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Abstract

The heterogeneity of Alzheimer’s disease (AD) is multi-dimensional, encompass-

ing clinical features such as neuropsychiatric symptoms (NPS), rate of progression,

age of onset, comorbidities, and neuropathological features such as co-pathologies,

and represents the diverse outcomes of manifold genetic and environmental risk
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determinants. These diverse features of AD also vary significantly between sexes and

across ancestral backgrounds, but the specific variations and causal mechanisms are

notwell understood. Recent technological advances, particularly single-cell and spatial

omics, have provided new tools to dissect the molecular underpinnings of AD het-

erogeneity and its multifactorial nature. This perspective review highlights molecular

differences, general and sex-specific, that contribute to the heterogeneity of AD in

aspects such as NPS, co-pathology prevalence, and general disease trajectories. We

further examined the potential for multiomic approaches to direct future translational

studies aimed at the development of precisionmedicine strategies for the treatment of

AD in all its diverse forms.

KEYWORDS
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mapping, sex differences, single-cell sequencing, spatial omics, transcriptomics, translational
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Highlights

∙ Alzheimer’s disease (AD) represents diverse subtypes characterized by comorbid

clinical symptoms and co-pathologies.

∙ Integration of bulk, single-cell, spatial multiomics reveals factors underlying AD

variation.

∙ Multiomics studies indicate shared and distinct mechanisms between major psychi-

atric disorders and AD.

∙ Multiomics data have transformative implications for sex- and population-specific

AD therapies.

∙ New tailored precision medicine strategies are needed to address the full range of

complexity in AD.

1 INTRODUCTION

Alzheimer’s disease (AD) is a highly heterogeneous age-related neu-

rodegenerative disorder with divergent clinical and pathologic char-

acteristics from case to case and across demographics, as well as

frequent comorbidity with other neuropathologies and clinical pre-

sentations (Figure 1, upper panel). Thus, AD should be considered a

multifaceted rather than a monolithic disorder, with numerous fac-

tors driving disease manifestation. This multifactorial nature of AD

presents a challenge in capturing the genetic complexity and molecu-

lar subtypes underlying the diversity in AD characteristics. Over the

years, functional genomics studies and integrated multiomics datasets

have provided importantmechanistic insights into AD genetics, includ-

ing the identification of candidate genes within associated risk loci,

and established the role of gene dysregulation in AD pathogenesis.

Specifically, these studies examined specific disease-related genes,1,2

pathways,3 differential transcriptome profiles,4 DNA methylation,5–8

histone modification landscapes,9 expression quantitative trait loci

(eQTLs),10–12 and other omics QTLs in human brain tissues (Figure 1,

middle panel). However, until recent years, most brain functional

genomics studies havegeneratedomics datasets usingbulk brain tissue

homogenates that amalgamate various types of neurons and glial cells.

While these studies have produced important data, the heterogeneity

of bulk brain tissuemakes it difficult to determine the specific cell types

and subtypes responsible for changes in gene expression and the chro-

matin landscape. Bulk analysis can also mask signals corresponding to

a particular cell subtype, especially if the causal cell subtypes com-

prise a small fraction of the entire sample. An additional shortcoming

of bulk brain tissues is the bias associated with sample-to-sample vari-

ation in the cellular composition of the tissue. Variability in cell subtype

proportions across samples is even more pronounced when analyzing

disease-affected brain tissues impacted by neurodegenerative pro-

cesses such as neuronal loss and gliosis. The recent development of

single-cell experimental approaches has provided a means of circum-

venting many of the limitations of bulk tissue analysis. Over the past ≈

5 years, the AD functional genomic field has transitioned into single-

cell multiomics research, enabling the identification of epigenomic

and transcriptomic changes associated with AD with a previously
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unattainable cell-subtype level of precision.13,14 Spatial omics studies

have added another dimension to the understanding of AD pathology

by allowing the comparison of gene expression and epigenetic features

across specific brain regions within the same experimental subjects.

Despite these advances, a persistent major gap in AD omics

research stems from the fact that most studies have applied a case–

control design in examining AD-associated differences without taking

into account the heterogeneous nature of the disease. This hetero-

geneity is multi-dimensional, encompassing clinical features such as

neuropsychiatric symptoms (NPS), rate of progression, age of onset,

comorbidities, and neuropathological features such as co-pathologies,

among other factors, and represents the diverse outcomes of manifold

genetic and environmental risk determinants. These diverse features

of AD also vary significantly between sexes and across ancestral back-

grounds, but the specific variations and causalmechanisms are notwell

understood.With that said, recent technological advances, particularly

single-cell sequencing and spatial transcriptomics, provide new tools

to dissect the molecular underpinnings of AD heterogeneity and its

multifactorial nature.

Here, we provide an expert perspective on how multiomic

approaches—integrating data from genomics, transcriptomics,

epigenomics, proteomics, and metabolomics—can provide insights

into the (1) clinical, (2) neuropathological, and (3) demographic het-

erogeneity and associated differential risk factors observed in AD.

With regard to clinical heterogeneity, we focused on studies examining

clinical phenotypes relating to the comorbidity of NPS with AD,

including apathy, agitation, depression, and psychosis, as these are

among themost prominent AD comorbidities and omics methods have

been applied extensively to this area of AD research. We discuss the

potential for multiomic data to identify unique molecular signatures

and potential mechanisms driving these symptoms. These profiles will

define AD molecular subtypes that differ in clinical characteristics,

offering opportunities for precision medicine. With this in mind, we

discuss our perspective on translating the disease molecular subtypes

into more effective and accurate treatments of NPS in AD, conceptu-

alized around personalizedmedicine. Regarding the neuropathological

aspect, we discuss the intersection of AD with co-pathologies, includ-

ing Lewy body (LB) pathology, transactive response DNA binding

protein 43 kDa (TDP-43), and vascular lesions, which frequently

coexist with AD pathology and may have a vital impact on AD patho-

genesis. By integrating multiomic data, researchers have worked to

better understand how these co-pathologies contribute to clinical

variability in AD. The molecular phenotypes associated with these

various co-pathologies are informative toward the understanding

of disease trajectory and AD molecular subtypes that differ in their

neuropathological characteristics. Finally, we address the effect of

population diversity in AD, with a focus on differences in disease man-

ifestation and risk between male and female populations, as sex has

been established as one of the most important demographic factors

influencing AD incidence and outcome, and the relationship between

sex and AD has been extensively studied via omics approaches in

recent years.We describe studies probing the impact of sex on disease

risk, progression, and response to treatment. Overall, this perspective

RESEARCH INCONTEXT

1. Systematic review: The authors extensively reviewed the

literature using traditional sources (e.g., PubMed). Recent

technological advances, particularly single-cell sequenc-

ing and spatial omics methods, provide new tools to

dissect the molecular underpinnings of Alzheimer’s dis-

ease (AD) heterogeneity and itsmultifactorial nature. The

authors investigated the application of these advance-

ments to unravelling the various aspects of AD hetero-

geneity.

2. Interpretation: The synthesis of recent multiomics lit-

erature paints a picture of AD as a group of subtypes

rather than a monolithic disorder, with subtypes charac-

terized by differences in clinical features such as neu-

ropsychiatric symptoms, rate of progression, age of onset,

comorbidities, andneuropathological features such as co-

pathologies, which vary significantly between sexes and

across ancestral backgrounds.

3. Future directions: The work reviewed here has trans-

lational implications in multiple ways toward precision

medicine in AD, including the development of genetic and

molecular biomarkers, the discovery of specific therapeu-

tic targets, and the design and implementation of clinical

trials, with consideration of individual patient profiles.

review highlights molecular differences, general and sex-specific, that

contribute to the heterogeneity of AD in terms of NPS, co-pathology

prevalence, and general disease trajectories, and examines the poten-

tial for multiomics approaches to direct future translational studies

aimed at the development of precision medicine strategies for the

treatment of AD in all its diverse forms.

2 NEUROPSYCHIATRIC SYMPTOMS IN AD

2.1 Heterogeneity of AD NPS

NPS refers to behavioral, psychological/psychiatric, and personality

changes associated with neurodegenerative diseases. While primar-

ily studied in the context of dementia, these changes are also known

to occur in parallel with—and sometimes before—cognitive decline

in preclinical AD and related dementias (ADRD).15 In the context of

dementia, the term behavioral and psychological symptoms of demen-

tia (BPSD) is often used, while in preclinical/prodromal disease, the

termmild behavioral impairment has been coined. Here, we useNPS to

describe the full spectrum of symptoms linked to neurodegeneration.

Most patients with late-onset AD (LOAD) have comorbid NPS, with

apathy, depression, and anxiety beingmost prevalent.16–23 Other com-

mon and clinically important NPS include agitation and psychosis. NPS
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F IGURE 1 Omics approaches to unravel AD complexity and develop novel precisionmedicine strategies. AD is a highly complex disease,
exhibiting heterogeneity with regard to symptom presentation (including neuropsychiatric symptoms), the presence of co-pathologies in many AD
cases, sex differences, andmany other factors including diversity of ancestral background. Omics methods can help unravel this complexity and
provide a basis for translational research into the development of biomarkers for risk assessment and early detection, identification of new cell
type–specific molecular targets for therapeutics, and novel precisionmedicine strategies taking into account themany complexities shaping AD
pathogenesis in individual cases. AD, Alzheimer’s disease; APOE, apolipoprotein E; ATACseq, assay for transposase-accessible chromatin with
sequencing; ChiA-PET, chromatin interaction analysis by paired-end tag; ChIPseq, chromatin immunoprecipitation sequencing; eQTL, expression
quantitative trait loci; EWA, epigenome-wide association; GWAS, genome-wide association study; meQTL, methylation quantitative trait loci;
pQTL, protein quantitative trait loci; PWA, proteome-wide association; QTL, quantitative trait loci; SNV, single nucleotide variant; TWA,
transcriptome-wide association.
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significantly impact patientquality of life, are associatedwith increased

functional and cognitive decline, and increase caregiver burden and

admission to care facilities.24–26 When occurring in the prodromal

phase, NPS also correlate with various physiological and pathological

markers.27,28 NPS typically accompany progressive cognitive decline,

serving as both diagnostic and prognostic indicators of ADRD.

NPS domains have been identified using diverse methods, such

as factor analysis, cluster analysis, and latent class analysis, often

leveraging data from the National Alzheimer’s Coordinating Center

(NACC) to gain deeper insights into their comorbid patterns. For exam-

ple, network analysis has identified five symptom clusters, with the

largest group comprising agitation, disinhibition, irritability, and elation

or euphoria.29 A latent class analysis study30 identified four distinct

classes based on combinations of irritability, depression, apathy, night-

time behaviors, or lack of symptoms. Another study identified four

components: behavioral dysregulation, psychosis, mood disorders, and

agitation.31 Each of these domains was associated with a younger age

at AD diagnosis. Interestingly, none of the components were linked

to the age at assessment, years of education, or apolipoprotein E

(APOE) ε4 carrier status.31 While most studies have tended to group

apathy and depression together, it is important to note that there is

evidence that these are distinct syndromes. This is backed up by a

data-driven examination identifying latent classes describing distinct

apathy and depression groups.32 Collectively, these studies highlight

the potentially complex interactions amongNPS, and except in the case

of psychosis, there are few established guidelines on phenotyping for

molecular studies.33 This is an important gap that could impact the

reproducibility and exploitation of drug targets. A key area of com-

plexity is the relationship between neuropsychiatric disorders as risk

factors and NPS as prodromal features of neurodegenerative disease.

Specifically, thereare threeprofiles to resolve, eachofwhichmay result

from differing underlying mechanisms: (1) psychiatric symptoms as a

predisposing risk factor occurring before the onset ofADpathology, (2)

NPS as an early sign of neurodegenerative changes or a prodromewith

or without cognitive deficits, (3) NPS occurring de novo in dementia.

Depression, apathy, and psychosis are among the most well stud-

ied across each of these profiles and multiomic studies, while in their

nascent phase, have a clear role to play in elucidating underlyingmech-

anisms. Major psychiatric disorders, such as major depressive disorder

(MDD) and schizophrenia, increase the risk of dementia. For the typ-

ical early-mid-life onset, these are unlikely to represent prodromal

neurodegenerative NPS; however, the increased dementia risk profile

raises the possibility of shared etiologies and intersecting biological

pathways with AD. However, depression, apathy, schizophrenia-like

psychoses, andmilder delusional ideation can emerge in later life,when

they are associated with incident cognitive decline and biomarkers of

AD.27,34–37 In these cases, given the proximity to the onset of clini-

cal dementia, it may be expected that a higher proportion of cases are

prodromal, suggesting an important role for blood biomarkers in the

clinical differentiation of symptoms due to neurodegenerative disease

and primary psychiatric conditions. Finally, it is important to note that

a history of psychiatric illness is not necessary to explain the presence

ofNPS in the context of established dementia. Indeed, clinical evidence

of differing treatment responses to antipsychotics and antidepressants

would suggest the existence of at least some distinct mechanisms.38,39

2.2 Mechanistic research on NPS heterogeneity
in AD

The pathogenesis of both AD and NPS is complex and involves poly-

genic risk and environmental factors. The genetic architecture under-

pinning the onset and heterogeneity of NPS in AD has been under-

studied, most likely due to a lack of appropriately phenotyped samples

(ascertaining NPS status requires specialist ante mortem assessments,

which are not universally available in biobank collections). However,

recent years have seen an increase in studies (Table 1), which may be

in part due to an increasing availability of cases and a specific funding

call from the National Institutes of Health in 2018/2019.

Two notable milestones were the first genome-wide significant loci

for psychosis in AD dementia (SUMF1 and ENPP6) reported in a cohort

of 12,317 cases40 and the first differentially methylated regions of the

genome (in TBX15 andWT1).41 Moreover, a bulk transcriptomic study

identified a 98-gene signature associated with both the agitation and

psychosis domains of NPS, while differential expression of 88 genes

was linked to the affective, agitation, and psychosis domains, and a 28-

genemodulewas linked to apathy, agitation, andpsychosis.42 However,

no transcriptional signatures were associated with all four domains:

affective, psychosis, agitation, and apathy. All these loci require repli-

cation and functional characterization. However, collectively these

studies provide converging evidence of a distinct genetic basis for psy-

chosis inAD that differentiates it fromADcaseswithout psychosis (the

molecular basis of other NPS is less clear from the research described).

This is supported by SNP-based heritability estimates of 0.18 and 0.31

(depending on the method used).40 Confirmation of this genetic basis

has provided the essential foundations on which to build additional

layers of omics data.

To that end, using weighted gene co-expression network analysis

(WGCNA), a recent DNA co-methylation network study of psychosis

in AD identified a module of co-methylated loci in the dorsolateral

prefrontal cortex that replicated in an independent sample and was

enriched in synaptic genes and inhibitory neurons.43 Furthermore,

integrating single-nucleotide polymorphism (SNP) data and genome-

wide association study (GWAS) data from schizophrenia showed that

methylationQTLs (mQTL) in themodule co-localizedwith loci linked to

schizophrenia. This suggestion of transdiagnostic mechanisms under-

pinning psychiatric symptoms across the lifespan frommulti-level data

is supported by prior studies linking AD psychosis to schizophrenia

via analysis of polygenic scores,44 and to depression and bipolar via

genetic correlations.40

A more established field of research is the link between AD per se

and major psychiatric conditions, which is driven by epidemiological

observations of increased risk in people with lifelong mental health

conditions like MDD. A genetic causal relationship has been observed

between MDD and LOAD,45 though other studies suggest there is no

causal link.46 Other prior work has elucidated the shared genetic
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TABLE 1 Summaries of key studies using omics methods to examine the relationship betweenNPS and AD.

Study Omicsmethods Overall approach Major findings

DeMichele-

Sweet, M.A.A.

et al. (2021)40

GWAS Genome-wide association analysis of genetic

loci in 12,317 AD subjects and 5445

AD+ psychosis subjects.

SUMF1 and ENPP6 loci correlated significantly with
psychosis in AD.

Pishva, E. et al.

(2020)41
Methylomics Analyzedmethylomic variation in prefrontal

cortex, entorhinal cortex, and superior temporal

gyrus in 18 AD, 29 AD+ psychosis donors.

Identified psychosis-associatedmethylomic changes in

AS3MT, TBX15, andWT1.

Fisher, D.W. et al.

(2024)42
Bulk

transcriptomics

Transcriptome-wide analysis for affective,

apathy, agitation, and psychosis domains of

behavioral and psychological symptoms of

dementia in AD using bulk RNA-seq of post
mortem anterior cingulate cortex tissues.

98-gene signature associatedwith agitation and psychosis

domains, 88-genemodule linked to the affective, agitation,

and psychosis domains, and a 28-genemodule linked to

apathy, agitation, and psychosis. Twenty-twoDEGs

associatedwith all domains, including TIMP1. Agitation DEGs
enriched for extracellular matrix and post-synaptic genes.

ESR1 and PARK2were high-impact agitation-associated

genes.

Kouhsar, M. et al.

(2025)43
Methylomics,

GWAS, mQTL

mapping

Assessed brain DNAmethylation in AD donors

with andwithout psychosis, using the EPIC

methylation array.Weighted gene correlation

network analysis used to identify modules of

co-methylated genes. IntegratedwithmQTLs

and GWAS data.

Identified one AD+ psychosis associatedmodule, enriched

for synaptic pathways in neurons. mQTLs themodule

co-localizedwith schizophrenia-linked loci.

Wingo, T.S. et al.

(2022)57
GWAS, bulk

transcriptomics,

single-cell

transcriptomics,

proteomics

Integration of GWAS, bulk transcriptomic,

proteomic, and single-cell data to examine

sharedmechanisms across major psychiatric

and neurodegenerative diseases, including

MDD and AD. Sex-stratified analysis.

Major psychiatric and neurodegenerative diseases have

shared genetic susceptibility and pathophysiology. Identified

13 shared causal proteins, 118 interacting causal proteins,

and the central role of synaptic transmission (involving the

SNARE complex and SNAP receptor), immune function, and

mitochondrial processes in the shared pathogenesis.

Lutz, M.W. et al.

(2020)60
GWAS Genetic pleiotropy analysis using LOAD and

PTSDGWAS datasets from European and

African ancestry populations, followed by

functional-genomic analyses.

Identified strong enrichment for LOAD across the PTSD

GWAS association andmodest enrichment for PTSD in

LOADGWAS association.

Lutz, M.W. et al.

(2020)45
GWAS Pleiotropy analyses using LOAD andMDD

GWAS data sets from the International

Genomics of Alzheimer’s Project and the

Psychiatric Genomics Consortium.

Moderate enrichment for LOAD-associated SNPswithMDD

GWAS. Numerous SNPs corresponded to 40 genes, including

9 known LOAD-risk loci in SPI1 andMS4A gene regions, and

novel risk loci for LOAD conditional withMDD.

Monereo-

Sanchez, J. et al.

(2021)48

GWAS Applied Gaussianmixturemodeling and

conjunctional FDR analysis to GWAS summary

statistics of AD and depression to identify

overlapping loci. Effects of identified

overlapping loci on AD and depression were

tested in UK Biobank subjects andmapped onto

brainmorphologywithMRI data.

Identified 98 overlapping causal genetic variants between

AD and depression withmixed directional effects. An SNP in

the TMEM106B genewas significantly associatedwith both
disorders.

Gilchrist, L. et al.

(2025)46
GWAS Correlation of GWAS of depression symptoms

fromUKBiobank, GLAD study and PROTECT,

with six ADGWAS.

Identified 20 significant genetic correlations of ADwith

depression symptoms, in 14 genomic regions. TMEM106B
region showed colocalization betweenmultiple depression

symptoms and both clinical and proxy AD.

Gibson, J. et al.

(2017)47
GWAS Used population genotype data from

Generation Scotland Scottish Family Health

Study and UKBiobank to test whetherMDD

and AD have an overlapping polygenic

architecture.

No evidence of a common polygenic structure for AD and

MDDwas identified, suggesting that these disorders are not

determined by common genetic variants.

Hofstra, B.M. et al.

(2024)49
GWAS, eQTL

mapping

Used depression and ADGWAS catalog SNPs,

brain-specific eQTL data, and a hippocampal

gene co-expression network to examine shared

genetics of AD and depression.

Did not identify direct genetic overlap between AD and

depression but found six shared eQTL genes: SRA1, MICA,
PCDHA7, PCDHA8, PCDHA10, and PCDHA13, and convergent
pathways relating to synaptoimmunology and trans-synaptic

signaling.

Abbreviations: AD, Alzheimer’s disease; DEG, differentially expressed gene; eQTL, expression quantitative trait loci; FDR, false discovery rate; GWAS,

genome-wide association study; LOAD, late-onset Alzheimer’s disease; MDD, major depressive disorder; mQTL, methylation quantitative trait loci; MRI,

magnetic resonance imaging; NPS, neuropsychiatric symptoms; PTSD, post-traumatic stress disorder; SNP, single nucleotide polymorphism.
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architecture between AD and either MDD or depressive

symptoms,45,47–49 identifying common genetic pathways, such as

immune system, synaptic signaling and organization, myelination,

development, and inflammatory pathways.45,49 Alteration of gene

expression and mechanisms dysregulating gene expression have been

suggested to play a prominent role in the genetics underlying AD

pathogenesis. Differential gene expression has been widely reported

in AD,14,50,51 with studies uncovering differentially expressed genes

(DEG) in bulk brain tissues51 and within different brain cell types14

cross-sectionally and throughout disease progression. Single-nucleus

RNA sequencing (snRNA-seq) studies have enabled the investigation

of the cellular heterogeneity of gene expression at the cellular subtype

level for specific regions of the brain. snRNA-seq studies have reported

on cellular subtype–specific gene expression changes in AD13,52,53

and in depression or MDD,54–56 presenting results at the gene and

biological pathway level.

Integration of multiple data types (GWAS, transcriptomic, single-

cell) was performed in a comprehensive study of the shared mech-

anisms across major psychiatric and neurodegenerative diseases,

includingMDDandAD.57 The results of this study reported that synap-

tic transmission, particularly involving the SNARE complex and SNAP

receptor, constitutes part of the shared mechanisms among these psy-

chiatric and neurodegenerative diseases.57 The study showed that

major psychiatric and neurodegenerative diseases have shared genetic

susceptibility andpathophysiology and identified13 shared causal pro-

teins; 118 interacting causal proteins; and a central role for synaptic

transmission, immune function, and mitochondrial processes in the

shared pathogenesis.57 Of note, this study showed results that were

consistent with a model of AD in which mitochondrial dysfunction

occurs early in the progression to neurodegeneration and continues

into the late stages of the disease. Shared mitochondrial mechanisms

are more likely to act early in the disease process, as psychiatric

disorders typically have an onset age in early adulthood or midlife,

whereas neurodegenerative diseases emerge later in life.57 This aligns

with prior research,58,59 as well as two additional studies investigat-

ing shared genetic etiologies between AD and post-traumatic stress

disorder (PTSD)60 and between AD and MDD.45 Collectively, these

studies indicate the existence of shared mechanisms between major

psychiatric disorders and AD.

2.3 Omics datasets available to study NPS
heterogeneity in AD

Studies of the heterogeneity of NPS in AD have used various sources

of omics data, including the AD Knowledge Portal,61 project and con-

sortium data including Psych-AD and Psych-ENCODE, and large-scale

data resources available to the research community, for example the

UK Biobank and the NACC. These datasets comprise a wide variety of

types of omics data (genetic, transcriptomic, proteomic) and specific

NPS. Table 2 lists several of the datasets available for research with

illustrative studies and publications.29,43,54,57,62–76 New data aremade

available frequently; as an example, the snRNA-seq data in the Psych-

AD project were recently made available, along with data for NPS.

These datasets cover a spectrum of NPS in addition to clinical condi-

tions or symptoms, includingMDDandbipolar disease.While the focus

of this review article is on NPS in AD, some of these resources con-

tain data on other neurodegenerative diseases including Parkinson’s

disease (PD), dementia with LB (DLB), and frontotemporal dementia

(FTD). Future studies investigating the mechanisms underlying NPS

may leverage large-scale efforts like brainSCOPE, GTEx, andUKB-PPP,

to better understand how genetic variants influence cell-level74 and

bulk gene expression,71,77,78 and proteome expression.67

3 CO-PATHOLOGIES IN AD

3.1 Prevalence, distribution, and clinical
implications of AD co-pathologies

More than 50% of individuals diagnosed with AD are found at post

mortem to exhibit additional neuropathological features beyond the

classical hallmarks of extracellular amyloid beta (Aβ) plaques and

intracellular neurofibrillary tangles (NFTs) composed of hyperphos-

phorylated tau (PMID: 39379761). These co-pathologies often include

protein aggregate-based abnormalities characteristic of other neu-

rodegenerative diseases. Among the most frequently observed are

LB pathology, consisting of neuronal aggregates of hyperphospho-

rylated and misfolded alpha-synuclein, and TDP-43 proteinopathy,

marked by the cytoplasmic mislocalization and aggregation of the

RNA-binding protein TDP-43. Cerebrovascular lesions (macrovascular

large-vessel atherosclerosis, small-vessel/arteriolosclerosis, cerebral

amyloid angiopathy), hippocampal sclerosis, and argyrophilic grain dis-

ease are also commonly seen, further contributing to the complexity of

the disease landscape. As such, the boundaries between neuropatho-

logical disorders such as AD, PD, and DLB are increasingly recognized

as fluid rather than discrete, with substantial molecular and patho-

logic overlap. Additionally, different isoforms and conformers of these

misfolded proteins appear to be associated with distinct disease phe-

notypes. This growing understanding of protein heterogeneity and

co-pathology suggests that mixed pathology is the norm rather than

the exception in neurodegenerative diseases.79 Table 3 highlights key

omics studies investigating the relationship between AD and other

co-pathologies discussed below.

LB pathology staging can be categorized into Parkinsonism-

associatedbrainstem/midbrainpathology80 and cognitivedysfunction-

associated limbic/neocortical pathology.81 LB pathology is also com-

monly observed in the amygdala and olfactory regions. When consid-

ered the primary pathological feature, LB pathology is characteristic of

PD and DLB. AD-type pathology is common in these conditions, mak-

ing the delineation of whether amixed pathology profile is a secondary

AD or DLB challenging.82 The prevalence of LB pathology in a sporadic

AD context is estimated at ≈ 35%.83,84 LB pathology, particularly the

amygdala-predominant presentation, is common in autosomal domi-

nant inherited AD, with prevalence estimates at ≈ 60%.85 Cortical LB

pathology is strongly associated with the presentation of psychosis, in
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TABLE 2 Available omics datasets to study NPS in AD.

Data source Data types NPS covered Sample size References

Psych-AD snRNA-seqDLPFC, DNA

methylation data DLPFC, genetic

pleiotropy analysis; spatial

transcriptomics for validation

Major consortium to understand

molecular mechanisms that

contribute to NPS in AD. Covers

neurodegenerative and

neuropsychiatric phenotypes.

Varies with study. For

RNA-seq data, 3154

62,63

TheMount Sinai

Neuropsychiatric Symptoms

in AD (NPS-AD) Study

snRNA-seqDLPFC Study to understandmolecular

mechanisms that contribute to

NPS in AD.

1494 54

Multiomic approach to

elucidate novel disease

mechanisms and biomarkers

for psychosis in AD

(MOA-PAD)

DNAmethylation and

transcriptomic data DLPFC

Psychosis 233 AD and control

patients

43

National Alzheimer’s

Coordinating Center (NACC)

NPS phenotypes defined in

UniformData Set structure;

genomic array and sequence

data (GWAS,WES/WGS)

NPS phenotypes: network

structure of NPS in older adults

withMCI andAD; courses of NPS

and rate of functional decline

Varies depending on

phenotype.More than

52,500 participants with

NACC data.

29,64

UK Biobank Psychiatric symptomphenotypes

(not AD linked), genetic data,

plasma, proteomic data

Multiple psychiatric phenotypes

including depression and

depressive symptoms—but

important to consider sampling

and comparison to other

datasets.

Varies depending on

phenotype.More than

500,000 participants,

65,66,67

AllofUS Psychiatric symptomphenotypes

(not AD linked), genetic data

Multiple NPS phenotypes

including depression and

depressive symptoms but

important to consider sampling

and comparison to other

datasets.

Varies on phenotype.

More than 312,000

participants

68

Study of sharedmechanisms

across themajor psychiatric

and neurodegenerative

diseases.

Genetics, human brain

transcriptomics, and proteomics

Eight psychiatric traits: MDD,

BD, schizophrenia, anxiety,

PTSD, alcoholism, neuroticism,

and insomnia; five

neurodegenerative diseases: AD,

LBD, FTD, ALS, and PD

888 human brain

transcriptomes, 722

human brain proteomes

57

Data available at:

https://www.synapse.

org/Synapse:syn318

22992/wiki/617907

The CaseWestern

MindPhenomeKnowledge

Base (MindPhenomeKB)

Knowledge Base derived using

natural language processing to

develop data-driven approaches

to studying AD and associated

neuropsychiatric disorders

Includes cognitive impairment,

memory loss, brain atrophy,

syncope, delusion, depression,

aphasia, and others

69,70

GTEx v10 Resource of tissue and

cell-specific gene expression and

regulation across individuals

No specific NPS. eQTL analysis

available for many tissues

946 samples, 19,788

RNA-seq samples

71,72,73

https://gtexportal.

org/

brainSCOPE Population-scale, single-cell

resource for human brain:

snRNA-seq and snATAC-seq data

and gene regulatory analysis

Schizophrenia, BD, ASD, and AD 388 74

Brains for dementia research NPS phenotypes, genetic data Includes all forms of dementia

and controls. NPI data and

depression rating scales.

3276 75

HUNT health andmemory

study

NPS phenotypes, genetic data NPI ratings on participants with

all-cause dementia, many of

whom lived in care home

facilities

620 76

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; ASD, autism spectrum disorder; BD, bipolar disorder; DLPFC, dorsolateral pre-

frontal cortex; eQTL, expression quantitative trait locus; GWAS, genome-wide association study; LBD, Lewy body dementia;MCI, mild cognitive impairment;

MDD, major depressive disorder; NPI, Neuropsychiatric Inventory; NPS, neuropsychiatric symptoms; PD, Parkinson’s disease; PTSD, post-traumatic stress

disorder; snRNA-seq, single-nucleus RNA sequencing;WES, whole-exome sequencing;WGS, whole-genome sequencing.
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TABLE 3 Summaries of key studies using omics methods to examine the relationship between AD and other neuropathologies.

Study

Omics

methods Overall approach Major findings

Shade, L.M.P. et al.

(2024)122
GWAS Examined GWAof genetic loci in 11 AD and related

dementias neuropathology endophenotypes with

participants from theNational Alzheimer’s

Coordinating Center, the Religious Orders Study and

RushMemory and Aging Project (ROSMAP), and the

Adult Changes in Thought study.

Identified seven associated loci with significant

association, including three novel loci: COL4A1,
LZTS1, and APOC2; 19 previously identified AD
GWAS loci were associatedwith one ormore

neuropathologies. Cerebral cortexmethylation

proximal to APOC2was associatedwith cerebral
amyloid angiopathy.

Shireby, G. et al.

(2022)116
Methylomics,

epigenome-

wide

association

study

Conducted epigenome-wide association analysis of

methylation for multiple AD neuropathologymeasures

of cortical regions in 631 donors. Results were

cross-referencedwith previous DNAmethylation

studies. Additionally profiled DNAmethylation in

NeuN+ (neuronal-enriched), SOX10+
(oligodendrocyte-enriched) andNeuN–/SOX10–

(microglia- and astrocyte-enriched) nuclei.

Identified differential methylation at 334 loci

associated with AD pathology including loci not

previously implicated in dementia. Differential

methylationwas primarily identified in

non-neuronal nuclei. Highlighted a shared

directionality in epigenomic profiles associated

with tau and amyloid and those observed for

co-pathological outcomes (TDP-43 and LB

pathologymeasures).

Sanchez-Mut, J.V.

et al. (2016)123
Methylomics Analysis of DNAmethylation patterns in prefrontal

cortex samples of AD, PD, DLB, and AD-like

neurodegenerative profile associated with Down

syndrome compared to normal controls using

whole-genome bisulfite sequencing.

Identified common aberrant CpGmethylation

changes across all disorders.

Bereczki, E. et al.

(2018)124
Proteomics Compared proteomic profiles of prefrontal cortex

tissue of AD, PDD, DLB, and age-matched controls

without dementia.

Identified 25 synaptic proteins with significantly

altered levels in the disease groups. Decreases in

SNAP47, GAP43, SYBU (syntabulin), LRFN2, SV2C,
SYT2 (synaptotagmin 2),GRIA3, andGRIA4were
validated using ELISA or western blot. Cognitive

impairment and rate of decline correlatedwith

decreased levels of SNAP47, SYBU, LRFN2, SV2C,
andGRIA3. Synaptic protein profiles varied
significantly between disease and controls, as well

as between AD and PDD, but not between AD and

DLB, indicative of unique profiles between differing

primary pathologies.

Olney, K.C. et al.

(2025)125
Bulk tran-

scriptomics

Bulk tissue RNA sequencing and differential expression

analysis from anterior cingulate cortex samples of

normal control, AD, DLB, and pathological amyloid

cases with amyloid pathology but minimal or no tau

pathology. DLB cases were subdivided into high Thal

amyloid, Braak NFT, and low pathological burden

cohorts. Used gene set enrichment andweighted gene

correlation network analysis to identify pathways of

differentially expressed genes.

Identified upregulation of genes involved in protein

folding and cytokine immune response, and

downregulation of fatty acid metabolism in DLB.

Genes differentially regulated between AD and

DLB showed strong enrichment of synaptic

signaling, behavior and neuronal system pathways,

with core inflammatory pathways shared between

disease states. Sex-specific changes were identified

in both AD andDLB.

Shwab, E.K. et al.

(2025)130
Single-cell

transcrip-

tomics

Profiled the whole transcriptomes of cortical tissue

fromAD, PD, DLB, and normal control donors by

snRNA-seq and used computational analyses to

identify common and distinct differentially expressed

genes, biological pathways, vulnerable and

disease-driver cell subtypes, and alteration in

cell-to-cell interactions.

The same vulnerable inhibitory neuron subtypewas

depleted in both AD andDLB. Potentially

disease-driving neuronal cell subtypes were

present in both PD andDLB. Cell–cell

communicationwas predicted to be increased in

AD but decreased in DLB and PD. DEGsweremost

commonly shared across NDDswithin inhibitory

neuron subtypes. The greatest transcriptomic

divergence was observed between AD and PD,

while DLB exhibited an intermediate

transcriptomic signature.

(Continues)
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TABLE 3 (Continued)

Study

Omics

methods Overall approach Major findings

Tuddenham, J.F. et al.

(2024)131
Single-cell

transcrip-

tomics

Single-cell RNA sequencing of microglia from donors

with early-onset and late-onset AD, PD,MCI, ALS, FTD,

PSP, DLBD,MS, HD, and stroke, as well normal controls,

derived from a number of different brain regions.

Performed differential expression analysis between

microglial subtypes, compared proportions of subtypes

in different disease groups, and examined enrichment

of disease risk genes within subtypes. Also performed

in situ and in vitro validations.

Identifiedmicroglial subtypes associatedwith

antigen presentation, cell motility and proliferation,

and a division between oxidative and heterocyclic

metabolism. Specific subtypes were enriched for

susceptibility genes of the diseases and the

signature of disease-associatedmicroglia. Found

enrichment of risk gene expression for both AD and

PD, but not for FTD/ALS, in two functionally

implicatedmicroglial subtypes.

Mathys, H. et al.

(2023)117
Single-cell

transcrip-

tomics

snRNA-seq of prefrontal cortex nuclei fromROSMAP

donors with a range of AD progression. Performed

differential gene expression analysis in cell subtypes

with regard tomultiple measures of AD pathology,

including LB and TDP-43 pathology, vascular

pathology, medical conditions, and cognitive, physical,

and social lifestyle variables.

Identified AD-pathology-associated altered gene

expression between excitatory neuron subtypes,

increase of the cohesin complex andDNA damage

response factors in excitatory neurons and

oligodendrocytes, and altered pathways associated

with cognitive function, dementia, and AD

resilience. Found selectively vulnerable

somatostatin inhibitory neuron subtypes depleted

in AD, and two inhibitory neuron subtypes with

increased abundance in individuals with high

late-life cognitive function. Identified a link

between inhibitory neurons and AD resilience.

Gabitto, M.I. et al.

(2024)118
Single-cell

transcrip-

tomics,

single-cell

epigenomics

(chromatin

accessibility)

snRNA-seq and snATAC-seq study of 84 individuals,

used amulti-pathology pseudo-progression score,

separating samples into early- and late-phase

pathology profiles based onmultiple measures of tau,

amyloid, and cell composition.

Identified pseudoprogression-associated

alterations in astrocyte andmicroglia function,

remyelination responses in oligodendrocyte

precursor cells, and neuronal subpopulations

vulnerable to degeneration at both early and late

stages, respectively. Notably, despite the inclusion

of TDP-43 and LB pathologymetrics in

pseudoprogression score generation, they were

minimally captured in this analysis.

Miyoshi, E. et al.

(2024)133
Spatial tran-

scriptomics,

single-cell

transcrip-

tomics

Spatial transcriptomic (ST) and snRNA-seq analysis of

late-onset sporadic AD and AD in Down syndrome

(DSAD), and performed cell–cell communication

analysis. Also performed spatial transcriptomics of an

ADmousemodel to identify cross-species

transcriptomic changes.

Identified cortical layer-specific transcriptomic

changes. Characterized an AD-risk associated glial

inflammatory program dysregulated in upper

cortical layers.

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; DEG, differentially expressed gene; DLB, dementia with Lewy bodies; DLBD,

diffuse Lewy body disease; ELISA, enzyme-linked immunosorbent assay; FTD, frontotemporal dementia; GWAS, genome-wide association study; HD, Hunt-

ington’s disease; LB, Lewy body; LBD, Lewy body dementia; MCI, mild cognitive impairment; MDD, major depressive disorder; MS, multiple sclerosis; NDD,

neurodegenerative disorder; NFT, neurofibrillary tangle; NPS, neuropsychiatric symptoms; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; PSP,

progressive supranuclear palsy; snRNA-seq, single-nucleus RNA sequencing; TDP-43, transactive response DNA binding protein 43 kDa.

particular visual hallucinations (VHs),81 with potential interaction of

AD and LB pathology severity in relation to VH presentation.86–90 Agi-

tation, aggression,88,89,91 and depression89,92–94 are also reported to

be associated with LB pathology.

TDP-43 aggregates are pathological deposits exhibited in amy-

otrophic lateral sclerosis (ALS), AD, and FTD. They are observed in

up to 57% of AD cases,95 most frequently in the limbic-predominant

age-related TDP-43 encephalopathy neuropathological change (LATE-

NC) distribution,95,96 affecting the amygdala at earlier stages and

proposed to progress to the hippocampal, brainstem, and middle

frontal gyrus regions.97 This is at times accompanied with hippocam-

pal sclerosis,97 and TDP-43 is shown to colocalize with tau aggregates

within neurons.98 In the context of AD, LATE-NC is associated with

worsening cognitive decline.97 Behavioral changes, including symp-

toms such as delusions, disinhibition, and apathy, are common features

in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-

TDP), a disease bearing the same pathological aggregates. It is also

reported as increased with AD LATE-NC pathology.87,99 AD LATE-NC

co-pathology has been associated with anxiety, disinhibition, apathy,

personality change, aggression, and agitation symptoms.89,91,100

The presentation of AD pathology (NFT and Aβ), LB pathology,

and LATE-NC together has been termed the quadruple misfolded

protein (QMP) phenotype. Prevalence estimates of older individuals

with dementia place the QMP at 12.3% and a further 38.1% esti-

mate of individuals displaying three of the four proteinopathies.101

Studies posit that the accumulation of multiple co-pathologies is the
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norm in an aging brain,102,103 with a consensus that a greater burden

of co-pathology is associated with an additive worsening in disease

burden.104 The culmination of all pathologies, in particular the QMP

phenotype, has been associated with a broad range of worsening

neuropsychiatric symptoms, including psychosis, agitation, depression,

anxiety, and apathy.89

In addition to the protein aggregate pathologies previously

described, vascular co-pathology is also commonly observed. Cerebral

amyloid angiopathy (CAA) sits at the intersection, describing the

abnormal deposition of amyloid aggregates around the blood vessels

of the brain. It is estimated to occur in ≈ 48% of AD cases and is asso-

ciated with a broadly increased prevalence of a number of NPS.105,106

Cerebrovascular disease (CVD), encompassing microinfarcts and

arterio/atherosclerosis, is commonly observed in aged brains with

AD pathology and shows an association with depression symptom

presentation.86,107

3.2 Genetics of co-pathology, shared pleiotropy,
and growing resolution of specific risk

Genetic advances have provided interesting insights into the molecu-

lar underpinnings of co-pathologies in AD and crucial shared pathways

in disease susceptibility. For example, the endo-lysosomal network

genes BIN1, TPCN1, and GRN have been implicated in AD108 and

DLB.109–111 Variants in GRN have also been implicated in FTD112,113

and PD,114 illustrating pleiotropic effects. Several genes linked to amy-

loid processing and clearance have also been associated with mixed

AD and LB pathologies. These include BIN1, APOE, APP, PSEN1, and

PSEN2,115 emphasizing the close molecular relationships between AD

pathological changes and LB disease.

With larger, pathologically characterized cohorts of AD (Table 4),

genetic discovery analyses of multiple co-pathological endopheno-

types have become viable.116–121 In one such study, using 7804

samples, researchers meta-analyzed genetic associations with 11

pathological outcomes, encompassing all the previously mentioned

co-pathologies.122 They confirm a number of known AD-associated

susceptibility loci and identify four novel loci with pathology-specific

associations, including the CAA-associated APOC2. APOC2 is a gene

in close proximity to the APOE region, but its association to CAA was

independent ofAPOE status. They highlight twoDNAmethylation sites

as mQTL of the APOC2 risk variant, significantly associated with CAA

severity and expression of the APOC2 transcript. This study shows the

power of using distinct co-pathological outcomes to refine anduncover

risk factors for AD, determining their potential causal pathological out-

comes and providing mechanistic targets via additional layers of omic

regulation.

3.3 A multiomic perspective on co-pathology

The evidence of pleiotropy extends beyond implicated genetic risk loci.

A DNA methylation study in AD post mortem cortical tissue of 631

donors116 highlighted a shared directionality in epigenomic profiles

associatedwith tau andAβ and those observed for co-pathological out-
comes (TDP-43 and LB pathology measures). This finding is similarly

reported in other, lower-powered epigenomic studies of neurodegen-

erative diseases.123 These, however, do not rule out pathology-specific

epigenetic effects. For example, the sole TDP-43 pathology-associated

methylation locus, residing near the gene STK38L, was not among those

significantly associated with tau and Aβ pathology.116

Proteomic comparisons between differing neurodegenerative dis-

eases have indicated similar shared and distinct profiles. In a study

of 92 brain samples with AD, PDD, DLB, and control groups,124

researchers reported levels of synaptic proteins that were able to dis-

criminate AD fromPDDbut not fromDLB, indicative of unique profiles

between differing primary pathologies. Similar findings are reported

from studies looking at the transcriptomic level, such as a recent

analysis comparing DLB, AD, and normal controls.125 DEG showed

evidence of shared dysregulation of inflammation, immune response,

microtubule dynamics, and neurotransmission between AD and DLB.

Notably, genes related to synaptic signaling, ribosomes, and ubiquitin

processing showedevidenceof greater dysregulation inDLBcompared

to AD, suggesting potentially differentiating mechanisms.

Although outcomes such as microRNA (miRNA) expression have

been highlighted for robust association with AD,126 no studies to date

have tested their associationwith co-pathologieswithinAD. In a recent

study of 641 brain samples,127 researchers identified 137 miRNAs

with association to AD phenotypes, controlling for arteriosclerosis,

atherosclerosis, CAA, LB, TDP-43, infarcts, and hippocampal sclerosis.

Although thesemiRNAscanbe interpretedas associatedwithADwith-

out confounding co-pathology influence, the report does not go further

to test the miRNAs associated with each distinct neuropathological

endophenotype, an area warranting further research.

Many studies are now resolving omic measures down to the single-

cell level,128 revealing cell-specific signatures, relevant to disease

susceptibility and resilience.129 These studies are now beginning to

compare the single-cell profile across differing neurodegenerative dis-

eases. In an snRNA-seq comparison of AD, DLB, PD, and normal

controls,130 researchers have identified a subtype of inhibitory neu-

rons with evidence of depletion in both AD and DLB, along with

vulnerable neuronal cell types distinct to AD and PD. In a microglia-

specific snRNAseq dataset,131 including samples with AD, DLB, PD,

and FTLD, although not performing direct inter-group comparisons,

researchers report an enrichment for genetic risk for both AD and

PD, but not for FTLD/ALS, in two functionally implicated microglial

subtypes.

Few single-cell studies to date have primarily investigated

co-pathological endophenotypes within AD. One study testing

co-pathology outcomes, including LB, TDP-43, and vascular pathology,

reported minimal gene expression association compared to primary

measures of amyloid and tau.117 Findings from an snRNA-seq and

snATAC-seq study118 of 84 individuals used amulti-pathology pseudo-

progression score, separating samples into early- and late-phase

pathology profiles based on multiple measures of tau, amyloid, and

cell composition. Findings revealed pseudoprogression-associated
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TABLE 4 Summary of cohorts selected for detailed quantified neuropathological assessment criteria coveringmeasures of tau (Braak NFT),
amyloid (Thal stage), neuritic plaque (CERAD), TDP-43, LB, CAA, and vascular (arteriosclerosis, atherosclerosis, infarcts), and with available
multiomic datasets.

Data availability
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ReligiousOrders

Study and Rush

Memory and

Aging Project

(ROSMAP )

>3322 117,119 X X X X X X X X X X

Brains for

Dementia

Research (BDR)

>1200 116,120 X X

Knight-Alzheimer

Disease Research

Centre

(Knight-ADRC)

6625 121 X X X X X X X X X X

Seattle

Alzheimer’s

Disease Brain Cell

Atlas (SEA-AD)

84 118 X X X X X

Notes: Data are summarized by total n for donors and summarized for the availability of specific multiomic outcomes quantified. Spatial methods refer to

MERFISH for SEA-AD and Vizgen for Knight-ADRC. For further information, refer to study publication.

Abbreviations: ATACseq, assay for transposase-accessible chromatinwith sequencing; CAA, cerebral amyloid angiopathy; CERAD, Consortium to Establish a

Registry forAlzheimer’sDisease; ChIPseq, chromatin immunoprecipitation sequencing; circRNAseq, circular RNA sequencing; LB, Lewybody;NFT, neurofib-

rillary tangle; snATACseq, single nucleusATAC sequencing; sRNAseq, small RNA sequencing;WGS,whole genome sequencing; TDP-43, transactive response

DNA binding protein 43 kDa.

*N is for full study inclusion and does not refer to coverage of every single outcome listed.

alterations in astrocyte and microglia function, remyelination

responses in oligodendrocyte precursor cells, and neuronal sub-

populations vulnerable to degeneration at both early and late stages,

respectively. Notably, despite the inclusion of TDP-43 and LB pathol-

ogy metrics in pseudoprogression score generation, they were

minimally captured in this analysis. In both cases, negative results

may be a result of low coverage of particular pathologies in available

datasets andwarrant further investigation.

Spatial omics have begun to allow insight into the molecular

environment relating to specific pathologies in AD, for example find-

ing glial inflammatory gene networks related to amyloid plaque

proximity.132,133 Notably, a recent spatial transcriptomic study of

LB pathology134 and a transcriptomic study of neuronal populations

affected by NFT pathology135 highlighted a similar profile of corti-

cal neuron vulnerability but also vulnerable neuronal subtypes and

molecular alterations distinct to each pathology.

In summary, there is a growing appreciation that co-pathologies

appear to be a feature, rather than an exception in AD and we have

evidence of their explaining certain aspects of clinical heterogeneity.

There is strongevidenceof a sharedprofile acrossmultiplepathologies,

along with a growing resolution of profiles unique to differing patholo-

gies. These findings have the potential for a more refined, personal-

ized approach to AD clinical management, determined by individual

patients’ distinct pathological profiles. These studies also have impor-

tant connotations for therapeutics in AD, indicating that effective

therapeutics for primary AD-associated tau and amyloid pathologies

may not be efficacious in addressing common co-pathologies. Further

work is needed, addressing the specificity of associated profiles to dif-

fering pathological outcomes, to help inform multifaceted treatment

approaches.

4 SEX DIFFERENCES IN AD

4.1 Overview of sex differences in AD

Sex differences in AD have been long documented, and it is estimated

that two thirds of patients with AD at any given time are women.136 To
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some extent, this elevated prevalence may reflect survival effects, as

women typically outlive men, and AD advances with age, but incidence

rates suggest additional mechanisms as well.137 Possible mechanisms

that may explain the increased prevalence in women include genetic

factors, such as X chromosome-linked genes and APOE ε4, which have

greater effects inwomen relative tomen.138 Women also have a higher

frequency of depression139 and lower average levels of education rel-

ative to men,140 both of which are AD risk factors. Finally, women

have hormonal changes during pregnancy and menopause, which may

play a contributory role.141 Data also suggest that women may dis-

play lower resilience to AD pathology and cognitive decline relative

to men in terms of more rapid progression to both mild cognitive

impairment (MCI) and dementia,142 in which APOE ε4 may play a con-

tributory role. ADpathology has also been shown to differ between the

sexes. According to a study focusing on clinicopathologic differences

betweenmen andwomenwith AD,143 each unit increase in AD pathol-

ogy resulted in a 3-fold increase in clinical AD in men but a > 20-fold

increase in clinical AD in women. This striking disparity suggests that

womenexhibit greater clinical symptomsofADpathology compared to

men, even at similar levels of underlying pathology. Another study144

demonstrated that while Aβ levels showed only a borderline differ-

ence between women and men, women had higher levels of global AD

pathology and tau tangle density after adjusting for age and education.

This observation has been corroborated by subsequent studies.145,146

Recent data have suggested that there may be important sex differ-

ences in theprevalence anddomain constitutionofNPS inwomencom-

pared to men.147 According to a recent meta-analysis, NPS domains

of AD patients differed by sex: men displayed more severe apathy

and agitation, while women showed greater symptoms of depression

and psychosis.147,148 Another recent study found a higher prevalence

of NPS among female APOE ε4 homozygotes compared to heterozy-

gotes and non-carriers among individuals with AD or with risk for AD,

while no such differences were observed in males,149 suggesting that

APOE ε4 may play a possible modulatory role in NPS. A separate study

from the same group using a neuropathological sample found a similar

pattern for psychosis, particularly in the cohort with LB pathology.150

Anti-amyloid therapies have emerged as important breakthroughs

in AD treatment in recent years.While most studies have not explicitly

examined sex-specific differences in treatment efficacy,151 prelimi-

nary observations suggest that these therapiesmay exhibit differential

efficacy between sexes.152,153 However, further large-scale studies

are required to determine whether this is the case and to explore

the underlying mechanisms.153 Table 5 highlights key omics studies

discussed below investigating the interaction between sex and AD.

4.2 Examining sex differences in AD genetic risk
loci

Recent genomics studies are increasingly reporting sex differences in

AD. As alluded to above, the APOE ε4 allele has long-standing and

compelling support for stronger effects on AD risk, memory decline,

and tau pathology in women.1–5 At the genome-wide level, a prior

review154 highlighted sex-differentiated AD-correlated genetic loci,

which have tended toward female-specific associations. Subsequent

studies, in still relatively small samples (N< 30,000), corroborated this

female tendency of sex-differentiated genetic associations with AD

prevalence, pathology, and resilience.155–158While sex-specific genetic

risk factors remain somewhat scarce, larger-scale sex-stratified AD

GWAS are on the horizon and should provide additional important

insights.159 It is relevant to emphasize that the X chromosome has

beenunderstudied inADgenetics due to its inherent technical andana-

lytical challenges, despite it being an obvious potential source of sex

differences.160 Approximately 70% of X chromosome genes in women

undergo random inactivation to balance expression relative to men,

while the remaining genes show variable escape from inactivation,

contributing to sex differences in disease pathway expression.161–163

Recently, the first large-scale X chromosome-wide association study of

AD (n = 1,152,284) revealed four genes with evidence for escape from

X chromosome inactivation, suggesting theymay contribute to female-

specific AD pathways.164 Additionally, hormonal factors are relevant

to AD andmay interact with genetic risk.142,165,166 miDNA abundance

has also been implicated in AD, with evidence of larger abundance

in pre-menopausal women compared to men.167,168 Altogether, these

research avenues are highly promising to help elucidate sex differences

in AD genomics.

4.3 Integration of genomic mapping and other
omics in analyzing AD sex differences

Beyond genomics, other types of omics data (e.g., transcriptomics, pro-

teomics) can also be used to directly glean insights into sex differences

in the molecular heterogeneity of AD. In isolation, such approaches

are effective in identifying genes and pathways associated with AD,

and may aid in the identification of novel biomarkers,169,170 but are

less effective in identifying disease-causal factors. However, integra-

tion of omics data with genetic data enables QTL mapping to study

the genetic factors regulating omics-derived AD-associated molecular

features.171 Omics and mapping data can be further integrated with

GWAS to identify genetic variants influencing expression of a given

molecular feature that also consistently associate with AD risk.172

This approach, termed according to the integrated omics layer—such

as transcriptome-wide or proteome-wide association study (TWAS or

PWAS)172–174—has the advantage of increased power when combin-

ing multiple “sub-threshold” signals and informs on likely causal genes,

but has the downside of being restricted tomolecular features that are

genetically regulated.

With regards to omics-driven insights into AD sex specificity, there

is mounting evidence that epigenetic aging may differ in males and

females. In a recent study using the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) dataset, it was observed that females exhibited

accelerated epigenetic aging compared to males.175 By contrast, stud-

ies done in healthy older adults seem to favor accelerated aging among

males.176 The X chromosome may play an important modulatory role

in AD, as women possess two X chromosomes (one paternal and one
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TABLE 5 Summaries of key studies using omics methods to examine the relationship between sex and AD.

Study

Omics

methods Overall approach Major findings

Eissman, J.M. et al.

(2024)156
GWAS Performed sex-stratified and sex-interaction GWAS in

non-Hispanic black and non-Hispanic white

participants using harmonizedmemory composite

scores from four cohorts of cognitive aging and AD.

Identified threememory-associated sex-specific loci,

including one X-chromosome locus. Heparan sulfate

signaling was identified as a sex-specific pathway, and

sex-specific correlations withmemorywere identified

for education, cardiovascular, and immune patient

traits.

Dumitrescu, L.

et al. (2019)155
GWAS Performed sex-stratified GWAS to identify genetic

associations with AD endophenotypes from six brain

bank data repositories. AD-associated loci were

assessed for sex interactions. Follow-up analyses took

into account age at onset and cognitive, neuroimaging,

and CSF endophenotypes.

A chromosome 7 locus hadNFT association in males

but not females. This locus was also associatedwith

hippocampal volume, executive function, and

age-at-onset in males.

Deming, Y. et al.

(2018)157
GWAS Sex-stratified and sex interaction genetic analysis of

CSF biomarkers. Evaluated sex interactions at previous

GWAS loci, and performedGWAS to identify

sex-specific correlations. Examined sex-specific

associations between PFC gene expression at

correlated loci and plaques andNFTs using autopsy

data from the ROSMAP.

For Aβ42, identified sex interactions at loci proximal to

the SERPINB1 and LINC00290 gene regions, with
stronger associations for females compared tomales.

PFC pre-regulation of SERPINB1, SERPINB6, and
SERPINB9 correlatedwith increased amyloidosis

among females but not males. For total tau, sex

interactionwas identified proximal toGMNCwith

stronger association in females thanmales. Sex-specific

association of this locus was also identified for NFT

density at autopsy for females but not males.

Eissman, J.M.,

et al. (2022)158
GWAS Used large-scale genomic data for AD resilience from

four cohorts of cognitive aging, amyloid PET data from

two cohorts, and amyloid neuritic plaque burden data

across two cohorts to construct resilience phenotypes.

Performed sex-stratified and sex-interaction GWAS

and pathway analysis to identify genetic factors

associated with AD resilience in a sex-specific manner.

Identified a chromosome 10 locus associated with

higher AD resilience in females. This locus was situated

within chromatin regions interacting with RNA

processing gene promoters, including GATA3. Genetic

correlation analysis identified female-specific

association between AD resilience and frontotemporal

dementia andmale-specific associations with variable

heart rate. Resilient females were found to have lower

susceptibility toMS, while resilient males had higher

susceptibility.

Belloy, M. et al.

(2024164
XWAS (X-

chromosome

genetic

association),

transcrip-

tomics, pQTL

mapping

Meta-analysis of X-chromosome genetic association of

AD in case–control, family-based, population-based,

and longitudinal AD-related cohorts from the US

Alzheimer’s Disease Genetics Consortium, the

Alzheimer’s Disease Sequencing Project, the UK

Biobank, the Finnish health registry, and the USMillion

Veterans Program. Risk of ADwas evaluated through

case–control logistic regression analyses. Genetic data

available from high-density single-nucleotide variant

microarrays andwhole-genome sequencing, and

summary statistics for multi-tissue expression and

protein quantitative trait loci available from published

studies were included, enabling follow-up genetic

colocalization analyses. Analyses included European

and African ancestry participants.

Six independent loci passed X chromosome–wide

significance, with four showing support for links

between the genetic signal for AD and expression of

nearby genes in brain and non-brain tissues. One of

these four loci passed conservative genome-wide

significance, with its lead variant centered on an intron

of SLC9A7, which regulates pH homeostasis in Golgi

secretory compartments and is anticipated to have

downstream effects on Aβ accumulation.

Inkster, A.M. et al.

(2022)175
Methylomics Used data relating to epigenetic age acceleration

metrics from the ADNI database to examine

associations between epigenetic age acceleration,

cognitive impairment, sex, and AD risk biomarkers.

Females were found to exhibit accelerated epigenetic

aging with regard to the transition from normal

cognition to cognitive impairment thanmales.

Phyo, A.Z.Z. et al.

(2024)176
Methylomics Epigenetic clocks (HorvathAge, HannumAge,

PhenoAge, GrimAge, GrimAge2, and DunedinPACE)

were estimated in blood from participants≥ 70 years

of age. A system-wide deficit accumulation frailty index

was generated, consisting of 67 healthmeasures.

Brain-predicted age differences (brain-PAD) were

estimated based on neuroimaging.

Epigenetic age accelerationwas reduced in females

compared tomales, but females had higher frailty

indexes, and there was no difference in brain-PAD

between the sexes.

(Continues)
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TABLE 5 (Continued)

Study

Omics

methods Overall approach Major findings

Caceres, A. et al.

(2020)185
Bulk tran-

scriptomics

Examined chromosome Y gene expression in 13

undiseased brain regions and blood using data from the

Genotype-Tissue Expression (GTEx) project to identify

individual propensity for chromosome Y dysregulation

across multiple tissues. Subsequently analyzed AD risk

associated with extreme chromosome Y

downregulation (EDY) and its interactionwith age,

using publicly available data from four transcriptomic

studies of AD in brain tissue and in one of AD in blood.

EDY co-occurred across multiple brain regions and

associated genetic loci within ACSS3/PPFIA2,

previously linked to Ab. A significant interaction of EDY

with age was identified. Results suggest EDY avoidance

promotes AD resilience.

Guo, L. et al.

(2023)191
Bulk tran-

scriptomics,

single-cell

transcrip-

tomics

Performedmultiscale network analysis of AD brain

transcriptomic fromMSBB and ROSMAP cohorts to

identify disease drivers with sexually dimorphic

expression patterns. Expression patterns of a top

sex-specific AD driver networkwere validated using

human brain samples and ADmousemodels.

LRP10was identified as a top driver of sex differences

in AD. EFADmousemodels indicated that LRP10 had

sex-dependent effects on cognitive function and AD

pathology, neurons, andmicroglia most affected.

snRNA-seq of mouse brains indicated LRP10 as a key

network regulator of AD in females. Yeast two-hybrid

screening identified eight LRP10 binding partners.

Lopez-Cerdan, A.

et al. (2020)193
Bulk tran-

scriptomics

Tissue-specific meta-analyses were conducted using

data from transcriptomic studies of AD. A

comprehensive functional characterizationwas then

performed, focusing on the cortex due to the presence

of significant sex-dependent transcriptomic alterations.

This included exploration of biological pathways using

protein–protein network interaction and

over-representation analyses and estimation of

transcription factor activity via VIPER analysis.

Female AD patients showedmore differential gene

expression thanmales. DEGswere grouped into six

subsets according to expression in female andmale AD

patients. Subset I (female repressed genes) showed

significant results during functional profiling. More

significant impairments in pathways related to synapse

organization, neurotransmitters, protein folding, Aβ
aggregation were identified in female compared to

male AD patients.

Paranjpe, M.D.

et al. (2021)194
Bulk tran-

scriptomics

Meta-analysis of gene expression data from seven

independent datasets of age-matched AD and normal

control brains and blood samples. Gene-based,

pathway-based, and network-based approaches were

used to identify sex-specific gene expression patterns.

A linear support vector machinemodel was used to

assess the efficacy of a sex-specific AD gene expression

signature in distinguishing AD from controls.

An immune signature in the brain and blood of female

AD patients but absent in males was consistently

identified through gene-expression, network analysis

and cell type deconvolution approaches.

Network-based analysis identified female-specific

coordinated expression of genesmodulated by the

presence of the APOE ε4 allele.

Davis, E.J. et al.

(2021)195
Bulk tran-

scriptomics

Examined X chromosome differential gene expression

in the dorsolateral prefrontal cortex of AD patients and

normal controls using bulk RNA-seq data obtained

from the ROSMAP cohorts. Analyzed the association of

X chromosome gene expression with NFT burden in

women andmen.

Expression of X chromosome genes was significantly

associatedwith cognitive change in women but not in

men. Upregulation of amajority of differentially

expressed X chromosome genes was associatedwith

slower cognitive decline in women, while expression of

several genes was correlatedwith tau burden inmen.

Maffioli, E. et al.
(2022)196

Bulk tran-

scriptomics,

metabolomics

Investigated sex-dependent changes in themolecular

composition of hippocampus samples fromAD patients

and normal controls using an integrated omics

approach including bulk transcriptomics, proteomics,

andmetabolomics.

Strongmetabolic differences were identified between

control and ADmale and female cohorts. Decreased

insulin response was observed in females compared to

males, and serinemetabolismwas alsomodulated in a

sex-dependent manner. Overall, ADwas found to

strongly alter sex-specific proteomic andmetabolomic

profiles.

Hou, Y. et al.

(2024)197
Bulk tran-

scriptomics,

proteomics,

metabolomics

Characterized cellular metabolism and immune

response endophenotypes across AD donors with

respect to sex using ROSMAP bulk transcriptomic and

metabolomic data. Comparisonwasmade across a

range of clinical diagnostic and cognitive statusmetrics.

Identified sex-specific metabolic pathways associated

with the AD, including elevation of AD inflammatory

metabolites involved in interleukin (IL)-17 signaling,

C-type lectin receptor, interferon signaling, and

Toll-like receptor pathways in females. Also

characterized sex-specific microglial

immunometabolism endophenotypes, and observed

diminishment of glutamate-mediated communication

between excitatory neurons andmicroglia in females.

(Continues)
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TABLE 5 (Continued)

Study

Omics

methods Overall approach Major findings

Do, A.N. et al.

(2024)199
Proteomics Used protein-targeting aptamers to examine

sex-specific CSF proteomic signatures of

amyloid/tau-positive AD cases and normal controls.

Identifiedmale- and female-specific CSF proteomic

variations that strongly predicted amyloid/tau

positivity. Male-specific proteins were associatedwith

postsynaptic and axon-genesis andwere enriched in

astrocytes and oligodendrocytes, with PTEN,NOTCH1,
FYN, andMAPK8 as network hubs. Female-specific

proteins were associatedwith cytokine activity and

were enriched in neurons, with JUN, YWHAG, and

YWHAZ as network hubs.

Belonwu, S.A.

et al. (2021)200
Single-cell

transcrip-

tomics

Used snRNA-seq data to examine sex-stratified

differential gene expression and pathway network

enrichment in human prefrontal and entorhinal cortex

AD and normal control samples at the cell-type level.

Identified sex differences in AD primarily in glial cells of

the prefrontal cortex. In the entorhinal cortex, the

same genes and networks were perturbed in opposite

directions between sexes in AD vs. controls.

Coales, I. et al.

(2022)201
Bulk tran-

scriptomics,

single-cell

transcrip-

tomics

Used bulk and snRNA-seq fromAD and normal control

human post mortemmicroglial nuclei, peripheral

monocytes, monocyte-derivedmacrophages, and

induced pluripotent stem cell-derivedmicroglial-like

cells.

Expression of AD risk genes and proinflammatory

immune responses genes was enriched inmicroglia

from normal control females relative tomales, as well

as in peripheral monocytes isolated from

postmenopausal women and inmonocyte-derived

macrophages obtained from premenopausal women

relative to age-matchedmales.

Zhang, L. et al.

(2021)204
Methylomics Large-scale meta-analysis of sex-specific DNA

methylation differences in AD. Uses data from four

epigenome-wide AD association studies of prefrontal

cortex brain samples. Used a sex-stratified analysis

examiningmethylation–Braak stage associations

separately in males and females, and an analysis of sex

interactionwithmethylation–Braak stage association

magnitude.

Identified 14 novel sex-specific, AD Braak stage

associated CpGs, mapped to genes including TMEM39A
and TNXB. Methylation changes of previously

AD-associated genes, includingMBP and AZU1, were
also shown to be predominately associatedwith only

one sex. Methylation differences were enriched in

biological pathways including integrin activation in

females and complement activation inmales.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CSF, cerebrospinal

fluid; CT, computed tomography; DEG, differentially expressed gene; GWAS, genome-wide association study; MS, multiple sclerosis; MSBB, Mount Sinai

Brain Bank; PET, positron emission tomography; PFC, prefrontal cortex; NFT, neurofibrillary tangle; ROSMAP, ReligiousOrders Study andMemory andAging

Project; snRNA-seq, single-nucleus RNA sequencing.

maternal), while men only possess a single maternally-derived X chro-

mosome. An extra X chromosome, but not thematernal X chromosome

alone, is associated with increased expression of genes that escape X

inactivation, potentially providing protective effects against AD.177,178

A recent murine model study suggests that aging triggers partial reac-

tivation of genes on the inactive X chromosome in the female mouse

hippocampus, including Plp1, a myelin-associated gene, and that this

reactivationmay contribute to female resilience against brain aging.179

Such studies may explain why women tend to live longer with AD

than men180,181 despite exhibiting higher levels of AD pathology at

autopsy.182

TheY chromosomemay also contribute to sex differences inAD. For

instance, loss of the Y chromosome (LOY), the most common acquired

mutation in aging men,183 is associated with a higher susceptibility

to AD.184 A further study analyzing five transcriptomic datasets185

found that extreme downregulation of the Y chromosome significantly

interacts with age and is linked to AD. Taken together, these studies

suggest that the Y chromosome may contribute to protective mecha-

nisms in males, and its loss or dysregulation could exacerbate AD risk

and progression.

Menopause and other hormonal changes associated with aging in

women may play an important role in DNA methylation and epi-

genetic aging.186 In terms of transcriptomics, the Genotype-Tissue

Expression (GTEx) project has revealed widespread evidence of sex-

heterogeneous gene expression across the human body, with approx-

imately one third of all genes having sex-biased expression in at least

one tissue.187 These observations held across the autosomes and

X chromosome and tended to be tissue specific, notably including

brain tissues as corroborated by other recent human studies,188,189

with small effects in various biological pathways. Recent studies have

reported sex-specific AD-related gene expression changes across dif-

ferent brain areas in humans and rodents,190–194 with an apparent

tendency for female discoveries. X chromosome-specific analyses in

the human brain have also pointed to gene expression associations

with cognition and AD pathology.195 By integrating human brain tran-

scriptomics and metabolomics data across AD individuals, one study

found a decrease in insulin or modulated serinemetabolism signatures

when comparing the female to the male group,196 while another study

observed sex-differentiated microglial immunometabolism character-

ized by decreased glutamate metabolism and elevated interleukin-10
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signals in female patients.197 Insights into proteomic sex differences

are still relatively scarce, but a recent large-scale human brain study189

determined that 13.2% of studied proteins had sex-differentiated

abundance. In the human cerebrospinal fluid (CSF) of healthy, older

individuals, ≈ 80% of studied proteins showed age- and sex-related

effects,6 while in plasma two thirds of proteins differed significantly by

sex.198 In terms of AD-related observations, CSF proteomic analyses

identified close to 500 sex-specific proteins associated with amyloid

and tau pathology status.199 Cell-specific transcriptomic data have

also corroborated AD sex differences, with an initial study in the

human prefrontal cortex showing that female cells were overrepre-

sented in AD-associated cell subpopulations and that ranscriptional

responses differed substantially between sexes,200 and subsequent

studies extending concordant insights.201 There are numerous other

examples of omics-based observations of sex differences in AD, with

many summarized in two recent reviews by Lopez-Lee et al.202 and

Guo et al.203 These highlight the importance of sex chromosomes ver-

sus sex hormones and interactions between sex and APOE ε4 across

omics layers, and note some prominent emerging sex-differentiated

pathways, including metabolism and immunity. Notably, Guo et al. pro-

vide an in-depth overview of published omics datasets and the related

insights they provided, summarizing that > 75% of selected omics

studies identified female-specific changes.

When using genetic data to map QTLs, the study of sex differ-

ences is still relatively rare, and current findings suggest less obvious

sex differentiation. For mQTLs, it appears that < 5% of those stud-

ied show evidence of sex-specific effects.204,205 Similarly, the GTEx

project andWingo et al.189 indicated that no sex-biased eQTLs passed

standard false discovery rate–corrected P values < 0.05, while only

1.5% of studied proteins in Wingo et al. showed sex-biased protein

(p)QTLs.189 Similarly, a large sex-stratified plasma proteomics study in

the UK Biobank observed < 100 sex-biased pQTLs (< 5% of studied

proteins).198 At the single-cell level, there are, to our knowledge, no

sex-stratified eQTL studies yet, but it is only since very recently that

sample sizes are becoming large enough to merit such analyses with-

out sex stratification.206,207 The limited detection of sex-biased QTLs

should be considered with the knowledge that gene-by-environment

interactions are notoriously challenging to detect, that individual vari-

ant sex-specific effects may be small and reside at subthreshold

levels, and that many of the listed studies would benefit from addi-

tional power. As noted earlier, QTL studies can be integrated with

GWAS through approaches such as PWAS or TWAS. This is particu-

larly compelling moving toward integration with sex-stratified GWAS,

whereWingo et al.189 already demonstrated some first successes with

sex-stratified PWAS across different traits, including AD. With the

increasing size andquality of sex-stratifiedGWAS, suchapproaches are

likely to generate important novel insights into AD sex differences.

Emerging data on sex-related differences across omics layers have

the potential to be transformative. By characterizing sex-related vari-

ables that provide resilience or lead to increased disease susceptibility,

advancements inomics research intoADsexdifferencesmayhelp iden-

tify sex-specific mechanisms of disease that will facilitate the develop-

ment of new strategies for sex-specific AD prevention and treatment,

with earlier diagnosis through the discovery of novel biomarkers, per-

sonalized interventions through the identification of patient-specific

drug targets, and enhanced clinical outcomes for both sexes.

5 CONCLUDING REMARKS, PERSPECTIVE, AND
FUTURE DIRECTIONS

In this article, we have highlighted the utility of multiomics approaches

to the exploration of AD heterogeneity and disease subtypes. We

demonstrated the importance of integrative multiomics studies in

dissecting the multifactorial and complex nature of AD molecular eti-

ologies (Figure 1, upper and middle panels). Characterizing the diverse

multiomic profiles in tissues from AD patients is imperative for pro-

gressing toward the development of precision medicine strategies for

the treatment and prevention of AD as a group of diseases. Ultimately,

the work reviewed here has translational implications in multiple

ways toward precision medicine in AD, including the development of

biomarkers and therapeutics targets, and the design and implemen-

tation of clinical trials (Figure 1, lower panel). First, the multiomics

datasets hold a valuable utility in the development of genetic and

molecular biomarkers. For example, transfer from validated transcrip-

tomic signatures will facilitate the refinement of CSF and blood208

biomarkers, and will improve the precision of risk prediction for early

pre-clinical diagnosis of AD in individuals of diverse backgrounds.

The work reviewed here demonstrates numerous examples of genes,

their protein isoforms, and biological pathways that contribute to

phenotypic variability (comorbidity with particular NPS and/or co-

pathologies) among specific groups of patients (e.g., women or men)

that can be translated into more accurate diagnostic biomarkers and

therapeutics targets, stratified by patient sub-groups. It is imperative

for future work to expand these investigations to additional patient

groups, such as those of different ancestral backgrounds, to further

tailor biomarker and therapeutics applications. Second, these new

biomarkers will be essential for clinical trials, primarily by providing

indicative and measurable readouts to enable accurate and precise

monitoring of disease progression for the assessment of drug effi-

cacy andevaluationof treatment response.Moreover, suchbiomarkers

will improve the design of clinical trials by identifying the patient

populations likely to benefit from the investigational new treatment

(patient selection), accounting for ancestry, sex, and other risk fac-

tors of the individual patient. Third, the discovery of gene-, allele-,

transcript isoform–, and cell type–specific drug targets will offer the

opportunities to develop new andmore effective therapeutics to treat,

delay, and/or prevent AD with consideration of the individual patient

attributes. Collectively, multiomics knowledge enhances the devel-

opment of precise and accurate medicine for AD (Figure 1, lower

panel).

An additional major gap in the study of the genetics and molecular

underpinnings of AD and related dementias, beyond those discussed

in detail above, is ancestral diversity, as most genetics and functional

genomics studies have been conducted in subjects from European

ancestry, while other populations are largely understudied. Evidence
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of differential disease risk across populations of diverse ancestry

raises important questions related to the extent of shared and distinct

genetic etiologies andmolecular phenotypes across these populations.

Thus, the use of omics studies in tackling these questions, includ-

ing GWAS and QTLs based on populations with diverse ancestral

backgrounds, is vital for the mechanistic understanding of AD across

various demographic groups, as well as the translation of these find-

ings into personalized treatment strategies with respect to ancestral

genetic background. Additional facets of population diversity with

known influence on AD, such as geographic location, socioeconomic

status, education level, social engagement, and so forth, also warrant

further study. Promoting and extending AD research to include under-

studied diverse populations is a high priority, as personalized medicine

in AD and related dementias may provemore effective.

Understanding the differences in AD between patients from vary-

ing demographic categories is important. Additionally, it is also crucial

to obtain deeper insights into the complexity of AD within individ-

ual cases, including disease stage, rate of progression, and response

to medications. In addition to examining gene expression levels

through short-read RNA-seq, long-read sequencing technologies209

can expand the capacity of transcriptomic data to identify AD-

associated changes in RNA splicing within specific tissues at the

single-cell level,which could potentially enable the futuredevelopment

of treatment strategies specifically targeting disease-associated splice

variants.210 Moreover, understanding early changes in brain regions

involved in disease prior to neurodegeneration is imperative, and can

be facilitated by integration of multi-omic methods in studying single-

cell and spatial omics of post-autopsy tissues from early disease stages

and younger at-risk individuals, based on criteria such as family history

and genetic factors (e.g., APOE, PRS), as well as studying biofluids (i.e.,

CSF and plasma) of living donors fromhigh-risk populations.Molecular

phenotypes based on omics profiles would help trialists and clinicians

to characterize and classify individual AD cases with a high degree of

precision, and by that advance future drug development and patient

care regimens.

As is evident from the diverse disease aspects we specifically

focused on in this review, rather than a monolithic disease, AD may

represent multiple disease subtypes characterized by a complex range

of comorbid clinical symptoms and co-pathologies. This is reflected

in the recent development of new diagnosis and staging strategies

integrating both biomarker and clinical data for AD as well as other

neurodegenerative diseases,211–215 in an effort to better account for

this complexity in the diagnostic process. Furthermore, recent studies

have suggested definitions of specific AD subtypes. Pathologic fac-

tors have been used to delineate four major subtypes of AD,216 while

at least five separate molecular subtypes have been identified using

CSF proteomics.217,218 Integration of multiple omics datasets, includ-

ing transcriptomic, epigenomic, proteomic, metabolomic, and lipidomic

profiles via machine learning has also been used to define multiple AD

subtypes,219,220 which have been subsequently linked to distinct NPS

profiles.221 Moreover, NPS such as psychosismay themselves bemark-

ers of a distinct underlying biology.43 However, as discussed above,

the heterogeneity of AD is highly multifactorial, and the examination

of individual variables in isolation is insufficient to capture the full

spectrum of AD variability. Because of this heterogeneity, there is no

single “silver bullet” to fight AD and related dementias. Thus, ongo-

ing and emerging studies integrating forefront genomic technologies

andmethods to enrich themolecular datasets provide a framework for

the development of precisionmedicine strategies tailored to the treat-

ment of individual patients with respect to the full range of complexity

in AD.
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