectiveness of LLMs in real-world networks for
autonomous driving tasks still requires further exploration.

In this paper, we propose a framework that integrates
LLMs with a laptop to simulate the use of 5G networks to
evaluate the performance of edge LLMs in specific driving
behavior tasks. This approach combines the strengths of LLMs
in understanding complex semantics and reasoning with the
powerful image-processing capabilities of visual encoders,
resulting in more efficient and flexible descriptions of driving
scenes. Specifically, the visual encoder analyzes and extracts
key visual features from the driving environment, such as
environment change and motion change, which are then fed
into the LLM for further processing. We deploy LLMs across
multiple roadside units (RSUs), each simulated on a laptop.
These RSUs are interconnected via 5G NR/NSA technology,
enabling decentralized deployment. We deploy the LLMs
across three laptops; each laptop performs as a roadside unit
(RSU), covering a specific area and interconnected through
5G NR/NSA technology [15], enabling decentralized deploy-
ment. Within this framework, each laptop 1processes only the
traffic data from its coverage area, thereby avoiding redundant
operations and mitigating data congestion.

Our work focuses on evaluating the latency and performance

1We omit mention of the laptop-based RSU simulation in the following
sections.
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of LLMs in handling driving behavior narration and reasoning 
tasks on edge devices. We conduct real-world deployment and 
testing using actual network conditions. Experimental analysis 
shows that edge devices and 5G networks can effectively 
reduce the latency of LLMs. However, the performance of 
vanilla LLMs remains suboptimal, raising two key questions:

• Does the LLM struggle to recognize a new environment?
• Can the LLM recognize the new environment but fail to

generate the desired outcome?
To address these questions, we propose a three-stream prompt
strategy using multi-modal information, consisting of environ-
mental, agent, and motion streams. These streams convert the
extracted features into structured natural language descriptions
and reasoning prompts, guiding the LLM to generate context-
specific responses. Our prompt engineering allows LLMs
to rapidly improve their understanding of driving scenarios.
During prompting, we freeze the model parameters, relying
solely on pretrained LLMs for evaluation. Compared to com-
putationally intensive fine-tuning, our strategy is significantly
more suitable for rapid deployment on edge devices.

Our work provides a valuable reference for the performance
and response time of deploying general LLMs on 5G edge
devices for driving behavior narration and reasoning tasks.
We propose a three-stream prompting strategy that effectively
leverages multimodal prompt engineering to improve LLM
performance, enabling rapid edge deployment. We propose
a three-stream prompting strategy that enhances LLMs’ con-
textual understanding of driving scenarios through prompt
learning. With minimal computational resources, this approach
achieves a 25% performance improvement in specific driving
behavior tasks.

II. TASK DEFINITION

This work aims to evaluate the performance and response
time of LLMs in driving behavior narration and reasoning
for specific autonomous driving scenarios. We develop a
framework where LLMs deploy on edge devices in real-
world conditions via cellular networks. We aim to input image
sequences into LLMs to generate driving behavior narra-
tion and reasoning. The narration task focuses on generating
contextually relevant keywords for environment, agents, and
motion, updating its knowledge base. The reasoning task
builds upon the learned knowledge base, requiring LLMs
to generate explanations for driving behavior narrations. The
reasoning process follows a causal inference rule, ensuring that
explanations establish keyword-triggered causal relationships,
for example, “Due to Keyword 1, Keyword 2 occurs, leading
to Keyword 3’s action.”

III. METHOD

A. Overview

Our task aims to test the performance of LLM on edge
devices, including the accuracy of narration and reasoning
of driving behavior and the response time. We designed a
framework where the LLM is deployed independently on the
RSU with its parameters frozen, without fine-tuning. This

setup avoids redundant computation and reduces queuing de-
lays during data transmission. Freezing the parameters ensures
that the LLMs can be deployed quickly without the need for
complex parameter adjustments. The framework we designed
is an LLM deployed on RSUs individually; this setup avoids
redundant computations and reduces queuing delays during
data transmission, minimizing response latency.

B. LLMs with Edge Device

We propose a framework to integrate LLMs with edge
devices in this section. In our framework, we use three laptops
to simulate three edge servers and a 5G router provided
by a network operator for 5G cellular communication. We
connected the three RSUs to the 5G router and deployed LLMs
on each. A single video clip was split into three sequential
parts and fed into the RSUs in order. Our goal is for the LLMs
on each RSU to provide coherent reasoning and explanations
based on the video content, which will be evaluated against a
baseline of human annotations. Additionally, as illustrated in
Figure 1(a), we designed a visualization window at the end of
the LLM to simulate road condition information uploaded by
pedestrians.

One key strength of this system is its ability to enable
information sharing between RSUs. When an LLM on one
RSU detects an event, such as speeding or an accident,
this information is immediately communicated to neighboring
RSUs. For instance, if the first RSU detects a speeding vehicle,
it can alert the second RSU, which can then warn nearby
vehicles and pedestrians. This inter-unit communication helps
create a safer driving environment by predicting potential
dangers before they escalate. The warnings and information
are transmitted over the 5G network, ensuring timely and
reliable message delivery.

C. Multi-modal Prompt Strategy

The LLMs deployed on the RSUs are not specifically
utilized for autonomous driving and driving behavior tasks.
To further enhance the LLM’s narration and reasoning capa-
bilities, we design a multi-modal prompt strategy to improve
the performance of the LLM in narration and reasoning.

We input images that contain different environments, agents
(pedestrians and vehicles), and motion information into gen-
eral LLMs. The task’s objective is to ensure that the LLMs can
perform driving behavior analysis using relevant information.
During training, we notice that general models may inherently
encode relevant information but are not explicitly utilized in
generic tasks. To guide the general models to better gain
relevant information for this specific task, as illustrated in
Figure 1(b), we formulate the task definition so that the gen-
erated driving behavior descriptions must incorporate all three
elements, which are designated as keywords. The task’s rule
requires each description to include the corresponding stream-
specific keywords. For example, in a rainy environment, the
generated description must contain the keyword indicating
rain. Through the three-stream prompting strategy, the model
is directed to focus on the environment, agent, and motion
elements.
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Prompt Strategy
Task Objective: You are performing 

a driving behaviour description task. 

You need to identify three elements 

of a scene: Environment, Agent 

(pedestrians/vehicles), and motion 

state.

Task Definition: You must consider 

the descriptions of Environment, 

Agent (pedestrians/vehicles), and 

motion state simultaneously, 

defining these three elements as 

keywords.  

Rule: Every description you provide 

must include all keywords.
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with a new scene. Please respond 

with a description that includes all 

keywords.

Examples

Environment : Rainy Day
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Environment: Night 
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Fig. 1. (a). Overall system framework. The LLM deployed on the edge receives input data from edge users through a 5G cellular network. It analyzes
input data to generate corresponding driving behavior narration and reasoning. LLM generates text-based outputs, which can be accessed through a real-time
visualization window for backend queries. (b). Prompt details: LLMs learn environmental, agent, and motion information through prompt engineering to
accomplish the narration task. According to the predefined prompting rules, the model continuously updates its knowledge base until it correctly learns all
required features and generates appropriate responses.

Once the model’s responses satisfy the task requirements,
we proceed to reasoning analysis. Specifically, we define ex-
plicit task objectives and rules for the reasoning process. Since
the model has already internalized the three-stream features
within its knowledge base, we further guide it to retrieve
narration memory from past learning to generate contextually
aligned explanations. For example, if the model has learned
the characteristics of a nighttime driving scenario, but during
a reasoning task incorrectly attributes vehicle deceleration
to rainy conditions, we intervene by reinforcing that the
slowdown is due to low visibility in a nighttime environment.
This correction mechanism further strengthens the model’s
knowledge base, ensuring improved consistency and accuracy
in reasoning.

Environmental information contains weather and lighting,
which significantly impact driving behavior and decisions.
It ensures the model considers changes in visibility, road
friction, and other environmental factors that may affect ve-
hicle dynamics or necessitate more cautious driving. Agent
information directs the model’s attention to other entities in the
driving environment, such as nearby vehicles and pedestrians.
It aids in detecting interactions like lane merging, overtaking,
or pedestrian crossings—crucial aspects of safe driving that
are challenging to identify without specific prompts. Mo-
tion information analyzes the movements of the surrounding
agents to identify events like sudden braking, sharp turns,
and speeding. It enables the model to assess these situations
and generate responses, such as recommending slowing down
when a vehicle ahead brakes suddenly.

During prompting, we manually select the first frame that
marks an environmental change. For instance, if frame N
represents a street condition and frame N+1 transitions to a
tunnel condition, frame N+1 is identified as the beginning of
the new environment. We apply the same strategy for agent-
related prompts. Our observations suggest that LLMs are more
sensitive to sudden changes in these two types of prompts.

When provided with repeated environmental prompts, LLMs
do not continuously update their internal knowledge. In con-
trast, for motion prompts, we input a continuous sequence of
frames, as motion states vary at each frame, enabling LLMs
to dynamically update their knowledge.

We select 23 environmental information to serve as prompts,
with each information representing a specific environmental
condition, such as a rainy day, fog, or nighttime. We first input
images containing one or more of these environmental infor-
mation, along with their corresponding textual descriptions,
into the LLM, allowing it to learn and retain this information
and their related descriptions. Similarly, we select 15 agent
information as prompts, including pedestrians, vehicles, and
cyclists, and 47 motion information, such as turning, stopping,
lane changing, and crossing. After the LLM forms a memory
of individual information, we combine environment, agent,
and motion information in pairs to enrich scene representation
and evaluate the performance improvement of dual-prompt
combinations. After confirming the effectiveness of this strat-
egy, we integrate all three prompts to achieve the optimal
results. This iterative and layered approach ultimately forms
a comprehensive multimodal prompt, enabling the LLM to
describe and interpret complex scenes from the perspectives
of environment, agents, and motion.

As shown in Figure 2, when the prompt strategy is en-
abled, the LLM is able to generate more specific, context-
aware outputs that better capture the complexities of driving
scenarios. For example, the model can describe a situation
where visibility is reduced, a vehicle ahead is prohibited from
passing, and no pedestrians are crossing, while also providing
an analysis of the underlying driving behaviors.

IV. EXPERIMENT AND DISCUSSIONS

A. Dataset
The OpenDV-YouTube dataset [16], developed by Open-

DriveLab, constitutes a large-scale multimodal benchmark
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With  Prompt Strategy Without Prompt Strategy

Why does the vehicle 
slow down?

Because the visibility is 
low due to darkness. 
There is a car stopped in 
front.  No pedestrian 
cross.

Why does the vehicle 
slow down?

To avoid collision

Does the driver act safety?

Yes, because the driver 
slow down when a car 
stopped in front. The 
driver turning to 
overtake slowly. No 
pedestrian cross.

Does the driver act safety?

Yes, the driver is safety.

Why does the driver drive 
safety?

Because the driver slow 
down to avoid collision.

Environment Info  Motion Info Agent Info

Fig. 2. Comparison between enabling and disabling three-stream prompts.
LLM is able to generate descriptions of driving behavior based on three
streams. The observed results can trigger various keywords, such as the
environment keyword ”visibility,” the agent keyword ”pedestrian crossing,”
and the motion keyword ”stop,” among others.

specifically designed for video-language understanding in
autonomous driving contexts. To facilitate efficient model
development, the authors provide OpenDV-mini—a curated
subset containing 28 hours of driving. All LLMs in our study
were rigorously evaluated using this standardized OpenDV-
mini benchmark; we sampled 2,000 images for evaluation after
prompt tuning.

B. Experimental Settings

We implemented all models in PyTorch and validated them
using three NVIDIA RTX 3090 GPUs, each equipped with
24 GB of LPDDR4X memory. We compared edge devices
such as the Mobilint MLA100, which supports up to 32GB of
VRAM and is equipped with high-speed chips designed for
AI inference. It can deploy LLMs up to 70B parameters at the
edge; this enables the deployment of LLMs on edge devices.

In our study, we employ BERTScore to quantify the se-
mantic similarity between texts generated by large language
models (LLMs) and the annotations provided in the dataset.
Specifically, we transform both the generated text from LLMs
and the dataset annotations into token embeddings. Utilizing
BERT, we then compute the token-level alignment between the
generated text and the annotated text, subsequently generating
an F1-score. A score approaching 1 indicates a high degree
of similarity between the generated text and the dataset anno-
tations, whereas a score of 0 denotes complete dissimilarity.
Following this, we convert the 0-1 score into a percentage
format, which serves as a performance metric for our evalu-
ation. This approach allows for a nuanced understanding of
the semantic fidelity of LLM-generated content relative to
established dataset benchmarks.

C. Advantages of Multi-modal Prompt Strategy

We conducted a comprehensive series of tests on Video
Chat [4], LLaMa Adapter [5], Video LLaMa [6], and Video-
ChatGPT [7] to thoroughly assess their performance in terms
of narration accuracy and reasoning correctness, as summa-
rized in Table I. For consistency, the input provided to all four

TABLE I
THE EFFECT OF THE PROPOSED MULTI-MODAL PROMPT STRATEGY IN

NARRATION AND REASONING TASKS, PS REFERS TO THE PROMPT
STRATEGY.

Task PS
Models

Video Chat LLaMa-Ada Video-LLaMa Video-ChatGPT

Nar.
✓ 76.9% 70.3% 74.1% 78.2%
× 67.2% 56.3% 59.5% 64.9%

Rea.
✓ 71.3% 68.1% 65.2% 81.7%
× 51.4% 39.38% 44.7% 54.5%

large language models was kept uniform, utilizing raw image
data as the primary source. This consistency in input ensured
that the results were directly comparable across different
models. We designed two distinct sets of experiments: one set
with the prompt strategy enabled and the other disabled. This
approach allowed us to effectively evaluate the impact of the
prompt strategy on the performance of these models, providing
insights into how prompt-based optimization influences both
narration and reasoning tasks.

Video-ChatGPT performs the best with the prompt strategy
enabled, achieving a narration accuracy of 78.2% and a
reasoning correctness of 81.7%. However, when the prompt
strategy is disabled, these values drop to 64.9% and 54.5%,
respectively. LLaMa Adapter and Video LLaMa, also show
noticeable performance declines when the prompt strategy is
disabled, especially in reasoning correctness, where LLaMa
Adapter drops from 68.1% to 39.38% and Video LLaMa from
65.2% to 44.7%. This highlights the crucial role the prompt
strategy plays in enhancing the models’ understanding and
handling of driving behaviors, particularly in reasoning.

To explore the performance differences between prompted
edge LLMs and deep learning models on the same driving
behavior task. We manually reproduced the ADAPT model
and trained it using the OpenDV-YouTube dataset to establish
a performance baseline. The results for ADAPT presented in
Table II were obtained from the validation set, providing a
benchmark for comparison against the LLMs.

D. Response Speed of LLMs

We tested the response speeds of these four LLMs alongside
the traditional deep learning method ADAPT [17]. For this
aspect of the evaluation, we introduced a variety of conditions
by dividing image frames into intervals of 1, 15, and 30. This
was done to measure response times under different levels of
input frequency.

We conducted 20 experiments and averaged the results to
minimize error fluctuations. The result in Table III for all
experimental subjects is the sum of the network transmission
time and the LLMs processing time. LLaMa-Adapter performs
the fastest under all conditions, taking 50 ms, 70 ms, and 75
ms to process 1, 15, and 30 frames, respectively. Video Chat-
GPT, Video Chat, and Video LLaMa also demonstrate quick
response times, particularly when handling smaller batches
of images. These results demonstrate that well-deployed edge
LLMs can effectively meet the low-latency and high-response
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TABLE II
ACCURACY OF LLMS AND CONVENTIONAL METHOD ADAPT. LLMS ARE 

NOT TRAINED ON THE DATASET AND SHOW REMARKABLE 
GENERALIZATION ABILITY. .

Task ADAPT Video-GPT Video-LLaMa Video-Chat LLaMa-Ada

Nar. 89.7% 78.2 % 74.1% 76.9% 70.3%
Rea. 90.3% 81.7% 65.2% 71.3% 68.1 %

TABLE III
TOTAL RESPONSE TIME OF LLMS ON EDGE USING 5G NETWORK. LLAMA

ADA REPRESENTS LLAMA ADAPTER

Model Frames Response time
Uploading Inference Total

Video Chat
#1 25 ms 50 ms 75 ms

#15 210 ms 85 ms 295 ms
#30 430 ms 105 ms 535 ms

LLaMa-Ada
#1 30 ms 50 ms 80 ms

#15 240 ms 70 ms 310 ms
#30 450 ms 75 ms 525 ms

Video-LLaMa
#1 30 ms 55 ms 85 ms

#15 230 ms 85 ms 315 ms
#30 470 ms 90 ms 560 ms

Video-ChatGPT
#1 25 ms 50 ms 75 ms

#15 220 ms 80 ms 300 ms
#30 450 ms 95 ms 545 ms

speed requirements of autonomous driving scenarios. In ad-
dition, leveraging the efficient parallel processing of GPUs,
the inference time of LLMs does not increase linearly with
the number of image frames. Specialized chips designed for
edge AI inference can further accelerate LLM execution.
Notably, we did not directly compare LLMs’ response time
with traditional deep learning models such as ADAPT, as the
latter requires parameter updates. Retraining a deep learn-
ing model on the OpenDV-mini dataset entails substantially
higher computational costs than leveraging prompt engineering
with LLMs, making the latter a more efficient alternative in
deployment-sensitive applications.

E. Discussion

We validated the potential of edge LLMs in handling
autonomous driving narration and reasoning tasks in real-
world deployment. The combination of 5G high-speed net-
works and edge devices can meet the low-latency requirements
of autonomous driving. While advanced image compression
techniques may further reduce latency and enhance safety.
However, edge devices are constrained by a single GPU,
typically limiting LLM deployment to within 70B parameters.
In contrast, cloud-based computing remains superior to edge
devices, enabling the deployment of larger-scale LLMs (e.g.,
128B models) to further enhance the accuracy of driving
behavior narration and reasoning. Exploring the integration
of cloud-based fine-tuned LLMs with rapidly deployed edge
LLMs may be a promising direction.

V. CONCLUSION

In this paper, we propose a framework that integrates large
language models and edge devices, along with a multi-modal

prompt strategy to enhance the accuracy of narration and
reasoning of driving behavior on edge devices. After enabling
the multi-modal prompt strategy, the overall performance of
the LLM improved significantly. Furthermore, deploying the
LLM directly on RSUs via 5G communication technology
allows for real-time data processing at the source, signifi-
cantly reducing the latency associated with data queuing and
processing delays. By handling data closer to the source,
this approach minimizes waiting times and enhances overall
system efficiency.
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