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Abstract—Signal processing methods are widely used in 
fault diagnosis and are known for their strong interpretability. 
Among them, signal adaptive decomposition algorithms are 
used to extract the features of fault signals. As an effective 
adaptive decomposition algorithm, difference mode 
decomposition divides the signals into three components using 
spectrum weighting. However, it can only separate mixed fault 
components and is not suitable for multi-class fault diagnosis 
tasks. This paper presents a successive difference mode 
decomposition method. The reference component and 
concerned components (fault features) are defined based on the 
differences in faults. Then, the filters corresponding to 
different components are obtained through iterative convex 
optimization at each layer. Finally, using these filters, signals 
are decomposed into multiple fault components corresponding 
to different fault sources. Furthermore, the white noise 
replacement module is proposed to solve the gradient 
vanishing problem introduced by successive decompositions. 
Also, an updatable online learning framework is proposed for 
the incremental demand scenario, providing data efficiency 
and interpretability. The effectiveness of this method is 
validated on real datasets. 

Index Terms—Successive difference mode decomposition, Fault 
diagnosis, Adaptive mode decomposition 

I. INTRODUCTION 

OTATING machinery plays an important role in 
mechanical equipment but is often challenged by 
harsh operational conditions. Effective fault 
diagnosis methods are essential for early failure 

detection, ensuring equipment safety, and minimizing 
economic losses [1], [2]. Fault diagnosis methods for rotating 
machinery typically fall into three categories: signal 
processing-based [3], AI-based [4], and physics-informed [5] 
approaches. Among them, signal processing techniques deal 
with signals that often contain periodic components, fault 
features, and background noise. In rotating machinery, these 
signals can be collected from various sources, such as current 
signals [6], acoustic emissions [7], and vibration signals [8]. 
Among them, vibration signal analysis is widely used for 
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fault diagnosis due to its sensitivity to mechanical anomalies 
and ease of measurement. These methods typically involve 
constructing a filter bank, extracting features, and performing 
fault diagnosis [9]. They focus on extracting repetitive 
transient features and impact responses, which are combined 
with fault mechanisms for thorough analysis. 

Signal decomposition is important for fault feature 
extraction [10], [11]. Compared with traditional signal 
decomposition method with predefined decomposition basis 
functions, adaptive mode decomposition algorithms, 
including empirical mode decomposition (EMD) [12] with 
its variations [13], [14], variational mode decomposition with 
its variations [15], [16], [17], and feature mode 
decomposition with its variations [18], [19], do not need to 
construct basis functions. They adaptively decompose 
signals to extract fault components efficiently.  

However, these algorithms rely only on the 
characteristics of the signals themselves to decompose the 
signals without considering the features of normal and fault 
signals. According to the practical requirements of fault 
diagnosis tasks, signals can be divided into fault components, 
natural periodic components, and noise. Among them, the 
fault components are the ones that are actually needed for 
fault diagnosis tasks. To decompose signals according to the 
difference between normal and fault signals, Wang et al. 
proposed difference mode decomposition (DMD) [20], 
which decomposes signals into the concerned component 
(CC, fault component), the reference component (RC, 
periodic component), and the noise component (Noise) by 
weighting spectrum and convex optimization. For the fault 
diagnosis task, fault feature components are extracted by 
defining the reference and mixed signal. Considering the 
presence of noise in practical signals, which can affect the 
decomposition results, Guo proposed the ensemble 
difference mode decomposition method [21], [22]. This 
method effectively weakens the influence of noise by 
introducing a transfer path elimination technique. It also 
improves the initialization weights of the difference spectrum 
by introducing normalized Fourier spectrum differences, 
thereby enhancing the computational speed. Although the 
above methods achieve effective separation of fault signals, 
the spectrums of different CCs are still mixed. However, in 
practical diagnosis tasks, it is necessary to further subdivide 
the CCs and identify specific fault types. 

To obtain CCs for multi-class fault classification, this 
paper proposes the successive difference mode 
decomposition (SDMD). This method first defines RC and 
CCs in the signal based on different health conditions. By 
solving convex optimization for the weights of the spectrum 
at each decomposition layer, filter indexes (FI) 
corresponding to RC and CCs are obtained. Then the signal 
is filtered into CCs corresponding to different fault sources. 
The white noise replacement module is proposed for 
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optimizing threshold processing, making the computation of 
the threshold more stable.  

In addition, conventional fault diagnosis may face the 
situation of insufficient fault data. Normal signals are easy to 
obtain, and new faults constantly occur during operation, so a 
model that can be continuously updated online is needed 
[23], [24]. To tackle the problem, the multivariate Gaussian 
probability density function of the energy of the sub-signal is 
used to determine whether it is a new fault. Then the original 
faults are treated as a whole, and the part of the new fault 
removed from the filter index is used to achieve updatable 
online learning. This paper is an extended version of the 
proceedings paper [25]. The main contributions of this paper 
are as follows: 

(1) SDMD framework is proposed for adaptive multi-
class signal decomposition and fault diagnosis. It effectively 
utilizes the characteristics of available data on various health 
conditions to decompose signals.  

(2) A white noise replacement module is proposed for
thresholding. The gradient vanishing problem is overcome 
by adding white Gaussian noise. It is more suitable for the 
successive decomposition structure. 

(3) An updatable online learning SDMD framework is
proposed for the practical scenario where new faults may 
occur. Experimental validation demonstrates efficient 
anomaly detection and time-saving performances. 

The rest of the paper is organized in the following way. 
Section II briefly introduces the algorithm of DMD. Section 
III provides a detailed introduction to the proposed SDMD 
method, including the overall framework, white noise 
replacement module, and theoretical characteristics. Section 
IV provides a variant of a solution for online incremental 
fault learning, including an overall framework, open-set 
detection module, and incremental learning module. Sections 
V and VI present the validation of the effectiveness and 
superiority of the framework using simulated and real signals, 
respectively. Finally, the conclusion is summarized in 
Section VII. 

II. PRELIMINARY

In this section, the preliminary works for the proposed 
method are described. Section A introduces the overall 
framework of the original difference mode decomposition 
(DMD) method. Section B introduces the threshold 
processing module of DMD, which will be improved in 
Section III B. Section C introduces the multivariate Gaussian 
probability density function and its functions. 

A. Difference mode decomposition (DMD) [20]
As shown in Fig. 1, DMD algorithm assumes that the

collected fault signal is a mixed signal (MIX), which can be 
decomposed into three components: concerned component 
(CC), reference component (RC), and noise component 
(Noise): 

MIX CC RC Noise= + + . (1) 

Fig. 1. Different components of a fault signal (MIX). 

For a specific fault signal, CC represents the impulsive 
features caused by the fault. While RC represents the natural 
periodic features, which are the components present in 
normal signals. A reference signal (REF, usually a normal 
signal) has two components: RC and Noise.  

For DMD, the Fourier spectrum is weighted to separate 
the CC, which is the fault feature. The specific steps are as 
follows: 

1. Vibration signals are collected from the equipment to
obtain the fault signal SM and the reference signal SR (normal 
signal). 

2. The Fourier transform is applied to SM and SR to obtain
the fault signal spectrum FSM and the reference signal 
spectrum FSR. The obtained spectrums are then normalized 
to obtain the normalized fault signal spectrum NFSM and the 
normalized reference signal spectrum NFSR. 
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3. The spectrum NFSM and NFSR are weighted. Convex
optimization is used to solve for the optimal difference 
spectrum ωbest [26]. The optimization problem can be 
formulated as follows: 
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where λ represents the regular term coefficient, which is set 
to 0.1. ꞷ and b represent weight and bias. After optimization, 
ω becomes ωbest, called the optimal difference spectrum in 
this paper. Q and P represent the quantities of REF and MIX. 
The binary classification label yi is set to 1 and 0 when NFS 
equals NFSM and NFSR, respectively. NFSM and NFSR 
represent the normalized Fourier spectrum of MIX and REF, 
respectively. 

4. After obtaining the optimal difference spectrum, it is
sorted by the percentile amplitude of each spectrum line. 
Then, as shown in Fig. 2, two thresholds - thc, and thr (see 
Section II B) are used to separate the difference spectrum 
into 3 parts, corresponding to CC, RC, and Noise, 
respectively. The indexes of separated spectrum lines are 
denoted as Ic, Ir, and Ino, as shown in eq. (4). Ic represents the 
spectrum lines whose amplitude is higher than thc, and so 
forth. 
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5. The obtained spectrum line indexes are used as filters
to perform filtering on the original signal. The filtered 
spectrums are denoted as Sc, Sr, and Sno, respectively. These 
filtered spectrums are then subjected to an inverse Fourier 
transform to complete the decomposition. 

( ), ( ), ( )C c R R no nox ifft S x ifft S x ifft S= = = , (5) 

where xC, xR, and xno are CC, RC, and Noise, respectively. 

B. DMD threshold processing module

Fig. 2. The optimal difference spectrum in a percentile plot. 

 In the 4th step of DMD, the amplitude percentile of the 
decomposed optimal difference spectrum ωbest is calculated 
and sorted. Fig. 2 illustrates the plot of amplitude versus 
percentile, similar to an empirical cumulative distribution 
function plot. The coordinates of each optimal change point 
are calculated by minimizing the error between two fitted 
line segments. The specific calculation formula is as follows: 
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1 2arg min( ( ) ( ))E Eτ τ τ= + , (7) 

where α and β are the coefficients of two straight lines. The 
τ-th point is the optional change point. pn is the n-th 
percentile point. NP represents the maximum number of 
points. Taking the search for change points on the RC side, it 
is typically chosen as the bottom 16.7% of the total number 
of points in the difference spectrum. In Eq. (7), the optimal 
value of the change point τ is obtained by minimizing the 
error E(τ) between two straight lines. The amplitude value 
corresponding to the τ value serves as the threshold thr. 
Similarly, taking the search for change points on the CC side, 
it is typically chosen as the bottom 16.7% of the total number 
of points in the difference spectrum. Then following Eq. (7), 
the amplitude value corresponding to the τ value serves as 
the threshold, thc. 

C. Multivariate Gaussian probability density function
(PDF)

The formulation of d-dimension PDF is as follows [27]: 

( )PDF , ,
1 1 1exp( ( ) ( ) )

2(2 )

f x

Tx x
d

µ

µ µ
π

= Σ

−= − − Σ −
Σ

, (8) 

where µ  and Σ  represent mean vector and covariance 
matrix, respectively. 

The PDF is a multivariate extension of the univariate 
normal distribution. It is used to describe and analyze the 
overall distribution of multiple random variables. In this 
study, PDF is used as a quantitative measure to assess 
whether a sample belongs to one of the learned faults. The 
larger the value of PDF, the higher the likelihood that the 
data belongs to that distribution. 

III. SUCCESSIVE DIFFERENCE MODE DECOMPOSITION

A. The overall SDMD framework
In the basic DMD algorithm, regardless of the number of

faults, the signal is always decomposed into three 
components: CC, RC, and Noise. However, for the 
component CC, which contains features of all fault types, it 
can be challenging to analyze individual faults and achieve 
precise fault classification. With the prior difference of faults 
from historical data, further decomposing the CC to obtain 
the frequency spectrum corresponding to each fault is 
possible. The proposed structure in this study is as follows： 

1
( )

T

i i
i

MIX RC CC Noise
=

= + +∑ . (9) 

Different from Eq. (1), this paper considers that the CC  
is composed of T types of faults. In each level of 
decomposition, a filtering component for noise is included, 
resulting in a multilevel decomposition of the noise 
component. The adaptive decomposition generates individual 
CC components corresponding to the fault components with 
prior label information.  

As shown in Fig. 3, taking three types of faults as an 
example, the content of the successive decomposition 
framework is as follows: 

1. The MIX signal consists of three fault types: Fault1,
Fault2, and Fault3. The normal signal is considered the 
reference signal (REF). The dataset is constructed using 
these signals. 

2. The normalized Fourier spectrum NFSM and NFSR of
the MIX and REF signals are calculated respectively. DMD 
is then performed to obtain the optimal difference spectrum 
ωbest: 

DMD( , )best M RNFS NFSω = , (10) 

The RC spectrum line indexes Ir obtained from Eq. (4) 
represent the spectrum components extracted at the current 
level of decomposition. These indexes indicate the specific 
spectrum lines corresponding to the RC component, which 
need to be saved. Then, the dataset is updated by removing 
the REF. The remaining fault spectrum is then filtered using 
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the CC indexes. This involves applying the CC index as a 
filter to the spectrum of the other faults, followed by inverse 

transformation and re-normalization of the filtered spectrum. 

( )
c M c

c

S NFS I
x ifft S

=
=


(11) 

where the operator ( ) represents the dot product. 
3. One of the fault components is randomly selected as

REF. The remaining two fault components are used as MIX. 
The process of the 2nd step is repeated for the new MIX and 
REF.  

4. When only two fault components remain after repeated
decomposition, the last decomposition is performed. The CC 
index obtained from this final decomposition is retained as 
the final spectrum components, representing the last fault-
specific features. As shown in Fig. 3, 1 RC (signal 
corresponding to blue filter index) and 3 CCs are extracted.  

5. After all CC and RC are separated from the original
signal, the residual component is Noise. This is more 
efficient and memory-saving compared to saving the indexes 
of noise at each level of decomposition. 

In the case of having T faults, the optimized final model 
can be represented as follows: 

1
( )

T

i
i

MIX RC CC Noise
=

= + +∑ . (12) 

The complete SDMD framework is shown in Algorithm 
1. 

Algorithm 1 Successive Difference Mode Decomposition 
Input: Dataset signal  with N L× ; The label of data label
with 1 L× . 
Output: Filter index matrix F; Best difference spectral bestω
. 
Procedure: 
Extract all unique labels ( )l unique label=  with 1 C×
Initialize  

( 1,  )
2
NF zeros C= +  and ( 1,  1)

2best
Nzeros Cω = + − ;

Cumulative increasing value 1num = ; Copy of unique 
labels mixlabel l= . 
for (1: 1)ii l end= −  do 
  Discard the REF value of the previous layer of mixlabel
  Get REF  from signal which label ii=  
  Get MIX  from signal which label mixlabel∈  
  Calculate Normalized Fourier Spectral ,M RNFS NFS
  Make ,M RNFS NFS  the same size (Data Enhancement). 
  Calculate ω using Eq. (3). 
  Threshold processing to get filter index Ic, IR. 
  Saving , 1,

r numI num bestF ω ω= = . 

  Update signal  using Eq. (5). 

Fig. 3. SDMD framework. 
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  Add white Gaussian Noise to signal. 
end for 
Saving , 1

cI numF =  
Return: Filter index matrix F ; Best difference spectral

bestω . 

B. White noise replacement module for adaptive threshold
learning

Fig. 4. Optimal difference spectrum with amplitude limited between ±5e-3 
(a) The result without introducing noise has an infinite slope. (b) The result
of introducing noise is a finite slope. 

During successive decomposition, it is difficult to 
compute thc and thr effectively, which makes the separation 
of CC, RC, and Noise impossible. As shown in Fig.4 (a), 
after each level of decomposition, the RC and Noise are 
filtered and set to zero. Since there are too many zero-valued 
components, one of the lines fitted becomes a vertical line 
perpendicular to the coordinate axis. This results in an 
infinite slope, making it impossible to calculate the error and 
leading to a threshold of 0, introducing significant errors. 

Therefore, white noise is added to soften the zero-valued 
spectrum lines caused by noise. In the re-normalization 
process of the 2nd step, a suitable amplitude of white noise is 
introduced to change the slope of the noise percentile fitting, 
preventing it from becoming infinite. The added noise is 
shown in Eq. (13). 

( )New
c cx x A randn N= + × , (13) 

where A represents the amplitude of the introduced noise, 
and its value is set to 0.2 times the standard deviation of xc 
[28]. As shown in Fig. 4 (b), with added white noise, the 
fitted curve obtained the slope. 

Fig. 5. The white noise replacement module.  

The white noise replacement module is shown in Fig. 5. 
Before decomposition, white noise with standard amplitude 
and variance is used to replace Noise in the original signal, 
without changing the characteristics. It also improves the 
thresholding module of the next layer, making the training 
process of this framework more stable. 

C. Theoretical Characteristics of SDMD framework
The proposed framework possesses the following

characteristics： 

1) Order-Invariance of Decomposition
Assuming that all significant fault spectrum lines that

reflect fault characteristics are located in different positions, 
the decomposition order is independent of the presence of 
noise that may obscure the fault spectrum lines: 

( ) ( ) ( )
1 2, ,...,i i i

i nNFS a a a =   (14) 

When the j-th spectrum line is neither an RC nor a CC 
spectrum line, aj

(i) = 0. Taking three types of faults as 
examples when n = 5. When i = 1, 2, 3, the three types of 
faults are: 

(1) (1) (1) (1) (1)
1 1 2 3 4 5

(2) (2) (2) (2) (2)
2 1 2 3 4 5

(3) (3) (3) (3) (3)
3 1 2 3 4 5

,  ,  ,  ,  

,  ,  ,  ,  

,  ,  ,  ,  

M

M

M

NFS A a a a a

NFS a A a a a

NFS a a A a a

 =  
 =  
 =  

(15) 

In this case, the distinguishable fault frequencies are 
represented by the uppercase letter A. This means that the 
amplitude Ai percentage in the current NFS at that position is 
much higher compared to the other faults at the same 
position. Since the essence of the DMD algorithm is 
spectrum weighting, the difference spectrum corresponding 
to the higher amplitude percentage has a larger weight. The 
results obtained after thresholding are more likely to be 
retained compared to the smaller weight spectra. Taking 
NFSM1 as REF and the rest as MIX, the first layer of 
decomposition yields a filtered index focused on fault 1: 

(1) (1)
1 4 5

(1) (1)
1 4 5

1,  0,  0,  ,  

0,  1,  1,  ,  

r r r

c c c

I i i

I i i

 =  
 =  

, (16) 

{ }1 0,1r ci i= − ∈ , (17) 

where ,r ci i  represent the spectrum lines of RC and CC at the 
corresponding position, respectively. In the corresponding 
positions of the spectrum lines, the results here are not 
important because they do not represent distinguishable 
significant spectrum lines. Through the first layer of 
decomposition, it can be observed that the important 
spectrum lines focused on the fault are preserved at their 
corresponding positions. At this stage, reconstruction is 
performed to obtain the NFS required for the second layer of 
decomposition, as shown in Eq. (18): 

(2) (2) (1) (2) (1) (2)
2 2 3 4 4 5 5

(3) (3) (1) (3) (1) (3)
3 2 3 4 4 5 5

0,  ,  ,  ,  

0,  ,  ,  ,  

M c c

M c c

NFS A a i a i a

NFS a A i a i a

 = × × 
 = × × 

 (18) 

Performing the next layer of decomposition, the filter 
index obtained is: 
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(2) (2) (2)
4 5

(2) (2) (2)
4 5

0,  1,  0,  ,  

0,  0,  1,  ,  

r r r

c c c

I i i

I i i

 =  
 =  

(19) 

Based on all the decomposed filtered indices, signal 
filtering is performed at the corresponding layer, resulting in 
the following results: 

 

(1) (1) (1) (1) (1)
1 1 4 4 5 5

(2) (1) (2) (2) (1) (2) (2)
2 2 4 4 4 5 5 5

(3) (1) (2) (3) (1) (2) (3)
2 3 4 4 4 5 5 5

,  0,  0,  ,  

0,  ,  0,  ,  

0,  0,  ,  ,  

filter
M r r

filter
M c r c r

filter
M c c c c

NFS A i a i a

NFS A i i a i i a

NFS A i i a i i a

 = × × 
 = × × × × 
 = × × × × 

(20) 

In the calculations from Eq. (16) to Eq. (20), changing 
the order of the three types of faults essentially changes the 
position of the important fault spectrum line A at each layer. 
In the spectrum weighting algorithm, the position of the 
spectrum is discrete, and its order does not affect the 
calculation results. The change in order primarily affects the 
position of the non-distinguishable important spectrum line 
a, which is irrelevant to the diagnostic task aiming to extract 
results. Additionally, the non-important spectrum line a is 
mostly noise, with a small portion being the aliasing result of 
high-frequency modulation. The former will be filtered by 
the thresholding module, while the latter will be added as the 
CC component to the REF index of the current layer, 
possibly resulting in a weak modal superposition 
phenomenon. Overall, changing the decomposition labels, 
i.e., changing the decomposition order, does not have any
effect on the results of the important spectrum lines of
interest, thus reducing the issue of selecting hyperparameters.
Eq. (21) summarizes the order-invariance under three-layer
decomposition. This can be extended to four layers, five
layers, or even higher levels of decomposition.

(1,  2,  3) (1,  3,  2)
(2,  1,  3) ... (3,  2,  1)

SDMD SDMD
SDMD SDMD

=
= = =

(21) 

2) Orthogonal Completeness
In the iterative decomposition process with a total of N

layers, for all the RC and the final residual component CC 
indices obtained from the decomposition: 

(1) (2) ( )

(1) (2) ( )

{ ,  ,  ...,  }

{ ,  ,  ...,  }

n
ri i i i

n
rc

I a a a

I b b b

=

=
(22) 

where i represents the decomposition layer, n represents the 
point index, , {0,1}, 1,2,...,k k

ia b k n∈ ∈ . The RC and Noise 
spectrum lines obtained from each layer are set to zero and 
will not appear in the subsequent layers. This means their 
product is zero, as shown in Eq. (23). 

0

0
N

k k
i

i

b a
=

=∏ (23) 

The inner product of all spectrum lines is then given by: 
1

1 2
1 1

... , 0
nN

k k
r r rN c i

k i

I I I I b a
+

= =

= =∑ ∏， ，， (24) 

The Noise spectrum lines include all spectrum lines 
except Sr and Sc. By performing inverse transformation and 

linear weighting on all the spectrum lines obtained from the 
decomposition, the result is as follows: 

N

1 2
i 1

i ri N c N noNFS l S l S l S+ +
=

= × + × + ×∑ (25) 

It can be seen that li = 1 represents the weight of the 
spectrum line. Therefore, the frequency domain 
orthogonality completeness of the signal is proven.  

Furthermore, from Eq. (17) and Eq. (20), it can be 
concluded that: 

1 2 3
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1 2 3
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4 4 4 4 4
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i i
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× × × ×

= × × × ×

= × − (1) (2) (1) (2)) ) ((1 ) (1 ))
0

r r ri i i× × − × −
=

(26) 

Without considering the presence of noise filtering, there 
is only one value among 1 1 2 1 2,  ,  and r c r c ci i i i i× ×  that is equal to 
1. This means that in the resulting NFS after the three filters,
each corresponding position of the spectrum line has only
one value. It demonstrates the orthogonality of the proposed
framework again.

3) Sparsity
The sparsity property facilitates the extraction of distinct

periodic fault characteristic frequencies, enabling 
interpretable fault diagnosis [29], [30]. As mentioned in 
Section III, with an increase in the number of layers, the 
number of non-zero frequencies decreases. Sparsity refers to 
the concentration of coefficients representing fault 
characteristics on a small subset of the difference spectrum. 
Therefore, it is only necessary to perform Fourier 
transformation on the signal and filter only the filter indexes 
obtained, achieving compressed storage of the signals of 
interest (such as fault components). The removal of noise 
components can also be achieved. Eq. (27) provides evidence 
for this. 

1 20 0 0 0 0
...r r rL c signalI I I I I N+ + + + < = , (27) 

where L represents the total number of layers. Isignal 
represents all spectrums of the original signal, and N is the 
total number of discrete spectrum lines. 
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IV. UPDATABLE ONLINE LEARNING SDMD (USDMD)

A. The overall USDMD framework

Fig. 6. The updatable online learning SDMD framework, includes the 
initialization module, the open-set detection module, and the incremental 
learning module. 

In practical production scenarios, normal signals are 
more common, and obtaining fault signals can be 
challenging. What is more, various anomalies may occur, 
making it challenging for our trained models to 
comprehensively address all possible faults. Therefore, the 
problem addressed in this section is how to detect signals 
that do not belong to the current sample library and extend 
the existing SDMD layers accordingly. An updatable online 
learning fault diagnosis architecture is proposed, which 
includes open-set detection for new signals and incremental 
learning. The overall training process is illustrated in Fig. 6 
and is outlined as follows: 

1) Weights initialization. If fault signals exist, use them
as MIX; if not, generate a simulated signal arbitrarily. Use 
normal signals as REF. Perform SDMD to obtain the 
difference spectrum and filtering indexes for each layer, 
which serve as the initialization values for the framework. 

2) Open-set detection. Input the new signal and perform
SDMD. Calculate the energy for each decomposition layer 
and compute the logarithmic PDF values between each 
energy vector and known faults. If the value is below a given 
threshold, it is considered a new fault and proceeds to step 3. 
If it does not meet the requirement, diagnose the 
corresponding fault based on the maximum PDF value. 

3) Incremental learning. Label the new samples and
input them as new faults for incremental learning within the 
SDMD framework. 

The details of each submodule are further elaborated in 
the remaining subsections of this section. 

B. Weight initialization module
In the case where one fault and normal signals are

available, performing SDMD according to Eq. (10) will yield 
the initial difference spectrum and filtering indexes. 

However, in practical production scenarios where pre-
designed experiments are not conducted, the signals 
collected are often normal, and obtaining fault signals can be 
challenging. Therefore, obtaining the MIX signal becomes a 
challenge in initializing the difference spectrum weights. 
Considering that simulated signal models are easy to 
establish, in the absence of faults, a simulated signal can be 

created based on the fault mode to serve as Fault1 [31]. 
SDMD can then be performed to obtain the initial difference 
spectrum. 

In the subsequent open-set detection module, when a 
fault is detected, the detected fault is used to replace the 
simulated signal, updating the initial optimal difference 
spectrum. 

C. Open-set detection module
To detect whether a new signal belongs to existing faults,

a simple open-set detection module is proposed in this 
section. The specific steps are as follows: 

1. The existing difference spectrum and filtering indexes
are used to perform SDMD on the new signal according to 
Eq. (11) to obtain the sub-signals for each layer. Calculate 
the energy of each layer's signal. The energy E of a discrete 
signal with length N is calculated as follows: 

2

1

N

i
i

E x
=

= ∑ (28) 

2. Randomly select typical signals with known fault
labels and calculate the energy of each fault type in each 
layer. Calculate the mean and self-covariance of the energies 
using Eq. (29).  
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N
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−
=

−

∑

∑
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where Ei represents the energy of signals with the same 
label and in the same layer. For a sample set with T different 
fault conditions, the mean(E) has a length of T, and the 
cov(E) matrix has a size of T T× . 

3. Use Eq. (8) and Eq. (30) to calculate the logarithmic
PDF (LPDF) values of the new signal relative to each 
existing fault, which is used for similarity judgment. If all the 
LPDF values are less than 1, it is considered a new fault 
sample, and the incremental learning module is executed. If 
there are values above 1, diagnose the fault type Tsignal as the 
fault layer corresponding to the maximum LPDF value, as 
shown in Eq. (31).  

LPDF log(PDF)=  (30) 

New_fault   LPDF<1
Normal        LPDF 1& arg max(LPDF ) 0
Fault_          LPDF 1& arg max(LPDF )

0,1,...,

signal i

i

T
i i

i T

∀
= ∃ > =
 ∃ > =

=

 (31) 

Considering that there may be some errors in the 
operation of the equipment and signal acquisition process 
when determining a fault that does not belong to known 
labels, it is necessary to have a continuous number of signals 
with all LPDF values less than 1. This confirms the 
occurrence of a new fault. The number of examples can be 
arbitrarily chosen, and in this paper, it is set to 15.  
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D. Incremental learning module
After obtaining new fault samples, it is necessary to

update the filtering indexes of each layer and train the 
decomposition layer corresponding to the new fault to 
achieve incremental learning. The process is as follows: 

1. The existing fault data with known labels are randomly
selected as typical signals. The number of data for each type 
should be kept as similar as possible. In this paper, the 
number of examples for each fault condition is set to 5. The 
continuous 15 fault examples collected in the open-set 
detection module are given a new fault label to establish a 
new dataset. However, when performing SDMD, the label 
should be given as follows: The health datasets are 0, and the 
known faults are all given 1, mixed as one type of fault. And 
the new fault is separately assigned to 2. The correspondence 
between the original and USDMD labels is shown in TABLE 
I.  

TABLE I. LABEL CORRESPONDENCE TABLE 

Method Health Known fault New fault 
Fault label 0 1~N-1 N 
USDMD label 0 1 2 

2. Then, a two-loop SDMD is performed to obtain filter
indexes of each health condition. The first loop is to obtain 
FIs of health conditions, and the second loop is to separate 
the new fault from other known faults. So the filter indexes 
of health and new fault are saved for the next calculation, 
while others corresponding to fault 1 to (N-1) are discarded. 

3. Finally, the intersection with the new fault FIs from the
FIs of known faults is removed, which is to satisfy the 
orthogonality of FIs. The specific process of this step is 
shown in Algorithm 2.  

Algorithm 2  Updatable SDMD 
Input: Dataset signal  with N L× , The label of data 
label  with 1 L× , filter index matrix of known health 
condition F 
Output: Updated filter index matrix F. 
Reset labels using TABLE I. ; 
Procedure: 
Get a new filter index matrix newF  by performing SDMD 
using Algorithm 1. 
Replace the filter index of health by: 

,1 , 1 , 1, 2, ..., ( 1)
2

new
n n

NF F n= = +

Add filter index of new fault by: 

n. ,3 , 1, 2, ..., ( 1)
2

new
N n

NF F n= = +

Update filter indexes of known faults by: 
, , , ,  3

1, 2, ..., ( 1), and [2, 1]
2

new
n num n num n num nF F F F

Nn num N

= − ∩

= + ∈ −

Return: Updated filter index matrix F. 

The above incremental learning module considers the 
filter indexes of known faults as a whole, only requires two 
loops to separate the new fault, and removes the part of the 
filter indexes of known faults containing the new fault based 
on orthogonality. This process can meet the requirement that 
no matter how many faults exist in the established fault 
library, any new fault can be learned in just two loops, 
greatly reducing the time for retraining and achieving 
efficient incremental learning. 

V. SIMULATION SIGNAL CASE ANALYSIS

In this section, a comparative analysis using simulated 
signals is performed to validate the effectiveness of SDMD 
framework. The decomposition performance and noise 
reduction effect of the threshold processing module are 
included. 

In practical scenarios, the characteristic frequencies of 
multi-class fault components may not be distributed in 
separate frequency bands. Similar to the approach in [20], the 
following simulated signals are constructed: 

1

( ) ( ) ( )

1

( ) cos(2 )

( ) cos(2 )

R

C

N

R Ri Ri
i

N
j j j

C Ci Ci
i

x t A f t

x t A f t

π

π

=

=

=

=

∑

∑
, (32) 

where t represents time, xR(t) represents RC, ( ) ( )j
cx t  

represents the j-th CC, RiA  and Rif  represent the amplitude 
and frequency of the i-th components in RC, respectively. 

( )j
CiA  and ( )j

Cif  represent the amplitude and frequency of the 
i-th component in the j-th CC, respectively. RN and CN
represent the total number of frequencies in RC and CC, 
respectively. 

Considering the various fault situation in fault diagnosis, 
three fault components are defined with their amplitudes and 
frequencies respectively, i.e. (1)

Cf = [150, 250, 350, 540, 
550, 1000]T, (2)

Cf = [155, 245, 355, 455, 540, 900]T, (3)
Cf =

[160, 255, 360, 440, 560, 950]T, (1)
CA = [0.4, 0.6, 0.4, 0.5, 

0.7, 0.4]T, (2)
CA =  [0.5, 0.4, 0.3, 0.6, 0.5, 0.4]T, (3)

CA =  [0.45, 
0.45, 0.5, 0.6, 0.7, 0.5]T. The amplitude and frequency of the 
normal signal are Rf =  [120, 220, 380, 460, 570]T, and RA =  
[0.5, 0.6, 0.9, 0.3, 0.8]T. 

By substituting values into Eq. (5), the results of all 
components can be constructed. At low frequencies, all fault 
components closely resemble the spectrum of the normal 
signal, with slight differences in amplitude. At high 
frequencies, only the fault spectrums are present. The 
spectrums of different faults are very close, with only a 
difference of around 10 Hz. Conventional decomposition 
methods using bandpass filters make it hard to effectively 
extract these individual fault features. 
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Fig. 7. Time and frequency domain of simulated normal and mixed signal. 
(a) REF, (b) MIX1, (c) MIX2, and (d) MIX3. 

In this simulation case, all defined fault signals are
considered as single-class faults, which means there is no 
coupling of fault frequencies. The definition is as follows: 

( ) ( )( ) ( ) ,
( ) ,

j j
MIX R C

REF R

x x t x t
x x t
= +

=
(33) 

where ( )j
MIXx  and REFx represent the j-th mixed signal and 

normal signal, respectively. Fig. 7 shows the time and 
frequency domain of each signal with slight noise. The 
simulated signal with introduced slight noise is decomposed 
using the SDMD framework. Fig. 8 shows the different 
spectrums and thresholds obtained at each level of 
decomposition. The RC spectrums correspond to negative 
values, while the remaining CC spectrum is represented by 
positive values [20]. As the number of decomposition levels 
increases, the number of non-zero spectrums decreases, 
which aligns with the sparsity. In the last level of 
decomposition, the positive best difference spectrums 
perfectly correspond to CC3, and the RC spectrum obtained 
at each level does not overlap, satisfying the orthogonality. 

Fig. 8. (a) The comparison between the spectrum of the simulated signal 
at different noise levels. (b), (c), and (d) are the optimal difference 
spectrum obtained from the first, second, and third levels of decomposition, 
respectively.  

The individual components obtained after inverse Fourier 
transformation are compared with the simulated signal in 
Fig. 9. In each simulated fault signal, the corresponding fault 
component is successfully extracted and appears at the 
corresponding level. The signals in the remaining levels are 
mostly represented by a straight line, with fluctuations due to 
the presence of noise components. Samples 1MIX (a), 

2MIX (b), 3MIX (c), and 4MIX (d) were separately 
extracted and then compared individually with the simulated 
signal. The results are presented in Fig. 10. The blue and red 
line represents the extracted and simulated signal, 
respectively. The two lines almost completely overlap, with 
only slight differences caused by noise during the signal 
construction. 

Fig. 9. The SDMD results of simulated signal MIX1~4. (a) Original signal, 
(b) REF component, (c) CC1 component, (d) CC2 component, and (e) CC3 
component 

For the proposed method, the threshold processing part 
still obtains a few noise spectrum lines. The experiment uses 
mean square error (MSE), signal-to-noise ratio (SNR), and 
peak error (PE) as evaluation metrics. The results of the 
proposed method and two classical noise elimination 
methods: wavelet packet [32] and mean filtering denoising 
are compared. The results are shown in TABLE II. , where 
CC1~3 of the SDMD scheme are the decomposition 
components obtained through the framework. Denoising 
signal CC1~3 of WPT and mean filter are using original CC 
with the noise of the same SNR. It can be observed that the 
MSE of the proposed framework is much smaller than the 
two comparison methods, the SNR is the highest, and the PE 
is the smallest. Therefore, the SDMD framework performs 
well in signal denoising. 

Fig. 10. The comparison among every extracted and simulated component 
with the different noise levels. (a) REF, (b) CC1, (c) CC2, and (d) CC3. 

TABLE II. THE COMPARISON AMONG SDMD AND CLASSIC METHODS 
OF DENOISING EFFECT 

Method MSE SNR PE 
CC1 CC2 CC3 CC1 CC2 CC3 CC1 CC2 CC3 

SDMD 0.41 0.34 0.72 9.50 9.53 8.21 0.59 0.43 0.65 
WPT 6.81 6.74 5.55 1.15 1.09 2.24 2.37 2.20 2.11 
Mean filter 1.59 1.40 1.73 9.42 9.26 9.28 0.60 0.60 0.67 
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VI. SDMD STRUCTURE FOR FAULT DIAGNOSIS ON REAL
DATASETS 

Fig. 11. TY121S-8 bearing test rig. 

In this section, the framework proposed in this study is 
applied to performing successive decomposition and fault 
diagnosis on the data collected from the TY121S-8 bearing 
test rig. The experimental setup of this dataset is shown in 
Fig. 11. Three types of faults are considered: inner race fault, 
outer race fault, and ball fault. The bearing speeds are set to 
1,800, and each signal is sampled at a frequency of 20k Hz. 
Each sample is divided into 4,096 data points. Considering 
that fault signals are relatively scarce in various scenarios, 
only 25 samples are collected for each type of fault. Fig. 12 
shows the time and frequency domain plots of each type of 
fault. 

Fig. 12. Time and frequency domain plots of normal and fault signal of TY 
bearing datasets. (a) Normal signal, (b) Inner fault, (c) Outer fault, and (d) 
Ball fault. 

For the bearings in this dataset, the fault frequencies of 
the fundamental frequency fr, inner race fault frequency fi, 
outer race fault frequency fo, and ball fault frequency fb are 
shown in TABLE III.  

TABLE III. THE CHARACTERISTIC FREQUENCY OF TY DATASET 

fr (Hz) fi (Hz) fb (Hz) fo (Hz) 
30 165 63 104.4 

Due to the order-invariance property, the order of faults 
does not affect the decomposition results. Assuming that the 
normal signal is collected first, followed by the inner race 
fault, then the ball fault, and finally the outer race fault. The 
order of the fault samples inputted is shown in Fig. 13. 

Fig. 13. The sample input order. The normal and partial inner race faults 
are known initially, and as time progresses, new faults are added to the 
samples. In this experiment, a maximum of 25 samples are available for 
each type of fault. 

The online updating framework is executed, and the 
energy vector is visualized during the continuous open-set 
detection. The results are shown in Fig. 14. It can be 
observed that as the samples are continuously inputted into 
the USDMD framework, the energy is dispersed among the 
existing decomposition layers. The faults are well-clustered 
in the visualization plot, and the distances between different 
faults are quite distinct. For new samples whose fault is 
already learned, their energy is distributed to the 
corresponding fault class in the visualization plot, and the 
LPDF value in the corresponding layer is the highest. For 
faults that have not been learned, their energy distribution in 
the visualization plot is far from the existing signal classes, 
and all their LPDF values are less than 1. After ten 
consecutive samples are identified as new faults, it is 
confirmed that a new fault has indeed occurred. At this point, 
the best difference spectrum and filtering index are updated. 
After all the signals have been inputted, the overall execution 
of USDMD is completed. 

Fig. 14. Visualization of sample energy of TY dataset at each stage by 
USDMD. In the first stage, (a) USDMD detects unknown learned faults 
(Inner fault), and (b) USDMD detects unknown and unlearned faults (Outer 
fault). In the second stage, (c) USDMD detects unknown learned faults 
(Outer fault), and (d) USDMD detects unknown unlearned faults (Ball 
fault). 
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Fig. 15. (a) The comparison between NFS of normal and all fault signals, 
and optimal difference spectrum of (b) layer 1, (c) layer 2, (d) layer 3 of TY 
datasets. 

As shown in Fig. 15, it can be observed that the low-
frequency components of the signal are mainly decomposed 
into normal reference periodic components, while the high-
frequency modulation components are continuously divided. 
In the TY bearing data, the fault components are almost in 
the same frequency band at high frequencies, and the 
spectrum lines have a high degree of similarity. In Fig. 15 (c) 
and (d), it can be observed that the number of filter indexes 
decreases continuously, gradually becoming sparse, and all 
of them extract the corresponding modulation frequencies at 
the high-frequency modulation. As shown in Fig. 16, by 
applying the obtained optimal difference spectrum, an 
inverse transform is performed to obtain the decomposition 
results of the normal and every fault signal. The amplitude of 
waveforms is more pronounced at the corresponding fault 
decomposition components, while the other components 
have very small amplitudes. It indicates that the components 
of other decomposition layers are very few. 

Fig. 16. SDMD results of time domain TY datasets. (a) Original signal, and 
the components of (b) Normal, (c) Inner fault, (d) Outer fault, and (e) Ball 
fault. 

Fig. 17. SDMD results of the square envelope of TY datasets. (a) Original 
signal, and the components of (b) Normal, (c) Inner fault, (d) Outer fault, 
and (e) Ball fault. 

However, for the ball fault, the amplitudes of the inner 
race fault and outer race fault components are only slightly 
smaller than the ball fault decomposition layer. Research has 
shown that when diagnosing ball faults, features of both 
inner race and outer race faults are often extracted. This is 
due to a slippage phenomenon of the rolling elements in the 
cage [33]. In such cases, the average slippage of the bearing 
is likely to have self-adjusted and locked onto the 
subharmonics of the dominant frequency (such as shaft 
speed). As shown in Fig. 17, the mean square envelope 
spectrum features of the decomposed signals for the normal, 
inner race fault, and outer race fault highly coincide with the 
calculated results. On the other hand, the ball fault 
frequencies are more prominent at 1.5 and 2 times the 
fundamental frequency, which correspond to subharmonic 
frequencies with a 0.5 interval. This demonstrates that the 
successive decomposition framework performs well in 
extracting fault components even in the presence of high-
frequency modulated signals. Furthermore, due to the 
orthogonality, even if there are mixed modes (such as the 
slippage phenomenon in ball faults), they would be separated 
into different components, which is advantageous for fault 
diagnosis. 

Fig. 18. Comparison of (a) computation time, and (b) memory used 
between USDMD and SDMD  

In addition, the different severity levels of faults in the 
TY dataset were treated as different faults for comparing the 
computation time of USDMD and SDMD. As shown in Fig. 
18 (a), when the fault number is 2, the USDMD and SDMD 
computation time are the same. As the number of faults 
increases, the SDMD calculation time keeps increasing, 
while the USDMD calculation time fluctuates around the 
initial value. This is because the training progress of 
USDMD is fixed at 2 layers of decomposition, while the 
number of layers of SDMD decomposition is affected by the 
number of faults. For memory complexity, they are the same, 
because the successive framework does not change, and the 
size of the target - ꞷbest of each layer is same. The 
comparison is shown in Fig. 18 (b). This experiment 
demonstrates the time efficiency of USDMD in incremental 
learning. 

VII. CONCLUSION

Building on the DMD, this paper proposes the SDMD 
framework for extracting multi-class fault features. SDMD 
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adaptively decomposes fault signals with prior fault 
knowledge, requiring minimal training data and enabling 
real-time fault diagnosis with fast Fourier transform and 
inverse transform. Experimental validation confirms the 
orthogonal and noise removal capabilities of SDMD, 
providing frequency-domain interpretability and time-
domain discrimination of different faults. Furthermore, an 
updatable online learning framework USDMD has been 
proposed for the incremental demand scenario when a new 
fault occurs, providing data efficiency and interpretability. 
Experimental validation demonstrates the effectiveness and 
time efficiency. However, the proposed method can not deal 
with variable operating conditions. Future work will focus on 
the improvements for variable operating conditions 
scenarios. 
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