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Abstract: Large Language Model (LLM) have recently been widely used in various fields. In this work, we apply LLMs 
for the first time to a classic combinatorial optimization problem—surgery scheduling—while considering 
multiple objectives. Traditional multi-objective algorithms, such as the Non-Dominated Sorting Genetic 
Algorithm II (NSGA-II), usually require domain expertise to carefully design operators to achieve satisfactory 
performance. In this work, we first design prompts to enable LLM to directly solve small-scale surgery 
scheduling problems. As the scale increases, we introduce an innovative method combining LLM with 
NSGA-II (LLM-NSGA), where LLM act as evolutionary optimizers to perform selection, crossover, and 
mutation operations instead of the conventional NSGA-II mechanisms. The results show that when the 
number of cases is up to 40, LLM can directly obtain high-quality solutions based on prompts. As the number 
of cases increases, LLM-NSGA can find better solutions than NSGA-II.

1 INTRODUCTION 

Recent advancements in large language model (LLM) 
have shown impressive performance in various fields 
(Thirunavukarasu et al., 2023; Chang et al., 2024; 
Kasneci et al., 2023). By learning from extensive 
textual data, these models have acquired substantial 
human knowledge, displaying notable capabilities in 
reasoning and decision-making (Ge et al., 2024; Yao 
et al., 2024). Consequently, a question arises: Can 
LLM be used to solve complex combinatorial 
optimization problems, or assist evolutionary 
algorithms in tackling such problems? By harnessing 
the vast knowledge base and reasoning abilities of 
LLM, we can potentially revolutionize the way we 
approach complex optimization challenges. 

This work pioneers the use of LLM to solve multi-
objective combinatorial optimization problems--
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surgery scheduling. Firstly, we designed prompts to 
allow the LLM to directly solve small-scale surgery 
scheduling problems. As the scale increases, we 
introduce an innovative method that combines LLM 
and Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II) (LLM-NSGA). During the evolutionary 
search process, LLM-NSGA guides the LLM to 
perform crossover and mutation to generate new 
solutions, replacing the traditional selection, 
crossover, and mutation of NSGA-II (Ruiz-Vélez et 
al., 2024).  

From the design perspective of NSGA-II, LLM-
NSGA has two appealing features. Firstly, by altering 
the problem description and solution specifications in 
the prompt, LLM-NSGA optimization can quickly 
adapt to different optimization problems. This 
method is more direct and flexible compared to 
traditional programming, requiring minimal domain 
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knowledge and manpower. Secondly, the zero-shot 
learning capability of LLM-NSGA is particularly 
noteworthy, as it reduces the computational overhead 
associated with training AI models on specific tasks. 
This is a significant advantage in scenarios where 
resources are limited or where rapid adaptation to 
new problems is required. 

2 LITERATURE REVIEW 

Over the past three years, the scaling of LLM has led 
to groundbreaking achievements across a myriad of 
tasks (Kirk et al., 2024; Schwitzgebel et al., 2024), 
particularly planning and mathematical problem. 
Gundawar et al., (2024) delves into the practical 
application of LLM within the domain of travel 
planning, and uses the Travel Planning benchmark by 
the OSU NLP group. Their operationalization of the 
LLM-Modulo framework for Travel Planning 
domain provides a remarkable improvement, 
enhancing baseline performances by 4.6x for GPT4-
Turbo and even more for older models like GPT3.5-
Turbo from 0% to 5%. Chen et al., (2024) used LLM 
as general adaptive mutation and crossover operators 
for an evolutionary neural architecture search (NAS) 
algorithm. While NAS still proves too difficult a task 
for LLM to succeed at solely through prompting, but 
combination of evolutionary prompt engineering, 
consistently finds high performing models.  

 “Prompts” refers to instructions designed to 
guide LLM to complete a specific task. These 
instructions are usually given in natural language to 
tell the model what to do or how to process the given 
information.  A large number of studies have shown 
that the format of the prompt can significantly impact 
the quality of the LLM's output (Qi et al., 2023; Liu 
et al., 2024). Wang et al., (2024a) evaluated LLM 
with various prompting approaches on the Natural 
Language Graph benchmark and then propose two 
new Prompts, which enhance LLM in solving natural 
language graph problems. Wang et al., (2024b) 
explore the application of prompt engineering in 
LLMs, designing and using different styles of 
prompts to ask LLMs professional medical questions. 
They assessed the reliability of different prompts by 
asking the same question 5 times. The results showed 
that GPT-4-Web with prompting had the highest 
overall consistency. 

In this work, by designing appropriate prompts, 
LLM can directly solve small-scale operating room 
(OR) allocation, and at the same time combine the 
classic multi-objective algorithm NSGA-II to solve 
large-scale OR allocation. The success of LLM in 

surgery scheduling not only demonstrates its 
effectiveness in a practical application but also opens 
the door for further exploration into other 
combinatorial optimization problems. 

3 MATHEMATICAL MODEL 

The surgery scheduling problem discussed involves: 
first, assigning ORs to elective patients, and after the 
surgeries are completed, some patients require 
recovery in Intensive Care Unit (ICU) beds. Our 
model primarily addresses how to allocate ORs to 
elective patients to minimize overtime hours, meet 
the patients' time window requirements, and 
simultaneously reduce the peak demand for ICU 
beds. 

Set 
I : Set of elective patient  
J : Set of operating room  
T: Set of planning horizon 

Parameters 
Q: Regular opening hours per OR 
α :Unit overtime cost for over regular hours 
C: The opening costs per OR, 

Variables 
Bt: Number of ICU beds on day t, 
Ojt: Opening hours in OR j on day t, 
Cut: All ICU patients not discharged on day t,  
Di: Surgery duration for elective patient i, 
Twi: Expected surgery date for elective patient i, 
Leli: LOS of elective patient i,  

Decision Variables: 
Bf(m, A): If the element m belongs to the set A, it is 

0, otherwise 1. 
xijt: If elective patient i is scheduled to be operated 

in OR j on day t, it is 1, otherwise 0. 
yjt: If OR j is open on day t, it is 1, otherwise 0. 
Zi: If elective patient i needs an ICU bed, it is 1, 

otherwise 0. 

Mathematical Model: 
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Eqs. (1-4) are the four objective functions: f1 
minimizes the total cost, including OR opening costs 
and overtime costs; f2 and f3 are the number of 
elective patients rejected and not operated within their 
time window. f4 is the peak number of ICU beds over 
all the periods. 

Constraint (5) is the opening time of OR. 
Constraint (6) calculates the total ICU bed demand 
for elective patients. Constraint (7) indicates that 
elective patients are scheduled only once during the 
planning horizon. Constraint (8) represents the 
relationship between two decision variables. 
Constraints (9-11) shows the domain of variables. 

4 METHODS AND RESULTS 

To better demonstrate the effectiveness of LLM in 
solving surgery scheduling, we employ three 
frameworks to address this problem. Each framework 
leverages different strategies and methodologies to 
optimize surgery scheduling, which can lead to varied 
outcomes and insights. 

We have prepared 5 ORs, open for a week, to 
schedule surgeries for 300 elective patients. Opening 
an OR costs 1000, and each one is normally open for 
8 hours. The overtime cost is 200 per hour. The details 
of these patients are presented in Table 1. It contains 
5 columns, "No." is the patient number. "Exe." is the 
expected date for patient undergoing surgery. "Sur." 
is the surgery duration in minutes. "LOS" is the length 
of stay after surgery in days. "Stay" represents 
whether the patient needs ICU bed after surgery  
(1 represents yes and 0 represents no). 

 
 

Table 1: The Information for elective patients. 

No. Exe. Sur. LOS Stay
1 6 114 5 0
2 5 118 5 1
3 7 179 1 0
4 7 122 5 0
5 4 102 5 0
6 2 105 5 0
7 5 157 4 0
8 5 67 4 1
9 1 124 4 1

10 6 164 5 0
…… 

300 5 85 3 1

4.1 LLM Approach 

This framework uses LLM to understand and solve 
the OR allocation issue. The process is shown in 
Figure 1. The LLM is given a thorough explanation 
of the scheduling rules and goals. This allows the 
model to create solutions that consider the complex 
interdependencies of OR and ICU bed, such as 
duration, LOS, and resource availability. The LLM 
then gives steps to find a solution based on what it's 
asked (called prompts) and makes a list of how to 
schedule ORs using patient information and the 
limitations given. 

 
Figure 1: LLM approach framework. 

To facilitate the display of results, Figure 2 shows 
the OR and ICU bed arrangements by the LLM for 
the first 10 elective patients listed in Table 1.  

- f1 = 6000: The total cost includes the cost of 
opening the ORs and overtime if the surgeries 
extended beyond the regular hours. All surgeries were 
completed within the regular operating hours, thus 
avoiding overtime costs. 

- f2 = 0: This indicates that none of the elective 
patients were turned away due to OR constraints, 
meaning the schedule was successful in 
accommodating all patients. 

Prompt for LLM

LLM

Develop a 7-day schedule for operating room (OR) allocation and ICU bed utilization for elective patients 
Constraints: 
1.5 ORs, each open 8 hours daily, costing 1,000 to open, with a 200 hourly charge for overtime up to 8 
hours.
2.Elective patients are assigned to ORs based on their expected dates, surgery duration, and OR availability.
3.After surgery, determine if patients need ICU beds, and track daily ICU bed requirements. This includes 
patients newly admitted and those still in the ICU.
Objectives: 
1.Minimize total OR costs, including daily and overtime expenses.
2.Reduce the number of elective patients turned away due to OR constraints.
3.Ensure as many elective patients as possible have surgery on their scheduled date.
4.Minimize the peak number of ICU beds needed at period.

We need to perform a simplified approach to plan the 7-day OR allocation and ICU bed, which will involve 
several steps:
Step 1: Sort Patients
Arrange patients by their planned surgery dates.
Step 2: Allocate OR Time
Place surgeries in ORs based on duration, aiming to fit within an 8-hour day.If the total surgery time exceeds 
40 hours,  we schedule some surgeries on other days or incur overtime.
Step 3: Calculate ICU Beds
After scheduling surgeries, compute daily ICU bed needs based on patient LOS.
Step 4: Optimize
Continuously refine the schedule to balance OR use, minimize costs, and manage ICU beds efficiently.

Detailed steps

 allocation plan

LLM: Output

Problem description

Data display

You: Input
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- f3 = 0: This suggests that all surgeries were 
performed on their patients' expected dates, with no 
rescheduling required. 

- f4 = 2: This shows that, according to the plan, a 
maximum of two ICU beds were needed at any given 
time during the planning period. 

 
Figure 2: LLM approach results. 

This outcome suggests that the LLM performed 
very well in creating an allocation plan that met all 
the objectives for the given scenario. It managed to 
schedule all elective surgeries on their expected dates, 
without incurring any additional costs or rejecting any 
patients, while also minimizing the peak number of 
ICU beds required. 

4.2 Traditional Approach: NSGA-II 

This framework extends the NSGA-II to address the 
allocation of OR and ICU beds for elective surgeries, 
as illustrated in Figure 3. NSGA-II could maintain a 
diverse set of solutions and its efficiency in handling 
multiple objectives simultaneously (Harane et al., 
(2024); Altanany et al., (2024)), ensuring optimized 
resource allocation and improved operational 
efficiency in healthcare settings. 

The traditional NSGA-II method was used to 
assign ORs to these ten elective patients. The coding 
method is shown in Figure 4. When allocating ORs to 
elective patients, on the premise of avoiding overtime 
in the OR and delaying elective patients, open ORs as 
little as possible and arrange ICU beds at staggered 
times. 
 

 
Figure 3: Traditional approach framework: NSGA-II. 

 
Figure 4: The coding method of NSGA-II. 

Figure 5 shows the OR allocation results. The 
corresponding four objectives are f1 = 6000, f2 = 0, f3 
= 0, and f4 = 2. 

 
Figure 5: ORs assignment of NSGA-II. 

4.3 Approach Combining LLM and 
NSGA-II 

This is a hybrid framework that combines the 
strengths of LLM and NSGA-II. LLM-NSGA 
integrates LLM as evolutionary operators in a zero-
shot learning context. This means that the LLM is 
utilized without any additional training specific to the 
task at hand. The process involves the LLM in 

Initialization

Selection,Crossover,
Mutation

Merging 
populations

Pareto sorting

New population

Termination?

No

End

Start

Yes

3

...

OR1

OR2

OR3

2H 4H 6H 8H
Time

10

6

Avoid working overtime and 
Avoid postponing patients 

5

1
Surgery duration

...
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performing key genetic algorithm operations such as 
parent selection and genetic variation (crossover and 
mutation) through an in-context learning approach 
facilitated by carefully designed prompts. Figure 6 
displays the prompts structured for solving the OR 
and ICU bed allocation problem using LLM-NSGA.   

 
Figure 6: LLM-NSGA approach framework. 

 
Figure 7:  Crossover and mutation of LLM-NSGA. 

LLM-NSGA is that it does not program the 
evolutionary operators step-by-step as it is 
traditionally done. Instead, it provides high-level 
instructions using natural language, reducing the need 
for in-depth domain-specific knowledge.  

To facilitate the presentation of results, this plan 
only allocates OR and ICU beds to the first ten 
elective patients in Table 1. Based on the randomly 
generated initial allocation (as shown in Table 2), the  
 

Table 2: The initial allocation solution. 

Date OR Patients sequence
Day 1 1 [9] 
Day 2 1 [2] 
Day 3 1 [] 
Day 4 1 [5] 
Day 5 1 [8,7,6]
Day 6 1 [10]
Day 7 1 [4,3]

four objectives are f1 = 6000, f2 = 1, f3 = 2, and f4 = 
2, where elective patient 1 is not assigned OR and 
elective patients 2 and 6 do not undergo surgery on 
the desired date.  

The LLM-NSGA then refines this initial plan by 
performing crossover and mutation operations to 
enhance the allocation, as shown in Figure 7. The 
LLM effectively took into account the needs of 
patients 1, 2, and 6, guided by the model's constraints 
and objectives. The process is analogous to the 
mutation and crossover steps in the NSGA-II 
algorithm. 

Table 3 displays the "Final Allocation" that results 
from these operations starting from the initial plan.  
The final objectives are: f1 = 6000, f2 = 0, f3 = 0, and 
f4 = 2. With the goal of minimizing all four objectives, 
the crossover and mutation process successfully 
improved objectives f2 and f3 to zero.  

Table 3: The final allocation solution. 

Date OR Patients sequence
Day 1 1 [9] 
Day 2 1 [6] 
Day 3 1 [] 
Day 4 1 [5] 
Day 5 1 [8,7,2] 
Day 6 1 [10,1] 
Day 7 1 [4,3] 

4.4 Comparative Analysis 

The parameters for NSGA-II were meticulously 
calibrated through experimental tests and 
implemented in MATLAB R2023a on Windows 10 
(X64). We utilized the chat-turbo-0613 version of the 
GPT-4.0 API as our LLM. The model and algorithm 
parameters are shown in Table 4. 

Table 4: The parameters of the model and NSGA-II. 

Parameter Value Explanation 
T 7 Planning horizon 
Q 8 Regular hours of OR

Qmax 10 Maximum hours of OR
a 200 Overtime fee of OR

OR 5 Number of OR 
C 1000 Opening fee of OR
P 100 Population size 

Iter 200 Number of iterations
Mr 0.1 Mutation rate 
Cr 0.7 Crossover rate 

These three methods can allocate ORs for the 10 
elective and find the optimal solution. However, as 
the number of elective patients increases, for example, 

In-context examples
Below are some initial allocation solution and their objectives. The objectives includes: OR 
costs, the number of elective patients rejected due to OR constraints, surgeries not conducted on 
expected dates, and the peak number of ICU beds required. The lower these values, the better 
the outcome.
{Allocation plan 1} {objectives 1}
{Allocation plan 2} {objectives 2}
               ……
{Allocation plan N} {objectives N}

Problem Description

Create a one-week plan for surgery and ICU bed needs with these constraints:5 ORs, each open 
8 hours daily. Schedule surgeries based on expected dates, duration, and OR availability. Then, 
calculate daily ICU bed needs for new and ongoing patients.

Task instructions

Please follow the instruction step-by-step to generate new allocations:
1. Select a allocation from the above allocations.
2. Crossover allocation: Switch the OR assignments of two elective patients, within the same 
day or across different days, while aiming to adhere to their expected surgery dates.
3. Mutation allocation: Add an unscheduled elective patient into an available OR slot on their 
expected date to create a new allocation.

Prompt for LLM

Initialization

Selection

Crossover

Mutation

Termination

LLM

Evaluation

Pareto sorting
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when it reaches 50, LLM cannot balance the 
constraints and goals effectively. Instead, it is 
recommended to use linear programming or genetic 
algorithms for specific calculations and optimization. 
Figure 8 shows how the four optimization objectives 
of the three methods change as the number of elective 
patients increases.  

 
Figure 8: Four objectives of the three methods. 

The LLM ceases to provide allocation plans once 
the patient count exceeds 40. When the number of 
elective patients is less than 150, the effects of LLM-
NSGA and NSGA-II on f2, f3, and f4 are same, but 
the f1 of NSGA-II is higher. This indicates that both 
methods can schedule surgeries for all patients on 
their expected dates, but they differ in how patients 
are ordered within the ORs. LLM-NSGA arranges 
patients more efficiently, resulting in lower overtime 
costs. When the number of patients exceeds 150, 
LLM-NSGA finds better allocation plans, rejecting 
fewer patients. Although this may lead to more 
patients not having surgeries on their expected dates, 
the peak number of ICU beds required is also reduced. 

5 CONCLUSIONS 

In this work, we explore how LLM can directly 
provide solutions for small-scale surgery scheduling 
problems and can also serve as evolutionary 
optimizers, where the LLM generates new solutions 
based on the current population, providing high-
quality solutions for large-scale cases. Nonetheless, 
LLM still has limitations in handling relatively large 
problems. By adjusting the prompts given to LLM, it 
may be possible for LLM to solve large-scale 
problems step by step based on the prompts. 
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