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Abstract 
Mutations that activate the small GTPase KRAS are a frequent genetic alteration in cancer, and drug 

discovery efforts have led to inhibitors that block KRAS activity. We sought to better understand 

oncogenic KRAS signaling and the cytostatic effects of drugs that target this system. We performed 

proteomic analyses to investigate changes in protein abundance and posttranslational modifications in 

inhibitor-treated human KRAS-mutant pancreatic (KRAS G12C and G12D) and lung cancer (KRAS 

G12C) cells. The inhibitors used target these mutant forms of KRAS, the downstream effectors MEK and 

ERK, and the upstream regulators SHP2 and SOS1. Comparisons of phosphoproteomes between cell lines 

revealed a core KRAS signaling signature as well as cell line–specific signaling networks. In all cell lines, 

phosphoproteomes were dominated by different degrees of autonomous, oncogenic KRAS activity. 

Comparison of phosphoproteomes after short and long drug exposures revealed the temporal dynamics of 

KRAS-MEK-ERK axis inhibition that resulted in cell cycle exit. This transition to a quiescent state 

occurred in the absence of substantial proteome remodeling but included broad changes in protein 

phosphorylation and ubiquitylation. The collective data reveal new insights into oncogenic KRAS 

signaling, place many additional proteins into this functional context, and  implicate cell cycle exit as a 

mechanism by which cells evade death upon KRAS signaling inhibition. 
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Introduction  

Because drugs often have more than one target and the wiring of signaling pathways in cancer 

cells can be highly diverse, drug treatments sometimes lead to unexpected cellular effects (1–4). 

Proteomics approaches have greatly improved our understanding of the molecular and cellular 

mechanisms of action (MoA) of cancer drugs, and selective compounds are increasingly used as 

chemical probes to study the oncogenic signaling networks that these drugs perturb (5–7). 

Understanding the consequences of drug perturbation of the RAS-MEK-ERK axis as one of the 

most frequently activated pathways in cancer is particularly important. Proteomic analysis 

following the pharmacological targeting of key nodes within the mitogen-activated protein 

kinase (MAPK) pathway, such as the kinases ERK and MEK and the small GTPase KRAS, and 

across different cellular contexts, show dynamic responses (8–10). A notable example is a study 

of the ERK-regulated phosphoproteome in KRAS-mutated pancreatic cancer cells following 

drug perturbation. It suggests that >4,600 phosphorylation sites on >2,100 proteins are directly 

dependent on ERK activity, implying a broader role of ERK in cancer than hitherto appreciated 

(11). 

Given the many functions of ERK for healthy physiology, it is currently unclear if target-related 

toxicity of ERK inhibition can be adequately managed. In fact, ERK inhibitors have not yet 

moved beyond phase 1 and 2 clinical evaluation, in contrast to the approval of four MEK and 

two KRAS inhibitors. The latter have received much attention because oncogenic mutations in 

KRAS that decouple KRAS activity from upstream signals are detectable in ~10-20% of all 

cancers (according to The Cancer Genome Atlas database, TCGA) with G12C being most 

prevalent in lung and G12D in pancreatic cancer (12). The approval of the two KRAS G12C 

drugs sotorasib and adagrasib, which covalently bind the mutated amino acid Cys12 and trap 

KRAS G12C in its inactive state, marked a milestone in KRAS drug discovery (13–15). Such 

mutant-specific drugs are attractive because they limit the risk of side effects resulting from 

target engagement in healthy tissues that also rely on the KRAS pathway for normal function. A 

number of further modalities are being investigated including inhibitors of KRAS G12D, pan-

KRAS inhibitors, compounds directed against active GTP-bound KRAS, KRAS degraders, or 

drug combinations addressing upstream [the receptor tyrosine kinase EGFR, the phosphatase 

SHP2 (also called PTPN11), the guanine nucleotide exchange factor SOS1] or downstream 

(MEK, ERK) members of the KRAS signaling network that may offer treatment options for a 

broader range of patients (16–19).  

The cellular MoAs of mutant-specific KRAS inhibitors (KRASi) have not yet been 

comprehensively characterized on a proteome-wide scale. We addressed this gap by measuring 

the concentration-response characteristics of target binding, pathway engagement, and cellular 

proteostasis of sotorasib, adagrasib, ARS-1620, MRTX1257 (KRAS G12C inhibitors; G12Ci) 

and MRTX1133 (KRAS G12D inhibitor; G12Di), complemented by inhibitors targeting 

upstream (SHP2, SOS1) and downstream (MEK, ERK) proteins in two KRAS-mutated 

pancreatic (KRAS G12C and G12D) cell lines and one lung cancer (KRAS G12C) cell line. 

Analysis of the resulting 715,239 concentration-response curves highlighted a common KRAS 

core signaling signature as well as differences between cell lines, placing hundreds of new 

proteins and their posttranslational modifications (PTMs) into the functional context of KRAS 

signaling. Our data demonstrated that oncogenic KRAS activity dominated the output of MEK 

and ERK activity and largely but incompletely decoupled KRAS from upstream receptor 

tyrosine kinase signaling, leading to exit of cells from the cell cycle and transitioning into a 

quiescent state. Furthermore, we found that dynamic protein phosphorylation and ubiquitylation, 
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rather than changes in protein abundance, were the main drivers of these processes, which 

included inhibition of kinases, transcription factors, and a likely ubiquitylation-mediated 

inactivation of E1 ubiquitin-activating and E2 ubiquitin-conjugating enzyme activities. We 

anticipate that the molecular resources provided alongside this manuscript and available in 

ProteomicsDB.org (20) will be of substantial utility for the scientific community for research on 

the KRAS signaling system and drugs to treat KRAS mutant cancer. 

Results 

Concentration-dependent, proteome-wide characterization of KRAS signaling inhibitors 

The cellular MoAs of many KRAS inhibitors and other drugs acting on the RAS-MEK-ERK axis 

remain incompletely understood. To address this, we systematically measured the concentration-

response characteristics of drug action characterized by potency (effective concentration to 

achieve 50% response; EC50) and response (curve fold change) on a proteome-wide scale (Fig. 

1). Including the EC50 dimension is powerful because it enables deducing both common as well 

as distinct responses in the same cellular system. We term this approach decryptE for proteins 

and decryptM for PTMs (5, 21). Here, we applied both methods to characterize inhibitors 

targeting the RAS-MEK-ERK axis and extended the concentration-response idea to reactive 

cysteine profiling for drug-target deconvolution of cysteine-targeting covalent KRAS inhibitors 

(decryptC) (fig. S1,A and B) (22). Statistical analysis of all concentration-response data was 

performed by CurveCurator (23) followed by removal of outliers or manual inspection if 

required (fig. S2; see Materials and Methods for details). We initially focused on the FDA-

approved KRAS G12C inhibitors sotorasib and adagrasib, their pre-clinical derivatives ARS-

1620 and MRTX1257, and the KRAS G12D inhibitor MRTX1133. We then expanded the drug 

selection to compounds targeting proteins upstream and downstream of KRAS (for treatment-

related information see data file S1). For cell line models, we chose the pancreatic cancer lines 

MiaPaCa-2 (KRAS G12C, homozygous) and ASPC1 (KRAS G12D, homozygous) as well as the 

lung cancer line NCI-H23 (KRAS G12C, heterozygous). These lines exhibited reduced viability 

in response to KRAS inhibition and represent cancer entities with high clinical prevalence of 

KRAS G12C or G12D substitutions (fig. S3; data file S2). Collectively, the different decrypt 

data types covered 25,038 cysteine-containing peptides (cys-peptides), 69,729 phosphopeptides, 

13,093 ubiquitylated peptides (ubi-peptides) and 11,645 protein groups (Fig. 1; fig. S1B; data 

files S3–S6). Reproducibility of decryptM experiments was assessed by triplicate analysis of 

phosphoproteomes in response to sotorasib in MiaPaCa-2 cells showing that 80% of all EC50 

values and curve fold changes were reproducible within a factor of two (fig. S4, A and B) (5). 

All data can be explored in ProteomicsDB (20) or through interactive html dashboards provided 

on Zenodo.org. 

 

DecryptC profiling demonstrates high target selectivity of clinical KRAS G12C inhibitors 

For in cellulo target deconvolution of the KRAS G12C inhibitors sotorasib and adagrasib, we 

applied competitive reactive cysteine profiling in two KRAS G12C and one KRAS G12D (as 

control) cell lines following 2 hours of drug treatment as previously described (22) but extending 

it here to full concentration-response measurements (fig. S1A; data file S1; data file S3). 

Between 12,500 and 18,600 cys-peptides were covered per cell line. Both G12C inhibitors 

potently modified Cys12 of KRAS in the two G12C cell lines. The potencies of the drug-target 
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interactions (EC50) were determined to be 30 nM and 39 nM for sotorasib and 5nM and 14 nM 

for adagrasib in MiaPaCa-2 and NCI-H23 cells, respectively (Fig. 2,A and B). These potencies 

were in line with cell viability data (EC50 of 2-7 nM) collected after 72 hours of drug incubation, 

confirming that the inhibition of KRAS was responsible for the observed phenotypic effect (fig. 

S3; data file S2). Elongation factor EEF1A2 was identified as a new, but weak (1-3 µM), off-

target of adagrasib (but not sotorasib) by covalently binding Cys31 in all cell lines (Fig. 2C). 

Molecular docking showed that the reactive group of adagrasib points to Cys31 and highlighted 

an additional interaction between EEF1A2 Tyr86 and the nitrogen of the methylpyrrolidine ring 

of adagrasib that does not exist in sotorasib (Fig. 2D). Very few additional cys-peptides showed 

reduced abundance in G12C cell lines which were not changed in the G12D line. Notable 

examples are two cys-peptides of the transcription factor ETV5 (Cys339, Cys499; Fig. 2A), which 

showed equipotent abundance reduction in MiaPaCa-2 cells in response to sotorasib and 

adagrasib, and their EC50 values were comparable to that of Cys12 from KRAS G12C (fig. S5A). 

However, these cases are unlikely to represent bona-fide off-targets but are more likely to result 

from changes in protein abundance due to transcriptional alterations elicited by KRAS inhibition. 

This interpretation is in line with total proteome analysis following 2h of drug treatment showing 

concentration-dependent protein reduction for several other short-lived transcription factors 

(MYC, JUN, FOSL1, EGR1) with similar potencies to the one observed for ETV5 (Cys339 and 

Cys499; fig. S5B-D). Although we could not detect ETV5 in the deep-fractionated proteome of 

MiaPaCa-2 cells, published data demonstrate reduced mRNA and protein levels of ETV5 in 

response to U0126, a noncovalent inhibitor of MEK (24). Therefore, we conclude that adagrasib 

and sotorasib are highly selective binders of KRAS G12C in cells and qualify as chemical probes 

to study KRAS signaling. 

 

DecryptM profiling demonstrates selective pathway engagement of KRAS inhibitors 

To examine how inhibition of mutant KRAS affects downstream signaling, we subjected 

sotorasib, adagrasib, ARS-1620 and MRTX1257 (targeting KRAS G12C), and MRTX1133 

(targeting KRAS G12D) to decryptM profiling of the phosphoproteome using the same cell lines 

and timing (2 hours) as above (fig. S1A; data file S1; data file S4). The timing was chosen to 

allow efficient target binding for covalent inhibitors while minimizing drug-induced changes in 

protein abundance (fig. S5B; fig. S6A), yet allowing sufficient time for full signaling pathway 

engagement (fig. S6B). In KRAS G12C cell lines, KRAS G12C–specific drugs changed the 

abundance of fewer than 600 phosphopeptides (of >20,000 recorded in each experiment; Fig. 

3A). In contrast, MRTX1133 led to abundance changes of nearly 2,000 phosphopeptides in 

ASPC1 (KRAS G12D). Essentially no changes in the phosphoproteome were induced in 

sotorasib- or adagrasib-treated ASPC1 cells, demonstrating high selectivity of these KRAS 

G12C inhibitors for engaging KRAS-driven and phosphorylation-mediated cellular processes 

within the chosen drug concentration range. These experiments also demonstrated that the 

aforementioned weak off-target of adagrasib (EEF1A2 Cys31; Fig. 2, C and D) was of no 

consequence to protein phosphorylation. 

As expected, KRAS inhibition led to abrogation of MAPK1/3 activity, measured by the 

reduction of its activation loop phosphorylation status (Fig. 3B). No such effect was observed for 

KRAS G12C inhibitors in ASPC1 cells (KRAS G12D). The potency of MAPK1/3 inhibition 

closely mirrored the decryptC target binding and cell viability data, demonstrating that the drugs 

fully engaged the RAS-MEK-ERK axis in cells and were responsible for the observed inhibition 

of cell growth (Fig. 3C; fig. S3; data file S2). The concentration-dependent abundance changes 
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for each phosphopeptide in response to each drug and across cell lines (expressed as pEC50 = 

−log10(EC50)) revealed distinct potency profiles (Fig. 3D).  Among the inhibitors, MRTX1257 

showed the highest potency (apex at EC50 of 0.37 nM) and ARS-1620 was the least potent (apex 

at EC50 of 398 nM). In addition, the pEC50 distributions were mostly unimodal, and their apex 

EC50 values were close to the potency of reactive cysteine profiling and cell viability data (Fig. 

3C-E). Therefore, the observed changes in the phosphoproteome can be attributed to KRAS 

inhibition.  

Many phosphopeptides of described MAPK pathway members (according to KEGG: hsa04010; 

data file S7) showed abundance changes within a similar EC50 range (Fig. 3D, boxplots). 

Following a guilt-by-association logic, we concluded that many phosphopeptides with EC50 

values close to known KRAS or MAPK pathway members may indeed themselves be 

functionally linked to the KRAS pathway. To define this pathway-associated group of 

phosphopeptides, the data was filtered to retain only phosphopeptides that were within ±1 pEC50 

of the apex of each experiments pEC50 distribution(fig. S6, C and D).  

We next asked to what extent phosphopeptides were affected by KRAS inhibitors in the same or 

different cell lines. Nearly 94% and 90% of all phosphopeptides showed consistent behavior in 

response to adagrasib and sotorasib in MiaPaCa-2 and NCI-H23 cells, respectively (Fig. 3F, fig. 

S7). Pairwise comparison of all drug responses in all cell lines using the mean absolute error 

(MAE) of the log2 curve fold change as a similarity metric, grouped the data by cell line, not by 

drug (Fig. 3G; fig. S7). This suggests that the different KRAS drugs act by essentially the same 

MoA in a given cell line but that the molecular composition and wiring of the KRAS pathway is 

substantially different between cell lines. 

 

Identification of a common KRAS core signaling signature connecting multiple cellular 

processes 

The very high target binding and pathway engagement specificity and selectivity of KRAS 

inhibitors observed above suggested that the 2,354 phosphopeptides showing short-term (2-hour) 

drug-induced abundance changes detected in the three cell lines (Fig. 4A) may be members of a 

wider oncogenic KRAS signaling network. Despite substantial response diversity between the 

three cell lines, a set of 241 phosphopeptides showed consistent abundance changes in all cell 

lines regardless of cancer entity, G12C or G12D mutant state, or hetero- or homozygosity of the 

KRAS locus (Fig. 4A; fig. S8A; data file S8). In the following, we refer to these as the KRAS 

core signaling signature. These 241 phosphopeptides comprise 252 phosphosites on 196 proteins 

(canonical sequences of protein coding genes, fig. S8B). We compared our data at the 

phosphosite level to three molecular resources: i) the ERK compendium (8), ii) a study by 

Klomp et al. focused on the ERK-dependent phosphoproteome (11), and iii) all regulatory 

phosphosites annotated in PhosphoSitePlus (phosphosite.org). The first two contain perturbation 

data using cell lines with mutations in KRAS or other oncogenes such as BRAF as well as cells 

stimulated with epidermal growth factor (EGF) to activate MAPK signaling. The latter resource 

is entirely biology-agnostic. Despite a large overlap of our data to these resources in terms of 

phosphoproteome coverage (71% overlap with the ERK compendium, 87% with the ERK-

dependent phosphoproteome and 22% with PhosphoSitePlus; fig. S8C), the number of shared 

phosphosites with drug-induced abundance changes was relatively low (Fig. 4B). This 

discrepancy may be attributed to several factors. Other resources identified abundance changes 

on the basis of p-values from replicate experiments of high single-concentration drug treatments, 
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whereas we employed concentration-response statistics. Furthermore, these resources did not all 

use the same cell lines, and the drug treatment times were not identical. Still, 67% of the KRAS 

core signaling signature defined above was also contained in the ERK compendium and the 

ERK-regulated phosphoproteome published by Klomp et al., underscoring its robustness (Fig. 

4B).  

Kinase motif enrichment analysis (25, 26) (phosphosite.org) of the KRAS core signaling 

signature highlighted an over-representation of motifs that can be phosphorylated by ERK 

(MAPK1/3; SP/TP motif) and several members of the RSK, MNK and S6K families (basophilic 

motif) (Fig. 4C; data file S7). This is supported by the observation that several phosphosites 

known to regulate the activity of these kinases displayed reduced abundance upon treatment with 

KRAS-targeting drugs (according to phosphosite.org; Fig. 3B; fig. S9A)(27). The very same 

kinases also dominated when performing kinase motif enrichment analysis using all drug-

affected phosphopeptides (fig. S9B; data file S7). About 51% (124/241) of the peptides in the 

KRAS signaling signature were phosphorylated at a SP/TP site, and several of these are 

annotated substrates of MAPK1 and MAPK3, including the transcription factor ERF (Thr562; fig. 

S9C)(28). 

Given the pronounced inhibition of MAPK1/3 activation loop phosphorylation by KRAS 

inhibitors, we hypothesized that many of the hitherto uncharacterized SP/TP motif–containing 

phosphorylation sites may be previously unidentified MAPK1/3 substrates. To test this, we 

performed in vitro kinase assays using recombinant MAPK1 and synthetic peptide substrates and 

monitored phosphorylation by a time-resolved parallel reaction monitoring mass spectrometry 

(PRM-MS) assay (data file S9). Nine of the 19 tested peptides showed increased phosphorylation 

over time (Fig. 4D). Among the underlying proteins were the transcriptional regulator SAMD4B 

(Ser592); the nucleotide exchange factor TRIO (Ser2477), which controls the activities of the 

GTPases RHO and RAC1; the RNA-editing enzyme ADAR (Thr601); and USP10 (Thr74), a 

ubiquitin hydrolase that removes ubiquitin from target proteins such as the tumor-suppressive 

transcription factor p53 and the ion channel CFTR (29, 30). In addition, for some of the 

MAPK1/3 substrates [the cytoskeleton-associating SPECC1L Ser868, the transcriptional repressor 

TSC22D4 Ser279, ADAR Thr601, and the lysine demethylase PHF2 Ser625], several studies report 

dependency on the activation state of the MAPK pathway (10, 31, 32), and our kinase assays 

provided direct evidence that MAPK1/3 can be the phosphorylating kinase. 

STRING protein interaction analysis of the 196 proteins underlying the KRAS core signaling 

signature revealed that about half of the proteins were not connected to each other or to KRAS 

(fig. S9D). However, our data strongly implied that they are indeed connected to the KRAS 

network. Many of these phosphoproteins have diverse or poorly characterized functions, 

suggesting that KRAS signaling extends far beyond well-researched biology and that such new 

avenues may be discovered on the basis of the data provided here. Functional enrichment 

analysis of the same proteins highlighted seven categories comprised of 106 proteins (Fig. 4E; 

data file S7). Expectedly, these included members of the MAPK pathway such as MAPK1/3 (p-

Tyr187/p-Tyr204), the phosphatase DUSP16 (p-Ser501), and the kinase ARAF (p-Thr181) as well as 

the receptor tyrosine kinases (RTKs) EGFR (p-Thr693), ERBB2 (p-Thr701, p-Ser1054), and EPHA2 

(p-Ser901). The latter represent described feedback signaling that is associated with resistance to 

KRAS inhibition (33–35). Important additional functional links could be established to Rho 

signaling, chromatin binding, mRNA binding, cadherin binding, mitotic cell cycle, and 

localization to the nucleolus. Hence, the short-term drug-induced phosphoproteome changes 

illuminated phenotypic drug responses long before they manifest visually under a microscope. 
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This was exemplified by changes in cell shape in response to sotorasib or MRTX1133 in 

MiaPaCa-2 or ASPC1 cells after 72 hours (Fig. 4F; fig. S10A,B; data file S2) which aligned with 

the observed abundance changes of phosphosites on several proteins involved in Rho signaling 

(36). Functional enrichment analysis also uncovered a link to the nucleolus, including altered 

amounts of phosphorylation of the cell proliferation marker MKI67 (p-Ser1533) and its presumed 

interaction partner CCDC86 (p-Ser217)(37). Immuno-fluorescence microscopy data showed that 

KRAS inhibition led to the loss of MKI67 signal, indicating loss of nucleolar integrity, in 

MiaPaCa-2 and NCI-H23 cells (fig. S10C-E; data file S2). To investigate if CCDC86 Ser217 

phosphorylation may be functionally important, we expressed GFP-tagged CCDC86 wild type 

(WT), S217A and S217D in NCI-H23 cells. Whereas cells expressing the WT or S217A forms 

of the protein showed no detectable phenotypic differences, expression of the phosphomimetic 

CCDC86 S217D disrupted nucleolar integrity in 25% of cells (Fig. 4G; fig. S10F,G; data file 

S2). The mechanism by which this occurs is currently not clear, but this very strong phenotype 

suggested that the phosphorylation status of CCDC86 Ser217 is of critical importance for 

nucleolar integrity and that this phosphosite is responsive to KRAS drugs. 

 

Mutant KRAS activity dominates the signaling output of MEK and ERK 

Several studies show that mutant KRAS still cycles between a GDP-bound (inactive) and a GTP-

bound (active) state albeit at a much lower and mutation-specific rate than does WT KRAS (38–

41). Such residual cycling is in line with the MoA of inhibitors that bind to the GDP-bound state 

of KRAS, such as adagrasib, which, over time, shifts the equilibrium from the GTP-bound to the 

GDP-bound state and thereby inhibits KRAS signaling. Given the parallel presence of HRAS 

and NRAS in cells and the evidence that KRAS can engage effectors beyond the RAF family 

(42, 43), this provokes three important questions. First, to what extent does mutant KRAS lead to 

decoupling of the MAPK pathway from upstream signals provided by, for instance, receptor 

tyrosine kinases? Second, to what extent is inhibition of mutant KRAS alone sufficient for 

abrogating downstream MAPK signaling? Third, are there differences in the phosphoproteomes 

directly perturbed by KRAS or downstream MEK or ERK inhibition? To address these 

questions, we expanded decryptM profiling to inhibitors that act on targets upstream [SOS1, 

BI3406 (SOS1i); SHP2, RMC4630 (SHP2i)] or downstream [MEK, trametinib (MEKi); ERK, 

temuterkib (ERKi)] of KRAS (data file S1, data file S4). No selective inhibitors for HRAS or 

NRAS have yet been reported, which would have allowed probing their contributions directly. 

Answering the questions above requires chemical probes that are highly selective for their 

targets. This was already established for the KRAS inhibitors. The decryptM profiles of 

RMC4630, BI3406, temuterkib, and trametinib showed bimodal pEC50 distributions implying 

off-target and/or off-pathway effects (fig. S11). The ability of decryptM profiling to recognize 

and account for such off-target and/or off-pathway effects highlighted the superiority of the 

concentration-response approach over traditional experiments using a fixed—and often 

arbitrarily high—drug concentration (fig. S12A-C, S13A). Kinase motif enrichment suggested, 

and Kinobead selectivity profiling confirmed, the kinases AAK1 (apparent dissociation constant, 

Kd
app 11 nM) and GAK (Kd

app 155 nM) as off-targets of temuterkib (fig. S13A-C; data file S7, 

data file S10). For trametinib, the kinase MKK6 (also called MAP2K6) has been reported as an 

off-target, but this protein did not score in published Kinobead assays, leaving the underlying 

cause of the second, low-potency distribution in NCI-H23 cells unresolved at this time (1, 44). 

To ensure high quality of the subsequent analysis, phosphopeptides showing drug-induced 
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abundance changes were filtered such that they fall within the pEC50 distribution of KRAS core 

signaling signature members (Fig. 5A; fig. S12A-C).  

Clustering the data of drug-perturbed phosphopeptides of all decryptM experiments separated the 

profiles of upstream inhibitors from those of KRAS and the downstream MEK and ERK 

inhibitors (Fig. 5B; fig. S14-S19). Unlike the KRAS and MEK inhibitors, SHP2 inhibition and, 

particularly SOS1 inhibition, did not lead to full abrogation of downstream MAPK3 (p-Tyr204) 

activity in MiaPaCa-2 cells (Fig. 5C; fig. S20A). Particularly SOS1 inhibition showed only weak 

pathway engagement illustrated by the abundance changes of only few phosphopeptides in 

MiaPaCa-2 and none in ASPC1 cells (Fig. 5A). Consequently, cellular assays also showed that 

neither SHP2 nor SOS1 inhibition had a substantial effect on cellular growth (fig. S3; data file 

S2). Prolonged treatment with SHP2 and SOS1 inhibitors did not lead to increased MAPK 

pathway engagement either, excluding the possibility of kinetic drug effects (fig. S6B). Still, the 

observed abundance changes of several phosphopeptides from the KRAS core signature in 

MiaPaCa-2 (SOS1i and SHP2i) and ASPC1 (SHP2i) cells - albeit with weaker effect sizes 

compared to KRAS inhibition - indicated that the decoupling of KRAS downstream signaling 

from upstream signals was incomplete (fig. S11, boxplots; fig. S14-S19). This is exemplified by 

the concentration-dependent reduction of ADAR Thr601 phosphorylation, a member of the KRAS 

core signaling signature, in MiaPaCa-2 and ASPC1 cells (fig S20B). SOS1 is the best-described 

guanine nucleotide exchange factor (GEF) for KRAS. Yet, the stronger phosphoproteomic 

response to SHP2 inhibition compared to SOS1 inhibition implied the presence of one or several 

alternative functional GEFs that are controlled by SHP2 activity and channel signals into the 

RAS-MEK-ERK axis (45, 46). Several such candidates were expressed in the two cell lines (fig. 

S20C) but it is currently not clear whether any of these may play a role in this context. 

In contrast to SOS1 and SHP2 inhibition, KRAS or MEK inhibition elicited qualitatively and 

quantitatively highly consistent phosphoproteome responses in MiaPaCa-2, NCI-H23, and 

ASPC1 cells (90.4%, 87.4%, and 91.8%, respectively; Fig. 5C,D, fig. S14-S19, fig S20D). 

Similarly strong consistencies were observed when comparing KRAS and ERK inhibition 

(81.8% in MiaPaCa-2 and 89.9% in ASPC1; fig. S14-S19). In line with this, we observed 

comparable effects on cell viability among KRAS, MEK and ERK inhibitiors (fig. S3; data file 

S2). When focusing on phosphorylation events that clearly responded to KRAS inhibition but not 

to MEK or ERK inhibition, we observed that there were not many (77 phosphopeptides) and that 

fewer still (4 phosphopeptides) were consistently regulated across cell lines (Fig. S20D,E). None 

of these phosphopeptides provided for a clear connection to other reported KRAS effector 

pathways such as those mediated by phospholipase Cε (PLCε), phosphoinositide 3-kinase 

(PI3K), or the GTPase Ral, making it appear unlikely that these pathways were activated by 

KRAS in the mutant cell lines analyzed here.  

Given that PI3K is one of the most studied direct effectors of KRAS, we examined 

phosphorylation regulation on members of the PI3K-AKT-mechanistic target of rapamycin 

(mTOR) pathway in more detail (Fig. S21A,B). Several phosphopeptides from proteins 

annotated to be members of PI3K-AKT-mTOR signaling (KEGG entries hsa04150 and 

hsa04151) were indeed affected by KRAS but, importantly, also by MEK and ERK inhibition. 

At the same time, key phosphorylation sites that are direct substrates of AKT (AKT1S1 Thr246; 

TSC2 Ser939) or mTOR (AKT1S1 Ser183) remained unaffected (fig S21A,C) (47, 48). This 

implied that the overall activity of these kinases, as well as that of PI3K, was not substantially 

altered by KRAS, MEK, or ERK inhibition in the mutant KRAS cell lines studied here. To 

substantiate this interpretation, we compared our data to independently published decryptM data 
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using the PI3K inhibitor dactolisib (5), in which a very clear inhibition of these key phosphosites 

was indeed observed (fig. S21C). 

In light of the above, the data supports the view that RAF is the major effector of mutant KRAS 

activity, that KRAS activity dominates the signaling output of the downstream kinases MEK and 

ERK, and that the cellular fate following KRAS inhibition is largely independent of the modality 

by which KRAS pathway inhibition is achieved in the cell lines tested.  

 

Cell line–specific wiring of mutant KRAS signaling 

The remarkable consistency of phosphoproteome responses between KRAS vs. MEK and KRAS 

vs. ERK inhibition not only applied to the KRAS core signaling signature but also included 

many more phosphopeptides within a particular cell line. As a result, the mutant KRAS-

controlled signaling network may extend beyond 800 potential members in MiaPaCa-2 cells, 700 

in NCI-H23 cells, and 1,900 in ASPC1 cells (fig. S22A; data file S8). At the same time, 

comparing decryptM profiles between cell lines showed that the response of the same 

phosphopeptide to inhibition of the same target protein can be very different. This was evident 

from comparing the responses induced by the same drug but in different cell lines. For instance, 

consistency for KRAS or MEK inhibition in ASPC1 vs. MiaPaCa-2 cells (51.6% and 53.1% 

respectively) was much lower than for KRAS vs. MEK inhibition in MiaPaCa-2 and ASPC1 

cells (> 90%; Fig. 5B,D; fig. S14-S19). ASPC1 cells exhibited a particularly distinct response to 

KRAS, MEK, or ERK inhibition, and many phosphopeptides showed consistent drug-induced 

abundance changes for all three drugs. At the same time, several drug-regulated phosphopeptides 

were consistently observed in one cell line but were never even detected in any other cell line, 

indicating that these phosphorylation sites might only be present in specific cell lines (fig. S22B). 

Conversely, we observed abundance changes of many phosphopeptides in ASPC1 cells but not 

in any other cell line despite the fact that they were detected (Fig. 5E).  

Functional enrichment analysis of the proteins underlying the drug-regulated phosphopeptides 

performed separately for each cell line treated with KRAS inhibitors highlighted biological 

functions already found for the KRAS core signaling signature (data file S7). For instance, Rho 

signaling was independently enriched in the data of all three cell lines, but a particularly large 

number of phosphopeptides on related proteins were identified in ASPC1 cells, suggesting a 

stronger connection between KRAS signaling and actin cytoskeleton dynamics in ASPC1 

compared to the other cell lines (fig. S22C). In addition, the top 15 kinase motifs were enriched 

similarly in each cell line even though the underlying phosphopeptides were not necessarily the 

same (mainly MAPK and RPS6KA/B motifs) (fig. S22D, data file S7). In line with this, and 

despite substantial differences in the absolute number of phosphopeptides showing abundance 

changes, the proportion of proline-directed motifs (SP/TP; associated with MAPKs) was similar 

between the cell lines (Fig. 5A). In light of this data, we propose that although the same 

underlying molecular mechanisms (inhibition of the RAS-MEK-ERK axis) drive the observed 

phosphoproteomic responses in each cell line, the specific architecture of the KRAS signaling 

network varies depending on the presence, abundance and activity of cell line–specific factors 

such as kinases, phosphatases, guanine nucleotide exchange factors, GTPase-activating proteins, 

and/or transcription factors (Fig. 5F). 
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Two-dimensional decryptM distinguishes immediate KRAS pathway inhibition from 

adaptive cellular responses 

KRAS inhibition was cytostatic in all cell lines tested but did not induce cell death (fig. S3; fig. 

S10A-E). To shed light on the steps leading to this cellular adaptation, we added a kinetic 

component to decryptM profiling of sotorasib in MiaPaCa-2 cells (concentration-dependent 

phosphoproteome profiling at 1, 2, 8, and 16 hours). Between 271 and 401 phosphopeptides 

showed concentration-dependent changes during the first 8 hours, increasing to 1,075 after 16 

hours (fig. S23A; data file S1; data file S4). We classified the 550 phosphopeptides that 

exhibited concentration-dependent responses at one or more time points and that were detected at 

all four time points, into four categories (Fig. 6A; data file S4; see Materials and Methods for 

details): The constant group (233 phosphopeptides) showed significant abundance changes at 

three or all four time points but always at 16 hours (for example, the activity-regulating p-Ser380 

site on RPS6KA1), thus representing drivers of sustained drug response. The early group (51 

phosphopeptides) responded at 1 hour, and/or 2 hours, and/or 8 hours but not at 16 hours, 

possibly representing initiators of cellular adaptation, exemplified by BRD3 p-Ser281. For the 

sake of clarity, we combined these two groups to describe the immediate response of cells that 

was a direct consequence of KRAS inhibition. The intermediate group comprised 68 

phosphopeptides that showed responses at 8 hours and 16 hours only, exemplified by the E3 

ubiquitin ligase RNF168 p-Thr208. The late group (198 phosphopeptides) showed response at 16 

hours only and included the cell cycle regulator WEE1 (p-Thr190). The two latter categories most 

likely represented the result of the adaptive response and were, therefore, combined. 

Furthermore, t-SNE analysis separated the immediate from the adaptive responses (Fig. 6B), and 

practically all phosphopeptides of the KRAS core signaling signature belonged to the immediate 

response group (Fig. 6C). This clear temporal distinction of drug-induced phosphopeptide 

abundance changes indicated that not all were the direct consequence of KRAS inhibition.  

As one might expect, kinase motif enrichment analysis for the immediate response showed 

overrepresentation of ERK as well as members of the RSK family motifs (Fig. 6D; data file S7). 

This was consistent with the full inhibition of activation loop phosphorylation of MAPK3 (p-

Tyr204) at all time points (Fig. 6E). In contrast, the adaptive response enriched for motifs 

phosphorylated by the cell cycle–regulating kinases CDK1–CDK6 (Fig. 6D; data file S7). 

MAPKs and CDKs both phosphorylate SP/TP sites, and we observed a shift in the proportion of 

SP/TP-containing phosphopeptides with drug-induced abundance changes, rising from 48% at 1 

hour to 55% at 2 hours and 8 hours and reaching 75% at 16 hours of treatment (fig. S23A). In 

parallel, we observed a decrease in protein abundance of Cyclin A (CCNA2; Fig. 6E, data file 

S5) and CDC20 (E3 ligase relevant for M-phase progression; Fig. 6F) as well increased protein 

abundance of the cell cycle inhibitor CDKN1B (p27; relevant for G0/G1, fig. S23B). This 

indicated that cells were exiting from the cell cycle in response to KRAS inhibition. 

Fluorescence-activated cell sorting (FACS) analysis of drug-treated MiaPaCa-2 (Fig. 6G) and 

NCI-H23 (fig. S23C) cells confirmed a decrease of cells in S- and G2-phase following 16 hours 

of drug treatment and a concomitant increase of cells in G1-phase (data file S2). Therefore, we 

conclude that many of the phosphorylation changes observed in the adaptive response were not 

direct consequences of RAS–MEK–ERK pathway inhibition but rather reflected a population 

shift caused by cell cycle arrest. The arrest is caused by reduced CDK4/6 activity, mediated, for 

example, by the upregulation of CDKN1B, and leads to a depletion of cells in the S–M phases 

(where CDK1–CDK3 are active), resulting in decreased substrate phosphorylation. Collectively, 

this also suggests that the phosphopeptides of the constant group are the functionally most 
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important triggers of the adaptive cellular response, which manifests as cells eventually exiting 

the cell cycle and entering a quiescent state, thus evading cell death. 

 

Posttranslational protein modifications are the primary regulators of cellular adaptation to 

KRAS inhibition 

Cells changing from a proliferative to a resting state need to attenuate many cellular processes in 

one concerted action, and many of these could be traced in the 2D-decryptM data. Only 

relatively few significant changes were observed at the protein level (22 after 8 hours; 80 after 16 

hours, fig. S23D; data file S5) of the ~7,000 proteins monitored in the experiment even though 

the majority of cells had already arrested (Fig. 6G). Proteins that decreased in abundance 

included ~10 transcription factors (including MYC, JUN, FOSL1, and SOX9), implying 

reduction of target gene transcription as described previously (49), but without numerically large 

changes in protein amounts of their target genes (fig S23B). Several cell cycle–regulating 

proteins [including CCNA2 (Cyclin A2), CCNB1 (CyclinB1), CDC20, CDCA5, and UHRF1], 

and negative regulators of the RTK-MAPK signaling axis (such as SPRY1/2/4 and ERRFI1) 

were also reduced. Among the few proteins that showed a clear concentration-dependent 

increase in protein abundance were CDKN1B (p27), a CDK inhibitor, and AGO1, a key player 

in posttranscriptional gene silencing, which again highlighted the involvement of cell cycle arrest 

and a decrease in transcription.   

Our data suggests that cellular adaptation to KRAS inhibition is primarily mediated by PTMs 

rather than by transcriptional regulation of protein abundance. For example, dozens of 

phosphopeptides from chromatin-modifying enzymes (Reactome HSA-3247509) and DNA 

repair proteins (Reactome HSA-73894) showed abundance changes in both the immediate and 

adaptive responses (fig. S23E, data file S7). The former included lysine acetyl transferases, 

methyltransferases, and demethylases – enzymes that control the state of chromatin activity. 

Similarly, loss of phosphorylation on proteins important for DNA repair (such as BRCA2 p-

Ser93, ATR p-Ser435 or TP53 p-Ser315) likely reflected reduced requirements for DNA repair 

activity in nondividing cells. Many—and often large—changes in PTMs were also detected at all 

the steps that control proteostasis. Reduction in transcriptional activity leads to reduction of 

mRNA processing activity, and we observed phosphorylation abundance changes on several 

proteins associated with this process, such as NCBP1 (p-Thr21) and THOC5 (p-Thr328; Fig. 4E). 

Similarly, changes in phosphorylation were detected on proteins important for translation, such 

as EIF4G1 p-Ser1231 (Fig. 4E).  

Given the critical role of the ubiquitin system for cellular proteostasis, we investigated the 

ubiquitylation status of the proteome in response to 6 and 24 hours of KRAS inhibition by 

sotorasib in MiaPaCa-2 cells. This analysis revealed ~800 ubiquitylated peptides (of 13,000 

monitored; fig. S24A-C; data file S6) with dynamic abundance changes mostly independent of 

their protein levels (Fig. 6H,I). Moreover, we observed a concentration-dependent increase in 

ubiquitylation on UBA1 (for example, ubi-Lys802, ubi-Lys528, and ubi-Lys657), one of only two 

ubiquitin-activating (E1) enzymes found in humans (Fig. 6J). The earliest changes occurred in 

the catalytically active adenylation domain (AAD) as well as the catalytically active SCCH 

domain responsible for thioester bond formation, and both are critical for ubiquitin activation 

(50). Both ubi-Lys528 and ubi-Lys635 are located inside the active sites of UBA1, and the latter is 

in close physical proximity to the critical cysteine residue required for enzymatic activity. It is, 

therefore, very tempting to speculate that this ubiquitylation leads to attenuation of enzymatic 
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activity. Similarly, increased ubiquitylation was also observed near the catalytic residues of 

several E2 enzymes as well as residues that mediate interactions with E1 and E3 enzymes (for 

example UBE2N, UBE2S, and UBE2L3; fig. S24D,E). Ubiquitylation near the catalytic residues 

has been reported to inactivate E2 enzyme activity in UBE2N and UBE2S (51, 52). 

 

Discussion 

KRAS has long been considered a critical driver of many cancers, and the approval of sotorasib 

and adagrasib in 2021 and 2022, respectively, has expanded the therapeutic options for patients 

with KRAS G12C-mutated, locally advanced or metastatic non-small cell lung cancer (NSCLC). 

Unfortunately, neither inhibition nor degradation of mutant KRAS (16) kills cancer cells, and 

clinical studies combining KRAS-targeting drugs with inhibitors targeting up- or downstream 

proteins (including EGFR, SHP2, SOS1, MEK, and ERK) have also not achieved tumor cell 

eradication (NCT04975256, NCT04185883 (53)). Instead, following an initial period of disease 

stabilization, tumor cells often adapt and resume proliferation (54, 55). This study aimed to shed 

new light on the molecular mechanisms leading to the initial antiproliferative effect by using the 

aforementioned inhibitors in multidimensional and fully concentration-resolved chemical 

proteomics experiments in three KRAS-mutant lung and pancreatic cancer cell lines.  

The first important outcome of this work is the confirmation that KRAS inhibitors are highly 

selective for their target, which allows for using them as chemical probes to study mutant KRAS-

dependent signaling. This, in turn, enabled discovering that mutant KRAS cancer cells possess a 

common KRAS core signaling signature that operates across all cell lines and includes many 

new phosphorylation sites and proteins not previously associated with KRAS signaling. The data 

also showed that this KRAS core signature is embedded in a cell line–specific KRAS network, 

members of which are not found in every cell line or do not respond in the same way to 

inhibitors. All data collected here were obtained from drug perturbations of only three G12C and 

G12D KRAS cell lines, but the presence of the KRAS core signaling signature could be 

confirmed in additional published phosphoproteome studies (8, 11). Unfortunately, there are no 

equivalent studies for other KRAS-mutated models (for example. KRAS G12V/R), which is why 

we cannot state to what extent the functional relevance of the KRAS core signaling signature 

may also apply in these cases. Because inhibitors targeting a broader range of KRAS mutations 

continue to emerge, it will become increasingly feasible to validate the presence and functional 

importance of the KRAS signaling signature across other common mutational contexts. 

A second noteworthy result is that mutant KRAS-mediated signaling does not appear to be fully 

decoupled from upstream signals, particularly from SHP2 and less so from SOS1. Although the 

degree of decoupling may vary across cell lines, the data collected for SHP2 and SOS1 inhibition 

implies that one or several other GEF proteins may be active in KRAS mutant cells. However, 

these residual upstream signals appear to have little impact on the overall output of the RAS-

MEK-ERK signaling axis because KRAS or downstream inhibitors alone completely abrogate 

signaling and, therefore, result in the same phenotypic effects.  

A third key finding is that the effects of KRAS and downstream inhibition were largely 

indistinguishable, suggesting that RAF acts as the primary effector of mutant KRAS in the cell 

lines studied. We found no evidence to support the direct involvement of mutant KRAS in the 

regulation of PI3K or other effector proteins. Abundance changes of certain phosphorylation 

sites on proteins that are annotated to be members of the PLCε or PI3K-AKT-mTOR pathways 

(NFATC3, CAMK1, RPS6KB1, GSK3B) were observed in response to KRAS, MEK, or ERK 
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inhibitors. This suggests either a feedback loop from ERK to PLCε or PI3K signaling 

components or a direct involvement of these proteins in the RAS-MEK-ERK axis. How MEK or 

ERK directly or indirectly accomplish this is currently not clear, but mining our data set may 

provide for valuable starting points for future work on this topic.  

A fourth and important result was obtained from the two-dimensional (time- and concentration-

dependent) decryptM experiments. The analysis enabled the separation of immediate RAS-

MEK-ERK signaling in response to pharmacological inhibition from the consequence of cell 

cycle arrest. This provides further clarifications to a study by Klomp et al. on the ERK-regulated 

phosphoproteome (11) that reports a “[…] highly dynamic response of the kinome to KRAS-

ERK inhibition […],” including changes in activity of several CDKs as a result of ERK 

inhibition. Our interpretation of the 2D decryptM data specifies that KRAS inhibition leads to 

inhibition of the G1/S checkpoint by way of losing CDK4/6 activity. The observed changes in 

the phosphoproteome at later time points are therefore merely a consequence of the depletion of 

cells in S and M phase and a concomitant increase of cells in G0/G1, rather than abrogation of 

CDK1-3 activity in direct response to KRAS inhibition. Such an interpretation would support a 

more general mechanism that explains why drug-treated cancer cells often show quiescent 

phenotypes when treated with signaling inhibitors (56–58). 

The last and related major outcome is the observation that the antiproliferative effect of KRAS 

inhibition is initiated by the regulation of PTMs, leading to immediate consequences for 

proteostasis, eventual exit of cells from the cell cycle, and a subsequent accumulation of 

quiescent cells. Such a PTM-controlled transition may not only allow cells to avoid the energy 

costs associated with substantial changes to protein abundance through transcriptional 

remodeling, but may also enable cancer cells to return rapidly to a proliferative state when 

conditions improve. Several of these observations warrant further work in the future. For 

instance, it would be interesting to find out which transcription factors control the expression of 

proteins in amounts essential for cell growth and proliferation. Another exciting future aspect 

relates to the finding that E1 and E2 enzymes of the ubiquitin system are themselves 

ubiquitinylated near residues critical for catalytic activity in response to KRAS inhibition or the 

consequential exit from the cell cycle. Such modifications would be expected to inactivate 

enzymatic activity as a result of one (or several) ubiquitin moieties sterically blocking the active 

sites. The stoichiometry of these ubiquitylation events in response to KRAS inhibition is not 

known at present, but the observed fold-change in the UBA1 SCCH domain (ubi-Lys635) was 

rather large (4-5-fold). Given that only two ubiquitin-activating E1 enzymes exist in humans, 

even small reductions in their enzymatic activity could have profound effects on the entire 

ubiquitin system of a cell and lead to rapid changes in proteostasis. There are reports in the 

literature on some of these ubiquitin sites that either interpret the ubiquitylation events to occur 

by ‘random’ E3 ligase activity or are the result of a controlled process to inhibit E1/E2 enzymatic 

activity (51, 59). Our data shows that these sites are dynamically regulated in a KRAS-targeting 

drug concentration–dependent fashion. This supports the view that attenuating the activity of E1 

and E2 enzymes by modulating their ubiquitylation status could be another and (feedback) 

controlled step in the concerted action of cells in their transition from a proliferative to a 

quiescent state.  

KRAS drug discovery is still in full swing, with numerous advanced molecules currently under 

development that target KRAS through diverse mechanisms. These include inhibitors that bind 

to the switch I/II regions in a mutation-specific manner but also pan-RAS inhibitors, molecular 

glues that form tri-complexes between KRAS-GTP and cyclophilin A to block effector 
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interactions, as well as KRAS degraders (17, 60, 61). It would be interesting to investigate how 

these molecules impact the phosphoproteomes of KRAS mutant cells. That said, and given the 

data in hand, we do not expect that the targetable KRAS nucleotide-bound state would make a 

strong difference to the immediate or adaptive response. This is because, in ASPC cells (G12D), 

the data obtained for MRTX1133 (dual KRAS on/off inhibitor) were highly similar to those 

obtained for MEK or ERK inhibition. Also, in the MiaPaCa-2 cells (G12C), effects of sotorasib, 

adagrasib, ARS-1620, and MRTX1257 (all KRAS off-inhibitors) were similar to MEK 

inhibition. In other words, MAPK pathway inhibition was effectively achieved by all these 

molecules. Hence, the cellular fate following KRAS inhibition appears to be rather independent 

of the exact modality of how KRAS inhibition is achieved. In line with this, recently reported 

KRAS degraders or KRAS (on) inhibitors also do not kill KRAS-mutant cells (61, 62). The 

above suggests that mutant KRAS inhibition or degradation may have to be combined with drugs 

that prevent escape mechanisms, such as exit from the cell cycle, in order to kill the cancer cell. 

Targeting WEE1, PLK1, or CHK1 may be promising in this regard (63). The molecular resource 

created by the current study, which is available online for mining in ProteomicsDB (20) and in 

the form of interactive dashboards, may help scientists to identify further such vulnerabilities for 

future therapeutic exploitation. 
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Materials and Methods  

 

If not specified otherwise, consumables were purchased from Sigma Aldrich, Sarstedt, Roth, 

Greiner, Marcherey-Nagel and Merck (table S1). For Proteomics sample workup and MS 

measurement only high purity grade consumables were utilized. A detailed list of other 

consumables and their respective vendors is provided in the Supplementary Materials under 

"Consumables List". 
 

Culture conditions 

MiaPaCa-2 and ASPC1 cells were cultured in DMEM/10% FBS. NCI-H23 cells were cultured in 

IMDM/10% FBS. Cells were maintained in a humidified incubator at 37°C with 5% CO2. Cell 

lines were routinely inspected for mycoplasma contamination using PCR. Cell line 

authentication was accomplished by single nucleotide polymorphism (SNP) profiling 

(Multiplexion, Heidelberg, Germany). 

 

Molecular biology and cloning 

GFP–CCDC86 wt (37) was used to generate the GFP–CCDC86 S217A or GFP–CCDC86 

S217D mutants, using the Q5® Site-Directed Mutagenesis Kit (New England Biolabs, Hitchin, 

UK) according to the manufacturer’s protocol. For transient expression of GFP–CCDC86 wt, 

GFP–CCDC86 S217A or GFP–CCDC86 S217D constructs, NCI-H23 cells were seeded on 

coverslips into 6-well plates, transfected with 2μg of DNA using Polyplus JetPrime® (PEQLAB) 

and treated with DMSO (0.1%) or Sotorasib (300nM) for 24 hours. 
 

Primers   

S217_A_FW 5’-GCGAAAAGGTgctTCATCCCAGG-3’ 

S217_A/D_RV 5’-TTCTTTGCCCCGAAGCCG-3’ 

S217_D_FW 5’-GCGAAAAGGTgatTCATCCCAGGCC-3’ 

 

Fluorescence-activated cell sorting (FACS) for cell cycle analysis 

For determination of cell cycle phase, DNA content was measured by flow cytometry. Cells were 

seeded in 6-well plate format and treated at ~40% confluence with the inhibitor Sotorasib at 300 

nM for 1, 2, 8, 16, 24 and 36 hours or 0.1% DMSO as vehicle control for 24 hours, harvested and 

fixed in ice-cold 80% ethanol at -20°C overnight. The samples were stained with the PI/RNase 

staining buffer (BD Pharmingen) according to manufacturer’s instructions and immediately 

measured by flow cytometry on a AccuriTM C6plus (Beckton Dickinson). The resulting data 

was analyzed using the Dean-Jett-Fox model of the cell cycle analysis platform provided by 

FlowJoTM v10.7.1 Software (BD Life Sciences). 

 

Cell proliferation assay 
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Phenotypic effects after drug treatment on cell proliferation was evaluated after 72 hours of 

treatment duration with the AlamarBlue metabolic assay (Thermo Fisher Scientific). Cells were 

seeded into a 96-well microtiter plate (NCI-H23: 5000 cells/well, MiaPaCa-2: 2500 cells/well, 

ASPC1: 5000 cells/well) in triplicates and incubated at 37°C and 5% CO2. After 24 hours, 

inhibitor dilutions (see data file S2) were added including a vehicle control (0.1% DMSO). After 

a 72 h treatment, AlamarBlue reagent (Thermo Fisher Scientific) was added in a final 

concentration of 10% to each well and incubated for 5 hours at 37°C. The fluorescence was 

quantified at λex = 544 nm and λem = 584 nm on the microplate reader FluoStar Omega (BMG 

Labtech) and values were corrected for a blank value (medium only). Corrected values were 

normalized by the DMSO control. Data was analyzed with CurveCurator (v.0.5.0) by averaging 

all replicates and applying a non-linear regression analysis (four-parameter log-logistic 

regression) (23). For curve fitting, alpha-value value was set to 0.05, fc-value was set to 0 and 

curve fold changes were calculated relative to the control condition in accordance with 

CurveCurator's recommended workflow for cell viability data (control_fold_change = true) and 

interpolation was set to true. All CurveCurator related parameters are available on Zenodo. 

 

Western blot analysis 

Cells were treated at 70-80% (1-8 hour treatment) or ~40% (> 8 hour treatment) confluence with 

one fixed drug concentration for different time points and the control (0.1% DMSO). Cells were 

washed with PBS twice and lysed in lysis buffer (0.8% Igepal, 50 mM Tris-HCl pH 7.5, 5% 

glycerol, 1.5 mM MgCl2, 150 mM NaCl, 1 mM Na3VO4, 25 mM NaF, 1 mM dithiothreitol (DTT) 

and supplemented with protease inhibitors (SigmaFast, Sigma) and phosphatase inhibitors 

(prepared in-house according to Phosphatase Inhibitor Cocktail 1, 2 and 3 from Sigma-Aldrich). 

Lysates were centrifuged at max. speed for 15 minutes at 4°C. Supernatants were collected and 

protein concentration was determined by Pierce Bradford assay (Thermo Fisher) according to the 

manufacturer’s protocol. Equal protein amounts per sample (25-50 μg) were mixed 1:4 with 

Sample buffer (4x NuPAGE LDS Sample Buffer (Invitrogen), 100 mM DTT) and resolved on a 

NuPAGE 4-12% Bis-Tris gel. Proteins were transferred on polyvinylidene difluoride (PVDF) 

membranes. Membranes were blocked for 60 min in blocking solution (1x TBS-T + 5% BSA) 

and subsequently incubated with primary antibodies over night at 4°C. Anti-β-Actin (Santa cruz) 

and Anti-Phospho-p44/42 MAPK (Cell signaling technology) were used in a 1:500 and 1:2000 

dilution as primary antibodies, respectively, following incubation with secondary antibody 

(IRDye® 680LT and 800CW, Licor) in a 1:10000 dilution for 2 hours at room temperature. 

Membranes were developed using an Odyssey imaging systems.   

 

Cell morphology analysis 

Bright light images were recorded using an IncuCyte S3 life cell imaging system (Essen 

Bioscience) at 37°C and 5% CO2. The images were processed by ilastik, a supervised machine 

learning image analysis tool kit, in order to assign and quantify different categories of cell 

morphologies (64).  

 



17 

 

Immunofluorescence microscopy 

Cells were fixed in 4% PFA and processed as previously described (65). Primary anti-Ki-67 was 

used in 1:100 dilution and secondary antibody was used in 1:500 dilution. Three-dimensional 

data sets were acquired using a wide-field microscope (DeltaVision) Cascade II:512 camera 

system (Photometrics) and Olympus UPlanSApo 100x/1.40na Oil Objective (Olympus). The 

data sets were deconvolved with the DeltaVision (SoftWoRx) software. Three-dimensional data 

sets were converted to maximum projection and exported as TIFF files. 

 

Molecular docking simulation 

Molecular docking simulation was conducted to obtain an overview about the interaction profile 

and possible binding mode of Adagrasib with the Elongation factor 1-alpha 2 (EEF1A2) using 

the information obtained from reactive cysteine profiling. For this purpose, the x-Ray crystal 

structure of the protein (PDB code: 8B6Z (66)) was retrieved from protein data bank 

(www.RCSB.org). The SMILES string for the compound adagrasib was retrieved from Pubchem 

and converted to explicit hydrogen string using RDkit in python 3.9. A 3D conformation of the 

structure was thereafter generated by the ETKDG method of Riniker and Landrum as 

implemented in Rdkit package using torsion angle preferences from the Cambridge Structural 

Database (CSD) (67). Meeko v.0.5 was used to assign atom types, checking protonation type, 

merging non-polar bonds and define rotatable bonds. The PDB structure of the protein was 

converted to PDBQT after removing non-protein elements and calculation of partial charges 

using AutoDockTools1.5.6. Based on the reactive cysteine profiling data Docking grid was 

centered at x=216.593, y=161.738, z=289.044 corresponding to ATOM S in the side chain of 

EEF1A2 Cys31 and the mentioned side chain was considered flexible during simulation. Docking 

was performed using the vina 1.2.5 python package with exhaustiveness set to 100 and number 

of generated poses was set to 100. After the docking run the distances between the enone moiety 

of adagrasib at different generated poses of the ligands in protein-ligand complexes with 

calculated affinity ≤ -6 kcal/mol (top 10% quantile range) were calculated. The structure in 

Figure 2D (after analyzing the obtained conformations of the top generated poses depicts a 

representative conformation of adagrasib and a probable binding mode for this structure. 

 

Treatment and lysis for proteomics experiments 

Cells were seeded in 10 cm dishes for phospho- and total proteome as well as ubiquitinome 

experiments and in 6-well format for reactive cysteine profiling and treated with drug dilutions 

(all drugs dissolved in DMSO, final concentration of DMSO was 0.1%) including a control 

(0.1% DMSO) (see data file S1 for detailed treatment conditions). Drug concentrations were 

chosen based on expected effect known from cell viability assays. . Medium (supplemented with 

10% FBS) was changed prior to treatment. For phosphoproteomic, ubiquitinome and total 

protein analysis, cells were washed twice with PBS and subsequently lysed in 2% SDS lysis 

buffer (2% SDS, 10 mM Tris-HCl ph 7.5) and scraped off the plates. To hydrolyze the DNA and 

thereby reduce viscosity, the sample was boiled at 95°C for 10 min and trifluoroacetic acid 

(TFA) was added to a final concentration of 2%, incubated for 1-2 min at 95°C and subsequently 
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quenched with N-methylmorpholin (final concentration of 4%) to obtain a pH of 7.5-8. Samples 

were diluted 1:1 with lysis buffer. Protein concentration in cell lysate was determined using the 

Pierce™ BCA Protein Assay Kit (ThermoScientific) according to the manufacturer’s protocol. 

For reactive cysteine profiling, treated cells were lysed (0.4% IGEPAL CA-630 in PBS with 

MgCl2/CaCl2, protease inhibitors (SigmaFast, Sigma) and 1x phosphatase inhibitors (prepared 

in-house according to Phosphatase Inhibitor Cocktail 1, 2 and 3 from Sigma-Aldrich)) on ice for 

15 min and protein concentration was measured using Pierce™ Coomassie Plus. 

(ThermoScientific) according to the manufacturer’s protocol. 

 

Sample preparation for phosphoproteome and total protein analysis 

Protein lysate was processed using SP3 sample workup. The beads suspension was prepared by 

mixing magnetic Sera-Mag-A (c = 50 mg/ml, Cytiva) and Sera-Mag-B (c = 50 mg/ml, Cytiva) 

beads in a ratio of 1:1, immobilized on a magnet and the supernatant was removed. Beads were 

washed twice with ddH2O and then resuspended in ddH2O in the original volume. A total of 200 

µg per sample was mixed 1:7.5 (protein/beads weight) with the beads suspension and incubated 

for 10 min 1000 rpm RT. Proteins were precipitated by adding 100% ethanol to a final 

concentration of 70% and shaking for 10 min at 1250 rpm. The supernatant was removed on a 

magnet and beads were washed 3 times with 80% ethanol. Beads were washed with 100% ACN 

to remove residual ethanol. Proteins were reduced and alkylated in 100 μl Reduction and 

Alkylation buffer (100 mM EPPS/NaOH, pH 8.5, 55 mM CAA, 10 mM TCEP) for 1 h at 37°C 

and 1200 rpm. Proteins were digested o/n at 37°C and 1000 rpm by adding Trypsin 1:50 

(trypsin/substrate weight) to each sample. Beads were immobilized on a magnet and supernatant 

containing the protein digest was collected, acidified with 1% TFA. The digest was desalted 

using HLB desalting plates (10 mg N-Vinylpyrrolidon-Divinylbenzol porous particles 30 μm, 

Macherey Nagel). Plates were equilibrated by 1000 μl solvent A (0.1% TFA, 1 min, 250 rpm). 

The digest was slowly loaded by gravity. Samples were washed with 1000 μl solvent A, peptides 

were eluted by gravity in 200 μl Solvent B (0.1% TFA, 70% ACN). Residual volume was 

collected via 2 min centrifugation at 200 rpm and a subsequent centrifugation step at 1000 rpm 

for 1 min. Peptides were freeze dried and stored at -20°C until further use. Desalted peptides 

were labelled with tandem mass tags 11 (TMT11)-plex (Thermo Scientific) as previously 

described (68) with small modifications. In brief, dried and cleaned peptides were reconstituted 

in 20 μl of 100 mM EPPS*NaOH (pH 8.5) buffer. 0.5 mg of TMT-11plex reagent was 

reconstituted in 16 µl water-free ACN to a working concentration of ~30 µg/µl. 5 μl of this TMT 

reagent solution was transferred to the peptides. The reaction was incubated at 25°C and 400 rpm 

for one hour, followed by quenching with 5 μl of 1.5% hydroxylamine. The TMT channels were 

then pooled together and acidified with formic acid (FA) to a final concentration of 1%. The 

reaction wells were washed with 25 μl washing solution (10% FA in 20% ACN) and added to 

the TMT pool. The TMT pools were dried down in the speed-vac and stored at -20°C. The 

peptide pool was reconstituted in 500 μl 0.1 % FA and desalted using C18 Sep-PAK cartridges 

(Waters Corp.; wash solvent: 0.1% FA; elution solvent: 0.1% FA in 50% ACN) according to the 

manufacturer’s protocol following fractionation into 96 fractions using a Vanquish HPLC system 

(Thermo Fisher) equipped with a Waters XBridge BEH130 C18 3.5 μm 4.6 x 250 mm column 

(Solvent A: 25 mM ammonium bicarbonate (pH = 8.5), solvent B: 100 % H2O, solvent C was 

100 % ACN) using a linear gradient from 7% to 45% ACN in the constant presence of 2.5 mM 

ammonium bicarbonate. Sample was pooled to 48 fractions, acidified with formic acid to a final 
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concentration of 0.1%, and 10% of each fraction was collected and freeze dried for total 

proteome measurement. Remaining fractions were freeze dried and further used for enrichment 

of phosphorylated peptides via metal ion affinity chromatography (IMAC) on a AssayMAP® 

Fe(III)-NTA cartridges (Agilent) with the Bravo Agilent pipetting system following the 

Phosphopeptide Enrichment Protocol, included in the Agilent AssayMAP® Bravo® Protein 

Sample Prep Workbench v2.0 software suite. Briefly, the dried 48 TMT peptide fractions were 

reconstituted in 0.1% TFA 80% ACN and combined into 12 fractions (final volume of 200 μl per 

fraction). The AssayMAP® Fe(III)-NTA cartridges were equilibrated with 150 μl 0.1% TFA in 

80% ACN. The TMT-pool peptide mix was loaded on the cartridges and the flow through was 

collected. After washing with 0.1% TFA in 80% ACN phosphorylated peptides were eluted with 

60 μl of 1% ammonium hydroxide NH4OH. The eluates were acidified up to 0.5% FA, dried 

down in the speed-vac, and stored at -20°C for MS analysis of the phosphoproteome. 

 

Sample preparation for reactive cysteine profiling 

Treated samples were lysed (0.4% IGEPAL CA-630 in PBS and Halt™ Protease Inhibitor 

Cocktail (Thermo Scientific) and processed as previously described, with slight modfications 

(22). Extracted proteins were incubated with 0.5 mM desthiobiotin iodoacetamide (DBIA) for 1 

hour at room temperature. The reaction was quenched by adding 10 mM DTT for 30 min at room 

temperature and free cysteine residues were subsequently alkylated using 55 mM CAA for 30 

min at room temperature. Protein amount was determined by Bradford Assay (Pierce™ 

Coomassie, Thermo Scientific) and from each condition 150 µg were further used for trypsin S-

TRAP™ digestion (Protifi, USA). The overnight digestion was conducted according to the 

manufacturer´s protocol with a trypsin(Promega):protein ratio of 1:50 (trypsin/substrate weight). 

Resulting peptides were dried down and reconstituted in HEPES buffer (50 mM, pH 8.5). TMT 

(18-plex) labeling was performed as published before (68) using a 1:1 ratio of peptides and TMT 

reagent (wt:wt; Thermo Scientific). After TMT labeling, samples were pooled and desalted using 

SepPak column with the manufacturer´s protocol (Waters Corp.). Biotinylated sample were 

enriched using Streptavidin cartridges on a Bravo AssayMAP (both Agilent Technologies). In 

brief, cartridges were primed using 1% FA followed by an equilibration step using PBS. Samples 

were reconstituted in PBS and loaded onto the cartridges. After three washing cycles with water, 

bound peptides were eluted using 50% ACN and 0.1% TFA in water and further dried down. The 

enriched peptides were desalted and fractionated using StageTips (69). In brief, acidified samples 

were loaded onto StageTips (5 disks, Empore C18, Sigma), washed with 0.1% FA, and eluted 

into 6 fractions with an increasing concentration of ACN in 25 mM ammonium formiate. 

Fractions were dried down at stored at -20°C until acquisition on the mass spectrometer.  

 

Sample preparation for ubiquitinome profiling 

Lysate was processed with SP3 sample workup as described above using a 1:1 mix of magnetic 

Sera-Mag-A (c = 50 mg/ml, Cytiva) and Sera-Mag-B (c = 50 mg/ml, Cytiva) beads. A total of 

600 µg per sample was mixed 1:7.5 (protein/beads weight) with the beads suspension and 

incubated for 10 min 1000 rpm RT. Proteins were precipitated by adding 100% ethanol to a final 

concentration of 70% and shaking for 10 min at 1250 rpm. The supernatant was removed on a 
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magnet and beads were washed 3 times with 80% Ethanol. Beads were washed with 100% ACN 

to remove residual ethanol. Proteins were reduced and alkylated in 100 μl RA buffer (100 mM 

EPPS/NaOH, pH 8.5, 55 mM CAA, 10 mM TCEP) for 1 hour at 37°C and 1200 rpm. Proteins 

were digested o/n at 37°C and 1000 rpm by adding Trypsin 1:50 (trypsin/substrate weight) to 

each sample. Beads were immobilized on a magnet and supernatant containing the protein digest 

was collected, acidified with 1% TFA and separated samples were pooled accordingly. The 

digest was desalted using HLB desalting plates (10 mg N-Vinylpyrrolidon-Divinylbenzol porous 

particles 30 μm). Plates were equilibrated by 1000 μl solvent A (0.1% TFA, 1 min, 250 rpm). 

The digest was slowly loaded by gravity. Samples were washed with 1000 μl solvent A, peptides 

were eluted by gravity in 200 μl Solvent B (0.1% TFA, 70% ACN). Residual volume was 

collected via 2 min centrifugation at 200 rpm and a subsequent centrifugation step at 1000 rpm 

for 1 min. Peptides were freeze dried and stored at -20°C until further use. For ubiquitinome 

analysis the previously published protocol from Udeshi et al. was used with modification (70). 

The PTM-Scan ubiquitin remnant motif (K-ɛ-GG) kit (Cell Signaling Technology, Kit #5562) 

was crosslinked. For each enrichment from desalted peptides (per sample), one-eighth of a vial 

of crosslinked antibody (~31.2 μg) were used. Briefly, antibody-bound beads were washed three 

times with 100 mM sodium borate (pH 8.8) and incubated with 20 mM DMP (in 100 mM Borax, 

pH 8.8) for 30 min at room temperature (RT). After each wash, the antibody beads were 

centrifuged at 2000 g for 1 min, allowed to settle on ice for 30 s, and the supernatant was 

removed. Subsequently, the beads were washed twice with 200 mM ethanolamine (pH 8.0) and 

incubated overnight at 4 °C in the same buffer. Following this incubation, the beads were washed 

three times with immunoprecipitation (IAP) buffer (50 mM MOPS, pH 7.2, 10 mM sodium 

phosphate, 50 mM NaCl) and resuspended in IAP buffer. Peptides were reconstituted in 1 ml 

IAP buffer, centrifuged at 21,000 g at 4°C for 10 min, and transferred to a tube containing 

aliquoted antibody. The mixture was incubated at 4°C with end-over-end rotation at 20 rpm for 2 

h. After incubation, the samples were centrifuged at 2000 g for 1 min, and the supernatant (IP 

flowthrough) was removed. The antibody beads were washed twice with 1 ml of ice-cold PBS 

buffer, resuspended in 47.5 μl of 100 mM EPPS (pH 8.5) for TMT labeling. 0.5 mg of TMT-

11plex reagent (Thermo Scientific) were reconstituted in 12.5 μl waterfree ACN 2.5 μl TMT 

reagents (100 μg) were added to the bead suspension. The samples were spun down quickly and 

incubated at RT for 10 min at 1100 rpm. Quenching of the TMT labeling reaction was performed 

by adding 2 μl of 5% hydroxylamine to each sample, spinning down quickly, and incubating 

samples at RT for 5 min at 1100 rpm. Following quenching, samples were washed with 1 ml of 

ice-cold PBS buffer. Next, 120 μl of ice-cold PBS buffer was added to each tube to resuspend the 

antibody beads. All antibody beads from each tube were combined in a new 1.5 ml tube. The 

empty tubes previously containing antibody beads were washed once with 120 μl of ice-cold 

PBS buffer and added to the combined beads. The combined antibody beads were washed twice 

with 1 ml of ice-cold PBS. The final wash buffer was removed, and peptides were eluted by 

adding 100 μl of 0.15% TFA to the beads and incubating at RT for 5 min at 1100 rpm. The 

sample was spun down at 2000 g for 1 min, and the supernatant containing the eluted peptides 

was transferred to a new tube. The elution was repeated one more time, and the supernatant was 

added to the eluate from the previous step. The combined eluted peptides were fractionated as 

described before (69) with slight modifications using a StageTip packed with 10 layers of 

Empore C18 (3M) punches, preconditioned and equilibrated with 250 μl of ACN, followed by 

250 μl of 50% ACN/0.1% FA, and 250 μl of 0.1% FA. Samples were loaded onto the StageTip 

and washed with 250 μl of 0.1% FA, and peptides were sequentially eluted with 40 μl of 0%, 

5%, 10%, 15%, 20%, and 50% ACN in 25 mM ammonium formate (pH 10). The first and last 

fractions were combined, as were the second and fourth fractions, resulting in a total of four 
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fractions. The peptides were dried in a speed-vac and stored at -20°C for subsequent MS analysis 

of the ubiquitinome. 

 

Kinobead affinity pulldown sample preparation  

Kinobeads pulldown experiments were performed as previously described(1, 71). Briefly, cells 

were cultured as described above. The NCI-H23, ASPC1 and MiaPaCa-2 cells were lysed in 0.8 

% IGEPAL, 50 mM Tris-HCl pH 7.5, 5% glycerol, 1.5 mM MgCl2, 150 mM NaCl, 1 mM 

Na3VO4, 25 mM NaF, 1 mM DTT, protease inhibitors (SigmaFast, Sigma) and phosphatase 

inhibitors (prepared in-house according to Phosphatase inhibitor cocktail 1, 2 and 3 from Sigma-

Aldrich). Cells were mixed 1:1:1 (according to cell count) and the total amount of protein was 

determined by a Bradford assay. Cell lysates (2.5 mg) were pre-incubated with increasing 

compound concentrations (DMSO vehicle, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1 µM, 

3 µM, 30 µM) for 45 min at 4°C in an end-over-end shaker. Subsequently lysates were incubated 

with Kinobeads (17 µL settled beads) for 30 min at 4°C. The beads were washed and bound 

proteins were reduced with 50 mM DTT in 8 M Urea, 40 mM Tris HCl (pH 7.4) for 30 min at 

room temperature. After alkylation with 55 mM CAA proteins were digested with trypsin over 

night at 37 °C. Peptides were desalted and concentrated using SepPak tC18 µEluation plates 

(Waters) and dried down in a SpeedVac. 

 

In vitro ERK2/MAPK1 assay 

Synthetic peptides were synthesized as SpikeTides (JPT Peptide Technologies GmbH; data file 

S9). Peptide selections were based on results of DDA measurements of the deep 

phosphoproteome. Peptides were designed as 15-mers with serine or threonine in the central 

position, except when insufficient amino acids were present in the protein sequence (16-mers), 

with a C–terminal amide group and an acetylated N-terminus. A mutant version was designed for 

peptides harboring other potential phosphorylation sites (STY) within the sequence. JPT peptide 

(dissolved in 10% DMSO) were pooled (~300 pmol/µl) and further diluted in reaction buffer 

(120 mM HEPES pH 7.5, 6 mM MgCl2, 6 mM MnCl2, 1 mM DTT and 2 mM ATP) to reach a 

concentration of 6 μM. 10% of the reaction was removed as negative control. The reactions were 

initiated by adding enzyme to the substrate mix (30 nM enzyme, 1:200 enzyme/substrate) and 

incubated at 30°C and 600 rpm for 0, 5, 15, 30, 60, 90, 120 and 180 min. A control mix without 

addition of enzyme was sampled first. For each time point, 10% of the initial starting Volume 

was separated and reaction was quenched by adding FA to a final concentration of 1% and stored 

on ice. Each sample was desalted via StageTips (5 layers, diameter 1.5 mm C18 material, 3M 

EmporeTM). In brief, C18 material were self-packed into a 200 μl pipette tip and equilibrated by 

0.1% FA. Peptides were loaded, washed with 0.1% FA and eluted using 80 μl 0.1% FA in 40% 

ACN. Desalted samples were further dried and used for MS measurements. 

 

Total proteome LC-MS measurement 
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For total proteome measurement, peptides were measured with a Orbitrap Fusion Lumos or 

Eclipse Tribrid mass spectrometer (Thermo Scientific) that was coupled to a Vanquish 

microflow pump (Thermo Scientific). Samples were directly injected onto the Acclaim PepMap 

100 C18 column (2 μm particle size, 1 mm ID × 150 mm) and peptides were separated at 50 

µl/min using 25 min linear gradient from 4% to 32% LC buffer B (0.1% FA, 3% DMSO in 

ACN) in LC buffer A (0.1% FA, 3% DMSO). The MS was operated in a fast, data-dependent 

MS3-mode in positive polarity. The spray voltage was set to 3.5 kV supported by sheath gas (32 

units) and aux gas (5 units) with a vaporizer temperature of 125 °C. The Cycle time was set to 

1.2 s. MS1 spectra were acquired in positive mode in the Orbitrap with 60,000 resolution and a 

scan range from 360-1600 m/z (automatic gain control (AGC) target of 4e5 charges, maximum 

injection time (maxIT) of 50 ms). The isolated precursors were fragmented using HCD (collision 

induced dissociation, NCE 32%) and the resulting MS2 spectra were recorded in the ion trap 

operated in rapid mode, quadrupole isolation window was set to 0.6 Th, an AGC target of 3e4 

charges, and a maxIT of 40 ms. For the subsequent SPS-MS3 scans, 8 MS2 fragments were 

selected simultaneously and further fragmented using HCD (NCE 55%). The resulting ions were 

recorded with a MS3 scan in the Orbitrap with 50,000 resolution, an AGC target of 1e5 charges, 

and a maxIT of 86 ms. 

 

Phosphoproteomic LC-MS measurement 

Enriched phosphorylated peptides were measured with an Orbitrap Eclipse Tribrid mass 

spectrometer (Thermo Scientific) coupled online to a Dionex Ultimate 3000 HPLC system 

(Thermo Scientific). After injection, the sample was transferred onto a trap column (75 μm x 2 

cm) that was packed with 5 μm C18 resin (Reprosil PUR AQ - Dr. Maisch). Peptides were 

washed with the trap washing solvent (5 μl/min, 10 min) before conveying them to an analytical 

column (75 μm x 48 cm) that was packed with 3 μm C18 resin (Reprosil PUR AQ - Dr. Maisch). 

Peptides were separated using a stepped 80-minute gradient from 4 to 32% LC solvent B. 

Solvent A consisted of 0.1% FA and 5% DMSO in water. Solvent B consisted of 0.1% FA and 

5% DMSO in ACN. The MS was operated in a sensitive, data-dependent MS3-mode in positive 

polarity. Peptides were ionized using a nano source with 2.0 kV spray voltage. Every 3 s, a full-

scan (MS1) was recorded from 360 to 1800 m/z with a resolution of 60,000 in the Orbitrap in 

profile mode. The MS1 AGC target was set to 4e5, and the maxIT was set to 50 ms. Based on 

the full scans, precursors were targeted for MS2 scans if the charge was between 2 and 6. The 

MS2 quadrupole isolation window was set to 0.7 Th. Peptides were fragmentated by CID-

targeting the precursor and the precursor-H2PO4 in parallel (multistage-activation) with a q-value 

of 0.25, 35% CE, and 10 ms activation time. The MS2 spectrum was acquired with 30,000 

resolution, AGC target was set to 1.5e5 charges, the maxIT was set to 60 ms and a dynamic 

exclusion of 90 s. TMT reporter ions were measured in a MS3 scan based on the previous MS2 

scan. Precursor ions were isolated with a charge stage-dependent MS3 quadrupole isolation 

window of 1.2 Th (z=2), 0.9 Th (z=3), 0.7 Th (z=4-6). The isolated precursor was then 

fragmented identically to the previous MS2 scan. The top 10 fragment ions of the MS2 scans 

were isolated in the ion trap in parallel (synchronous precursor selection) and fragmented using 

HCD (NCE 55%). The MS3 spectrum was acquired with 50,000 resolution from 100 to 1000 Th 

in the Orbitrap in centroid mode. The MS3 AGC target was set to 1e5 charges, and the maxIT 

was set to 120 ms.  
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LC-MS measurement of DBIA-modified peptides for reactive cysteine profiling 

Enriched peptides were measured on an Orbitrap Eclipse Tribrid mass spectrometer (Thermo 

Scientific) coupled online to a Dionex Ultimate 3000 HPLC system (Thermo Scientific). After 

injection, the sample was transferred onto a trap column (75 μm x 2 cm) that was packed with 5 

μm C18 resin (Reprosil PUR AQ - Dr. Maisch). Peptides were washed with the trap washing 

solvent (5 μl/min, 10 min) before conveying them to an analytical column (75 μm x 48 cm) that 

was packed with 3 μm C18 resin (Reprosil PUR AQ - Dr. Maisch). Peptides were separated 

using a three-step 100-minute linear gradient from 7 to 36% LC solvent B. Solvent A consisted 

of 0.1% FA and 5% DMSO in water. Solvent B consisted of 0.1% FA and 5% DMSO in ACN. 

The MS was operated in a sensitive, data-dependent MS3-mode in positive polarity. Peptides 

were ionized using a nano source with 2.0 kV spray voltage. Every 3 s, a full-scan (MS1) was 

recorded from 360 to 1800 m/z with a resolution of 60,000 in the Orbitrap in profile mode. The 

MS1 AGC target was set to 6e5, and the maxIT was set to 50 ms. Based on the full scans, 

precursors were targeted for MS2 scans if the charge was between 2 and 6. The MS2 quadrupole 

isolation window was set to 0.7 Th. Peptide fragmentation occurred in the linear ion trap by CID-

targeting the precursor with a q-value of 0.25, 35% CE, and 10 ms activation time. The MS2 

spectrum was acquired with 30,000 resolution, AGC target was set to 1.5e5 charges, the maxIT 

was set to 120 ms and a dynamic exclusion of 60 s. TMT reporter ions were measured in a 

consecutive MS3 scan based on the previous MS2 scan. Precursor ions were isolated with a 

charge stage-dependent MS3 quadrupole isolation window of 1.2 Th (z=2), 0.9 Th (z=3), 0.7 Th 

(z=4-6). The isolated precursor was then fragmented identically to the previous MS2 scan. The 

top 10 fragment ions of the MS2 scans were isolated in the ion trap in parallel (synchronous 

precursor selection). For the subsequent SPS-MS3 scans, ions were fragmented using HCD 

(NCE 55%). The MS3 spectrum was acquired with 50,000 resolution from 100 to 1000 Th in the 

Orbitrap in centroid mode. The MS3 AGC target was set to 1e5 charges, and the maxIT was set 

to 140 ms. 

 

LC-MS measurement of ubiquitinome 

Ubiquitinylated peptides were measured with an Orbitrap Eclipse Tribrid mass spectrometer 

(Thermo Scientific) coupled online to a Dionex Ultimate 3000 HPLC system (Thermo 

Scientific). After injection, the sample was transferred onto a trap column (75 μm x 2 cm) that 

was packed with 5 μm C18 resin (Reprosil PUR AQ - Dr. Maisch). Peptides were washed with 

the trap washing solvent (5 μl/min, 10 min) before conveying them to an analytical column (75 

μm x 48 cm) that was packed with 3 μm C18 resin (Reprosil PUR AQ - Dr. Maisch). Peptides 

were separated using a stepped 90-minute linear gradient from 6 to 32% LC solvent B. Solvent A 

consisted of 0.1% FA and 5% DMSO in water. Solvent B consisted of 0.1% FA and 5% DMSO 

in ACN. The MS was operated in a sensitive, data-dependent MS3-mode in positive polarity. 

Peptides were ionized using a nano source with 2.0 kV spray voltage. Every 3 s, a full-scan 

(MS1) was recorded from 360 to 1800 m/z with a resolution of 60,000 in the Orbitrap in profile 

mode. The MS1 AGC target was set to 6e5, and the maxIT was set to 50 ms. Based on the full 

scans, precursors were targeted for MS2 scans if the charge was between 2 and 6. The MS2 

quadrupole isolation window was set to 0.7 Th (charge states 3-6 were prioritized over charge 

state 2). Peptide fragmentation occurred in the linear ion trap by CID-targeting with a q-value of 
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0.25, 35% CE, and 10 ms activation time. The MS2 spectrum was acquired with 30,000 

resolution, AGC target was set to 1.5e5 charges, the maxIT was set to 140 ms and a dynamic 

exclusion of 40 s. TMT reporter ions were measured in a consecutive MS3 scan based on the 

previous MS2 scan. Precursor ions were isolated with a quadrupole isolation window of 1.2 Th. 

The isolated precursor was then fragmented identically to the previous MS2 scan. The top 10 

fragment ions of the MS2 scans were isolated in the ion trap in parallel (synchronous precursor 

selection). Fragment ions were fragmented using HCD (NCE 55%). The MS3 spectrum was 

acquired with 50,000 resolution from 100 to 1000 Th in the Orbitrap in centroid mode. The MS3 

AGC target was set to 1e5 charges, and the maxIT was set to 120 ms. 

 

LC-MS measurement of kinase affinity pulldowns 

Peptides were analyzed using LC-MS/MS on a Dionex Ultimate3000 nano HPLC coupled online 

to an Orbitrap Fusion Lumos (Thermo Fisher Scientific) mass spectrometer. Peptides were 

delivered to a trap column (100 µm x 2 cm, packed in-house with Reprosil-Gold C18 ODS-3.5 

µm resin, Dr. Maisch, Ammerbuch) and washed at a flow rate of 5 µl/min in solvent A0 (0.1% 

formic acid in water). Peptides were then separated on an analytical column (75 µm x 40 cm, 

packed in house with Rprosil-Gold C18 3 µm resin, Dr. Maisch, Ammerbuch) using a 52 min 

gradient ranging from 4-32% solvent B (0.1% formic acid, 5% DMSO in acetonitrile) in solvent 

A (0.1% formic acid, 5 % DMSO in HPLC grade water) at a flow rate of 300 nL/min. The mass 

spectrometer was operated in a data dependent mode, automatically switching between MS1 and 

MS2 spectra. MS1 spectra were acquired over a mass-to-charge ratio (m/z) range of 360-1300 

m/z at a resolution of 60.000 (at m/z 200) in the Obitrap using a maximum injection time of 50 

ms and an automatic gain control (AGC) target value of 4e5. Up to 12 peptide precursors were 

isolated (isolation width of 1.7 Th, maximum injection time of 75 ms, AGC value of 2e5), 

fragmented by HCD using 30% normalized collision energy (NCE) and analyzed in the Orbitrap 

at a resolution of 15,000. The dynamic exclusion duration of fragmented precursor ions was set 

to 30s. 

 

Parallel reaction monitoring (PRM) of in vitro kinase assay 

A parallel Reaction Monitoring (PRM) assay was developed based on the data-dependent 

acquisition (DDA) results of the in vitro kinase experiment. Targeted measurements using 

Parallel Reaction Monitoring (PRM) were performed with a 50-min linear gradient (4% to 32% 

acetonitrile) on a Dionex Ultimate 3000 RSLCnano system coupled to a Fusion Lumos Tribrid 

mass spectrometer (Thermo Fisher Scientific). The spectrometer was operated in PRM and 

positive ionization mode. MS1 spectra (360–1300 m/z) were recorded at a resolution of 120,000 

using an AGC target value of 1×106 and a MaxIT of 50 ms. Targeted MS2 spectra were acquired 

at 60,000 resolution with a fixed first mass of 100 m/z, after HCD with 30% NCE, and using an 

AGC target value of 1×106, a MaxIT of 118 ms and an isolation window of 1.3 m/z.  

 

Database search and analysis of PRM data from in vitro kinase assays 
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For analysis of PRM data from in vitro ERK2/MAPK1 kinase assays, a spectral library was 

generated from a MaxQuant (Version 1.6.12.0) search of all PRM generated raw files against a 

fasta file containing all synthesized JPT peptides. Parameters for MaxQuant with its built-in 

search engine Andromeda (72, 73) was set as follows: No proteolytic enzyme was specified. 

Phosphorylation of STY was used as variable modification. All other parameters were set to 

default. PRM data was analyzed using Skyline-daily (Version 22.2.0.351) (74). Peak integration, 

transition interferences and integration boundaries were reviewed manually, considering five to 

six transitions per peptide. The source table was exported and utilized for further analysis 

(available on Zenodo). Intensities of five to six fragment ions were summed up per precursor ion 

and used for quantification. For data analysis, filtering according to correlation of fragment ion 

intensities between sample peptides and library counterparts was applied (“Library Dot Product” 

(dotp) ≥0.85). The proteomics raw data, MaxQuant search results, used peptide sequence 

databases, and Skyline analysis files have been deposited to Panorama Public where they can be 

reviewed (see Data and Materials availability).  

 

Database search of phosphoproteome, total proteome and ubiquitinome 

MaxQuant (version 1.6.12.0) with its built-in search engine Andromeda (72, 73) was used for 

protein and peptide identification and quantification for ubiquitinome, phospho and total 

proteome analysis. MSMS spectra were searched against the human Swissprot reference list 

(canonical and isoforms, downloaded 2021/11/18). Unless stated otherwise, MaxQuant's default 

parameters were applied. Parameters were set as follows: Trypsin/P as the proteolytic enzyme 

with up to two missed cleavage sites allowed for total proteome measurements and four for 

phosphoproteome and ubiquitinome measurements; carbamidomethylation of cysteine as fixed 

modification, oxidation of methionine and N-terminal protein acetylation as variable 

modifications. A maximum of 5 modifications were allowed on peptides and the peptide length 

was set with a minimal length of 7 amino acids. Phosphorylation on serine, threonine, and 

tyrosine was allowed as variable modification specifically for the phosphoproteome (diagnostic 

peak for detection of the pY modification was removed from Maxquant default setting). Di-

glycine on lysine (without additional new N-terminus) was added as a variable modification 

specifically for ubiquitinome data. Peptide spectrum match (PSM) FDR was set to 1% for all 

searches, while protein false discover rate (FDR) was set to 1% for total proteome analysis and 

100 % for phospho-proteome and ubiquitinome analysis. Isotope impurities of the TMT batch 

were specified in the configuration of TMT modifications to allow MaxQuant the automated 

correction of TMT intensities (please refer to data file S1 for correction factor Lot Numbers). If 

not specified otherwise (please refer to data file S1), the evidence files from phosphoproteome 

datasets were submitted to SIMSI-Transfer (75) to reduce missing values in phospho peptide 

identification and quantification across individual experiment batches using a max_PEP of 1%. 

The p15 stringency cluster was used for further analysis, experiments were separated according 

to experiment names from the newly generated evidence.txt file after SIMSI transfer, 

experiments were separated into individual evidence.txt files and contaminants and reverse 

database hits were removed before further analysis. 

 

Database search of data from reactive cysteine profiling 
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DBIA-modified peptides from the reactive cysteine profiling were analyzed using Proteome 

Discoverer (Version 2.5). Sequest HT was used as search engine. MSMS spectra were searched 

against the human Swissprot database (canonical and isoforms, downloaded 2021/11/18, 

supplemented with the KRAS G12C variant) as well as common contaminants (downloaded on 

2021/05/21). DBIA (mass shift +296.185 Da) was manually included as variable modification of 

cysteines. Carbamidomethylation (C) and oxidation of methionine were allowed as further 

variable modifications. TMT-18plex was set as fixed modification of peptide N-termini and 

lysine. Trypsin/P was set as proteolytic enzyme with up to 2 missed cleavage sites allowed. 

Minimum peptide length was 6. Precursor and fragment mass tolerance were set to 10 ppm and 

0.4 Da, respectively. Isotope impurities of the TMT batch were specified and correction of 

impurities was enabled (please refer to data file S1 for correction factor Lot Numbers). 

Quantification of reporter abundance were based on reporter intensity. Percolator was applied for 

FDR correction of PSMs with a target FDR (strict and relaxed) of 1%, while protein FDR was 

set to 100%. Peptides site localization probability threshold was set to 75%. Gene names for 

reactive cysteine data were added after exporting data from ProteomeDiscoverer (psm.txt) using 

R (packages AnnotationDbi and org.Hs.eg.db). 

 

Database search of Kinase affinity pulldowns 

Peptide and protein identification and quantification was performed using MaxQuant (v.1.6.3.3) 

with its built in search engine Andromeda (72, 73) by searching the tandem MS data against all 

canonical protein sequences as annotated in the Swissprot reference database (canonical, 

downloaded 2018/11/28). Carbamidomethylated cysteine was set as fixed modification and 

phosphorylation of serine, threonine and tyrosine, oxidation of methionine and N-terminal 

protein acetylation as variable modifications. Trypsin/P was specified as the proteolytic enzyme 

and up to two missed cleavages were allowed. The minimum peptide length was set to seven and 

all data were adjusted to 1% PSM and 1% protein FDR. Label-free quantification and match 

between runs were enabled within MaxQuant (76). 

 

Concentration-response curve fitting and statistics for concentration-response proteomic 

profiling 

For phosphoproteome, ubiquitinome, total proteome and reactive cysteine profiling, 

CurveCurator (version 0.5.0, (23)) was used for fitting of concentration-response data using a 4 

parameter sigmoidal model (Formula 1) for all raw search-engine data from concentration-

response experiments. CurveCurator was also used for statistical evaluation (calculation of p-

values; recalibrated F-statistic), following the relevance scoring approach as previously 

described (23). The following tables for different experimental data were submitted: evidence.txt 

from SIMSI or MaxQuant (for batches that were not subjected to SIMSI transfer) output for 

phosphoproteome and ubiquitinome data analysis; psm.txt from PD for reactive cysteine 

profiling; proteingroups.txt from MaxQuant for total proteome analysis. To define curve 

relevance, the alpha asymptote (p-value cutoff; alpha-value) was set to 0.05 for all data sets. The 

log2 curve fold change asymptote (fc-cutoff criteria; fc-value) was set to +/-0.45 (min. ratio ≈ 

1.366) for phosphoproteome and ubiquitinome, +/-0.35 (min. ratio ≈ 1.27) for total proteome and 
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+/-0.6 (min. ratio ≈ 1.52) for reactive cysteine profiling. TMT channels exhibiting high noise 

levels were excluded from curve fitting and further analysis. If not stated otherwise (see data file 

S1), ratios were calculated against the DMSO (vehicle) control. Curves with more than 2 missing 

values were excluded from further analysis. Curve fold changes were calculated based on the 

regression model (Formula 1) as ratios between the highest and lowest concentration (according 

to CurveCurator; Formula 2).  

Formula 1: 𝑓(𝑥|𝜃) =  
𝑓𝑟𝑜𝑛𝑡−𝑏𝑎𝑐𝑘

1+10𝑠𝑙𝑜𝑝𝑒(𝑥+𝑝𝐸𝐶50)
+ 𝑏𝑎𝑐𝑘 

𝜃: pEC50, slope, front, back 

x: log10 drug concentration  

Formula 2: 𝑐𝑓𝑐 =
𝑓(max(𝑥))

𝑓(min(𝑥))
 

Further information about chosen drug treatment concentration range is provided in data file S1. 

All curve-related information generated by CurveCurator (EC50 values, p-values, log2 curve fold 

change etc.) was saved as curves.txt files per experiment. All experimental information (drug 

concentration, TMT channels, threshold values etc.) that was used as input information to 

execute CurveCurator are stored in respective TOML files. All information (including 

CurveCurator output, FDR estimates for each experiment etc.) is available for download on 

Zenodo. Additionally, all curves can be explored with the interactive HTML-based dashboard 

from CurveCurator (links provided on Zenodo). Of note, contaminants and reverse database hits 

were removed by CurveCurator (except for phosphoproteome data subjected to SIMSI transfer, 

which were removed manually). After curve-fitting, non-modified peptides (no phosphorylation 

of STY, no Gly-Gly (Ubi) of K, no Dbia of C) were removed from phosphoproteome, 

ubiquitinome and reactive cysteine profiling data sets. 

For the kinobeads competition binding assays, protein intensities were normalized to the DMSO 

control and EC50 values were deduced by a four-parameter log-logistic regression using an 

internal pipeline that utilizes the drc; package in R (77). An apparent dissociation constant 

(Kd
app) was calculated by multiplying the estimated EC50 with a protein-dependent correction 

factor. The correction factor of a protein is defined as the ratio of the amount of protein captured 

from two consecutive pulldowns of the same DMSO control lysate.  

 

Target annotation for reactive cysteine profiling and Kinobead data 

For target annotation of reactive cysteine profiling, data obtained from automatic CurveCurator 

classification (“up”- or “down”, (23)) was manually curated (after initial statistical assessment by 

CurveCurator based on the relevance score approach (relevance score ≥ -log10(0.05)) using 

alpha-value and fc-cutoff criteria (see concentration-response curve fitting)). Classified cysteine-

containing DBIA-modified peptides (cys-peptide; “down”) were manually curated based on their 

behavior across all experiments for reactive cysteine profiling. The KRAS G12D cell line treated 

with sotorasib and adagrasib served as a control to evaluate potential cellular effects; regulation 

of a cys-peptide across more than one cell line by a G12C inhibitor indicates a highly confident 
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target cysteine. A cysteine-containing peptide was considered a potential target if the resulting 

binding curve showed a sigmoidal curve shape with a concentration-dependent decrease. For 

kinobead pulldowns, targets of the compounds were annotated manually. A protein was 

considered a target if the resulting binding curve showed a sigmoidal curve shape with a 

concentration-dependent decrease of binding to the beads. Additionally, the number of unique 

peptides and MSMS counts per condition as well as the protein intensity in the DMSO control 

were taken into account. All concentration-response curve data can be explored in the files 

provided on Zenodo or MassIVE.  

 

Classification of phosphoproteome, ubiquitinome and total proteome concentration-response 

data 

CurveCurator automatically classifies concentration-response profiles into different categories. 

In brief, “up”- and “down”-regulation are based on the relevance score approach (relevance score 

≥ -log10(0.05)) using alpha-value and fc-cutoff criteria (see concentration-response curve 

fitting). High confident “absence of regulation” profiles were additionally classified as “not” 

regulated curves (RMSE(mean model) ≤ 0.1). All other concentration-response profiles remained 

unclassified for two possible reasons: i) too high variance to be conclusive (p-value > 0.05). ii) 

low-variance with too small effect for regulation but too much of an effect to be classified as 

“not” regulated. For further details please refer to the original publication (23). Additionally, the 

data obtained from automatic CurveCurator classification was filtered to further decrease the 

false positives by the following rules: i) For all peptides or proteins to be classified as regulated, 

the EC50 value needed to fall within the second and second-to-last concentration points, thereby 

excluding data potentially influenced by outliers at the first or last concentration points. ii) 

Peptides or proteins with EC50 outside the second last concentration may result from not reaching 

the curve plateau at the last concentration and were therefore subjected to further scrutiny and 

classified as regulated if they met the following criteria: Phospho- and total proteome must have 

a root mean square error (RMSE) ≤ 0.09 to guarantee high representation of the data points by 

the curve. Ubiquitinome must have a root mean square error (RMSE) of ≤ 0.15 to ensure 

accurate representation of the data points by the curve. This threshold was increased due to the 

large number of up-regulated data points in the ubiquitinome dataset, which did not reach a 

plateau, leading to a higher likelihood of EC50 values falling outside the treatment range. All data 

(phosphoproteome, total proteome, ubiquitinome) must have an absolute log2 fold change of at 

least 0.6 of the curve fit at the second-to-last concentration point (Formula 1,2).  

Peptides that did not meet these criteria were not considered as regulated and were therefore 

unclassified. Other classifications provided by CurveCurator, such as not-regulated or 

unclassified peptides, remained unchanged. 

 

Site and protein annotation 

Regulated sites and their sequence contexts were annotated by uploading peptide-level data 

tables (including those from reactive cysteine profiling, ubiquitinome, and phosphoproteome) to 

an in-house annotation tool (https://github.com/kusterlab/psite_annotation). The annotation was 

performed according to the authors guidelines, using a custom reference proteome (Swissprot, 
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downloaded 2021/11/18 for phosphoproteome and ubiquitinome; supplemented with KRAS 

G12C variant for reactive cysteine profiling).  

 

General data analysis and visualization 

For the visualization of reactive cysteine profiling data in Figure 2, all manually curated cys-

peptides with abundance changes were displayed with pEC50 (−log10(EC50)) values determined 

by CurveCurator. All other data were assigned a pEC50 (−log10(EC50)) value of 3.5. Data that 

did not pass manual annotation (“down”; see target annotation for reactive cysteine profiling and 

Kinobead data) as well as cysteine-containing peptides with increasing responses (“up”, 

implausible for competition based target deconvolution assays) were filtered from this analysis.  

Concentration-response profiles of phosphoproteme, ubiquitinome and total proteome were 

grouped into a “high confidence” (all data with a p-value ≤ 0.05 or classified as “not” regulated, 

see curve classification) and “low confidence” (all unclassified data with p-values > 0.05) 

category to distinguish between high variance data (“low confidence”) and data well-represented 

by the model (“high confidence”, see fig. S2). This grouping was used for downstream analysis 

at the fold-change level to ensure the reliability of fold-change values. Analysis of 

phosphoproteome, ubiquitinome, and total proteome data that was analyzed using curve fold 

changes (e.g. Figure 3F), was exclusively performed on high confidence data only. 

For visualization of concentration-response profiles from all proteomic data, the Null model 

provided by CurveCurator was used to display curves classified as “not” regulated (see curve 

classification) or “low confidence”, while all other data were visualized using the corresponding 

dose-response model. For improved visualization, all proteomic concentration-response data 

presented in this manuscript was normalized to the lowest concentration (including curve fits, 

and data points) (Formula 3). 

Formula 3  𝑦̃𝑐𝑜𝑟𝑟 = 𝑦̂ / 𝑓(min(𝑥) | 𝜃) 

 
𝑦̂: not-normalized y-values 

𝑦̃𝑐𝑜𝑟𝑟: corrected y-values 

𝑓(𝑥 | 𝜃): y-value at lowest concentration based on curve or Null model with parameters 𝜃 

For all analysis using the pEC50 dimension (e.g. Figure 3D), pEC50 (−log10(EC50)) values were 

only used from concentration-response profiles that were classified as either "up" or "down" 

regulated according to all applied criteria (CurveCurator + outlier filter; see curve classification). 

Any additional filtering for downstream analysis of phosphoproteome data in fig S6C and fig. 

S11, S12 based on pEC50 dimension was exclusively performed on the pEC50s of regulated 

peptides. A detailed description of filtering steps can be found in the respective figures or below. 

To quantify similarities between treatment conditions, we employed MAE (mean absolute error) 

or Jaccard index as similarity metrics. The mean absolute error (MAE) of log2 curve fold 

changes was used to quantify the overall agreement of effect sizes across conditions. In contrast, 

Jaccard similarity was used to assess whether the same sets of phospho-peptides were classified 



30 

 

as regulated across different treatments. This metric applied a binary classification (regulated vs. 

not regulated), irrespective of the magnitude of regulation. While MAE is sensitive to the overall 

magnitude of the concentration-response curves, it is less effective at pinpointing where 

differences originate. Jaccard similarity, on the other hand, can identify the overlap or divergence 

in the classification of peptides and focuses on the presence or absence of regulation rather than 

the effect sizes. For the calculation of the MAE for each pairwise comparison, identical 

peptides/proteins were included from two treatments for each comparison only if it was 

classified as up- or down- regulated in at least one of the two conditions and classified as “high 

confidence” concentration-response in both conditions. Based on all data points within a 

pairwise comparison, the mean absolute error was calculated on log2 curve fold changes 

(Formula 4). 

Formula 4:   𝑀𝐴𝐸 =
1

𝑛
∑ | 𝑥𝑖 − 𝑦𝑖  |𝑛

𝑖=1   

n: number of observations 

xi: value of x  

yi: value of y 

Jaccard similarity was calculated to quantify the overlap between binary classifications of 

phospho-peptides grouped by inhibitor category —specifically comparing sets of regulated 

concentration-response profiles, up-regulated versus not regulated, or down-regulated versus not 

regulated curves (Formula 5). Curves that were classified as not regulated in both conditions 

were excluded. 

Formula 5:   𝐽(𝐴, 𝐵) =  
|𝐴𝑢𝑝∩𝐵𝑢𝑝| +|𝐴𝑑𝑜𝑤𝑛∩𝐵𝑑𝑜𝑤𝑛| 

|𝐴∪𝐵|−|𝐴𝑛𝑜𝑡∩𝐵𝑛𝑜𝑡|
 

 

A and B: sets of phospho-peptides classified as up/down regulated in two different conditions. 

The cluster maps in Figure 3 and Figure 5 were generated using MAEs of log2 fold changes (see 

above) and were prepared with the R package ‘heatmaply’ employing Euclidean distance for 

clustering. Further R packages for data analysis included ‘plotly’, ‘Rtsne’, ‘UpSetR’. Parts of the 

analysis including all pairwise comparisons between datasets (MAE or Jaccard similarity) can be 

found on Zenodo. A detailed description of individual analysis steps within this manuscript can 

be found below. 

 

STRING network and functional enrichment analysis 

For functional enrichment analysis and STRING network analysis, peptides were grouped 

according to their corresponding genes (canonical sequences of protein coding genes (Uniprot)). 

All genes associated with a peptide were included, except in cases where a peptide mapped to 

more than four genes, in which case it was excluded from the analysis. The STRING network 

was generated in Cytoscape (v. 3.9.1) using the STRING plugin (78). KRAS was manually 
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added to build the STRING network. The interaction score for the network was set to 0.7 (high 

confidence).  

Functional enrichment analysis was performed in Cytoscape (v. 3.9.1) using STRING 

enrichment (provided by the STRING app) (78). The whole genome was used as background. To 

remove all STRING interactions, the confidence score was set to 1. Enrichment nodes were 

manually annotated using the q-values (adjusted p-values ≤ 0.05) provided by the tool (GO, 

Reactome, Wikipathway and Kegg pathway terms). For Figure 4E, all proteins underlying the 

KRAS core signature were used, for enrichment in fig. 22C, all proteins from phospho-peptides 

regulated upon different KRAS inhibitors (2 hours) were used, for fig. S23E all proteins from the 

immediate and adaptive response were used. 

 

Kinase enrichment analysis 

 

Kinase enrichment analysis was conducted specifically on down-regulated phospho-peptides, as 

most effects were observed in this category. The kinase enrichment tool based on the previously 

published kinase-substrate atlas provided on phosphosite.org was used with separate customized 

foreground and background data (25, 26). For enrichment, the site sequence context of the 

phospho-peptides provided by he psite_annotation output 

(https://github.com/kusterlab/psite_annotation was truncated to ± 7 amino acids from the 

phospho-site at the central position. Foreground and background data was isolated based on the 

subset being analyzed (specified in the figure legend). The background data consisted of all 

sequences from the dataset from the experiment(s) under investigation. For example, when 

comparing effects of KRAS inhibition after 2 hours of treatment all site-sequence contexts from 

down-regulated phospho-peptides of KRAS inhibitor treatments after 2 hours were used for 

foreground dataset generation and all phospho-site sequence contexts were used for background 

data generation from the same experiments. Fisher enrichment analysis was performed with an 

enrichment threshold of 15. Statistical significant q-value threshold was set to 5 %. Of note, for 

visual representation of the kinase enrichment data, the axis was truncated at log2(enrichment 

factor) = 0, as kinases with log2(enrichment factor) < 0 did not reach statistical significance (p-

value > 0.05).  

 

Data comparison 

Protein groups were extracted from different resources as follows: GAPs, GEFs, Phosphatases 

and Ubi-conjugating proteins were extracted by UniProt (79) keyword (GAP: 

uniprotkb_keyword_KW_0343, GEF: uniprotkb_keyword_KW_0344, Phosphatases: 

uniprotkb_keyword_KW_0904, Ubi: uniprotkb_keyword_KW_0833). Protein kinases were 

extracted from PFAM (PF00069). CDC25 homology containing GEFs (Ras guanine-nucleotide 

exchange factors catalytic domain) were extracted from PFAM/InterPro (IPR001895). 

Transcription factors were extracted from Lambert et al. (80). Phospho-site comparison between 

the ERK Compendium, Klomp et al., PSP regulatory and this study was performed on phospho-

site level using the annotation provided by an internal pipeline 

(https://github.com/kusterlab/psite_annotation) but without annotated phospho-sites from 

isoforms. The ERK Compendium dataset was generated from Unal et al. (8). The Klomp et al. 

dataset was generated from adk0850_data_s3_differentialexpression tab 1 and tab 3 (11). The 

https://github.com/kusterlab/psite_annotation
https://github.com/kusterlab/psite_annotation
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PSP regulatory was downloaded from phosphosite.org. For comparisons only subsets of data 

were used (when possible) as specified in the figure legends. The Dactolisib and Refametinib 

datasets were extracted from Zecha et al. (5). The Maxquant output files (evidence.txt) were 

processed with CurveCurator (version 0.5) using parameters based on the authors 

recommendations for this dataset. Curve fits and related information are provided on Zenodo.  

PTM-Navigator was used to identify MAPK pathway membership (boxplots in Figure 3D) of 

regulated phospho-peptides (81). Phosphopeptides from proteins identified as members of 

MAPK pathway signaling (according to KEGG entry hsa04010) were extracted for analysis. 

Results are provided in data file S7. To determine phospho-peptides from proteins that are 

members of annotated PI3K-AKT-mTOR pathway (fig. S21), PTM Navigator was used to 

extract genes related to KEGG MAPK (hsa04010) pathway and KEGG PI3K-AKT-mTOR 

pathway (hsa04150, hsa04151; list provided on Zenodo). Peptides were grouped according to 

their corresponding gene (canonical sequences of protein coding genes (Uniprot)).  

 

Reproducibility of the decryptM approach (fig. S4) 

 

Reproducibility was evaluated using three biological replicates of a 2-hour Sotorasib treatment in 

MiaPaCa-2 cells (phosphoproteomes). For analysis at the potency level, pEC50 values were 

extracted from phospho-peptides that were identified and classified as regulated based on 

CurveCurator criteria and an additional outlier filter in all three experiments (see curve 

classification). Standard deviations (SDs) were calculated for pEC50 values, and coefficients of 

variation (CVs) were computed based on the corresponding EC50 values. To assess reproducibility 

of curve fold changes, all phospho-peptides that were detected across all three replicates, met the 

high-confidence criterion (see fig. S2, see general analysis), and were regulated in at least one 

condition (as defined above), were included. The CV of the curve fold change values was then 

calculated. Importantly, these three biological replicates were used exclusively for the 

reproducibility assessment. For all subsequent downstream analyses (including generation of 

KRAS core signaling signature), only a single replicate was used for simplicity. The specific 

replicate used in each chapter is indicated in data file S1 and data file S4. 

 

Comparison of KRAS inhibitors for the delineation of pathway engagement (Fig. 3) 

The apex of the pEC50 (−log10(EC50)) distribution from regulated phospho-peptides in Figure 

3D was determined for each treatment by calculating the local maximum of each individual 

pEC50 distribution. Regulated phospho-peptides with pEC50 values deviating by more than ±1 

from the apex calculated for each treatment were not considered for further analysis (fig. S6A). 

This strategy was used as further quality criteria since phospho-peptides regulated by the same 

mechanism are considered to be regulated at similar concentrations (5). Pairwise comparisons 

were conducted between filtered regulated phospho-peptides from different treatments (fig. S7). 

Therefore, the fold-changes of same phospho-peptide from the two conditions was compared if 

the peptide was classified as regulated (after filtering) in at least one of the two conditions and 

met the “high confidence” criteria in the other condition to only compare fold changes from data 

with good curve fit representation of the data points (see general analysis; fig. S2). Mean 

absolute error (MAE) of log2 curve fold change values were calculated for all pairwise 

comparisons. All MAEs of log2 curve fold changes were subjected to hierarchical clustering to 
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identify similarities in drug effects (Fig. 3G, Formula 4). All comparisons between datasets can 

be found on Zenodo. 

 

Identification of the KRAS core signaling signature (Fig. 4) 

 

To identify the core KRAS signaling signature (Fig. 4A), only regulated phospho-peptides with 

pEC50 (−log10(EC50)) values within ±1 from the apex of the pEC50 distribution from each 

treatment were selected as described before (Fig. 3D; fig. S6A). For each cell line, all 

phosphopeptides regulated by any of the KRAS inhibitors used were considered. All phospho-

peptides falling within the pEC50 windows of the respective treatments (±1 from the apex) that 

were regulated in all three cell lines by at least one drug were assigned to the KRAS core 

signature. Additionally, phospho-peptides that were regulated in at least one, but not all, cell 

lines were included if they had a CurveCurator p-value ≤ 0.01, an absolute log2 fold change ≥ 

0.6, and followed the same quality standards as regular curves (e.g. EC50 within the treatment 

range, see materials and methods (curve classification) for details).  

 

Comparison of decryptM profiles of SHP2i, SOS1i, KRASi, ERKi and MEKi (Fig. 5) 

 

To specifically analyze and compare KRAS pathway-related effects as a result of different 

inhibitors and minimize contributions from off-target or off-pathway signaling, phospho-

proteomic data were filtered based on pEC50 (−log10(EC50)) distributions (fig. S11; fig. S12). 

The rationale for this filtering step is that phospho-peptides regulated by the same cellular 

mechanism should show drug-regulation at similar concentrations(5). In detail, distributions for 

each treatment were manually inspected to identify unimodal or multimodal patterns. For 

unimodal distributions, KRAS pathway engagement was confirmed by the presence of regulated 

phospho-peptide from the KRAS core signature. The median pEC50 of these phospho-peptides 

was then calculated. In the absence of regulated KRAS core signature members, the treatment 

was considered ineffective in targeting the RAS-MEK-ERK axis and excluded from further 

analysis. For treatments with multimodal distributions, suggesting off-pathway and/or off-target 

effects, KRAS pathway engagement was evaluated same as described above for unimodal 

distributions (calculation of median of KRAS core member pEC50). To identify drug-specific 

off-target signaling, regulated phospho-peptides were compared across all treatments within the 

same cell line, determining whether observed drug-regulated phospho-peptides potentially were 

specific to the drug under investigation. A phospho-peptide was considered to be potentially 

regulated in a drug-specific manner if the same phospho-peptide was classified at least once as 

“not” regulated and at the same time never classified as up- or down-regulated in other 

treatments within the same cell line. The pEC50 median of all drug-specific phospho-peptides 

was calculated for each treatment.  

To focus on RAS-MEK-ERK axis-specific responses, only phospho-peptides with pEC50 values 

within ±1 of the KRAS core signature median were retained. In cases of bimodal distributions, 

peptides with pEC50 values within ±0.5 of the off-target median were excluded, even if they 

overlapped with the KRAS signature window. Although this filtering approach does not entirely 

eliminate off-pathway effects, particularly in cases of non-baseline-separated bimodal 

distributions, it qualitatively reduces the number of “interfering” phospho-peptides, thereby 
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improving the focus on RAS-MEK-ERK axis-driven effects. Only peptides passing this pEC50-

based filtering were used for downstream analyses.  

Pairwise comparisons were conducted between filtered regulated phospho-peptides from 

different treatments (fig. S14-S19). Therefore, the fold-changes of same phospho-peptide from 

the two conditions was compared if the peptide was classified as regulated (after filtering) in at 

least one of the two conditions and met the “high confidence” criteria in the other condition to 

only compare fold changes from data with good curve fit representation of the data points (see 

general analysis; fig. S2). MAE of log2 curve fold change values were calculated for all pairwise 

comparisons (Formula 4). All MAEs of log2 curve fold changes were subjected to hierarchical 

clustering to identify similarities in drug effects (Fig. 5B). All comparisons between datasets can 

be found on Zenodo. 

To determine the similarity of phosphoproteome responses between inhibitor categories, Jaccard 

similarity was calculated (Formula 5) using phospho-peptides with clear classifications (“up”, 

“down”, or “not” regulated; fig. S20). Only peptides classified as “up” or “down” (after filtering 

pEC50 distribution) in at least one condition were considered for comparison. Phospho-peptides 

were grouped by inhibitor class within each cell line, excluding those with inconsistent 

classifications across inhibitors within the same category (specifically KRAS inhibitors). 

Peptides unregulated in both conditions were excluded.  

To investigate engagement of the PI3K-AKT-mTOR pathway under KRAS versus downstream 

inhibitor treatment (fig. S21), curated KEGG pathway sets (hsa04150 and hsa04151) were 

obtained via PTMNavigator. All phospho-peptides matching to proteins from these entries were 

selected if they met high-confidence criteria in both conditions (see fig. S2; see general analysis) 

and were classified as “up”, “down”, or “not” regulated in at least one treatment used for 

pairwise comparison. Known AKT- and mTOR-associated phospho-sites were annotated based 

on literature curation. The lollipop plot in fig. S21 contains PI3K-AKT-mTOR pathway related 

phospho-peptides across multiple treatments, and includes only phospho-peptides that were 

regulated in at least one condition and detected in both a KRAS inhibitor and at least one 

downstream inhibitor treatment. 

 

Grouping of 2D decryptM experiments (Fig. 6) 

 

For time-dose resolved data analysis, drug-regulated phospho-peptides (unimodal distributions) 

were filtered to follow the pEC50 (−log10(EC50)) distribution of KRAS core signature members 

as described in figure S12. Only phospho-peptides identified across all four conditions, following 

the “high confidence” criterion in each (fig. S2, see general analysis) and regulated in at least one 

condition were considered for manual grouping into the four categories “early”, ”constant”, 

”intermediate”, ”late”. The constant group contains all phospho-peptides with significant 

abundance changes at three or all four time points but always at 16 hours. The early group 

contains all phospho-peptides that were significantly regulated at 1 hour, and/or 2 hours, and/or 8 

hours but not at 16 hours. The constant and early group were combined to describe the 

immediate response. The intermediate group comprised phospho-peptides that showed responses 

at 8 hours and 16 hours only. The late group showed response at 16 hours. The intermediate and 

late group were combined to describe the adaptive response. Peptides that did not conform to any 

of these defined groups were excluded from further analysis, resulting in a curated set of 550 

phospho-peptides. The absolute log2 fold changes of each peptide for all four curves was then 
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subjected to t-SNE analysis using the R package “RtSNE”. Grouped data is available on Zenodo 

and data file S4. 

 

Comparison of ubiquitinome and total proteome (Fig. 6) 

 

To investigate whether changes in the ubiquitinome are associated with changes in protein 

abundance, we compared the log2 curve fold changes between the regulated ubiquitin modified 

peptides from the ubiquitinome and their corresponding protein counterparts from total 

proteome. Therefore, regulated ubi-peptides were mapped to the corresponding UniProt 

identifiers in the total proteome dataset (16 hour Sotorasib treatment of MiaPaCa2). Only the 

canonical versions of protein-coding genes were used for mapping. If a ubi-peptide matched 

multiple protein groups, the log2 fold change of the protein group containing only the canonical 

version was used. If no such group existed, the log2 fold change of the protein group to which 

the peptide matched was used. Of note, we acknowledge that other Gly-Gly remnants may exist; 

however, ubiquitination is the most common modification associated with Gly-Gly signatures. 

Therefore, we refer to all Gly-Gly remnants as ubiquitination throughout the manuscript. All 

comparisons between datasets can be found on Zenodo. 

 

Supplementary Materials 

Figs. S1–S24.  

Table S1. 

Data files S1–S10.  
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Figure Legends 

 

Fig. 1. Proteome-wide characterization of KRAS signaling inhibitors by concentration-

response proteomics. Cells expressing different mutated KRAS proteins were treated with 

increasing concentrations of the indicated drugs, and the concentration-response profiles of 

reactive cysteines (Cys-peptides; for target deconvolution, decryptC), phosphopeptides and 

ubiquitylated peptides (for pathway engagement, decryptM), and proteins (for protein 

abundance, decryptE) were determined. Drug response (increased, decreased, or not changed 

relative to control) and potency (effective concentration to achieve 50% response, EC50) were 

derived from fitted concentration-response curves followed by statistical assessment using 

CurveCurator (see Materials and Methods for details).  
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Fig. 2. DecryptC profiling of clinical KRAS G12C inhibitors in KRAS mutant lines. (A) 
Number of concentration-response curves (y-axis) and potency [pEC50 = −log10(EC50), x-axis] 

of cys-peptides following 2 h treatment of MiaPaCa-2, NCI-H23, or ASPC1 cells with sotorasib 

or adagrasib (n ≥ 8). Targets of sotorasib and/or adagrasib are highlighted in color, all other cys-

peptides are displayed in grey. (B and C) Concentration-response curves for the primary 

sotorasib and adagrasib target KRAS G12C Cys12 (B) and for the adagrasib off-target EEF1A2 

Cys31 (B)  (2 h, n ≥ 8). (D) The left panel shows molecular docking of adagrasib into the 

structure of EEF1A2 (PDB ID: 8B6Z). The right panel depicts molecular interactions of 

adagrasib with amino acid residues of EEF1A2 bringing the reactive enolate group into close 

proximity to Cys31 to enable its covalent modification. For all panels, data represent n sets of 
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cells per experiment, each treated with a different drug concentration; recalibrated and fold-

change-adjusted F-statistics by CurveCurator. 
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Fig. 3. DecryptM profiling of KRAS inhibitors in mutant KRAS cell lines. (A) Number of 

identified and drug-regulated phosphopeptides in three mutant KRAS cell lines after short-term 

(2 h) drug treatment (n ≥ 10). (B) Concentration-response curves for MAPK1 (Tyr187) activation 
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loop phosphorylation in the same cell lines and using the same drugs as in panel (A) (2 h; n ≥ 

10). (C) Summary of the potency of drug response at the level of cell viability (72 h, n ≥ 9), 

KRAS Cys12 target binding (2 h, n ≥ 8), MAPK1 (Tyr187) activation loop phosphorylation (2 h; n 

≥ 10), drug-regulated phosphopeptides from KEGG-annotated MAPK pathway members (2 h, 

hsa04010; median pEC50 = −log10(EC50)) and all drug-regulated phosphopeptides (apex pEC50, 

2 h, n ≥ 10). (D) The distribution of drug potency (pEC50 = −log10(EC50)) determined for all 

phosphopeptides with abundance changes in each cell line treated with the indicated drug (2 h; n 

≥ 10). Numbers following drug names indicate the number of regulated phosphopeptides 

detected in the experiment. Dashed line indicates the maximum of the distribution (apex). The 

boxplots show pEC50 values for phosphopeptides on proteins annotated as MAPK pathway 

members (KEGG: hsa04010). The box indicates the median and interquartile range (IQR); 

whiskers indicate 1.5× IQR values. (E) Correlation analysis of log10(EC50) values determined 

for drug-induced cell viability (72 h, n ≥ 9) and phosphopeptide abundance changes (2 h, n ≥ 10) 

either using phosphopeptides with concentration-dependent abundance changes originating from 

annotated MAPK pathway members only or the apex of the pEC50 distribution from all drug-

regulated phosphopeptides for each individual treatment (r: Pearson correlation coefficient). (F) 

Scatter plot comparing the log2 curve fold changes of phosphopeptides with concentration-

dependent abundance changes to adagrasib and/or sotorasib in MiaPaCa-2 cells. Dashed lines 

mark the fold change boundary of the applied CurveCurator log2 fold change cut-off (fc-value = 

±0.45; n ≥ 10). Dotted lines represents the diagonal (x=y). Yellow areas contain phosphopeptides 

with consistent responses, grey areas contain phosphopeptides regulated by one of the conditions 

only. Percentages indicate the fraction of phosphopeptides in the regions highlighted by color. 

MAE: mean absolute error of log2 curve fold changes. (G) Cluster map summarizing the data 

exemplified in panel (F) (purple box) for all KRAS drugs and cell lines based on hierarchical 

clustering of the mean absolute error (MAE) of log2 curve fold changes (2 h; n ≥ 10). For all 

data panels, n represent sets of cells per experiment, each treated with a different drug 

concentration; recalibrated and fold-change-adjusted F-statistics by CurveCurator. 
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Fig. 4. Cellular processes impacted by a KRAS core signaling signature. (A) Venn diagram 

of drug-regulated phosphopeptides detected in MiaPaCa-2 (KRAS G12C), NCI-H23 (KRAS 

G12C), and ASPC1 (KRAS G12D) cells defining a common KRAS core signaling signature of 

241 phosphopeptides (2 h; n ≥ 10 sets of cells per experiment, each treated with a different drug 

concentration; recalibrated and fold-change-adjusted F-statistics by CurveCurator). (B) Upset 

plot comparing data from this study (252 phosphosites on the 241 phosphopeptides that comprise 

the KRAS core signaling signature and all 2,290 phosphosites on the 2,354 phosphopeptides 

regulated by all KRAS drugs after 2 h of treatment) to two published molecular resources of 

ERK signaling (the ERK-regulated phosphoproteome, denoted as Klomp et al. and the ERK 

compendium (8, 11)). (C) Kinase motif enrichment analysis of decreased phosphopeptides from 

the KRAS core signaling signature. (D) Time-resolved increase of synthetic peptide 

phosphorylation from MAPK1 in vitro kinase assays representing putative MAPK1 substrates 

from the list of 241 phosphopeptides comprising the KRAS core signaling signature (n = 8 

technical replicates). For clarity, the response of the assay was scaled from 0 to 1. (E) Graphical 

representation of enriched biological processes of proteins underlying the KRAS core signaling 

signature. The size of the diamond node for each enriched gene set was scaled by the statistical 

significance of the functional enrichment analysis (based on functional enrichment analysis, 

adjusted p-val. ≤ 0.05). Protein nodes with more than one color in the halo map to more than one 

enrichment term. (F) Quantification of cell morphology features of MiaPaCa-2 cells in response 

to sotorasib (72 h, n = 3 sets of cells per concentration ). (G) Representative images of NCI-H23 

cells untransfected (control) or transfected with either GFP–CCDC86 WT, GFP–CCDC86 

S217A, or GFP–CCDC86 S217D constructs (green) 24h post-transfection. Cells were also 

stained for MKI67 (red) and DNA (DAPI). Scale bar, 5 µm.  
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Fig. 5. Cell line-specific KRAS signaling. (A) Number of phosphopeptides showing 

concentration-dependent abundance changes in response to BI3406 (SOS1i), RMC4630 (SHP2i), 
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sotorasib (KRASi; G12C), adagrasib (KRASi; G12C), MRTX1133 (KRASi; G12D), trametinib 

(MEKi) and temuterkib (ERKi) after 2 h of drug exposure in three mutant KRAS cell lines (n ≥ 

10). The white part of each bar represents the number of phosphopeptides containing an SP or 

TP phosphorylation motif. Numbers on the top of each bar specify the number of 

phosphopeptides in the white and black parts of a bar. (B) Cluster map based on hierarchical 

clustering of the mean absolute error (MAE) summarizing the pairwise comparisons of 

phosphopeptide responses across all combinations of SOS1i, SHP2i, KRASi, MEKi and ERKi 

inhibitors and cell lines from panel (A). MAE, mean absolute error of log2 curve fold changes (n 

≥ 10). (C) Concentration-response curves of MAPK3 Tyr204 phosphorylation (activation loop) in 

response to 5 MAPK pathway modulating drugs (MiaPaCa-2; n ≥ 10). (D) Pairwise comparisons 

of responses (log2 curve fold change) of phosphopeptides with concentration-dependent 

abundance changes for different combinations of drugs and cell lines shown in (B) (n ≥ 10). 

Dashed lines mark the fold change boundary of the applied CurveCurator log2 fold change cut-

off (fc-value = ±0.45). Dotted lines represents the diagonal (x=y). Percentages indicate the 

fraction of phosphopeptides in the regions highlighted by color. Yellow areas contain 

phosphopeptides with consistent responses, grey areas contain phosphopeptides regulated by one 

of the conditions only. Orange data points mark phosphopeptides from the KRAS core signaling 

signature. MAE: mean absolute error of log2 curve fold changes. (E) Example phosphopeptides 

showing concentration-dependent responsiveness in one cell line (ASPC1) but no or weak 

responses in other cell lines (n ≥ 10). (F) Number of kinases, phosphatases (PP), guanine 

nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and transcription 

factors (TF) that showed drug-induced regulation of at least one phosphopeptide in the different 

cell lines upon KRAS inhibition. For all panels, data represent n sets of cells per experiment, 

each treated with a different drug concentration; recalibrated and fold-change-adjusted F-

statistics by CurveCurator. 
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Fig. 6. Temporal response of the proteome, phosphoproteome and ubiquitinome of 

MiaPaCa-2 cells to sotorasib. (A) Example concentration-response curves for phosphopeptides 

that showed constant (green), early (yellow), intermediate (blue), or late (red) response to 1-16 h 

of sotorasib treatment (n = 11). (B) t-SNE plot of responses (abs. log2 curve fold change) of 

phosphopeptides detected at all four time points (1, 2, 8, and 16 h) and regulated in at least one 

condition colored by the groups defined in (A) (n = 11). # denotes the number of 

phosphopeptides in the plot. (C) Same as (B) but highlighting members of the KRAS core 

signaling signature. (D) Kinase motif enrichment analysis of decreased phosphopeptides from 

the constant/early groups (immediate response; left panel) or intermediate/late groups (adaptive 

response; right panel). (E) Concentration-response curves of MAPK Tyr204 phosphorylation and 

Cyclin A (CCNA2) protein abundance at the four time points (n = 11). (F) Concentration-

response curves of protein abundance of the cell cycle–regulating protein CDC20 (n = 11).  (G) 

Barplot summarizing FACS-based cell cycle analysis data (propidium iodide staining) following 

different durations of sotorasib treatment in MiaPaCa-2 cells (300 nM; 0-36 h, control = Ctrl; n = 

7 independent experiments). (H and I) Scatter plot comparing protein abundance changes (16 h) 

against peptide ubiquitylation at 6 h (H) and 24 h (I) (n = 11). Shown are only significantly 

regulated ubiqutinylated peptides. Proteins of the ubiquitin conjugation system are highlighted in 

red (Uniprot KW_0833). Dashed lines mark the fold change boundary of the applied 

CurveCurator log2 fold change cut-off (ubiquitin data: fc-value = ±0.45; protein abundance data: 

fc-values = ±0.35). Grey areas contain ubiquitylated peptides without corresponding changes in 

protein abundance(J) Alphafold structure of UBA1 (83) highlights the adenylation domain 

(pink) and catalytic SCCH domain (orange) as well as drug-regulated ubiquitylated  lysine 

residues after 6 h (green) or 24 h (purple) of sotorasib treatment. Magnified views of the 

structure show the catalytic domain highlighting drug-regulated ubiquitylated Lys635 (green) in 

close proximity to the catalytic Cys632 residue based on Alphafold structure of UBA1 and the co-

crystal structure of UBA1 (PDB: 6DC6) (84), ATP(β,γ)+Mg (cyan an d red), and ubiquitin (blue) 

highlighting the close proximity of the active site to Lys528 (green). Graphs show the 

concentration-response curves of UBA1 Lys635 and Lys528 ubiquitylation after 6 h (light green) 

and 24 h (purple) of sotorasib treatment as well as protein abundance changes of UBA1 after 6 h 

(dark grey) and 16 h (black) (n = 11). For all panels presenting proteomics data, data represent n 

sets of cells per experiment, each treated with a different drug concentration; recalibrated and 

fold-change-adjusted F-statistics by CurveCurator. 


