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Abstract 
 

This paper reports progress on a project to develop a design tool for large arrays of nucleation sites 

at specified locations to achieve high rates of cooling by pool boiling. The tool will be based on an 

improved version of a hybrid simulation, in which the 3-D temperature field in the wall is solved 

numerically, along with simple sub-models for bubble-driven heat transfer that require experimental 

calibration. Improvements to the computer code and progress with the experiments are reported 

briefly. The paper focuses on the development of a sub-model for the lateral coalescence of 

bubbles, which is shown to cause irregularity in the bubble production by a regular array of 

nucleation sites. 

 

Nomenclature 
 

H plate thickness d distance between sites 

 

Subscripts 
 

AC after coalescence BC before coalescence 

b bubble C coalescence 

c contact d departure  

i,j site indexes 

 

1 Introduction 
 

Most applications and studies of nucleate boiling heat transfer have been for metallic surfaces, on 

which the spatial and size distribution of nucleation sites can only be controlled in a general way 

during manufacture. Applications of boiling to the cooling of devices micro-fabricated on silicon 

open the way to the creation of large arrays of closely-spaced nucleation sites of specified micro-

geometry. A design tool is required to explore the infinite number of geometrical possibilities. The 

development of a hybrid model, able to deal with a large number of activation sites, is not 

straightforward, since phenomena related to bubble growth, detachment and interaction between 

sites must be described by simple sub-models that are sufficiently flexible to accommodate different 

phenomena. Comparisons with experimental data and fully 3-D simulations for isolated sites will 

provide significant help in the development and validation of the model. 

The choice of parameter values in the physical sub-models in the hybrid code will depend on 

information provided by very detailed localized experimental measurements being performed at the 

University of Edinburgh on boiling of FC-72 and water on arrays of sites with micro-thermometers 

micro-fabricated on silicon, in a rig described by Hutter et al. (2007), and data from an on-going 



investigation at Ljubljana University of pool boiling on very thin metal foils, employing high-speed 

IR thermography to measure 2-D wall temperature variations, Golobič et al. (2007a). 

The code was first developed by Nelson and colleagues at the Los Alamos National Laboratory 

(LANL) to investigate the influence of wall properties on interactions by conduction between 

hundreds of sites, Pasamehmetoglu and Nelson (1991). Golobič et al. (1996) at Ljubljana University 

developed a version of the model in which sites could be placed at any position and the 

computational grid was refined temporarily in a cylindrical region under every growing bubble. The 

bubble growth sub-model was a simplified version of the Stephan and Hammer (1994) model for 

evaporation at a triple contact line, with additional heat transfer in the central contact area. Again, 

only site interactions transmitted through the wall were included. This paper describes further 

improvements to the version of the code described by Sanna et al. (2007) and (2008), focusing on 

the simulation of the coalescence of bubbles of sensibly dissimilar size. 

 

2 Numerical simulation: improvements to code and models 
 

The code has been restructured by Nelson at LANL for parallel computation in order to reduce 

calculation time. A reorganization of the physical sub-models has increased flexibility and 

applicability to different conditions. The code solves the 3-D transient conduction equation for the 

temperature distribution );,,( tzyxT  in a rectangular slab representing the heated wall of thickness 

H, with the assumptions and conditions specified in Sanna et al. (2007) and (2008). The transient 

equation is solved by a simple explicit method, with consequent limitations on numerical accuracy 

and stability. The basic computational Cartesian mesh is temporarily refined in a cylindrical region 

(composed of a fixed number of concentric rings, six in current simulations, plus a connection area 

between Cartesian and cylindrical cells) around each active site during bubble growth from 

nucleation to detachment. Values of the variables and properties are assumed uniform within each 

cell.  

Originally, the mesh radius was refined in a region of fixed radius corresponding to the maximum 

contact radius, which occurred at detachment and which was specified at each site. Since the code 

does not permit the overlapping of refined meshes, nucleation of new bubbles had to be prohibited 

at sites close to a growing bubble, preventing simultaneous growth and coalescence. This constraint 

has been partially removed, at the cost of increased computing time, by modifying the meshing 

procedure: the radius of the refined region increases and decreases stepwise so that it is always 

slightly bigger than the varying contact radius, leading to a variation in cell size during bubble 

growth. This involves a temporary loss of accuracy in the properties of cells because the code is 

unable to directly substitute the cylindrical mesh distribution with a new cylindrical distribution 

without merging the refined area into the original Cartesian cells. To avoid this problem, a new 

procedure is under study, with a variable number of rings but a constant width of the mesh rings in 

the refined area.  

The current criterion for site activation assumes that a new bubble commences when the local wall 

superheat exceeds a fixed value specified for each potential nucleation site, provided the previous 

condition on distance from a growing bubble is satisfied. An improved criterion for activation, 

including the effect of the temperature gradient at the potential nucleation site, is being developed. 

In the original version of the code the bubble was assumed to grow as a truncated sphere with a 

constant apparent contact angle  . Heat for evaporation was supplied only through the base of the 

bubble based on the Stephan and Hammer (1994) contact line concept, as described in Golobič et al. 

(2004). Heat transfer from the bulk liquid through the dome was neglected. The latest version of the 

code includes a sub-model for heat transfer to the dome, as discussed in Sanna et al. (2007) and 

(2008). Heat transfer through the base of the bubble is driven by specifying values for the heat 

transfer coefficient in each ring of the refined mesh. In order to approximate the Stephan and 

Hammer (1994) model with a pure contact line model, a very high heat transfer coefficient is 

specified only in the ring containing the contact line with an adiabatic dry spot for the contact area. 

Its value is based on experimental observations of bubble growth. The product of heat flux and area 



is consistent with the values of heat flow through the 

much smaller area in the contact zone model. In the 

examples in this paper the heat transfer coefficient in the 

inner rings is set to zero. The initial assumption of 

constant apparent contact angle, which resulted in sudden detachment when the contact area was a 

maximum, has been replaced by a variable angle, constant during the first stage of the bubble 

growth and linearly decreasing with the inverse of the volume afterwards, Figure 1(a, b). Bubble 

detachment occurs when the bubble reaches its maximum volume at a specified bubble departure 

radius for each site, now coincident with zero apparent contact angle and contact area. It also occurs 

if the refined mesh areas of two bubbles come into contact: the smaller bubble is assumed to detach 

instantaneously and the larger bubble continues to grow without detaching. The bubble departure 

radius is specified on the basis of experimental evidence, highlighting the importance of 

experiments in tuning the code, as well as subsequent validation. 

The conditions for detachment have now been extended by a very simple model to account for 

coalescence. Two situations are considered, both of which were observed in Golobič et al. (2007b): 

(a) If the bubbles have similar size, they are assumed to continue growing as two independent 

isolated bubbles. A dedicated heat transfer coefficient, αC, not contributing to the growth of the 

bubble, will be imposed in the region between them, as shown in Figure 2a. In reality the bubble 

assumes the shape of a horizontal elongated bubble. The dedicated heat transfer coefficient has not 

yet been implemented. As a simple temporary measure, the bubbles are allowed to continue 

growing with overlapping domes but separate contact areas to their specified departure radii or until 

their refined meshes (which are slightly larger than the contact radii) touch, whereupon the smaller 

bubble detaches.  

(b) If the sizes are sensibly dissimilar, so that the bubble radii ratio is larger than 2, the smaller 

bubble is assumed to be immediately absorbed by the larger bubble, which undergoes a sudden 

increase in volume, as shown in Figure 2b. Coalescence occurs when the projections of the domes 

of the bubbles come into contact. The bubble departure radius, rbd,i, of the larger bubble after 

coalescence is then temporarily increased by a factor dependent on the ratio of the volume of 

smaller bubble at the time of coalescence, Vj, and the maximum volume of the larger one, Vd,i, as 

shown in equation (1). 
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This device avoids immediate departure of the larger bubble if coalescence occurs close to its 

maximum size. A further improvement, not yet introduced, will impose a rapid detachment process 

with reduction of contact area for the smaller bubble prior to absorption by the larger bubble. 

The model at present considers coalescence only between pairs of bubbles in contact with the 

surface. In circumstances that might lead to simultaneous coalescence of several bubbles, the code 

forces events to occur sequentially by checking the candidates for coalescence in a regular order 

    Figure 1a, b: Apparent contact angle models (a) 

constant, (b) variable 
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Figure 2a, b: Coalescence models 



and calculating the consequences before moving to the next candidate. This is consistent with the 

limited evidence from experiments, e.g. Bonjour et al. (2000), and 3-D simulation (Mukherjee and 

Dhir, 2004) that multiple coalescences tend to occur sequentially. For reasons of numerical stability, 

the maximum number of coalescence events for the same bubble is at present limited to six. 

The model does not consider coalescence between an attached bubble and a detached bubble. 

Vertical coalescence between bubbles produced from the same site at very small waiting times was 

found by Shoji et al. (2005) to have only a small influence on heat transfer and the activity of other 

sites, so its omission may not be serious. Declining coalescence with a detached bubble from 

another site was found to have a much stronger influence, although this was not detected by 

Golobič et al. (2007b). The modelling of declining coalescence will be reviewed when further 

evidence is available from the experiments at the University of Edinburgh. 

 

3 Preliminary numerical results 
 

Simulations for constant bubble departure radius have been 

run by varying the spacing d between the sites, to study its 

effects on thermal interaction between sites and coalescence, 

as studied experimentally by Shoji et al. (2005). This is a 

preliminary study to support the design of silicon wafers with 

micro-machined cavities for use in the experiments with FC-

72, as in Hutter et al. (2007) and in Section 4 of this paper.  

In order to reduce computational time, the geometry used in 

the simulations is a square silicon plate, 24 x 24 mm, 0.38 mm 

thick, divided into 6 vertical layers for computation. The plate 

has seven potential activation sites located at its centre, 

arranged in triangular symmetry. The site activation 

temperature is 115.5 °C, and the bubble departure radius is 

1.75 mm, based on Shoji et al. (2005), with an initial apparent contact angle of 32°. A uniform 

volumetric heat source corresponds to an input heat flux of 50 kW/m
2
. The bottom of the plate is 

adiabatic and its edges are kept at constant temperature of 125.01 °C. This value, approximately 

corresponding to the steady state temperature that would be obtained if the enhanced natural 

convection coefficient was supposed, and used also as the initial condition for the top surface, has 

been employed to reduce the total dimensions of the plate, in order to use a finer distribution of 

unrefined Cartesian meshes. The mesh distribution on the central area of the plate (8x8 mm) when 

all the sites, with a spacing of d=2.5 mm, have been activated is shown in Figure 3, each dot 

corresponding to the centre of a cell. Interference between the refined meshes cannot occur for these 

conditions. 

The bubble radius (rb,i), the contact area radius (rc,i) and the nucleation site temperature (Ti) at the 

central site 1 and at sites 2 and 5 are compared in Figure 4 for d=4.0 mm (thermal interaction only) 

and in Figure 5 for d=2.5 mm (thermal interaction plus coalescence, models a + b). In the absence 

of coalescence, sites 1, 2 and 5 produce bubbles regularly, Figure 4, with no waiting time. The 

Figure 3: Mesh distribution 

 

8

9

10

11

12

13

14

15

16

8 10 12 14 16

x [mm]

y
 [

m
m

]

7

5

6

4
3

21

d

Figure 4: Radius and temperature 

distributions for d=4.0mm 

d=4.0mm

0

1

2

3

-20 0 20 40 60 80
time [ms]  (t0 = 1.16s)

ra
d

iu
s 

[m
m

]

104

106

108

110

112

114

116

T
em

p
er

a
tu

re
 [

C
]

rb 5 rb 2
rb  1 rc 1
T0 1

Figure 5:  Radius and temperature distributions 

for d=2.5mm 

d=2.5mm

0

1

2

3

-20 0 20 40 60 80
time [ms]  (t0 = 1.16s)

ra
d

iu
s 

[m
m

]

104

106

108

110

112

114

116

T
em

p
er

a
tu

re
 [

C
]

rb 5 rb 2
rb  1 rc 1
T0 1



frequency is slightly lower at site 1 because it receives heat by lateral conduction from a smaller 

area of the plate that is also cooled down by the surrounding sites. Consequently, bubble production 

at site 1 and sites 2 and 5 is out of phase. Sites 2 and 5 are in identical positions but they develop 

very slight differences, presumably due to procedures in the numerical code: solution of the 

conduction equation, mesh refinement, numerical rounding errors. The code will be verified more 

thoroughly after implementation of the new procedure for mesh refinement. After activation at 

115.5 
o
C, the temperature at site 1 (Figure 4) increases to 116 °C, hovering before the final stage of 

detachment, when the high heat transfer coefficient at the slowly contracting contact line causes a 

large reduction in temperature. Immediately after detachment, the site temperature rapidly increases 

to the activation temperature at a rate that determines no waiting time, corresponding to the 

continuous bubbling with vertical coalescence observed by Shoji et al. (2005). The changes in 

temperature at the nucleation sites depend strongly on the use of the pure contact line model and on 

the value of the heat transfer coefficient at the contact line, highlighting the necessity of refining the 

mesh. Increase of the heat transfer coefficient leads to higher heat removal in the central area and a 

significant waiting time. Horizontal coalescence is impossible according to the current model for 

d=4 mm and rbd=1.75 mm, but Shoji et al. (2005) found that coalescence became negligible only for 

d > 3·rbd = 5.25 mm, presumably because of fluctuations in departure radius. In principle, random 

variability in the specified departure radius could be incorporated in the model. 

When the spacing is reduced to d = 2.5 mm, site 1 is partially cooled by surrounding sites leading to 

a lower temperature and consequent significant waiting time. Simultaneous type (a) coalescence of 

bubbles at all the sites would be expected if their thermal conditions were identical. The phase 

difference between growth at site 1 and the other sites opens the way to type (b) coalescence 

between bubbles of dissimilar size with radii ratio > 2. As for d = 4 mm, there are slight differences 

between the identical sites 2 and 5 that may arise from the numerical procedures, to which is now 

added the effect of the sequence in which near-simultaneous coalescences are executed. In Figure 5, 

it is seen that events at the two sites are closely synchronized, except for a short time after a 

coalescence: differences in average bubble frequency are less than 1.33% over the simulating time 

of 2.0 s.  

Three close type (b) events (a very rare occurrence) are marked in Figure 5 by .  At -5.4 ms, a 

small bubble at site 1 is absorbed by a large bubble at site 2. The bubble at 1 is removed, creating an 

additional rise and fall in the temperature at site 1, Figure 5; the absorbing bubble has a slight 

instantaneous increase in radius and a small increase in its detachment radius calculated by equation 

(1). At +43.6 and +76.7 ms, a large bubble at 1 absorbs in quick succession small bubbles at all the 

surrounding sites, including 2 and 5, causing an increase in its radius and departure radius; the 

temporary expansion of the contact radius moves the region of intense cooling outwards, causing a 

rise and fall in the temperature at site 1, Figure 5.  Table 1 summarizes the data for dissimilar 

coalescence events involving site 1 over a simulated period between 0.6 s and 2.0 s, showing that 

site 1 is more likely to absorb a bubble than be absorbed. The second type of event exhibits 

significant variability between sites. In addition, there are type (a) coalescences between bubbles of 

similar size at site 1 and the surrounding sites that, according to the current model, do not cause 

thermal disturbances.  

The cooling effect of the group of sites with d = 2.5 mm is illustrated in Figure 6. The temperature 

continuously decreases from its boundary value of 125.01 °C and particularly, the temperature of 

the wall surrounding site 1, which is influenced by all the sites, does not exceed 116 
o
C, causing the 

lower rate of bubble production at that site and a large waiting time. The expanded plot of the wall 

surface temperature on a line passing through sites 5 - 1 - 2 in Figure 7 shows a slight asymmetry 

between sites 2 and 5 in the relative timing and sizes of their bubbles, causing larger asymmetries in 

the instantaneous distributions of heat flux and heat transfer coefficient in Figures 8, 9. 

At +8 ms, the domes of the smallest bubble at site 1 and the slightly bigger bubbles at 5 (left) and 2 

(right) overlap as a consequence of an earlier type (a) sequential coalescence. At +43.36 ms, the 

very small bubbles of slightly different size at 5 and 2 are about to be absorbed by the large bubble 

at 1 in the sequential type (b) coalescence at + 43.6 ms. When the code has been thoroughly 

verified, it will be used to explore whether small fluctuations in local conditions in the simulation, 



which might well occur in a physical situation, lead to growing irregularities because of the strongly 

nonlinear dynamics of the activation of nucleation sites.  

 

Table 1: Summary of coalescence 

 

 

4 Preliminary experimental studies on silicon 

 
The simulation code depends on experimental input for the values of parameters driving bubble 

growth and detachment. It then predicts local wall temperature and heat flux, leading to predictions 

of the activation of sites, which require verification by experimental measurements. The 

development of the code depends on a continuous interaction with an experimental programme. 

Some experimental data for pool boiling of water on very thin metal foils at Ljubjana University 

have indicated that heat transfer to a bubble may be distributed over a larger part of its contact area 

than is assumed in the contact line model currently used in the code, Golobič et al. (2007a,b). It is 

not known whether this observation also applies to boiling on silicon wafers. Simulations with an 

earlier version of the code, Pavlovič (2005), showed that the distribution of heat transfer influenced 

the temperature changes at the nucleation site. Preliminary simulations with the current version of 

the code, Sanna et al. (2007) and (2008), using the same contact line model for water boiling on a 

25 m titanium foil and on a 0.4 mm silicon wafer, showed that bubble growth was more rapid with 

much shorter waiting times on the silicon wafer.  

It is necessary to perform boiling experiments on silicon wafers with artificial sites to establish 

appropriate modelling assumptions and inputs for the inception, growth and detachment of 

individual bubbles and thermo-fluid interactions between sites, including coalescence. Finally, the 

  i=2 i=3 i=4 i=5 i=6 i=7 average 

rb,1  > rb,i  bubble at site 1 absorbs bubble at site i 

fi [Hz] 10.71 10.71 10.00 10.00 10.00 10.00 10.24 

rb,1 / rb,i  average 2.43 2.43 2.34 2.25 2.37 2.50 2.39 

rb,i  > rb,1  bubble at site i absorbs bubble at site 1 

fi [Hz] 6.43 0.71 0.71 0.71 0.00 0.71 1.54 

rb,i / rb,1  average 0.45 0.49 0.45 0.50 0.00 0.46 0.39 

Figure 6: Temperature distribution for d=2.5mm 
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Figure 7: Local temperature distribution 

Silicon wafer; d=2.5mm
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Figure 8: Heat flux 
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Figure 9: Heat transfer coefficient 
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pattern of interactions in large arrays of artificial sites will be measured by integrated micro-

resistance thermometers embedded in the silicon under about 100 nucleation sites.  

A pool boiling rig described by Hutter et al. (2007) was recently built at the University of 

Edinburgh. In order to reduce the practical problems of electrically insulating the connections to the 

micro-sensors, the preliminary experiments are being performed with the dielectric fluid FC-72. 

The commissioning tests were performed with a silicon wafer with 45 cylindrical sites, diameter 2 

m and estimated depth 22 m, in a square array of pitch 10 mm without micro-sensors. Heating 

was provided by a separate thin electrical resistance heater attached to the rear of the wafer. The 

growth and detachment of individual bubbles was recorded by high-speed video camera and these 

measurements provided preliminary estimates for the parameters used in the simulations in this 

paper. The tests also confirmed the anticipated difficulty of visually recording the activity of all the 

sites in a large array, because of obstruction by bubbles from other sites. Some bubbles originated 

from sites other than those in the artificial array, indicating the presence of small surface defects 

and the need for rigorous cleaning. 

The second test section has five cavities of diameter 2, 5, 10, 20 and 50 m, depths 62.5, 74.7, 82.8, 

82.8, 86.1 µm respectively, each positioned above a micro-sensor, Figure 10. Heat is provided by an 

integral thin-film resistance heater (95% Al, 4% Cu and 1% Si) on the rear of the 0.38 mm thick 

silicon wafer, inside the red rectangle in Figure 11. The nickel micro-thermometers are calibrated 

individually and have a near-linear increase of electrical resistance with temperature. The cavities 

were all activated at a heat input flux of 1.2 kW/m
2
 and cavities 1,3,4,5 remained active after a 

reduction to 0.19 kW/m
2
, Figure 12. The fluctuating temperature measured under cavity 3 in fully-

developed boiling at 16.6 kW/m
2
, shown in Figure 13, may have been influenced by bubbles 

produced at other sites that have still to be controlled. 

 

 

  Figure 10: Schematic arrangement of sensors               Figure 11: Test section layout 

 

 Figure 12: Nucleation sites 1, 3, 4, and                    Figure 13: Fluctuating temperature under 
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5   Conclusions 

 

Progress has been made towards the development of a design tool for array of nucleation sites for 

the cooling of silicon chips by pool boiling. The physical sub-models and numerical procedures in a 

simulation code originally developed over 1991-1996 have been improved. A model for bubble 

coalescence suggests that coalescence may promote irregularities in the nucleation of bubbles at a 

regular array of nucleation sites. The model requires further development. Micro-instrumentation to 

measure local temperatures and hence detect nucleation at individual sites in a large array has been 

fabricated and calibrated successfully. 
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