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 A B S T R A C T

We consider a reaction–diffusion system for color pattern formation with two activators and one inhibitor. Each 
of the activators models one of the colors being switched on, for example the first activator could represent 
the color blue and the second activator the color yellow. If both colors are present the pattern will have green 
color since the color green is achieved by a mixture of the colors blue and yellow. We prove rigorous results on 
the existence and stability of spikes for which one of the colors or both of them are switched on. To the best of 
our knowledge, this paper is the first study of spike solutions for a reaction–diffusion system with two activator 
and one inhibitor systems and arbitrary strength of the self-activation and cross-activation terms. We classify 
the different types of solutions which can exist depending on the choice of interaction parameters between the 
components and we show which of them are stable or unstable. In particular, solutions with spikes for both 
activators in the same position can be stable when cross-activation dominates over self-activation. On the other 
hand, solutions with a spike for only one activator and zero concentration for the other activator can be stable 
when self-activation dominates over cross-activation. The rigorous approach is based on analytical methods 
such as Green’s function, Liapunov-Schmidt reduction and nonlocal eigenvalue problems. The analytical results 
are confirmed by numerical simulations.

1. Introduction

We study a reaction–diffusion system with two activators and one inhibitor modeling color pattern formation.
In this paper, we will prove the existence and study the stability of spike solutions for the system with two activators which display 

self-interaction and cross-interaction, coupled with one global inhibitor.
This system can be considered as a generalization of the standard two-component Gierer–Meinhardt system [1]

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝜖2𝑢𝑥𝑥 − 𝑢 +
𝑢𝑝

𝑣𝑞
,

𝜏𝑣𝑡 = 𝐷𝑣𝑥𝑥 − 𝑣 +
𝑢𝑟

𝑣𝑠

with exponents (𝑝, 𝑞, 𝑟, 𝑠) = (3, 1, 3, 0). Generally, it is assumed that the exponents (𝑝, 𝑞, 𝑟, 𝑠) satisfy

𝑝 > 1, 𝑞 > 0, 𝑟 > 1, 𝑠 ≥ 0,  and 𝑞𝑟
𝑝 − 1

> 𝑠 + 1.

(see [1]). Our choice of exponents satisfies these assumptions.
The 𝑡-indices indicate temporal derivatives and the 𝑥-indices indicate spatial derivatives. Here 𝑢 is the activator, 𝑣 is the inhibitor, 0 < 𝜖 ≪ 1

and 𝐷 > 0 are diffusion constants, and 𝜏 is a nonnegative time-relaxation constant.
The reaction–diffusion system considered in this paper is a system with two activators whose reaction kinetics has self-interaction of both 

activators and interaction of both activators with the inhibitor. In addition, the two activators have cross-interaction with each other.
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We assume that the small diffusivities of the two activators are the same. We assume that the terms in the reaction kinetics are all cubic with 
respect to the activators.

All these assumptions can be relaxed. We will address this issue by presenting some more general numerical simulations (Section 6) and by 
discussing how the present study can be extended in future work (Section 7). 

The activator-inhibitor system under investigation can be stated as follows: 
⎧

⎪

⎨

⎪

⎩

𝑢1,𝑡 = 𝜖2𝑢1,𝑥𝑥 − 𝑢1 +
𝜇1𝑢31 + 𝛽𝑢1𝑢

2
2

𝑣
, 𝑢2,𝑡 = 𝜖2𝑢2,𝑥𝑥 − 𝑢2 +

𝜇2𝑢32 + 𝛽𝑢
2
1𝑢2

𝑣
,

𝜏𝑣𝑡 = 𝐷𝑣𝑥𝑥 − 𝑣 + 𝜇1𝑢31 + 𝛽𝑢1𝑢
2
2 + 𝜇2𝑢

3
2 + 𝛽𝑢

2
1𝑢2.

(1.1)

Here 0 < 𝜖 ≪ 1 and 𝐷 > 0 are diffusion and 𝜏 is a nonnegative time-relaxation constant as in the standard Gierer–Meinhardt system. Further, 
𝜇1, 𝜇2, 𝛽 > 0 are positive constants for the self- and cross-activation of the activators, respectively.

The positive constants 𝜇1, 𝜇2 model the strength of self-activation of each activator and 𝛽 represents the strength of cross-activation.
By rescaling the amplitudes of 𝑢1 and 𝑢2 we can always achieve that the mixed terms have the same coefficient 𝛽, so we can make this assumption 

without loss of generality.
We will derive results for the system (1.2) on a bounded interval 𝛺 = (−𝐿,𝐿) for 𝐿 > 0 with Neumann boundary conditions. We classify the 

different types of solutions which can exist depending on the choice of interaction parameters between the components and we show which of them 
are stable or unstable. In particular, solutions with spikes for both activators in the same position can be stable when cross-activation dominates 
over self-activation. On the other hand, solutions with a spike for only one activator and zero concentration for the other activator can be stable 
when self-activation dominates over cross-activation.

Many mechanisms can play a role for color pattern formation. For a recent survey we refer to [2]. Reaction–diffusion systems of activator-
inhibitor type can model the first stage of pattern formation by self-organization. The maxima of the activator peaks can trigger differentiation on 
the cellular level leading to the implementation of the final pattern. Two activators will be able to stimulate two different cellular processes which 
can lead to the formation of patterns with two different colors. Each of the activators models one of the colors being switched on, for example the 
first activator could represent the color blue and the second activator the color yellow. If both colors are present the pattern will have green color 
since the color green is achieved by a mixture of the colors blue and yellow. We prove rigorous results on the existence and stability of spikes for 
which one of the colors or both of them are switched on.

Understanding the properties of the reaction–diffusion system and its solutions can give insight into formation of patterns which arise without 
prepatterns or external information but purely through a self-contained process. The model is motivated by phenomenological considerations rather 
than a mechanistic derivation.

We would like to comment on some of the cellular processes behind color pattern formation. Certain pigment-containing cells called 
chromatophores are responsible for the coloring in the skins of reptiles, amphibians, and fish. Color patterns result from the spatial variation 
in the types, properties, and spatial arrangements of chromatophores.

In zebrafish the chromatophores are the pigment cells melanophores (black/brown color), iridophores (iridescent, color depends on viewing 
angle), and xanthophores (yellow). Recent molecular genetic studies have shown that interactions between the pigment cells play major roles in 
pattern formation [3,4]. The color for chameleons can be changed through active tuning of a lattice of guanine nanocrystals, a frequent type of 
organic biocrystal associated with animal coloring, inside a skin layer of iridophores. This has been confirmed by using osmotic pressure experiments 
and theoretical optical modeling [5].

Stripes in zebrafish have been modeled using an agent-based approach [6]. It has been shown that iridophores can act as a stabilizer of zebrafish 
stripes [7]. Topological analysis of zebrafish patterns has been performed in [8].

To the best of our knowledge, this paper is the first study of spike solutions for a reaction–diffusion system with two activator and one inhibitor 
systems and arbitrary strength of the self-activation and cross-activation terms.

Let us make some comments on previous publications related to the current study. We will put the system and the results in context and justify 
their novelty.

Recently results on spike solutions have been established in a related reaction–diffusion system modeling competition between two plant species 
with different rates of water intake [9]. This system is based on reaction kinetics of Klausmeier type with two activators and one inhibitor. The 
activators display self-interaction and interaction with the inhibitor, but there is no cross-interaction between the two activators. The authors study 
spike solutions for which one of the two activators is positive at a certain location but not both of them. Spike solutions for which the two activators 
are identical also exist for this system but they are expected to be unstable due to the absence of activator cross-interaction.

Spike solutions for other large reaction–diffusion systems with more than two components have been studied before, including the hypercycle 
of Eigen and Schuster [10–12] or mutual exclusion of spikes [13].

The reaction–diffusion model for color pattern formation is similar to the hypercycle of Eigen and Schuster [14] but with different interactions 
between activators. For the hypercycle, there is only activator interaction with nearest neighbors, the interaction is not symmetric and there is no 
self-interaction. The hypercycle can have an arbitrary number of activators. In the special case of two activators the main difference is the absence 
of self-interaction terms which are considered in this paper.

Mutual exclusion of spikes is modeled by a five-component Meinhardt–Gierer model for mutually exclusive patterns and segmentation [15,16]. 
The overall feedback mechanism of the system can be summarized as follows: Nonlocal activation is coupled with self-activation and overall 
inhibition. The spikes for the two activators are located in different positions, whereas in the current study the two activators can co-exist in the 
same location.

Finally, our model is related to Schrödinger systems. The activator interaction in our system is a special case of the interaction for Schrödinger 
systems. Our model can be derived by adding an inhibitor component to a Schrödinger system. For Schrödinger systems, the existence and Morse 
index of spike solutions have been studied extensively by Wei and Lin, see [17–22] and references therein. The uniqueness of positive ground states 
has been shown in [23] and the nondegeneracy of ground states has been proved in [24], while the Morse indices of ground state solutions for 
Schrödinger systems with an arbitrary number of components have been considered in [25]. For Schrödinger systems without inhibitor the type 
of solutions considered in our paper are unstable with Morse index 1 or 2. Due to the presence of the inhibitor, it is possible to stabilize some of 
these solutions.
2 
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We rescale the unknown functions as follows to achieve amplitudes of order 𝑂(1):
𝑢̂1(𝑥) = 𝜖𝑢1(𝑥), 𝑢̂2(𝑥) = 𝜖𝑢2(𝑥), 𝑣̂(𝑥) = 𝜖2𝑣(𝑥).

In terms of the rescaled functions, the system can be restated as follows: 
⎧

⎪

⎨

⎪

⎩

𝑢̂1,𝑡 = 𝜖2𝑢̂1,𝑥𝑥 − 𝑢̂1 +
𝜇1𝑢̂31 + 𝛽𝑢̂1𝑢̂

2
2

𝑣̂
, 𝑢̂2,𝑡 = 𝜖2𝑢̂2,𝑥𝑥 − 𝑢̂2 +

𝜇2𝑢̂32 + 𝛽𝑢̂
2
1𝑢̂2

𝑣̂
,

𝜏𝑣̂𝑡 = 𝐷𝑣̂𝑥𝑥 − 𝑣̂ +
(

𝜇1𝑢̂31 + 𝛽𝑢̂1𝑢̂
2
2 + 𝜇2𝑢̂

3
2 + 𝛽𝑢̂

2
1𝑢̂2

)

𝜖−1.
(1.2)

It is known that these patterns are unstable without inhibitor (see for example [24–26]). In fact, without inhibitor, the Morse index of a single 
spike solution will be 1 or 2, depending on the region in the 𝛽-𝜇 parameter space, which we refer to below as the 𝛽-𝜇 condition. Here we will show 
that with global inhibition it is possible to get stable spiky patterns. Depending on the 𝛽-𝜇 condition, at a certain location either both activators can 
have a spike forming a local pattern, or only one of the activators has a spike and the other activator zero values. Both of these types of solutions 
can be stable or unstable, depending on the 𝛽-𝜇 condition.

The system (1.2) is similar to a hypercycle with cubic terms and two activators, and Gierer–Meinhardt kinetics instead of Gray-Scott kinetics, 
see [11]. For the study of spiky solutions of the hypercycle with quadratic interaction terms we refer the readers to [10,12].

We recall that the classical Gierer–Meinhardt system as well as the three-component system considered here are both Turing systems [27] as 
they allow spatial patterns to arise out of a homogeneous steady state by the so-called Turing instability. Some analytical results for the existence 
and stability of spiky Turing pattern for the Gierer–Meinhardt system have been obtained for example in  [28–35]. The results have been reviewed 
in [36].

Next we are going to state the rigorous results on the existence and stability of stationary spiky patterns for the system (1.2).
We prove the existence of three types of spiky pattern solutions:
A solution of Type 1 which has a spike for 𝑢1 and spike for 𝑢2, both located at zero.
A solution of Type 2 which has a spike for 𝑢1 located at zero and 𝑢2 = 0.
A solutions of Type 3 which has a spike for 𝑢2 located at zero and 𝑢1 = 0.
The spikes for 𝑢1 and 𝑢2 in a solution of Type 1 have the same profile except for possibly their amplitudes. To determine the amplitudes of the 

activator spikes we have to solve a system which depends on the coefficients of the reaction terms of the self-interaction and cross-interaction of 
activators. We will see that these amplitudes depend on the size of inhibitor and for larger inhibitor we need larger activator amplitudes to balance 
the interaction (as in the classical Gierer–Meinhardt system).

Let 𝑤(𝑦) be the unique positive and even homoclinic solution of the equation 
𝑤𝑦𝑦 −𝑤 +𝑤3 = 0 (1.3)

on the real line decaying to zero at ±∞. Let 𝐻2
𝑁,𝑒𝑣(−𝐿,𝐿) be the space of functions in 𝐻2(−𝐿,𝐿) which satisfy Neumann boundary conditions and 

are even.
The main results are as follows:
We first have the existence of Type 1 solutions with a spike for 𝑢1 and 𝑢2.

Theorem 1. Assume that 𝜖 > 0 is small enough and
𝛽 > max(𝜇1, 𝜇2) or 𝛽 < min(𝜇1, 𝜇2).

Then there exist spiky steady states to (1.2) in 𝐻2
𝑁,𝑒𝑣(−𝐿,𝐿) such that 

𝑢𝜖1(𝑥) = 𝑡1
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

𝜒(𝑥)(1 + 𝑂(𝜖)), 𝑢𝜖2(𝑥) = 𝑡2
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

𝜒(𝑥)(1 + 𝑂(𝜖)) (1.4)

where 𝑡𝑖 > 0 is a constant which satisfies (2.10), 𝑣𝜖(0) is given by (2.11) and 𝜒(𝑥) is a cutoff function defined in (3.1).
Similarly, we can show the existence of Type 2 solutions with a spike for 𝑢1 and 𝑢2 = 0.

Theorem 2. Assume that 𝜖 > 0 is small enough and 𝛽 ≠ 𝜇1. Then there exist spiky steady states to (1.2) in 𝐻2
𝑁,𝑒𝑣(−𝐿,𝐿) such that 

𝑢𝜖1(𝑥) = 𝑡1
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

𝜒(𝑥)(1 + 𝑂(𝜖)), 𝑢𝜖2(𝑥) = 0, (1.5)

where 𝑡1 = 1
√

𝜇1
, 𝑣𝜖(0) is given by (2.15) and 𝜒(𝑥) is a cutoff function defined in (3.1).

Remark 1. By symmetry, Theorem  2 is still valid if 𝑢1 is swapped with 𝑢2 and 𝜇1 is swapped with 𝜇2, which implies the existence of Type 3 spike 
solutions when 𝛽 ≠ 𝜇2.

The stability properties of the spiky solutions are as follows:

Theorem 3. The steady states to (1.2) given in Theorem  1 are linearly stable if 𝛽 > max(𝜇1, 𝜇2). They are linearly unstable if 𝛽 < min(𝜇1, 𝜇2).

Theorem 4. The steady states to (1.2) given in Theorem  2 are linearly stable if 𝛽 < 𝜇1. They are linearly unstable if 𝛽 > 𝜇1.

Remark 2. For 𝜇1 < 𝛽 < 𝜇2 the solution with 𝑢1 ≠ 0 and 𝑢2 ≠ 0 does not exist, in the same way as for Schrödinger systems without 𝑣 component, 
see [23].

Remark 3. In case 𝜇1 < 𝜇2 there is a transcritical bifurcation at 𝛽 = 𝜇1 and 𝛽 = 𝜇2, respectively. For 𝛽 = 𝜇1 there is a bifurcation of the Type 1 
solution from the Type 2 solution, and for 𝛽 = 𝜇  there is a bifurcation of the Type 1 solution from the Type 3 solution.
2

3 
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Fig. 1. Bifurcation diagram of single spike solutions with parameters 𝜇1 = 1, 𝜇2 = 3 and bifurcation parameter 𝛽; dashed lines represent 𝑡21, solid lines represent 𝑡22; thick lines 
indicate stable solutions, thin lines indicate unstable solutions.

Fig. 2. Type 1 solution (𝑢1 > 0, 𝑢2 > 0), color green, single spike, 𝜖2 = 0.0001, 𝐷 = 1, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 5.

We display the solutions in a bifurcation diagram (see Fig.  1).
What do these mathematical results tell us about biological applications? The two activators 𝑢1 and 𝑢2 can represent different colors in the 

living organism. For example, 𝑢1 can represent the color blue and 𝑢2 the color yellow. Then a spike with only 𝑢1 positive indicates a blue spot and 
a spike with only 𝑢2 positive indicates a yellow spot. Finally, a spike with both 𝑢1 and 𝑢2 positive represents a green spot since the color green is 
achieved by a mixture of the colors blue and yellow.

To summarize, suppose 𝛽 < 𝜇1 < 𝜇2. Then Type 1 solutions are unstable, Type 2 and 3 solutions are stable. Stable patterns can have blue spots 
or yellow spots. Green spots are possible but they are unstable.

For 𝜇1 < 𝛽 < 𝜇2, Type 1 solutions do not exist. Type 3 solutions are stable and Type 2 solutions are unstable. Stable patterns can have yellow 
spots. Blue spots are possible but they are unstable. Green spots are impossible.

For 𝜇1 < 𝜇2 < 𝛽, Type 1 solutions are stable, whereas both Type 2 and 3 solutions are unstable. Stable patterns can have green spots. Blue spots 
or yellow spots are possible but they are unstable.

We present numerical simulations of the three types of solutions. The first subfigure always shows 𝑢1 (solid line), the second subfigure shows 
𝑢2 (left axis, solid line) and 𝑣 (right axis, dotted line). We will discuss more details about the numerical simulations in Section 6 (see Figs.  2–4).

Remark 4. By choosing the parameters suitably it is possible to achieve stable Type 1 solutions with any proportion of mixing between blue 
and yellow color. We can see this as follows: We first compute

𝑡2
𝑡1

=

√

𝛽 − 𝜇1
𝛽 − 𝜇2

.

Therefore, varying parameters in the range 𝜇1 < 𝜇2 < 𝛽 we can get any ratio for 𝑡2∕𝑡1 in the interval

1 <
𝑡2
𝑡1
<∞

and varying parameters in the range 𝜇2 < 𝜇1 < 𝛽 we can get any ratio for 𝑡2∕𝑡1 in the interval

0 <
𝑡2
𝑡1
< 1.

(Note that we can keep 𝜇  and 𝜇  fixed and vary 𝛽 accordingly.)
1 2

4 
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Fig. 3. Type 2 solution (𝑢1 > 0, 𝑢2 = 0), color blue, single spike, 𝜖2 = 0.0001, 𝐷 = 1, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 0.5.

Fig. 4. Type 3 solution (𝑢1 = 0, 𝑢2 > 0), color yellow, single spike, 𝜖2 = 0.0001, 𝐷 = 1, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 2.

Choosing 𝜇1 = 𝜇2 we get 𝑡1 = 𝑡2 and so 𝑡2𝑡1 = 1. (If we keep 𝜇 fixed and vary 𝛽 then we get 𝑡2𝑡1 = 1 for any 𝛽.)
In summary, we can achieve any value for 𝑡2𝑡1  in the range

0 <
𝑡2
𝑡1
<∞.

Remark 5. The results can be generalized to the case of negative parameters. For the existence of Type 1 solutions, we need max(𝜇1, 𝜇2) < 𝛽 or 
𝛽 < min(𝜇1, 𝜇2).

If 𝛽 is negative, then 𝜇1 and 𝜇2 must both be positive, otherwise (2.3) is not possible. Thus we need to have 𝛽 < 0 < min(𝜇1, 𝜇2). To satisfy 
(2.10), it is further required that 𝛽 > −

√

𝜇1𝜇2. In summary, we need −
√

𝜇1𝜇2 < 𝛽 < 0 < min(𝜇1, 𝜇2). Under this assumption, a Type 1 solution 
exists. We have 𝑔(𝛽) < 0, and so the solution is unstable.

If 𝜇1 is negative, then by (2.3), 𝛽 must be positive and so 𝛽 −𝜇1 > 0. From (2.10), we get 𝛽2 −𝜇1𝜇2 > 0 and 𝛽 −𝜇2 > 0. This implies 𝛽2𝜇1 < 𝜇2 < 𝛽. 
Note that 𝜇2 can have either sign. Under these conditions a Type 1 solution exists. Here 𝑔(𝛽) > 0, and so the solution is stable.

For 𝛽 < 0 and 𝜇1 > 0, Type 2 solutions exist and they are stable. Analogously, for 𝛽 < 0 and 𝜇2 > 0, Type 3 solutions exist and they are stable.
The paper is organized as follows: In Section 2, we compute the amplitudes of spikes. In Section 3, we show the existence of solutions. In 

Section 4, we first derive the eigenvalue problem. Then we compute the large (i.e. 𝑂(1)) eigenvalues and we derive sufficient conditions for the 
stability of solutions with respect to these. In Section 5, we consider the small (i.e. 𝑜(1)) eigenvalues. We outline how to rigorously compute them to 
leading order and state the main criterion on the stability of solutions with respect to small eigenvalues. Sufficient conditions for this stability are 
derived. In Section 6, we present some numerical simulations of spike solutions which are more general than the analytical results. In Section 7, we 
discuss our results and give an outlook. In the Appendix, results from previous publications are provided which are used repeatedly in the paper. 

2. Computing the amplitudes

In this section, we will consider spiky steady states of (1.2) of the following three types:
Type 1: spike for 𝑢1 and spike for 𝑢2, both located at zero,
Type 2: spike for 𝑢1 located at zero and 𝑢2 = 0.
Type 3: spike for 𝑢2 located at zero and 𝑢1 = 0.
Since Type 3 is symmetric to Type 2 by inter-changing 𝑢1 and 𝑢2, and 𝜇1 and 𝜇2, we will only consider Type 1 and Type 2 solutions.
We first construct steady states of the form 

𝑢1(𝑥) = 𝑡1
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

(1 + 𝑂(𝜖)), 𝑢2(𝑥) = 𝑡2
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

(1 + 𝑂(𝜖)), (2.1)

where 𝑤(𝑦) is the unique positive and even homoclinic solution of the equation 
𝑤 −𝑤 +𝑤3 = 0 (2.2)
𝑦𝑦

5 
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on the real line decaying to zero at ±∞. We will compute 𝑣𝜖(0), 𝑡1, 𝑡2. The result will be stated in Lemma  1.
From the first two equations to (1.2), we will choose 𝑡1 and 𝑡2 such that 

𝜇1𝑡
2
1 + 𝛽𝑡

2
2 = 1, 𝜇2𝑡22 + 𝛽𝑡

2
1 = 1. (2.3)

All functions used throughout the paper belong to the Hilbert space 𝐻2(−𝐿,𝐿) and the error terms are taken in the norm 𝐻2(−𝐿,𝐿) unless 
otherwise stated. After integrating (1.3) over R, we get the relation 

∫R
𝑤(𝑦) 𝑑𝑦 = ∫R

𝑤3(𝑦) 𝑑𝑦 (2.4)

which will be used frequently, often without explicitly stating it.
Note that 𝑢1 and 𝑢2 are spatially small-scale variables, as 𝜖 ≪ 1, and 𝑣𝜖 is a spatially large-scale variable. For steady states, using Green’s 

functions, the slow variable 𝑣, to leading order, can be expressed by an integral representation.
To get this representation, by (2.1) the nonlinear terms in the last equation of (1.2) can be expanded as

𝜇1𝑢
3
1(𝑥) + 𝛽𝑢1(𝑥)𝑢

2
2(𝑥) = 𝑡1 (𝑣𝜖(0))3∕2 𝜖

(

∫R
𝑤3

)

𝛿0(𝑥) + 𝑂(𝜖2),

𝜇2𝑢
3
2(𝑥) + 𝛽𝑢

2
1(𝑥)𝑢2(𝑥) = 𝑡2 (𝑣𝜖(0))3∕2 𝜖

(

∫R
𝑤3

)

𝛿0(𝑥) + 𝑂(𝜖2),

where 𝛿0(𝑥) is the Dirac delta distribution centered at 0.
Using the Green’s function 𝐺𝐷(𝑥, 𝑦) which is defined as the unique solution of the equation 

𝐷𝛥𝐺𝐷(𝑥, 𝑦) − 𝐺𝐷(𝑥, 𝑦) + 𝛿𝑦(𝑥) = 0, −𝐿 < 𝑥 < 𝐿, 𝐺𝐷,𝑥(−𝐿, 𝑦) = 𝐺𝐷,𝑥(𝐿, 𝑦) = 0, (2.5)

we can represent 𝑣𝜖(𝑥) by using the third equation of (1.2) as 

𝑣𝜖(𝑥) = (𝑡1 + 𝑡2)(𝑣𝜖(0))3∕2
(

∫R
𝑤3(𝑦)𝑑𝑦

)

𝐺𝐷(𝑥, 0) + 𝑂(𝜖). (2.6)

An elementary calculation gives 

𝐺𝐷(𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

𝜃
sinh(2𝜃𝐿) cosh 𝜃(𝐿 + 𝑥) cosh 𝜃(𝐿 − 𝑦), −𝐿 < 𝑥 < 𝑦 < 𝐿,

𝜃
sinh(2𝜃𝐿) cosh 𝜃(𝐿 − 𝑥) cosh 𝜃(𝐿 + 𝑦), −𝐿 < 𝑦 < 𝑥 < 𝐿

(2.7)

with 𝜃 = 1∕
√

𝐷. Note that 

𝐺𝐷(𝑥, 𝑦) =
1

2
√

𝐷
𝑒−|𝑥−𝑦|∕

√

𝐷 −𝐻𝐷(𝑥, 𝑦), (2.8)

where 𝐻𝐷 is the regular part of the Green’s function 𝐺𝐷. In particular, for 𝐿 = ∞, we have 

𝐺𝐷(𝑥, 𝑦) =
1

2
√

𝐷
𝑒−|𝑥−𝑦|∕

√

𝐷 =∶ 𝐾𝐷(𝑥, 𝑦). (2.9)

We first compute 𝑡1 and 𝑡2 from (2.3). Considering (2.3) as a linear system with the unknowns 𝑡21 and 𝑡22, we get 

𝑡21 =
𝛽 − 𝜇2

𝛽2 − 𝜇1𝜇2
, 𝑡22 =

𝛽 − 𝜇1
𝛽2 − 𝜇1𝜇2

. (2.10)

It remains to derive 𝑣𝜖(0). From (2.6), for 𝑥 = 0 we get

𝑣𝜖(0) = (𝑣𝜖(0))3∕2(𝑡1 + 𝑡2)𝐺𝐷(0, 0)
(

∫R
𝑤3(𝑦)𝑑𝑦

)

+ 𝑂(𝜖).

This implies 

𝑣𝜖(0) =
1

𝐺𝐷(0, 0)2(𝑡1 + 𝑡2)2
(

∫R𝑤3
)2

+ 𝑂(𝜖). (2.11)

In the following, we state the first main result of this section on the amplitudes of Type 1 solutions: 

Lemma 1. Assume that 𝜖 > 0 is small enough and
𝛽 > max(𝜇1, 𝜇2) or 𝛽 < min(𝜇1, 𝜇2).

We consider spike solutions of (1.2) of the type
𝑢1(𝑥) = 𝑡1

√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

(1 + 𝑂(𝜖)), 𝑢2(𝑥) = 𝑡2
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

(1 + 𝑂(𝜖)),

where 𝑤(𝑦) is the unique solution of (2.2). Then the amplitudes 𝑡1 and 𝑡2 are given by (2.10), 𝑣𝜖(0) satisfies (2.11), and the Green’s function 𝐺𝐷 is defined 
in (2.5). 

Next, we consider the Type 2 spike solutions. We will construct solutions of the form 
𝑢1(𝑥) = 𝑡1

√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

(1 + 𝑂(𝜖)), 𝑢2(𝑥) = 0. (2.12)

We will compute 𝑣𝜖(0) and 𝑡1. The result will be stated in Lemma  2.
From the first equation of (1.2), we get in leading order

𝑡 = 𝜇 𝑡3
1 1 1

6 
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which implies 

𝑡1 =
1

√

𝜇1
. (2.13)

From the third equation of (1.2), we get 

𝑣𝜖(𝑥) = 𝑡1(𝑣𝜖(0))3∕2
(

∫R
𝑤3

)

𝐺𝐷(𝑥, 0) + 𝑂(𝜖). (2.14)

From (2.14), for 𝑥 = 0 we get

𝑣𝜖(0) = (𝑣𝜖(0))3∕2𝑡1𝐺𝐷(0, 0)
(

∫R
𝑤3

)

+ 𝑂(𝜖).

Together with (2.13) this implies 

𝑣𝜖(0) =
1

𝐺𝐷(0, 0)2𝑡21
(

∫R𝑤3
)2

+ 𝑂(𝜖). (2.15)

With these in hand, we finally state the second main result of this section on the amplitude of Type 2 spike solutions:

Lemma 2. Assume that 𝜖 > 0 is small enough. We consider spike solutions of (1.2) of the type
𝑢1(𝑥) = 𝑡1

√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

(1 + 𝑂(𝜖)), 𝑢2(𝑥) = 0,

where 𝑤(𝑦) is the unique solution of (2.2). Then the amplitude 𝑡1 is given by (2.13), and 𝑣𝜖(0) satisfies (2.15), where the Green’s function 𝐺𝐷 is defined in 
(2.5). 

3. Existence of spike solutions

In this section, we use the contraction mapping principle to rigorously prove the existence of spiky solutions.
The issue to handle here is that the linear operator obtained by the linearization of system (1.2) around (2.1) has a nontrivial approximate 

kernel. This comes from the fact that taking a derivative of Eq.  (2.2) with respect to 𝑦 implies
(𝑤𝑦)𝑦𝑦 −𝑤𝑦 + 3𝑤2𝑤𝑦 = 0.

Thus, 𝑤𝑦 belongs to the kernel of the linearization of (2.2) around 𝑤. Note that the function 𝑤𝑦 represents the translation mode of 𝑤. To eliminate 
the approximate kernel from the function space we will construct solutions in spaces of even functions. Since the approximate kernel consists of 
odd functions, we will be able to show in this section first that the linear operator restricted to even functions is uniformly invertible for 𝜖 small 
enough. Using this result, we can then complete the proof.

Recall that for given 𝑢1, 𝑢2 ∈ 𝐻2
𝑁 (𝛺𝜖), where 𝛺𝜖 = (−𝐿∕𝜖, 𝐿∕𝜖) and 𝐻2

𝑁 (𝛺𝜖) denotes the space of all functions in 𝐻2(𝛺𝜖) satisfying Neumann 
boundary conditions, since the third equation of (1.2) is linear in 𝑣, the inhibitor 𝑣 is uniquely determined for given 𝑢1, 𝑢2. Therefore, the steady 
state problem can be reduced to solving the first two equations.

We are looking for solutions which satisfy
𝑢1(𝑥) = 𝑡1

√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

𝜒(𝑥)(1 + 𝑂(𝜖)), 𝑢2(𝑥) = 𝑡1
√

𝑣𝜖(0)𝑤
(𝑥
𝜖

)

𝜒(𝑥)(1 + 𝑂(𝜖))

which are even functions, i.e. 𝑢𝑖(𝑥) = 𝑢𝑖(−𝑥), 𝑖 = 1, 2. To this end, we assume that 𝜒 is a smooth and even cut-off function such that
𝜒(𝑥) = 1 for |𝑥| ≤ 𝐿∕3

and 
𝜒(𝑥) = 0 for |𝑥| ≥ 2𝐿∕3. (3.1)

To construct a solution which consists of even functions we will be working in Sobolev spaces of even functions.
We are now going to derive a solution by using the contraction mapping principle. Denoting the r.h.s. of the first two equation of (1.2) by

𝑆𝜖[𝑡1
√

𝑣𝜖(0)𝑤𝜒 + 𝑎1, 𝑡2
√

𝑣𝜖(0)𝑤𝜒 + 𝑎2],

our problem can be re-written as follows: Find 𝑎1 and 𝑎2 such that
𝑆𝜖[𝑡1

√

𝑣𝜖(0)𝑤𝜒 + 𝑎1, 𝑡2
√

𝑣𝜖(0)𝑤𝜒 + 𝑎2] = 0,

where

𝑆𝜖 ∶ (𝐻2
𝑁,𝑒𝑣(𝛺𝜖))2 → (𝐿2

𝑒𝑣(𝛺𝜖))2.

Here the index ‘‘ev’’ stands for the restriction of the function spaces to even functions, i.e.
𝐿2
𝑒𝑣(𝛺𝜖) = {𝑢 ∈ 𝐿2(𝛺𝜖), 𝑢(𝑦) = 𝑢(−𝑦) for all 𝑦 ∈ 𝛺𝜖},

𝐻2
𝑁,𝑒𝑣(𝛺𝜖) = {𝑢 ∈ 𝐻2

𝑁 (𝛺𝜖), 𝑢(𝑦) = 𝑢(−𝑦) for all 𝑦 ∈ 𝛺𝜖}.

To this end, we need to study the linearized operator
𝐿𝜖 ∶ (𝐻2

𝑁,𝑒𝑣(𝛺𝜖))2 → (𝐿2(𝛺𝜖))2

defined by
𝐿 𝜙 ∶= 𝐷𝑆 [𝑡

√

𝑣 (0)𝑤𝜒, 𝑡
√

𝑣 (0)𝑤𝜒]𝜙,
𝜖 𝜖 1 𝜖 2 𝜖
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where 𝐷𝑆𝜖[⋅] denotes the Fréchet derivative of the operator 𝑆𝜖 at (𝑡1
√

𝑣𝜖(0)𝑤𝜒, 𝑡2
√

𝑣𝜖(0)𝑤𝜒)𝑇 .
Then we have the following key result about the uniform invertibility of the linearized operator 𝐿𝜖 . The proof is quite standard and it is based 

on computing the kernel of the limiting operator as 𝜖 → 0. We outline the key steps of the argument. The last part of the argument is specific to 
the system considered in this paper.

Proposition 1. There exist positive constants 𝜖, 𝑐 such that we have for all 𝜖 ∈ (0, 𝜖), 
‖𝐿𝜖𝜙‖𝐿2(𝛺𝜖 ) ≥ 𝑐 ‖𝜙‖𝐻2(𝛺𝜖 )  for all 𝜙 = (𝜙1, 𝜙2)𝑇 ∈ (𝐻2

𝑁,𝑒𝑣(𝛺𝜖))2. (3.2)

Further, the linear mapping 𝐿𝜖 is surjective.

Proof.  We prove by contradiction. Suppose that (3.2) is false. Then there exist sequences {𝜖𝑘}, {𝜙𝑘} with 𝜖𝑘 → 0, 𝜙𝑘 = 𝜙𝜖𝑘 ∈ (𝐻2
𝑁,𝑒𝑣(𝛺𝜖))2, 

𝑘 = 1, 2,… such that 
‖𝐿𝜖𝑘𝜙

𝑘
‖(𝐿2(𝛺𝜖𝑘 ))

2 → 0, as 𝑘 → ∞, ‖𝜙𝑘‖(𝐻2(𝛺𝜖𝑘 ))
2 = 1, 𝑘 = 1, 2, … . (3.3)

At first (after rescaling) 𝜙𝜖𝑘  is only defined on 𝛺𝜖𝑘 . However, by a standard result (compare [37]) it can be extended to R such that its norm in 
𝐻2(R) is still bounded by a constant independent of 𝜖𝑘 for 𝜖𝑘 small enough. It is then a standard procedure to show that this extension converges 
strongly in 𝐻2(𝛺𝜖) to some limit 𝜙∞ with ‖𝜙∞‖(𝐻2(R))2 = 1. For the functional-analytic details of the argument, we refer to [38].

Then 𝜙∞ = (𝜙1, 𝜙2)𝑇  solves the system
𝛥𝜙1 − 𝜙1 + [(2𝜇1𝑡21 + 1)𝜙1 + 2𝛽𝑡1𝑡2𝜙2]𝑤2

−
𝑡1

𝑡1 + 𝑡2

[

(2𝜇1𝑡21 + 1 + 2𝛽𝑡1𝑡2)∫R
𝑤2𝜙1 𝑑𝑦 + (2𝜇2𝑡22 + 1 + 2𝛽𝑡1𝑡2)∫R

𝑤2𝜙2 𝑑𝑦
]

𝑤3

∫R𝑤3 𝑑𝑦
= 0, (3.4)

𝛥𝜙2 − 𝜙2 + [(2𝜇2𝑡22 + 1)𝜙2 + 2𝛽𝑡1𝑡2𝜙1]𝑤2

−
𝑡2

𝑡1 + 𝑡2

[

(2𝜇2𝑡22 + 1 + 2𝛽𝑡1𝑡2)∫R
𝑤2𝜙2 𝑑𝑦 + (2𝜇1𝑡21 + 1 + 2𝛽𝑡1𝑡2)∫R

𝑤2𝜙1 𝑑𝑦
]

𝑤3

∫R𝑤3 𝑑𝑦
= 0. (3.5)

This system is the special case with 𝜆 = 0 of (4.5) and (4.6) derived in Section 4. To avoid repetition of the derivations we refer to Section 4, 
where the derivation will be made in a more general case.

Next we prove 𝜙1 = 𝜙2 = 0. This can be done using similar arguments as in Section 4, by first showing that −𝑡2𝜙1 + 𝑡1𝜙2 = 0, and then that 
𝑡1𝜙1 + 𝑡2𝜙2 = 0. Thus, 𝜙1 = 𝜙2 = 0. To avoid repetition, here we refer to the detailed calculations given below in the proof of Proposition  2.

This contradicts the assumption ‖𝜙‖𝐻2(𝛺𝜖 ) = 1. Therefore, (3.2) must be true.
In order to show its surjectivity, we need to show that the kernel of the adjoint operator is trivial, namely that the following system has only 

the zero solution 𝜙 = (𝜙1, 𝜙2)𝑇 :

𝛥𝜙1 − 𝜙1 + [(2𝜇1𝑡21 + 1)𝜙1 + 2𝛽𝑡1𝑡2𝜙2]𝑤2

−
2𝜇1𝑡21 + 1 + 2𝛽𝑡1𝑡2

𝑡1 + 𝑡2

[

𝑡1 ∫R
𝑤3𝜙1 𝑑𝑦 + 𝑡2 ∫R

𝑤3𝜙2 𝑑𝑦
]

𝑤2

∫R𝑤3 𝑑𝑦
= 0, (3.6)

𝛥𝜙2 − 𝜙2 + [(2𝜇2𝑡22 + 1)𝜙2 + 2𝛽𝑡1𝑡2𝜙1]𝑤2

−
2𝜇2𝑡22 + 1 + 2𝛽𝑡1𝑡2

𝑡1 + 𝑡2

[

𝑡2 ∫R
𝑤3𝜙2 𝑑𝑦 + 𝑡1 ∫R

𝑤3𝜙1 𝑑𝑦
]

𝑤2

∫R𝑤3 𝑑𝑦
= 0. (3.7)

Combining (3.6), (3.7) and using (2.3) implies that 𝜙̂1 = 𝑡1𝜙1 + 𝑡2𝜙2 satisfies 

𝛥𝜙̂1 − 𝜙̂1 + 3𝜙̂1𝑤
2 − 3∫ 𝑤3𝜙̂1 𝑑𝑦

𝑤2

∫ 𝑤3 𝑑𝑦
= 0. (3.8)

Multiplying (3.8) by 𝑤, integrating and using (1.3), we get

∫ 𝑤3𝜙̂1 𝑑𝑦 = 0.

Thus the nonlocal term in (3.8) vanishes and we have
𝛥𝜙̂1 − 𝜙̂1 + 3𝜙̂1𝑤

2 = 0.

This implies 𝜙1 = 0 by Lemma 4.1 in [39] since it is an even function.
Thus, the nonlocal terms in (3.6), (3.7) vanish. Then for 𝜙̂2 = 𝑡2𝜙1 − 𝑡1𝜙2, we get

𝛥𝜙̂2 − 𝜙̂2 + (3 − 2𝛽(𝑡21 + 𝑡
2
2))𝜙̂2𝑤

2 = 0

which implies 𝜙2 = 0 by Lemma 4.1 of [39] (see also in the Appendix). Going back to the original eigenfunctions, we have 𝜙1 = 𝜙2 = 0.
By the Closed Range Theorem it follows that the map 𝐿𝜖 is surjective. (The details are given for example in [38].) □

Next we complete the proof of Theorem  1. It is quite standard and based on the contraction mapping principle. We outline the argument for 
the system under consideration.

Proof of Theorem  1. The main existence result Theorem  1 can now be shown as follows:
We first compute 𝑆𝜖[𝑡1

√

𝑣𝜖(0)𝑤𝜒, 𝑡2
√

𝑣𝜖(0)𝑤𝜒]. From the first equation of (1.2), we get

𝜖2𝑢1,𝑥𝑥 − 𝑢1 +
𝜇1𝑢31 + 𝛽𝑢1𝑢

2
2 = 𝑡1

√

𝑣𝜖(0)(𝑤′′ −𝑤 +𝑤3) + 𝑡1
√

𝑣𝜖(0)𝑤3
(

𝑣𝜖(0) − 1
)

+ 𝑂(𝜖3)

𝑣𝜖 𝑣𝜖(𝜖𝑦)

8 



W. Ao et al. Physica D: Nonlinear Phenomena 481 (2025) 134850 
= 0 + 𝑡1
√

𝑣𝜖(0)𝑤3

(

−
𝑣′′𝜖 (0)𝜖

2𝑦2

2𝑣𝜖(0)
+ 𝑂(𝜖3|𝑦|3)

)

= 𝑂(𝜖2𝑦2𝑤3(𝑦)).

Here we have used that 𝑣𝜖(𝜖𝑦) is an even function and so 𝑣′𝜖(0) = 0 and the 𝑂(𝜖) term vanishes.
Since

𝑆𝜖[𝑡1
√

𝑣𝜖(0)𝑤𝜒 + 𝑎1, 𝑡2
√

𝑣𝜖(0)𝑤𝜒 + 𝑎2] = 𝑆𝜖[𝑡1
√

𝑣𝜖(0)𝑤𝜒, 𝑡2
√

𝑣𝜖(0)𝑤𝜒] + 𝐿𝜖(𝑎1, 𝑎2) + 𝐺(𝑎1, 𝑎2),

where

‖𝑆𝜖[𝑡1
√

𝑣𝜖(0)𝑤𝜒, 𝑡2
√

𝑣𝜖(0)𝑤𝜒]‖(𝐿2(𝛺𝜖 ))2 = 𝑂(𝜖2)

and

‖𝐺(𝑎1, 𝑎2)‖(𝐿2(𝛺𝜖 ))2 = 𝑂((‖(𝑎1, 𝑎2)‖(𝐿2(𝛺𝜖 ))2 )
2)

we can re-write
𝑆𝜖[𝑡1

√

𝑣𝜖(0)𝑤𝜒 + 𝑎1, 𝑡2
√

𝑣𝜖(0)𝑤𝜒 + 𝑎2] = 0

as

(𝑎1, 𝑎2) = −𝐿−1
𝜖 𝑆𝜖[𝑡1

√

𝑣𝜖(0)𝑤𝜒, 𝑡2
√

𝑣𝜖(0)𝑤𝜒] − 𝐿−1
𝜖 𝐺(𝑎1, 𝑎2).

In other words, we need to find a fixed point (𝑎1, 𝑎2) ∈ 𝐻2,𝑒𝑣(𝛺𝜖) of the mapping

−𝐿−1
𝜖 𝑆𝜖[𝑡1

√

𝑣𝜖(0)𝑤𝜒, 𝑡2
√

𝑣𝜖(0)𝑤𝜒] − 𝐿−1
𝜖 𝐺(𝑎1, 𝑎2) ∶ 𝐻2,𝑒𝑣(𝛺𝜖) ↦ 𝐻2,𝑒𝑣(𝛺𝜖).

The existence of this fixed point is guaranteed by the contraction mapping principle. The details follow closely the analysis for the Gierer–Meinhardt 
system, see for example Section 3 in [40] or Section 5 in [35]. The existence of Type 1 solutions follows. □

For the existence of Type 2 solutions, the proof is similar and is omitted. The nonlocal eigenvalue problem is given in (4.15) and (4.16) and no 
transformation of eigenfunctions is required. The result about the kernel of the nonlocal eigenvalue problem is given in Proposition  3. As for Type 
1 solutions it has to be shown that the kernel of the adjoint operator is trivial. To prove this result we have to consider the same NLEP as in (3.8) 
but now applied to 𝜙1 instead of 𝜙̂1. The proof concludes in the same way as for Type 1 solutions.

In the next two sections we consider the stability or instability of these solutions.

4. Stability I: The eigenvalue problem and the large eigenvalues

Now we study the (linearized) stability of this even steady state. To this end, we first derive the linearized operator around the steady state 
(𝑢𝜖1, 𝑢

𝜖
2, 𝑣

𝜖) given in Theorem  1.
We perturb the steady state as follows:

𝑢1 = 𝑢𝜖1 + 𝜙
𝜖
1𝑒
𝜆𝑡, 𝑢2 = 𝑢𝜖2 + 𝜙

𝜖
2𝑒
𝜆𝑡, 𝑣 = 𝑣𝜖 + 𝜓𝜖𝑒𝜆𝑡.

By linearization, we obtain the following eigenvalue problem (dropping superscripts and subscripts 𝜖): 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜆𝜖𝜙1 = 𝜖2𝜙1,𝑥𝑥 − 𝜙1 +
3𝜇1𝑢21𝜙1 + 𝛽𝑢22𝜙1 + 2𝛽𝑢1𝑢2𝜙2

𝑣
−
𝜇1𝑢31 + 𝛽𝑢1𝑢

2
2

𝑣2
𝜓,

𝜆𝜖𝜙2 = 𝜖2𝜙2,𝑥𝑥 − 𝜙2 +
3𝜇2𝑢22𝜙2 + 𝛽𝑢21𝜙2 + 2𝛽𝑢1𝑢2𝜙1

𝑣
−
𝜇2𝑢32 + 𝛽𝑢

2
1𝑢2

𝑣2
𝜓,

𝜏𝜆𝜖𝜓 = 𝐷𝜓𝑥𝑥 − 𝜓 + (3𝜇1𝑢21𝜙1 + 𝛽𝑢22𝜙1 + 2𝛽𝑢1𝑢2𝜙2 + 3𝜇2𝑢22𝜙2 + 𝛽𝑢21𝜙2 + 2𝛽𝑢1𝑢2𝜙1)𝜖−1,

(4.1)

where all components belong to the space 𝐻2
𝑁 (𝛺).

We now analyze the case 𝜆𝜖 → 𝜆0 ≠ 0 (large eigenvalues). We rescale 𝑥 = 𝜖𝑦, take the limit 𝜖 → 0 in (4.1), and note that 𝜙𝑖 converges locally 
in 𝐻2(𝛺𝜖). Then we get for the first two components, using the approximations of 𝑢1 and 𝑢2 given in Theorem  1: 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆𝜖𝜙1 ∼ 𝜙1,𝑦𝑦 − 𝜙1 +
3𝜇1𝑢21𝜙1 + 𝛽𝑢22𝜙1 + 2𝛽𝑢1𝑢2𝜙2

𝑣(0)
−
𝜇1𝑢31 + 𝛽𝑢1𝑢

2
2

𝑣(0)2
𝜓(0),

𝜆𝜖𝜙2 ∼ 𝜙2,𝑦𝑦 − 𝜙2 +
3𝜇2𝑢22𝜙2 + 𝛽𝑢21𝜙2 + 2𝛽𝑢1𝑢2𝜙1

𝑣(0)
−
𝜇2𝑢32 + 𝛽𝑢

2
1𝑢2

𝑣(0)2
𝜓(0),

(4.2)

where 𝑣(0) is given by (2.11).
Now we calculate the term 𝜓(0). We consider the special case 𝜏 = 0 using the Green’s function 𝐺𝐷 given in (2.7).

Remark 6. The case of small 𝜏 can be considered using a small perturbation of the case 𝜏 = 0 as it can be shown that |𝜆𝜖| ≤ 𝐶 for all eigenvalues 
such that 𝜆𝜖 > −𝑐0 with some small 𝑐0 > 0, for example using a characterization of the eigenvalues by quadratic forms [41]. Alternatively, one 
could consider the case of arbitrary 𝜏 using a more general Green’s function.

From the third equation of (4.1) we get 

𝜓(0) ∼ 𝑣(0)
[

[3𝜇1𝑡21 + 𝛽𝑡
2
2 + 2𝛽𝑡1𝑡2]∫ 𝑤2𝜙1 𝑑𝑦 + [2𝛽𝑡1𝑡2 + 3𝜇2𝑡22 + 𝛽𝑡

2
1]∫ 𝑤2𝜙2 𝑑𝑦

]

𝐺𝐷(0, 0). (4.3)

R R

9 
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Recalling from (2.11) that

𝑣(0) = 1

𝐺𝐷(0, 0)2(𝑡1 + 𝑡2)2
(

∫R𝑤3
)2

+ 𝑂(𝜖),

we get from (4.3)

𝜓(0) ∼ 1
𝐺𝐷(0, 0)(𝑡1 + 𝑡2)2(∫R𝑤3𝑑𝑦)2

×
[

[3𝜇1𝑡21 + 𝛽𝑡
2
2 + 2𝛽𝑡1𝑡2]∫R

𝑤2𝜙1 𝑑𝑦 + [2𝛽𝑡1𝑡2 + 3𝜇2𝑡22 + 𝛽𝑡
2
1]∫R

𝑤2𝜙2 𝑑𝑦
]

. (4.4)

Then (4.2) gives the following nonlocal eigenvalue problem (NLEP)
𝛥𝜙1 − 𝜙1 + [(2𝜇1𝑡21 + 1)𝜙1 + 2𝛽𝑡1𝑡2𝜙2]𝑤2

−
𝑡1

𝑡1 + 𝑡2

[

(2𝜇1𝑡21 + 1 + 2𝛽𝑡1𝑡2)∫R
𝑤2𝜙1 𝑑𝑦 + (2𝜇2𝑡22 + 1 + 2𝛽𝑡1𝑡2)∫R

𝑤2𝜙2 𝑑𝑦
]

𝑤3

∫R𝑤3 𝑑𝑦
= 𝜆𝜙1, (4.5)

𝛥𝜙2 − 𝜙2 + [(2𝜇2𝑡22 + 1)𝜙2 + 2𝛽𝑡1𝑡2𝜙1]𝑤2

−
𝑡2

𝑡1 + 𝑡2

[

(2𝜇2𝑡22 + 1 + 2𝛽𝑡1𝑡2)∫R
𝑤2𝜙2 𝑑𝑦 + (2𝜇1𝑡21 + 1 + 2𝛽𝑡1𝑡2)∫R

𝑤2𝜙1 𝑑𝑦
]

𝑤3

∫R𝑤3 𝑑𝑦
= 𝜆𝜙2, (4.6)

where 𝜙1, 𝜙2 ∈ 𝐻2(R).
We first diagonalize the local terms of the NLEP (4.5), (4.6). Written in vector form, the local terms are 

𝛥𝜙 − 𝜙 + 𝜙𝑤2, (4.7)

where 𝜙 = (𝜙1, 𝜙2)𝑇  and 

 =
(

2𝜇1𝑡21 + 1 2𝛽𝑡1𝑡2
2𝛽𝑡1𝑡2 2𝜇2𝑡22 + 1

)

. (4.8)

Using (2.3), the eigenvalues of  are 3 and 3 − 2𝛽(𝑡21 + 𝑡
2
2), with corresponding eigenvectors (𝑡1, 𝑡2)𝑇  and (−𝑡2, 𝑡1)𝑇 , respectively.

Thus, setting 
𝜙̂1 = 𝑡1𝜙1 + 𝑡2𝜙2 (4.9)

and 
𝜙̂2 = −𝑡2𝜙1 + 𝑡1𝜙2, (4.10)

the NLEP is transformed to
𝛥𝜙̂1 − 𝜙̂1 + 3𝜙̂1𝑤

2

−
[

3∫R
𝑤2𝜙̂1 𝑑𝑦 +

𝑡1 − 𝑡2
𝑡1 + 𝑡2

(3 − 2𝛽(𝑡21 + 𝑡
2
2))∫R

𝑤2𝜙̂2 𝑑𝑦
]

𝑤3

∫ 𝑤3 𝑑𝑦
= 𝜆𝜙̂1, (4.11)

and 
𝛥𝜙̂2 − 𝜙̂2 + (3 − 2𝛽(𝑡21 + 𝑡

2
2))𝜙̂2𝑤

2 = 𝜆𝜙̂2. (4.12)

Note that the transformed NLEP has a special structure: the second equation is decoupled from the first equation and it is a local equation. 
Therefore it can be considered first. Only the first equation has a nonlocal term.

While the NLEP approach is rather standard, the derivation of the transformed NLEP and its special structure are specific to this problem. 
Careful adjustment of the general approach is required to extend the analysis to this case.

By Lemma 3.2 of [42] we have exact information about the eigenvalues of the NLEP 

𝛥𝜙 − 𝜙 + 3𝜙𝑤2 − 3∫R
𝑤2𝜙𝑑𝑦 𝑤3

∫ 𝑤3 𝑑𝑦
= 𝜆𝜙. (4.13)

Using the identity 𝐿0𝑤2 = 3𝑤2, where 𝐿0𝜙 = 𝛥𝜙 − 𝜙 + 3𝜙𝑤2, it has been shown in [42] that the point spectrum for the non-selfadjoint problem 
(4.13) is real, and it can be determined exactly. For the principal eigenvalue we have

𝜆 = 3

(

1 −
∫R𝑤

5 𝑑𝑦

∫R𝑤3 𝑑𝑦

)

= 3
(

1 − 3
2

)

= −3
2

using 𝑤(𝑦) =
√

2 sech 𝑦. Further, the continuous spectrum of (4.13) is 𝜆 < −1. The kernel of (4.13) equals span {𝑤𝑦}.
In (4.12) we rewrite

3 − 2𝛽(𝑡21 + 𝑡
2
2) = 1 − 2𝑔(𝛽),

where 𝑔(𝛽) = 𝛽(𝑡21 + 𝑡
2
2) − 1. For stability, it will be crucial to determine the sign of 𝑔(𝛽). Using (2.3), (2.10), we compute

𝑔(𝛽) = (𝛽 − 𝜇2)𝑡22 =
(𝛽 − 𝜇1)(𝛽 − 𝜇2)
𝛽2 − 𝜇1𝜇2

.

Since 𝑡21𝑡22 > 0, from (2.10) we get (𝛽 − 𝜇1)(𝛽 − 𝜇2) > 0. Therefore 𝑔(𝛽) has the same sign as 𝛽2 − 𝜇1𝜇2. Therefore, 𝑔(𝛽) > 0 if 𝛽 > max(𝜇1, 𝜇2) and 
𝑔(𝛽) < 0 if 𝛽 < min(𝜇1, 𝜇2).

Then for the kernel of the NLEP (4.5), (4.6) we have the following result:
10 
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Proposition 2. Suppose that

𝛽 > max(𝜇1, 𝜇2)  or 𝛽 < min(𝜇1, 𝜇2).

If 𝜆 = 0, we get for the NLEP (4.5), (4.6)

𝜙1 = 𝑡1𝛼𝑤𝑦, 𝜙2 = 𝑡2𝛼𝑤𝑦, (with some real number 𝛼).

Proof.  We apply Lemma 4.1 in [39] to the second equation of the transformed NLEP (4.11), (4.12) and get 𝜙̂2 = 0 since 𝑔(𝛽) ≠ 0. Then we apply 
Lemma 3.2 of [42] to the first equation and get 𝜙̂1 = 𝛼𝑤𝑦, where 𝛼 is a real number.

Transforming back, for the kernel of the original NLEP (4.5), (4.6) we have

𝜙1 = 𝑡1𝛼𝑤𝑦, 𝜙2 = 𝑡2𝛼𝑤𝑦, (with some real number 𝛼). □

We will show Theorems  3 and 4 in two parts. In this section, we will show that all the large eigenvalues of order 𝑂(1) must have negative real 
part. In the next section, we will show that all the small eigenvalues of order 𝑜(1) must have negative real part. Here is the first part of the proof.

Proof of Theorem  3 (Part 1). We consider the eigenvalues of the transformed NLEP (4.11), (4.12). We first consider the case 𝛽 > max(𝜇1, 𝜇2). Then 
we have 𝑔(𝛽) > 0. If Re(𝜆) ≥ −𝑐 for some 𝑐 > 0 small enough, and 𝜆 ≠ 0, then by Lemma 4.1 (4) of [11] (see also in the Appendix) we have

𝜙̂2 = 0.

Since 𝜙̂2 = 0, the first equation becomes

𝛥𝜙̂1 − 𝜙̂1 + 3𝜙̂1𝑤
2 − 3∫ 𝑤2𝜙̂1 𝑑𝑦

𝑤3

∫ 𝑤3 𝑑𝑦
= 𝜆𝜙̂1.

Therefore, 𝜙̂1 satisfies (4.13). By Lemma 3.2 of [42] we have 𝜙̂1 = 0. Transforming back, this implies that 𝜙1 = 𝜙2 = 0, and there is no eigenvalue 
with Re(𝜆) ≥ −𝑐 for some 𝑐 > 0 small enough and 𝜆 ≠ 0. The stability part of Theorem  3 follows.

If 𝛽 < min(𝜇1, 𝜇2), it follows that 𝑔(𝛽) < 0 and we will show that the spike solutions are unstable.
In fact, by Lemma 4.1 (3) of [11] (see also in the Appendix), for (4.16) there is an eigenfunction 𝜙̂2 with 𝜆 > 0. Using this eigenfunction 𝜙̂2 we 

can compute 𝜙̂1 as follows:
Let 

𝜙̂1 = 𝛥𝜙̂1 − 𝜙̂1 + 3𝜙̂1𝑤
2 − 3𝑤3

∫ 𝑤3 𝑑𝑦 ∫ 𝑤2𝜙̂1 𝑑𝑦. (4.14)

Note that the operator  − 𝜆𝐼 ∶ 𝐻2(R) → 𝐿2(R) is invertible by Lemma 3.2 of [42]. Then we compute

𝜙̂1 = −( − 𝜆𝐼)−1
𝑡1 − 𝑡2
𝑡1 + 𝑡2

(3 − 2𝛽(𝑡21 + 𝑡
2
2))∫ 𝑤2𝜙̂2 𝑑𝑦

𝑤3

∫ 𝑤3 𝑑𝑦
.

Transforming back, we get an eigenfunction (𝜙1, 𝜙2) with eigenvalue 𝜆 > 0.
Arguing as in the proof of Theorem 1 of [43] (see also in the Appendix) the eigenvalue problem (4.5), (4.6) captures all converging sequences of 

eigenvalues 𝜆𝜖 of (4.1) which converge to an eigenvalue 𝜆 with Re(𝜆) > −1. On the other hand, for any eigenvalue 𝜆 of (4.5), (4.6) with Re(𝜆) > −1
there is a converging sequence of eigenvalues 𝜆𝜖 of (4.1) with 𝜆 as its limit. Therefore the eigenvalue problem (4.1) is stable concerning eigenvalues 
sequences 𝜆𝜖 converging to a limit which is not zero. The proof of Theorem  3 (Part 1) is complete. □

The proof of Theorem  4 follows the same strategy. For Type 2 spike solutions, using (4.2), the NLEP becomes 

𝛥𝜙1 − 𝜙1 + 3𝜙1𝑤
2 −

[

3∫𝛺
𝑤2𝜙1 𝑑𝑦 +

𝛽
𝜇1 ∫𝛺

𝑤2𝜙2 𝑑𝑦
]

𝑤3

∫𝛺 𝑤3 𝑑𝑦
= 𝜆𝜙1, (4.15)

𝛥𝜙2 − 𝜙2 +
𝛽
𝜇1
𝜙2𝑤

2 = 𝜆𝜙2, (4.16)

where 𝜙1, 𝜙2 ∈ 𝐻2(R).
The NLEP has a special structure: Only the first equation is a NLEP. The second equation is a decoupled local equation. No transformation of 

the eigenfunctions is required.
First, we have the following result about the kernel of the NLEP (4.15), (4.16):

Proposition 3. Suppose that 𝛽𝜇1 ≠ 1. If 𝜆 = 0, we get for the NLEP (4.15), (4.16)𝜙1 = 𝛼𝑤𝑦, 𝜙2 = 0, where 𝛼 is a real number.

Proof.  We apply Lemma 4.1 in [39] to the second equation and get 𝜙2 = 0. Then we apply Lemma 3.2 of [42] to the first equation and get 
𝜙1 = 𝛼𝑤𝑦, where 𝛼 is a real number. □

Proof of Theorem  4 (Part 1). We consider the eigenvalues of the NLEP (4.15), (4.16). If Re(𝜆) ≥ −𝑐 for some 𝑐 > 0 small enough, and 𝜆 ≠ 0, we 
get 𝜙2 = 0, provided that 𝛽𝜇1 < 1, by using Lemma 4.1 (4) of [11]. Then we apply Lemma 3.2 of [42] to the first equation and get 𝜙1 = 0. This 
implies stability of the eigenvalue problem (4.15), (4.16).

On the other hand, if 𝛽𝜇1 > 1 we can construct an unstable eigenfunction, first for 𝜙2, and then also for 𝜙1. In fact, by Lemma 4.1 (3) of [11], 
for (4.16) there is an eigenfunction 𝜙  with 𝜆 > 0. Using this eigenfunction 𝜙  we can compute 𝜙  as follows:
2 2 1

11 



W. Ao et al. Physica D: Nonlinear Phenomena 481 (2025) 134850 
Let  be the operator defined in (4.14) but now applied to 𝜙1 instead of 𝜙̂1. Recall that the operator  − 𝜆𝐼 ∶ 𝐻2(R) → 𝐿2(R) is invertible by 
Lemma 3.2 of [42]. Then we compute

𝜙1 = −( − 𝜆𝐼)−1
𝛽
𝜇1 ∫ 𝑤2𝜙2 𝑑𝑦

𝑤3

∫ 𝑤3 𝑑𝑦
.

Thus (𝜙1, 𝜙2) is an eigenfunction for eigenvalue 𝜆 > 0.
Again, using the argument [43], the eigenvalue problem (4.1) is stable concerning eigenvalue sequences 𝜆𝜖 whose limit is not zero. The proof 

of Theorem  4 (Part 1) is complete. □

In the next section we will prove Theorem  3 (Part 2) and Theorem  4 (Part 2) by considering small eigenvalues 𝜆𝜖 which converge to zero. 

5. Stability II: The small eigenvalues

Now we study the small eigenvalues for (4.1), namely those with 𝜆𝜖 → 0 as 𝜖 → 0. For simplicity, we set 𝜏 = 0. Since 𝜏𝜆𝜖 ≪ 1 the results in this 
section are also valid for 𝜏 finite. The case of general 𝜏 > 0 can be treated as in Section 7 of [33]. We will show that the small eigenvalues are of 
order 𝑂(𝜖2).

The analysis of small eigenvalues has been performed for related problems. Here we need to carry out a transformation of the eigenvalue 
problem to adapt the general approach to this case.

Proof of Theorem  3 (Part 2). For given 𝑓 ∈ 𝐿2(𝛺), let 𝑇 [𝑓 ] be the unique solution in 𝐻2
𝑁 (𝛺) of the problem 

𝐷𝛥(𝑇 [𝑓 ]) − 𝑇 [𝑓 ] + 𝜖−1𝑓 = 0. (5.1)

We present the argument in detail for Type 1 solutions. We will explain the differences for Type 2 and Type 3 solutions in Remark  7.
By Theorem  1 we have for the spiky steady states

𝑢𝜖1 = 𝑡1𝑤𝜖 + 𝑂(𝜖), 𝑢𝜖2 = 𝑡2𝑤𝜖 + 𝑂(𝜖),

𝑣𝜖 = 𝑇 [𝜇1(𝑢𝜖1)
3 + 𝛽𝑢𝜖1(𝑢

𝜖
2)

2 + 𝜇2(𝑢𝜖2)
3 + 𝛽(𝑢𝜖1)

2𝑢𝜖2], (5.2)

where 
𝑡𝑖 =

√

𝑣𝜖(0)𝑡𝑖. (5.3)

After rescaling 𝑥 = 𝜖𝑦 for the first two components, the eigenvalue problem (4.1) becomes 

𝜆𝜖𝜙1 = 𝜙1,𝑦𝑦 − 𝜙1 +
3𝜇1(𝑢𝜖1)

2𝜙1 + 𝛽(𝑢𝜖2)
2𝜙1 + 2𝛽𝑢𝜖1𝑢

𝜖
2𝜙2

𝑣𝜖
−
𝜇1(𝑢𝜖1)

3 + 𝛽𝑢𝜖1(𝑢
𝜖
2)

2

𝑣2𝜖
𝜓,

𝜆𝜖𝜙2 = 𝜙2,𝑦𝑦 − 𝜙2 +
3𝜇2(𝑢𝜖2)

2𝜙2 + 𝛽(𝑢𝜖1)
2𝜙2 + 2𝛽𝑢𝜖1𝑢

𝜖
2𝜙1

𝑣𝜖
−
𝜇2(𝑢𝜖2)

3 + 𝛽(𝑢𝜖1)
2𝑢𝜖2

𝑣2𝜖
𝜓,

𝜏𝜆𝜖𝜓 = 𝐷𝜓𝑥𝑥 − 𝜓 +
[

3𝜇1(𝑢𝜖1)
2𝜙1 + 𝛽(𝑢𝜖2)

2𝜙1 + 2𝛽𝑢𝜖1𝑢
𝜖
2𝜙2 + 3𝜇2(𝑢𝜖2)

2𝜙2 + 𝛽(𝑢𝜖1)
2𝜙2 + 2𝛽𝑢𝜖1𝑢

𝜖
2𝜙1

]

𝜖−1,

(5.4)

where the unknown functions 𝜙1, 𝜙2 are in 𝐻2
𝑁 (𝛺𝜖) and 𝜓 is in 𝐻2

𝑁 (𝛺).
Let us define 

𝑢̃𝜖,𝑗 (𝜖𝑦) = 𝜒(𝜖𝑦)𝑢𝜖𝑗 (𝜖𝑦), 𝑗 = 1, 2, (5.5)

where 𝜒 is the smooth, even cut-off function defined in (3.1). Then 
𝑢̃𝜖,𝑗 (𝑥) = 𝑢𝜖𝑗 (𝑥) + e.s.t., 𝑗 = 1, 2, (5.6)

where e.s.t. denotes an exponentially small term in 𝐻2
𝑁 (𝛺𝜖). We note that 𝑢̃𝜖,𝑗 , 𝑗 = 1, 2 are even functions.

Next we transform the eigenfunctions as in (4.9), (4.10):
𝜙̂1 = 𝑡1𝜙1 + 𝑡2𝜙2,

𝜙̂2 = −𝑡2𝜙1 + 𝑡1𝜙2.

The transformed eigenvalue problem becomes in leading order 

𝜆𝜖𝜙̂1 = 𝜙̂1,𝑦𝑦 − 𝜙̂1 + 3𝑤2𝜒2𝜙̂1
𝑣𝜖(0)
𝑣𝜖

(1 + 𝑂(𝜖)) − (𝑡21 + 𝑡
2
2)𝑤

3𝜒3 (𝑣𝜖(0))
3∕2𝜓̂

𝑣2𝜖
(1 + 𝑂(𝜖)),

𝜆𝜖𝜙̂2 = 𝜙̂2,𝑦𝑦 − 𝜙̂2 + (3 − 2𝛽(𝑡21 + 𝑡
2
2))𝑤

2𝜒2𝜙̂2
𝑣𝜖(0)
𝑣𝜖

(1 + 𝑂(𝜖)),

𝜏𝜆𝜖𝜓̂ = 𝐷𝜓̂𝑥𝑥 − 𝜓̂ +
[

3𝑤2𝜒2𝜙̂1 +
𝑡1−𝑡2
𝑡1+𝑡2

(3 − 2𝛽(𝑡21 + 𝑡
2
2))𝑤

2𝜒2𝜙̂2

]

𝑣𝜖(0)𝜖−1(1 + 𝑂(𝜖)),

(5.7)

where all unknown functions 𝜙̂1, 𝜙̂2, 𝜓̂ are in 𝐻2
𝑁 (𝛺).

Next we define the approximate kernel and co-kernel for the transformed eigenvalue problem (5.7)

𝜖 ∶= span
{(

𝑡1
𝑑 𝑢̃𝜖,1(𝜖𝑦) + 𝑡2

𝑑 𝑢̃𝜖,2(𝜖𝑦), 0
)}

⊂ (𝐻2 (𝛺𝜖))2,
𝑑𝑦 𝑑𝑦 𝑁

12 
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𝜖 ∶= span
{(

𝑡1
𝑑
𝑑𝑦
𝑢̃𝜖,1(𝜖𝑦) + 𝑡2

𝑑
𝑑𝑦
𝑢̃𝜖,2(𝜖𝑦), 0

)}

⊂ (𝐿2(𝛺𝜖))2,

where 𝛺𝜖 =
(

−𝐿
𝜖 ,

𝐿
𝜖

)

.

Note that, by Theorem  1, 𝑢̃𝜖,𝑗 satisfies

𝛥𝑦𝑢̃𝜖,𝑗 − 𝑢̃𝜖,𝑗 +
𝜇𝑗 𝑢̃3𝜖,𝑗 + 𝛽𝑢̃𝜖,𝑗 𝑢̃

2
𝜖,3−𝑗

𝑣𝜖
+ e.s.t = 0, 𝑗 = 1, 2.

Thus 𝑢̃′𝜖,𝑗 ∶=
𝑑𝑢̃𝜖,𝑗
𝑑𝑦 , 𝑣′𝜖 ∶= 𝜖 𝑑𝑣𝜖 (𝑥)𝑑𝑥  satisfies 

𝛥𝑦𝑦𝑢̃
′
𝜖,𝑗 − 𝑢̃

′
𝜖,𝑗 +

3𝜇1𝑢̃2𝜖,𝑗 + 𝛽𝑢̃
2
𝜖,3−𝑗

𝑣𝜖
𝑢̃′𝜖,𝑗 +

2𝛽𝑢̃𝜖,𝑗 𝑢̃𝜖,3−𝑗
𝑣𝜖

𝑢̃′𝜖,3−𝑗 −
𝜇𝑗 𝑢̃3𝜖,𝑗 + 𝛽𝑢̃𝜖,𝑗 𝑢̃

2
𝜖,3−𝑗

(𝑣𝜖)2
𝑣′𝜖 + e.s.t = 0. (5.8)

This implies

(𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃
′
𝜖,2)𝑦𝑦 − (𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃

′
𝜖,2) +

3𝑤2𝜒2𝑣𝜖(0)
𝑣𝜖

(𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃
′
𝜖,2)

−
(𝑡21 + 𝑡

2
2)𝜒

3𝑤3(𝑣𝜖(0))3∕2

(𝑣𝜖)2
𝑣′𝜖 + 𝑂(𝜖) = 0. (5.9)

Let us now decompose 𝜙̂𝜖 = (𝜙̂𝜖,1, 𝜙̂𝜖,2), where 

𝜙̂𝜖,1 = 𝑎𝜖(𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃
′
𝜖,2) + 𝜙

⟂
𝜖 , (5.10)

with complex numbers 𝑎𝜖 . Here the factor 𝜖 is for scaling purposes, to achieve that 𝑎𝜖 is of order 𝑂(1), and
(𝜙⟂
𝜖 , 0) ∈ ⟂

𝜖 ,

where orthogonality is taken with respect to the scalar product of the product space (𝐿2(𝛺𝜖))2. We will show that
‖𝜙⟂

𝜖 ‖𝐻2(𝛺𝜖 ) = 𝑂(𝜖2), ‖𝜙̂𝜖,2‖𝐻2(𝛺𝜖 ) = 𝑂(𝜖2),

and so 𝜙⟂
𝜖  and 𝜙̂𝜖,2 will not play a leading role in our results.

Suppose that ‖𝜙𝜖‖𝐻2(𝛺𝜖 ) = 1. Then |𝑎𝜖| ≤ 𝐶.
Similarly, we decompose 

𝜓𝜖 = 𝑎𝜖𝜓𝜖,1 + 𝜓⟂
𝜖 , (5.11)

where 𝜓𝜖,1 satisfies 

𝜓𝜖,1 = 𝑇 [3𝑤2𝜒2(𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃
′
𝜖,2)]𝑣𝜖(0)(1 + 𝑂(𝜖)) (5.12)

and 𝜓⟂
𝜖  is given by 

𝜓⟂
𝜖 = 𝑇 [3𝑤2𝜒2𝜙⟂

𝜖 +
𝑡1 − 𝑡2
𝑡1 + 𝑡2

(3 − 2𝛽(𝑡21 + 𝑡
2
2))𝑤

2𝜒2𝜙̂2]𝑣𝜖(0)(1 + 𝑂(𝜖)). (5.13)

By the second equation of (5.7) we get

𝜙̂𝜖,2,𝑦𝑦 − (1 + 𝜆𝜖)𝜙̂𝜖,2 + (3 − 2𝛽(𝑡21 + 𝑡
2
2))𝑤

2𝜒2𝜙̂𝜖,2
𝑣𝜖(0)
𝑣𝜖(𝜖𝑦)

(1 + 𝑂(𝜖)) = 0.

Since 
𝑣𝜖(0)
𝑣𝜖(𝜖𝑦)

= 1 − 1
2(𝑣𝜖(0))

𝑣′′𝜖 (0)𝜖
2𝑦2 + 𝑂(𝜖3|𝑦|3) = 1 + 𝑂(𝜖2𝑦2) (5.14)

we get ‖𝜙̂𝜖,2‖𝐻2(𝛺𝜖 ) = 𝑂(𝜖2). Here we have used that 𝑣𝜖(𝜖𝑦) is an even function and so 𝑣′𝜖(0) = 0 and the 𝑂(𝜖) term vanishes.
Substituting the decomposition of 𝜙̂𝜖,1 and 𝜓𝜖 as well as 𝜙̂𝜖,2 into the first part of (5.7) we have

𝜖

(

𝑎𝜖(𝑡21 + 𝑡
2
2)𝑤

3𝜒3 𝑣𝜖(0)
3∕2

𝑣2𝜖
𝑣′𝜖 − 𝑎

𝜖(𝑡21 + 𝑡
2
2)
𝑤3𝜒3(𝑣𝜖(0))3∕2

𝑣2𝜖
𝜓𝜖,1

)

+ 𝛥𝜙⟂
𝜖 − 𝜙⟂

𝜖 + 3𝑤2𝜒2 𝑣𝜖(0)
𝑣𝜖

𝜙⟂
𝜖 −

(𝑡21 + 𝑡
2
2)𝑤

3𝜒3(𝑣𝜖(0))3∕2

𝑣2𝜖
𝜓⟂
𝜖 − 𝜆𝜖𝜙⟂

𝜖 + e.s.t

= 𝜆𝜖𝑎
𝜖(𝑡21 + 𝑡

2
2)
√

𝑣𝜖(0)𝑤′(1 + 𝑜(1)), (5.15)

since 𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃′𝜖,2 satisfies (5.9) and 𝑡1𝑢̃′𝜖,1 + 𝑡2𝑢̃′𝜖,2 ∼ (𝑡21 + 𝑡
2
2)
√

𝑣𝜖(0)𝑤′.
Using ‖𝜓⟂

𝜖 ‖ = 𝑂(‖𝜙𝜖‖⟂) + 𝑂(𝜖2), we derive ‖𝜙⟂
𝜖 ‖ = 𝑂(𝜖2) and ‖𝜓⟂

𝜖 ‖ = 𝑂(𝜖2) since the operator  − 𝜆𝐼 with  defined in (4.14) is invertible by 
Lemma 3.2 of [42].

Multiplying both sides of (5.15) by 𝑤′ and integrating, the l.h.s and the r.h.s of (5.15) become 

l.h.s. = 𝑎𝜖(𝑡21 + 𝑡
2
2)
√

𝑣𝜖(0)∫R
𝑤3𝜒3 𝑣𝜖(0)

𝑣2𝜖
(𝑣′𝜖 − 𝜓𝜖,1)𝑤

′ 𝑑𝑦 + 𝑂(𝜖3) (5.16)

and 

r.h.s. = 𝜆𝜖𝑎
𝜖(𝑡2 + 𝑡2)

√

𝑣𝜖(0) (𝑤′(𝑦))2 𝑑𝑦 (1 + 𝑜(1)), (5.17)
1 2 ∫R

13 
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respectively.
Note that the integrals resulting from the second line of (5.15) are in leading order a product of an even function of order 𝑂(𝜖2) and an odd 

function. Therefore, for the integrals the terms of 𝑂(𝜖2) vanish and they can estimated by 𝑂(𝜖3).
Using the Green’s function representations of 𝑣𝜖 and 𝜓𝜖 we compute using (2.7)

𝑣′𝜖(𝜖𝑦) − 𝜓𝜖,1(𝜖𝑦)

= −(𝑡1 + 𝑡2)(𝑣𝜖(0))3∕2𝜖 ∫R

(

∇1𝐻𝐷(𝜖𝑦, 𝜖𝑧)𝑤3(𝑧) −𝐻𝐷(𝜖𝑦, 𝜖𝑧)
𝑑
𝑑𝑧
𝑤3(𝑧)

)

𝑑𝑧 + 𝑂(𝜖2)

= −(𝑡1 + 𝑡2)(𝑣𝜖(0))3∕2𝜖 ∫R
(∇1𝐻𝐷(𝜖𝑦, 𝜖𝑧) + ∇2𝐻𝐷(𝜖𝑦, 𝜖𝑧))𝑤3(𝑧) 𝑑𝑧 + 𝑂(𝜖2)

= −(𝑡1 + 𝑡2)(𝑣𝜖(0))3∕2𝜖(∇1𝐻𝐷(𝜖𝑦, 0) + ∇2𝐻𝐷(𝜖𝑦, 0))∫R
𝑤3(𝑧) 𝑑𝑧 + 𝑂(𝜖2),

where ∇1𝐻𝐷(𝑃 ,𝑄) =
𝜕
𝜕𝑃 𝐻𝐷(𝑃 ,𝑄) and ∇2𝐻𝐷(𝑃 ,𝑄) =

𝜕
𝜕𝑄𝐻𝐷(𝑃 ,𝑄).

We have used that the contribution from 𝐾𝐷 vanishes. This can be seen as follows: since 𝐾𝐷(𝑥, 𝑦) = 𝐾𝐷(|𝑥 − 𝑦|) we compute

∫R
𝜕
𝜕𝑦
𝐾𝐷(|𝜖𝑦 − 𝜖𝑧|)𝑤3(𝑧) 𝑑𝑧 = −∫R

( 𝜕
𝜕𝑧
𝐾𝐷(|𝜖𝑦 − 𝜖𝑧|)

)

𝑤3(𝑧) 𝑑𝑧

= ∫R
𝐾𝐷(|𝜖𝑦 − 𝜖𝑧|)

𝑑
𝑑𝑧
𝑤3(𝑧) 𝑑𝑧.

Compare Section 7 of [33].
For (5.16), we get

l.h.s. =

= −𝜖𝑎𝜖(𝑡21 + 𝑡
2
2)
√

𝑣𝜖(0)∫R
(𝑡1 + 𝑡2)

√

𝑣𝜖(0)𝑤′(𝑦)𝑤3(𝑦)(∇1𝐻𝐷(𝜖𝑦, 0) + ∇2𝐻𝐷(𝜖𝑦, 0)) 𝑑𝑦

× ∫R
𝑤3(𝑧) 𝑑𝑧 + 𝑂(𝜖3)

= −𝜖2𝑎𝜖(𝑡21 + 𝑡
2
2)(𝑡1 + 𝑡2)𝑣𝜖(0)∫R

𝑤′(𝑦)𝑤3(𝑦)𝑦 𝑑𝑦((∇1)2𝐻𝐷(0, 0) + ∇1∇2𝐻𝐷(0, 0))

× ∫R
𝑤3(𝑧)𝑑𝑧 + 𝑂(𝜖3)

= 𝜖2𝑎𝜖(𝑡21 + 𝑡
2
2)(𝑡1 + 𝑡2)𝑣𝜖(0)

( 1
4 ∫R

𝑤4(𝑦) 𝑑𝑦
)(

∫R
𝑤3(𝑧) 𝑑𝑧

)

× ((∇1)2𝐻𝐷(0, 0) + ∇1∇2𝐻𝐷(0, 0)) + 𝑂(𝜖3)

= 𝜖2𝑎𝜖(𝑡21 + 𝑡
2
2)(𝑡1 + 𝑡2)𝑣𝜖(0)

( 1
4 ∫R

𝑤4 𝑑𝑦
)(

∫R
𝑤3 𝑑𝑧

)

×
(

∇2
𝑃𝐻𝐷(𝑃 ,𝑄)|𝑃=𝑄=0 + ∇𝑃∇𝑄𝐻𝐷(𝑃 ,𝑄)|𝑃=𝑄=0

)

+ 𝑂(𝜖3)

= 𝜖2𝑎𝜖(𝑡21 + 𝑡
2
2)(𝑡1 + 𝑡2)𝑣𝜖(0)

( 1
8 ∫R

𝑤4 𝑑𝑦
)(

∫R
𝑤3 𝑑𝑧

)

∇2
𝑃𝐻𝐷(𝑃 , 𝑃 )|𝑃=0 + 𝑂(𝜖3). (5.18)

Combining (5.17) and (5.18), the small eigenvalues 𝜆𝜖 satisfy 

𝜆𝜖 ∼ 𝜖2(𝑡1 + 𝑡2)
√

𝑣𝜖(0)
( 1
8 ∫R

𝑤4 𝑑𝑦
)(

∫R
𝑤3 𝑑𝑧

) 1
∫R(𝑤′)2 𝑑𝑦

∇2
𝑃𝐻𝐷(𝑃 , 𝑃 )|𝑃=0. (5.19)

Using (2.11), we get 

𝜆𝜖 ∼ 𝜖2
∫R𝑤

4 𝑑𝑦

8 ∫R(𝑤′)2 𝑑𝑦

∇2
𝑃𝐻𝐷(𝑃 , 𝑃 )|𝑃=0
𝐺𝐷(0, 0)

. (5.20)

Since 𝐺𝐷(0, 0) > 0 and ∇2
𝑃𝐻𝐷(𝑃 , 𝑃 ) < 0 it follows that 𝜆𝜖 < 0. These inequalities can be derived from (2.7) as follows:

𝐺𝐷(𝑃 , 𝑃 ) =
𝜃

sinh(2𝜃𝐿)
cosh 𝜃(𝐿 + 𝑃 ) cosh 𝜃(𝐿 − 𝑃 ),

𝐺𝐷(0, 0) =
𝜃

sinh(2𝜃𝐿)
cosh2(𝜃𝐿) = 𝜃

2
coth(𝜃𝐿) > 0,

∇2
𝑃𝐻𝐷(𝑃 , 𝑃 )|𝑃=0 = −∇2

𝑃𝐺𝐷(𝑃 , 𝑃 )|𝑃=0 = − 2𝜃3
sinh(2𝜃𝐿)

cosh2(2𝜃𝑃 )|𝑃=0 = − 2𝜃3
sinh(2𝜃𝐿)

< 0.

Now the proof of Theorem  3 is complete. □

Remark 7. For Type 2 and Type 3 spikes we can make similar computations for the small eigenvalues. We do not have to make the transformation 
of the eigenfunctions and we use the same Green’s function 𝐺𝐷. We get 

𝜆𝜖 ∼ 𝜖2𝑡1
√

𝑣𝜖(0)
( 1
8 ∫R

𝑤4 𝑑𝑦
)(

∫R
𝑤3(𝑧) 𝑑𝑧

) 1
∫R(𝑤′)2 𝑑𝑦

∇2
𝑃𝐻𝐷(𝑃 , 𝑃 )|𝑃=0. (5.21)

Using (2.15), we get 

𝜆𝜖 ∼ 𝜖2
∫R𝑤

4 𝑑𝑦
′ 2

∇2
𝑃𝐻𝐷(𝑃 , 𝑃 )|𝑃=0 . (5.22)
8 ∫R(𝑤 ) 𝑑𝑦 𝐺𝐷(0, 0)
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Fig. 5. Type 1 solution (𝑢1 > 0, 𝑢2 > 0), color green, 2 spikes, 𝜖2 = 0.0001, 𝐷 = 0.1, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 5.

We can see that the small eigenvalues for the Type 2 and Type 3 solutions are the same as for the Type 1 solutions. Since 𝐺𝐷(0, 0) > 0 and 
∇2
𝑃𝐻𝐷(𝑃 , 𝑃 ) < 0 it follows that 𝜆𝜖 < 0.

Theorem  4 follows along the same lines as Theorem  3. □
In the next section we present some numerical computations of solutions which are beyond the scope of our analytical results.

6. Numerical simulations

We present some numerical simulations of solutions which are more general than the main results in Section 1.
We compute (1.1) with initial conditions 𝑢𝑖(𝑥, 0) = 0.4 + 0.2 cos(100 ∗ 𝜋𝑥), 𝑣(𝑥, 0) = 1.8 + 0.2 cos(100 ∗ 𝜋𝑥). The motivation for these initial 

conditions is to have spatial oscillations on a small scale.
Depending on the size of the inhibitor diffusivity 𝐷, single or multiple spikes will be triggered by these initial conditions in the first stage of 

the numerical simulation. After the shape of the spikes has formed, their amplitudes will converge quickly and their location will converge slowly 
to the final steady state. For (1.1) we use parameters 𝜖2 = 0.0001, 𝜏 = 0.1, and 𝐷 = 0.1, 𝐷 = 0.01 or 𝐷 = 0.001.

The choice of constants for the numerical simulations has been motivated by the analysis. In the analysis we assumed that 𝜖 is ‘‘small enough’’. 
In the numerical simulation we chose 𝜖2 = 0.001 so that the spike width of order √𝜖 ∼

√

0.001 ≈ 0.032 is small compared to the domain size. We 
also chose 𝐷 larger than 𝜖 by at least factor 10, otherwise there might not be any patterns at all due to the Turing instability condition.

For 𝜇1, 𝜇2, 𝛽 we use different settings so that we can get Type 1, Type 2 and Type 3 solutions. From the main results, what matters is the 
relative size of these parameters. The solutions we computed numerically as large time limits are all locally stable according to Theorems  3 and 4, 
respectively.

The analysis in this paper focused on single spike solutions and these are achieved when 𝐷 is relatively large. For smaller values of 𝐷 we can 
get more and more spikes.

We refer the discussion in the next section for further comments about the stability thresholds for 𝐷 depending on the number of spikes 
(Section 7, item 3).

We solved the system using the commercial software COMSOL Multiphyisics 3.5a. For the time stepping we chose the relative tolerance 10−3, 
absolute tolerance 10−4 and we solved up to time 5 ⋅ 104–106. We used the linear system solver Direct (UMFPACK) in every time step with pivot 
threshold 0.1, memory allocation factor 0.7 and automatic matrix symmetry. The time stepping method was backward differentiation formula 
(BDF) with timestep 10−2, initial time step 10−3 and maximum time step 10−1. The maximum BDF order was 5 and the minimum BDF order was 
1, singular mass matrix was allowed. The constraint handling method was elimination, the null-space function was automatic, assembly block size 
was 103, solution form was set to automatic. We set the mesh size to 2 ⋅ 10−3.

After time 5 ⋅ 104–106 the time-dependent solution was well converged to the steady state in all cases. We did not see any visible change when 
the simulation was continued. We expect an error of the order 𝑒−𝜆𝜖 𝑡 due to the slow convergence of the positions of the spikes coming from small 
eigenvalues of order 𝑜(1), see [30]. Recall that for the single spike solutions considered here the small eigenvalues 𝜆𝜖 are given by (5.19) and (5.21), 
respectively. We computed for longer time 106 in the case of multiple spikes solutions since convergence was slower and for shorter time 5 ⋅ 104 in 
the case of single spikes.

Further, there is an error of order ℎ𝛼 with 𝛼 ≥ 1 due to spatial discretization for step size ℎ. We chose step size ℎ = 2 ⋅ 10−3 to achieve a small 
enough spatial error.

The figures show the numerically obtained long-term limit of the three components 𝑢1, 𝑢2, 𝑣, i.e. the state at 5 ⋅ 104–106.
We compute all three types of spiky pattern solutions: Solutions of Type 1 which have spikes for 𝑢1 and spikes for 𝑢2. Solutions of Type 2 which 

have spikes for 𝑢1 but 𝑢2 = 0. Solutions of Type 3 which have spikes for 𝑢2 but 𝑢1 = 0. Finally, we have computed spike solutions which are a 
combination of Type 2 and Type 3 in different parts of the spatial domain.

The first subfigure always shows 𝑢1 (solid line), the second subfigure shows 𝑢2 (left axis, solid line) and 𝑣 (right axis, dotted line) (see Figs. 
5–12). 

7. Discussion and outlook

In this final section, we discuss some possible generalizations, extensions and related topics.
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Fig. 6. Type 1 solution (𝑢1 > 0, 𝑢2 > 0), color green, 7 spikes, 𝜖2 = 0.0001, 𝐷 = 0.01, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 5.

Fig. 7. Type 2 solution (𝑢1 > 0, 𝑢2 = 0), color blue, 2 spikes, 𝜖2 = 0.0001, 𝐷 = 0.1, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 0.5.

Fig. 8. Type 2 solution (𝑢1 > 0, 𝑢2 = 0), color blue, 6 spikes, 𝜖2 = 0.0001, 𝐷 = 0.01, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 0.5.

Fig. 9. Type 3 solution (𝑢1 = 0, 𝑢2 > 0),color yellow, 2 spikes, 𝜖2 = 0.0001, 𝐷 = 0.1, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 2.
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Fig. 10. Type 3 solution (𝑢1 = 0, 𝑢2 > 0), color yellow, 6 spikes, 𝜖2 = 0.0001, 𝐷 = 0.01, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 2.

Fig. 11. Type 2/3 solution combined, colors blue/yellow, 1/1 spikes in different locations, 𝜖2 = 0.0001, 𝐷 = 0.01, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 0.5.

Fig. 12. Type 2/3 solution combined, colors blue/yellow, 6/6 spikes in different locations, 𝜖2 = 0.0001, 𝐷 = 0.001, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 0.5.

1. It seems that the results and proofs can be generalized to the following system with general powers of the activator interaction rates:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1,𝑡 = 𝜖2𝑢1,𝑥𝑥 − 𝑢1 +
𝜇1𝑢

𝑝1
1 + 𝛽𝑢𝑝21 𝑢

𝑝3
2

𝑣𝑞
, 𝑢2,𝑡 = 𝜖2𝑢2,𝑥𝑥 − 𝑢2 +

𝜇2𝑢
𝑝1
2 + 𝛽𝑢𝑝21 𝑢

𝑝3
2

𝑣𝑞
,

𝜏𝑣𝑡 = 𝐷𝑣𝑥𝑥 − 𝑣 +
𝜇1𝑢

𝑟1
1 + 𝛽𝑢𝑟21 𝑢

𝑟3
2 + 𝜇2𝑢

𝑟1
2 + 𝛽𝑢𝑟21 𝑢

𝑟3
2

𝑣𝑠
,

where 𝑝1 = 𝑝2 + 𝑝3 and all 𝑝𝑖 are positive, 𝑟1 = 𝑟2 + 𝑟3 and all 𝑟𝑖 are positive. It may be possible to relax some of these conditions but then the 
analysis will be more technical and the results will be less explicit. Further, it is assumed that

𝑞 > 0, 𝑠 ≥ 0,
𝑞𝑟1
𝑝1 − 1

> 𝑠 + 1

which is a generalization of the condition for the standard Gierer–Meinhardt system.
2. Motivated by the results in [31] for the standard Gierer–Meinhardt system, we expect Hopf bifurcation for sufficiently large 𝜏, resulting in 

oscillating spikes. Our analysis covered only the case 𝜏 = 0 for which oscillations are not possible. We explored this issue numerically in the some 
cases and found the following amplitude oscillations of the spikes or convergence of the solution to zero.

In the simulations we computed (1.1) with 𝐷 = 1, 𝜖2 = 0.0001, and initial conditions 𝑢𝑖(𝑥, 0) = 0.4 + 0.2 cos(𝜋𝑥), 𝑣(𝑥, 0) = 1.8 + 0.2 cos(𝜋𝑥). For 
small values of 𝜏 we observed a single spike steady state. We increased the value of 𝜏 in steps of 0.1 until the solution became unstable.

In particular, for 𝜇1 = 𝜇2 = 0, 𝛽 = 5, and 𝜏 = 0.5, we observed a single spike for 𝑢1 and 𝑢2 with simultaneous amplitude oscillations. For (1.1) 
with 𝜇 = 1, 𝜇 = 3, 𝛽 = 0, and 𝜏 = 1.4, we observed a single spike for 𝑢  only with amplitude oscillations, with 𝑢  converging to zero for large 
1 2 2 1
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Fig. 13. Type 1 solution, color green, 5 spikes, 𝜖21 = 0.0001, 𝜖22 = 0.0004, 𝐷 = 0.01, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 5.

time. For 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 5, and 𝜏 = 0.6, we observed that 𝑢1 and 𝑢2 both converge to zero for large time. It will be interesting to study this 
topic analytically and numerically in a systematic way.

3. The analysis can be extended from single spikes to multiple spikes in different locations. If the inhibitor diffusivity is small enough then 
stable combinations of spikes are expected. Stable solutions should be possible for the following combinations: Type 1 multiple spikes only, Type 
2 multiple spikes only, Type 3 multiple spikes only, combination of Type 2 and Type 3 multiple spikes. This would be in agreement with the case 
studies in the numerical computations (see Section 6).

The instabilities of the multiple spikes which we encountered in the numerical calculations were (i) disappearance of spikes when the amplitude 
becomes unstable (related to large eigenvalues) – this happens if the ratio of the diffusion constants 𝐷

𝜖2
 is too large (ii) movement of the spikes 

to the boundary when their positions became unstable (related to small eigenvalues) – this occurs if 𝐷 is too large. Such instabilities have been 
studied extensively for the standard Gierer–Meinhardt system and explicit stability thresholds have been established, see [29,30,35]. The same 
stability thresholds are also present for the system in this paper if one of the activators vanishes identically. It will be interesting to generalize the 
stability thresholds to the case that both activators are positive.

4. It will also be interesting to consider extensions of (1.1) for which the activators diffuse at different rates. We explored this issue numerically 
and found multiple spike solutions for 𝑢1 and 𝑢2, even if their diffusivities differ by some amount. However, the multiple spike solution converges 
to zero for large time if the diffusivities differ by too much.

In the simulations we computed (1.1) with 𝐷 = 0.01, 𝜇1 = 1, 𝜇2 = 3, 𝛽 = 5, 𝜏 = 0.1, and initial conditions 𝑢𝑖(𝑥, 0) = 0.4 + 0.2 cos(100 ∗ 𝜋𝑥) and 
𝑣(𝑥, 0) = 1.8 + 0.2 cos(100 ∗ 𝜋𝑥) for small diffusivities of the activators. First, the diffusivities for both activators were 𝜖2 = 0.0001. Then we kept the 
diffusivity for 𝑢1 fixed at 0.0001 but increased the diffusivity for 𝑢2 to 0.0002, 0.0003, 0.0004. For the last case the multiple spikes are shown in 
Fig.  13.

Note that the spikes for 𝑢2 are wider than for 𝑢1 due to the larger diffusivity. If the diffusivity for 𝑢2 is increased further to 0.0005, the solutions 
converge to the positive homogeneous steady state (𝑢1, 𝑢2, 𝑣) ≈ (0.4142, 0.5858, 1.8873) for large time. It will be interesting to study the case of 
different diffusivities for the activators analytically.
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Appendix

In this appendix we provide results from previous publications which are used repeatedly in the analysis.
The first result connects the eigenvalues for the limit problem and for the 𝜖 problem. In our context the 𝜖 problem is (4.1) with 𝜏 = 0; the limit 

problem is (4.5), (4.6) for the two-activator spike solution and (4.15), (4.16) for the one-activator spike solution.
Theorem 1 of [43] can be reformulated as follows:
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(i) If there is an eigenvalue 𝜆 for the limit problem with real part less than 1, then for 𝜖 small enough there is an eigenvalue 𝜆𝜖 for the 𝜖 problem. On 
the other hand, if there are eigenvalues 𝜆𝜖(𝑛) for a sequence 𝜖(𝑛) → 0 as 𝑛 → ∞, then there is a subsequence of 𝜖(𝑛) for which 𝜆𝜖(𝑛) converges to a limit 𝜆
which is an eigenvalue of the limit problem.

(ii) If 𝐵 < 1 and the limit problem has no eigenvalue with real part 𝐵, then the number of eigenvalues with real part less than 𝐵 counting multiplicity is 
the same for the limit problem and the 𝜖 problem. 

The second result explicitly states the eigenvalues for a nonlocal eigenvalue problem with cubic power nonlinearity.
Lemma 3.2 of [42]. Consider the NLEP problem

𝐿0𝜙 − 𝑐𝑤3
∫

∞

−∞
𝑤2𝜙𝑑𝑦 = 𝜆𝜙, −∞ < 𝑦 < ∞; 𝜙 → 0 as |𝑦| → ∞,

for an arbitrary constant 𝑐 corresponding to eigenfunctions for which ∫ ∞
−∞𝑤2𝛷𝑑𝑦 ≠ 0. Consider the range Re(𝜆) > −1, where Re(𝜆) denotes the real part of 

𝜆. Then, on this range there is only one element in the point spectrum, and it is given explicitly by

𝜆 = 3 − 𝑐 ∫

∞

−∞
𝑤5 𝑑𝑦.

The third result states the eigenspaces for a local eigenvalue problem with general power nonlinearity
Lemma 4.1 of [39] The eigenvalue problem

𝛥𝑣 − 𝑣 + 𝜇𝑣𝑝−1𝜙 = 0, 𝑣 ∈ 𝐻1(R𝑛)

admits a discrete set of eigenvalues 𝜈1 < 𝜈2 ≤ 𝜈3 such that 𝜈1 = 1, 𝜈𝑖 = 𝑝, 2 ≤ 𝑖 ≤ 𝑛 + 1, and 𝜈𝑛+2 > 𝑝. The eigenspaces 𝑉1 and 𝑉𝑝 corresponding to 1 and 𝑝, 
respectively, are given by

𝑉1 = span{𝑤}

and

𝑉𝑝 = span
{

𝜕𝑤
𝜕𝑥𝑖

| 1 ≤ 𝑖 ≤ 𝑛
}

.

The final result gives estimates of the eigenvalues for a local eigenvalue problem.
Theorem 4.1 of [11] (3) If 𝜇𝑅 > 0, then the eigenvalue problem

𝜙′′ − 𝜙 + (1 + 𝜇𝑅)𝑤𝑝−1𝜙 = 𝜆𝜙, 𝜙 ∈ 𝐻1(R)

admits a positive (principal) eigenvalue 𝜆1 such that

−𝜆1 = inf
𝜙∈𝐻1(R)⧵{0}

∫ ∞
−∞[(𝜙′)2 + 𝜙2 − (1 + 𝜇𝑅)𝑤𝑝−1𝜙2] 𝑑𝑦

∫ ∞
−∞ 𝜙2 𝑑𝑦.

(4) Let 𝜙 (complex-valued) satisfy the following eigenvalue problem
{

𝜙′′ − 𝜙 +𝑤𝑝−1𝜙 + (𝑝 − 1)𝜎𝑤𝑝−1𝜙 = 𝜆𝜙,
Re(𝜎) ≤ 0, 𝜙 ∈ 𝐻1(R), 𝜆 ≠ 0.

Then Re(𝜆) < 0.

Data availability

Data will be made available on request.
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