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Abstract. The problem of wave motion with spherical symmetry is 
analysed. For this purpose, a spherical cavity surrounded by layer is 
considered as a mathematical model which can be used for modelling 
various phenomena in solid mechanics. The additional layer is also spherical 
and the outer space is described as unbounded medium. All layers are 
isotropic, homogeneous and linearly elastic, although the presented 
formulation allows inclusion of weak nonlinearities. Analytical solutions for 
displacement and stresses (radial and circumferential) are presented along 
with some discussion of possible model extensions. 
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1 Introduction 

The problem presented in this paper is associated with geotechnical aspects, in particular 
with micro explosions in solid, e.g. micro blasting technology related to soil consolidation. 
Similar methods can be used to improve foundation of linear structures, such as highways or 
railways. For this reason, it is important for safety to predict how waves propagate outside 
working area to outer space surrounding constructions. Analysis of foundation behaviour at 
a very close distance from the source of explosion is of importance for a proper recognition 
of soil condition after the whole improvement process and for planning the effectiveness of 
the engineering method itself. This paper does not concentrate on technical aspects of 
geotechnical technology but it proposes simplified model analysis along with analytical 
solution for displacement (wave motion) and stresses produced by a load acting on walls of 
the spherical cavity [1, 2]. This solution might be helpful in deeper analysis of dynamic 
behaviour of such structures. It also allows several extensions, including nonlinear properties 
of solid, leading to semi-analytical solutions obtained by using already verified semi-
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analytical approximations based on Adomian’s decomposition and wavelet estimations using 
coiflet expansions of functions [3-7]. 

2 Model formulation 

The mathematical model considered in this paper consists of spherical cavity placed in outer 
unbounded solid. This layer can be also surrounded by one or several symmetric layers with 
varying geometrical and physical properties [1, 2]. 

The cross section of such structure with two additional layers is shown in figure 1. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Cross section of the spherical cavity with finite symmetrical layer around it, placed in the 
unbounded outer medium. 

The notation used in this figure means the following: 
𝑎𝑎 – radius of symmetrical cavity; 
r – direction of wave propagation (distance from the centre of cavity); 
𝑘𝑘1𝑎𝑎 , 𝑘𝑘2𝑎𝑎 – outer radius of the first and the second layers surrounding spherical cavity (𝑘𝑘1 < 
𝑘𝑘2 are real numbers greater than 1); 
𝜌𝜌1, 𝜌𝜌2, 𝜌𝜌3 – mass densities of layers; 
𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 – phase velocities of longitudinal wave in corresponding layers. 
 

One can consider the following equation of motion in unbounded medium with spherical 
symmetry in r direction [1] (see Fig. 2) 

 𝜕𝜕𝜏𝜏𝑟𝑟
𝜕𝜕𝜕𝜕 +

2
𝑟𝑟 (𝜏𝜏𝑟𝑟 − 𝜏𝜏𝜃𝜃) = 𝜌𝜌 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑡𝑡2  (1)

with nonzero stresses and displacement 𝑢𝑢(𝑟𝑟, 𝑡𝑡) [m], where volumetric forces are 
neglected and the applied load possesses the required symmetry at all times. 

The radial stress 𝜏𝜏𝑟𝑟 [ Nm2] (parallel to radius r) and the circumferential stress 𝜏𝜏𝜃𝜃 [ Nm2] 
(perpendicular to radius r) are defined as follows [1]: 

 𝜏𝜏𝑟𝑟 = (𝜆𝜆 + 2𝜇𝜇) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + 2𝜆𝜆 𝑢𝑢
𝑟𝑟 (2) 

and 

 𝜏𝜏𝜃𝜃 = 𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 2(𝜆𝜆 + 𝜇𝜇) 𝑢𝑢𝑟𝑟 (3) 

 

𝜌𝜌 𝑐𝑐  

𝜌𝜌 𝑐𝑐  𝑎𝑎 

𝜌𝜌 𝑐𝑐  𝑘𝑘 𝑎𝑎 

𝑘𝑘 𝑎𝑎 

𝑟𝑟 
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where ρ [ kg
m3], t [s], λ [ 𝑁𝑁

𝑚𝑚2] and μ [ N
m2] are the mass density, the time and Lame elastic constants, 

respectively. One should note that tangential stresses are zero due to the spherical symmetry. 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Scheme of spherical cavity with radius a and a load p(t) [ N
m2] acting on internal walls of cavity. 

Using the following initial and boundary conditions: 

 𝜏𝜏𝑟𝑟 = −𝑝𝑝(𝑡𝑡)     for     𝑟𝑟 = 𝑎𝑎, 𝑡𝑡 ≥ 0 (4) 

and 

 𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0    for     𝑟𝑟 ≥ a, 𝑡𝑡 < 0 (5)

the system of equations (1-3) can be solved by introducing potential theory. 

3 Solution 

The solution for spherical cavity, described in this section, is presented in [1], whereas section 
4 contains its extension to more complex model with additional layers surrounding cavity 
and forms a novelty of study shown in present paper. Substituting equations (2) and (3) to 
(1) leads to the following partial differential equation of motion: 

 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑟𝑟2 + 2

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 2𝑢𝑢

𝑟𝑟2 = 1
𝑐𝑐2

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2  . (6) 

For solving equation (6) one can use displacement potential function 𝜙𝜙(𝑟𝑟, 𝑡𝑡) fullfiling the 
condition 

 𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  (7) 

along with new variable 

 𝑠𝑠 = 𝑡𝑡 − 𝑟𝑟−𝑎𝑎
𝑐𝑐  (8) 

where c is a phase velocity of longitudinal wave in medium. Then new formulas depending 
on the variable s can be derived for displacement and stresses:

 𝑢𝑢(𝑟𝑟, 𝑡𝑡) = −𝑤𝑤′(𝑠𝑠) 1
𝑐𝑐𝑐𝑐 − 𝑤𝑤(𝑠𝑠) 1

𝑟𝑟2 (9)

 𝜏𝜏𝑟𝑟(𝑟𝑟, 𝑡𝑡) = 𝜌𝜌𝑐𝑐2

1−𝜈𝜈 [(1−𝜈𝜈)𝑤𝑤″

𝑐𝑐2𝑟𝑟 + 2(1 − 2𝜈𝜈) ( 𝑤𝑤′

𝑐𝑐𝑟𝑟2 + 𝑤𝑤
𝑟𝑟3)] (10) 

 𝜏𝜏𝜃𝜃(𝑟𝑟, 𝑡𝑡) = 𝜌𝜌𝑐𝑐2

1−𝜈𝜈 [𝜈𝜈𝑤𝑤″

𝑐𝑐2𝑟𝑟 − (1 − 2𝜈𝜈) ( 𝑤𝑤′

𝑐𝑐𝑟𝑟2 + 𝑤𝑤
𝑟𝑟3)] (11) 

where the function 
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 𝑤𝑤(𝑠𝑠) = 𝑟𝑟𝑟𝑟(𝑟𝑟, 𝑡𝑡) (12)

is a solution representing outgoing wave and ν denotes the Poisson’s ratio [1]. 
One should note that the function (7) is solution of equation (6) if the function (12) is 

solution of the following equation of motion [1] 

 𝜕𝜕2𝜙𝜙(𝑟𝑟,𝑡𝑡)
𝜕𝜕𝑟𝑟2 = 1

𝑐𝑐2
𝜕𝜕2𝜙𝜙(𝑟𝑟,𝑡𝑡)

𝜕𝜕𝑡𝑡2  . (13) 

By applying initial and boundary conditions (4-5) one obtains the ordinary differential 
equation for w(s) 

 𝑑𝑑2𝑤𝑤
𝑑𝑑𝑠𝑠2 + 2𝛼𝛼 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 + (𝛼𝛼2 + 𝛽𝛽2)𝑤𝑤 = −𝑝𝑝(𝑠𝑠) 𝑎𝑎𝜌𝜌 (14) 

where the coefficients α and β are defined as follows: 

 𝛼𝛼 = 1−2𝜈𝜈
1−𝜈𝜈

𝑐𝑐
𝑎𝑎 (15) 

 𝛽𝛽2 = 1−2𝜈𝜈
(1−𝜈𝜈)2

𝑐𝑐2

𝑎𝑎2 . (16) 

By substituting  

 𝑤𝑤(𝑠𝑠) = 𝑔𝑔(𝑠𝑠) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼𝛼𝛼) (17)

to equation (14) one can reduce it to the following form: 

 𝑑𝑑2𝑔𝑔
𝑑𝑑𝑠𝑠2 + 𝛽𝛽2𝑔𝑔 = − 𝑎𝑎

𝜌𝜌 𝑝𝑝(𝑠𝑠) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼). (18)

Hence, by applying the boundary conditions and the Green’s function theory, one can obtain 
solution for unbounded layer: 

 𝑔𝑔(𝑠𝑠) = − 𝑎𝑎
𝜌𝜌
1
𝛽𝛽 ∫ 𝑝𝑝(𝜏𝜏) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼) 𝑠𝑠𝑠𝑠𝑠𝑠[𝛽𝛽(𝑠𝑠 − 𝜏𝜏)]𝑠𝑠

0 𝑑𝑑𝑑𝑑 (19) 

which allows to effectively compute displacement and stresses for given physical properties 
of medium and particular load representations. 

One should note that initial and boundary conditions (4-5) give 

 𝑤𝑤(0) = 𝑤𝑤′(0) ≡ 0. (20)

4 Model extension and computational examples 

The obtained solution (19) allows parametrical analysis of the system with several possible 
cases. These include e.g. a number of layers surrounding spherical cavity or different forms 
of load p(t). To show advantages of the developed procedure, the case of constant 
pressurization represented by the Heaviside function and one spherical layer with finite 
thickness, which surrounds the cavity placed in the unbounded medium is analysed (see Fig. 
3). 

Using the procedure presented in section 3 one can derive solution for the bounded layer 
(with index 1) 

 𝑔𝑔1(𝑠𝑠1) = − 𝑎𝑎
𝜌𝜌1
∫ 𝐺𝐺(𝑠𝑠1 − 𝜏𝜏)𝑠𝑠1
0 𝑝𝑝(𝜏𝜏) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼1𝜏𝜏) 𝑑𝑑𝑑𝑑 (21) 

and the unbounded medium (with index 2) 

 𝑔𝑔2(𝑠𝑠2) = 𝐴𝐴1 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽2𝑠𝑠2) + 𝐴𝐴2 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽2𝑠𝑠2) −
𝑎𝑎
𝜌𝜌2
∫ 𝐺𝐺(𝑠𝑠2 − 𝜏𝜏)𝑠𝑠2
0 𝑝𝑝(𝜏𝜏) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼2𝜏𝜏) 𝑑𝑑𝑑𝑑 , (22) 
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respectively. 𝐺𝐺(𝑠𝑠) denotes the one-sided Green’s function for the operator 

 𝑑𝑑2

𝑑𝑑𝑠𝑠22 + 𝛽𝛽2
2 (23) 

(comp. equation 18). 𝐴𝐴1 and  𝐴𝐴2 are constants which should be found on the basis of the 
boundary conditions. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Cross section scheme of spherical cavity surrounded by layer with finite thickness. 
Solution of the problem can be found then by introducing continuity conditions for 

displacements and stresses 

 𝑢𝑢1(𝑘𝑘𝑘𝑘, 𝑡𝑡) = 𝑢𝑢2(𝑘𝑘𝑘𝑘, 𝑡𝑡), 𝑢𝑢1
′(𝑘𝑘𝑘𝑘, 𝑡𝑡) = 𝑢𝑢2

′(𝑘𝑘𝑘𝑘, 𝑡𝑡) (24) 

i.e. 

 𝑢𝑢1(𝑟𝑟, 𝑡𝑡) = [( 𝑎𝑎
𝜌𝜌1𝛽𝛽1𝑟𝑟2 − 𝛼𝛼1𝑎𝑎

𝑐𝑐1𝜌𝜌1𝛽𝛽1𝑟𝑟) ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽1(𝑠𝑠1 − 𝜏𝜏)) 𝑝𝑝(𝜏𝜏) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼1𝜏𝜏) 𝑑𝑑𝑑𝑑𝑠𝑠1
0 +

                                      𝑎𝑎
𝑐𝑐1𝜌𝜌1𝑟𝑟 ∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽1(𝑠𝑠1 − 𝜏𝜏)) 𝑝𝑝(𝜏𝜏) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼1𝜏𝜏) 𝑑𝑑𝑑𝑑𝑠𝑠1

0 ] ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼1𝑠𝑠1) (25) 

for the finite layer and 

 𝑢𝑢2(𝑟𝑟, 𝑡𝑡) = [(( 𝛼𝛼2
𝑐𝑐2𝑟𝑟 − 1

𝑟𝑟2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽2𝑠𝑠2) + 𝛽𝛽2
𝑐𝑐2𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽2𝑠𝑠2)) ⋅ 𝐴𝐴1 + 

(( 𝛼𝛼2
𝑐𝑐2𝑟𝑟 − 1

𝑟𝑟2) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽2𝑠𝑠2) − 𝛽𝛽2
𝑐𝑐2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽2𝑠𝑠2)) ⋅ 𝐴𝐴2 + 

 ( 𝑎𝑎
𝜌𝜌2𝛽𝛽2𝑟𝑟 ( 𝛼𝛼2

𝑐𝑐2𝑟𝑟 − 1
𝑟𝑟2) + 𝑎𝑎

𝑐𝑐2𝜌𝜌2𝑟𝑟) ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽2(𝑠𝑠2 − 𝜏𝜏)) 𝑝𝑝(𝜏𝜏) 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼2𝜏𝜏) 𝑑𝑑𝑑𝑑𝑠𝑠2
0 ] ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼2𝑠𝑠2) (26) 

for the unbounded medium, respectively. 
Introducing dimensionless variables and parameters 

 𝑡̄𝑡 = 𝑡𝑡𝑐𝑐1
𝑎𝑎 , 𝑑𝑑 = 𝑟𝑟

𝑎𝑎 , 𝑙𝑙 = 𝑐𝑐2
𝑐𝑐1

, 𝑙𝑙1 = 𝜌𝜌2
𝜌𝜌1

, 𝑢̄𝑢 = 𝑢𝑢
𝑎𝑎 , 𝜏̄𝜏𝑟𝑟 = 𝜏𝜏𝑟𝑟

𝑝𝑝0
, 𝜏̄𝜏𝜃𝜃 = 𝜏𝜏𝜃𝜃

𝑝𝑝0
 (27) 

allows to carry out effective parametrical analysis of the considered system. 
In the case of load represented by constant pressurization described by the Heaviside 

function 

 𝑝𝑝(𝑡𝑡) = 𝑝𝑝0𝐻𝐻(𝑡𝑡) (28)

 

𝑎𝑎 𝑘𝑘𝑘𝑘

  
𝑟𝑟

𝜌𝜌  𝑐𝑐 
𝜌𝜌  𝑐𝑐 
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the constants 𝐴𝐴1 and  𝐴𝐴2 take the form 

 𝐴𝐴1 = 𝑝𝑝0𝑎𝑎3

𝑐𝑐12𝜌𝜌1
⋅ 𝐴̃𝐴1(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) = 𝑀𝑀 ⋅ 𝑎𝑎3 ⋅ 𝐴̃𝐴1(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) (29) 

and 

 𝐴𝐴2 = 𝑝𝑝0𝑎𝑎3

𝑐𝑐12𝜌𝜌1
⋅ 𝐴̃𝐴2(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) = 𝑀𝑀 ⋅ 𝑎𝑎3 ⋅ 𝐴̃𝐴2(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘). (30) 

Then the sought solution can be written as: 

 𝑢̅𝑢1(𝑑𝑑, 𝑡𝑡̅) = 3
8 𝑀𝑀 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ 

(−2√2𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠(2√2
3 (𝑡𝑡̅ − 𝑑𝑑 + 1)) + 𝑐𝑐𝑐𝑐𝑐𝑐(2√2

3 (𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝑠𝑠𝑠𝑠𝑠𝑠(2√2
3 (𝑡𝑡̅ − 𝑑𝑑 + 1))], (31) 

 𝑢̅𝑢2(𝑑𝑑, 𝑡𝑡̅) = − 1
24 𝑀𝑀 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ 

(𝐴̃𝐴1(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐴̃𝐴2(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1))) − 18 1

𝑙𝑙2𝑙𝑙1
] (32) 

for displacements and 

 𝜏𝜏𝑟̅𝑟,1(𝑑𝑑, 𝑡𝑡̅) = − 3
8 (1

𝑑𝑑)
3

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝑟𝑟,1

(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝑟𝑟,1
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) − 2)], (33) 

 𝜏𝜏𝜃̅𝜃,1(𝑑𝑑, 𝑡𝑡̅) = − 1
8 (1

𝑑𝑑)
3

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝜃𝜃,1

(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝜃𝜃,1
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) − 4)] (34) 

 𝜏𝜏𝑟̅𝑟,2(𝑑𝑑, 𝑡𝑡̅) = − 1
12 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝑟𝑟,2

(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝑟𝑟,2
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1))) + 12
𝑑𝑑𝑙𝑙2𝑙𝑙1

] (35) 

 𝜏𝜏𝜃̅𝜃,2(𝑑𝑑, 𝑡𝑡̅) = − 1
36 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3

(𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝜃𝜃,2
(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2

3
(𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝜃𝜃,2
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1))) + 12
𝑑𝑑𝑙𝑙2𝑙𝑙1

] (36) 

for stresses in each layer, where 

 𝐵𝐵𝑟𝑟,1
(1) = 1

6 (16𝑑𝑑2 − 4𝑑𝑑 − 3) (37a) 

 𝐵𝐵𝑟𝑟,1
(2) = − 1

6 (8√2𝑑𝑑2 + (8 + 6√2)𝑑𝑑 + 3√2) (37b) 

 𝐵𝐵𝜃𝜃,1
(1) = 1

3 (8𝑑𝑑2 − 2𝑑𝑑 + 6) (37c) 
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the constants 𝐴𝐴1 and  𝐴𝐴2 take the form 

 𝐴𝐴1 = 𝑝𝑝0𝑎𝑎3

𝑐𝑐12𝜌𝜌1
⋅ 𝐴̃𝐴1(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) = 𝑀𝑀 ⋅ 𝑎𝑎3 ⋅ 𝐴̃𝐴1(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) (29) 

and 

 𝐴𝐴2 = 𝑝𝑝0𝑎𝑎3

𝑐𝑐12𝜌𝜌1
⋅ 𝐴̃𝐴2(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) = 𝑀𝑀 ⋅ 𝑎𝑎3 ⋅ 𝐴̃𝐴2(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘). (30) 

Then the sought solution can be written as: 

 𝑢̅𝑢1(𝑑𝑑, 𝑡𝑡̅) = 3
8 𝑀𝑀 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ 

(−2√2𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠(2√2
3 (𝑡𝑡̅ − 𝑑𝑑 + 1)) + 𝑐𝑐𝑐𝑐𝑐𝑐(2√2

3 (𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝑠𝑠𝑠𝑠𝑠𝑠(2√2
3 (𝑡𝑡̅ − 𝑑𝑑 + 1))], (31) 

 𝑢̅𝑢2(𝑑𝑑, 𝑡𝑡̅) = − 1
24 𝑀𝑀 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ 

(𝐴̃𝐴1(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐴̃𝐴2(𝑙𝑙, 𝑙𝑙1, 𝑘𝑘) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1))) − 18 1

𝑙𝑙2𝑙𝑙1
] (32) 

for displacements and 

 𝜏𝜏𝑟̅𝑟,1(𝑑𝑑, 𝑡𝑡̅) = − 3
8 (1

𝑑𝑑)
3

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝑟𝑟,1

(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝑟𝑟,1
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) − 2)], (33) 

 𝜏𝜏𝜃̅𝜃,1(𝑑𝑑, 𝑡𝑡̅) = − 1
8 (1

𝑑𝑑)
3

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝜃𝜃,1

(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝜃𝜃,1
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) − 4)] (34) 

 𝜏𝜏𝑟̅𝑟,2(𝑑𝑑, 𝑡𝑡̅) = − 1
12 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝑟𝑟,2

(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2
3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝑟𝑟,2
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1))) + 12
𝑑𝑑𝑙𝑙2𝑙𝑙1

] (35) 

 𝜏𝜏𝜃̅𝜃,2(𝑑𝑑, 𝑡𝑡̅) = − 1
36 (1

𝑑𝑑)
2

[𝑒𝑒𝑒𝑒𝑒𝑒(− 2
3

(𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) ⋅ (𝐵𝐵𝜃𝜃,2
(1) 𝑐𝑐𝑐𝑐𝑐𝑐(2√2

3
(𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1)) + 

 𝐵𝐵𝜃𝜃,2
(2) 𝑠𝑠𝑠𝑠𝑠𝑠(2√2

3 (𝑙𝑙𝑡𝑡̅ − 𝑑𝑑 + 1))) + 12
𝑑𝑑𝑙𝑙2𝑙𝑙1

] (36) 

for stresses in each layer, where 

 𝐵𝐵𝑟𝑟,1
(1) = 1

6 (16𝑑𝑑2 − 4𝑑𝑑 − 3) (37a) 

 𝐵𝐵𝑟𝑟,1
(2) = − 1

6 (8√2𝑑𝑑2 + (8 + 6√2)𝑑𝑑 + 3√2) (37b) 

 𝐵𝐵𝜃𝜃,1
(1) = 1

3 (8𝑑𝑑2 − 2𝑑𝑑 + 6) (37c) 

 

 

 𝐵𝐵𝜃𝜃,1(2) = − 1
3 ((18√2 + 4)𝑑𝑑2 + 4√2𝑑𝑑 − 6√2) (37d) 

 𝐵𝐵𝑟𝑟,2(1) = (23 −
5
3𝑑𝑑) 𝐴̃𝐴1 −

2√2
3 𝐴̃𝐴2 (37e) 

 𝐵𝐵𝑟𝑟,2(2) = (23 −
5
3𝑑𝑑) 𝐴̃𝐴2 +

2√2
3 𝐴̃𝐴1 (37f) 

 𝐵𝐵𝜃𝜃,2(1) = (23 −
3
2𝑑𝑑) 𝐴̃𝐴1 −

2√2
3 𝐴̃𝐴2 (37g) 

 𝐵𝐵𝜃𝜃,2(2) = (23 −
3
2𝑑𝑑) 𝐴̃𝐴2 +

2√2
3 𝐴̃𝐴1. (37h) 

Figures 4-6 show examples of derived displacements and stresses in outer medium. This 
case seems to be more important due to analysis of possible damping improvement when one 
deals with controlled process of loading. The developed approach gives also possibility of 
optimization process of wave propagation outside cavity in the case of several layers with 
varying physical properties. This problem, however, is left for further investigation. The 
obtained solution combined with superposition principle leads to results concerned with short 
time impulse or series of such loads. Detailed analysis of this model will be presented in 
future works. 

 

 

 

 

 

 

 

Fig. 4. Displacement 𝑢̅𝑢2(𝑡𝑡) in outer infinite region: d=2.5 (red); d=3.0 (blue); d=3.5 (green). 
 

 

 

 

 

 

 

 

Fig. 5. Radial stress 𝜏̅𝜏𝑟𝑟,2(𝑡𝑡) in outer infinite region: d=2.5 (red); d=3.0 (blue); d=3.5 (green); d=4.0 
(black). 

 

One can see, e.g., that along with increase of the parameter l1 , which is related to mass 
densities of layers surrounding cavity (see equations (27)), damping of considered 
characteristics is higher, i.e. solutions stabilizes faster (it does not vanish due to considered 

(a) (b) 

k=2 
l=3.5 
l1=2 

k=2 
l=0.3 
l1=0.5 

(a) (b) 

k=2 
l=3.5 
l1=2 

k=2 
l=0.3 
l1=0.5 
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pressurization represented by a load constant in time). More detailed analysis is possible and 
it is left for future investigations. 

 

 

 

 

 

 

 

Fig. 6. Circumferential stress 𝜏̅𝜏𝜃𝜃,2(𝑡𝑡) in outer infinite region: d=2.5 (red); d=3.0 (blue); d=3.5 (green); 
d=4.0 (black). 

5 Conclusions 

Analytical solution for wave propagation outside spherical cavity surrounded by layer with 
finite thickness and immersed in unbounded medium is obtained on the basis of previously 
published solution for simpler model of cavity [1]. It allows detailed parametrical analysis of 
displacement and stresses for various loads acting on internal walls of cavity, including short 
time signals which can be related to sudden impact or explosion. The considered model can 
be easily extended to multilayer system at low computational cost. Nonlinear physical 
properties of layers can be introduced in further analysis. Previously developed semi-
analytical procedures allow solution of such extended model. This aim is left for further work. 
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