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ABSTRACT Breast cancer remains a leading cause of mortality among women, necessitating accurate
and computationally efficient diagnostic solutions. Deep learning, particularly convolutional neural net-
works (CNNs), has significantly advanced mammographic analysis by automating feature extraction and
improving early detection. However, CNNs rely on localised feature extraction, limiting their ability to
capture long-range dependencies essential for robust classification. This study introduces and evaluates
the effectiveness of pre-trained MLP-Mixer models using transfer learning as an alternative to CNN-based
approaches, utilising their token-mixing and channel-mixing mechanisms to integrate local and global spatial
features in mammograms. Four MLP-Mixer variants (B/16, L/16, B/32, and L/32) were systematically
assessed on three benchmark datasets: CBIS-DDSM, INbreast, and MIAS. The results demonstrate that
MLP-Mixer models, particularly those with smaller patch sizes (L/16 and B/16), consistently achieve state-
of-the-art accuracy and sensitivity, while also offering 30 — 50% faster inference times compared to leading
CNNss such as ResNet and DenseNet. These models demonstrate strong generalisation across multiple bench-
mark datasets and strike an effective balance between diagnostic accuracy and computational efficiency,
which are essential requirements for clinical deployment. Their performance underscores the importance
of fine-grained feature extraction in mammographic analysis. Comparative results indicate that MLP-Mixer
models offer a compelling alternative to conventional CNNs by efficiently capturing both local and global
dependencies without the high computational demands of deep convolutional network architectures. These
findings highlight the promise of token-based models for Al-assisted breast cancer diagnosis and suggest
that MLP-Mixer architectures are well-suited for real-time medical imaging applications. By enabling direct
global spatial interaction, reducing architectural complexity, and improving diagnostic precision across
varied imaging conditions, MLP-Mixers offer a computationally efficient alternative to traditional CNNs
without compromising accuracy.

INDEX TERMS Breast cancer diagnosis, computer-aided diagnosis, deep learning, pretrained convolution
neural network models, pre-trained multi-layer perceptron (MLP)-mixer models, mammography.

I. INTRODUCTION spread to distant organs). Lower stages (I-III) involve increas-

Breast cancer is a major global health challenge, with around
2.3 million new cases diagnosed and 685,000 deaths in
2020, followed by approximately 670,000 deaths in 2022 [1],
[2]. Being the most common cancer in women, it requires
ongoing awareness, early detection, and improved treat-
ment approaches. Breast cancer staging ranges from Stage 0
(in situ, confined to ducts/lobules) to Stage IV (metastatic,
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ing tumour size and lymph node spread, with a better
prognosis at earlier stages. Treatment depends on stage
and tumour biology [3], [4]. In Canada, 5-year survival
for stage I breast cancer is 99.8%, falling to 23.2% for
stage IV [5]. U.S. data (2012-2018) shows similar trends, with
stage I survival at over 99% and stage IV at 29% [6]. One
Netherlands study (1989-2017) confirms improved survival
and lower mortality due to early detection and advanced
treatments [7]. The significant decline in survival rates from
early to advanced stages highlights the critical importance
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of early detection and timely intervention to improve patient
outcomes.

Diagnostic medical imaging has significantly expanded
the tools for breast cancer detection, including mammog-
raphy, breast thermography, magnetic resonance imag-
ing (MRI), ultrasound, positron emission tomography
(PET), histopathology, and computed tomography (CT) [8].
Of these, mammography remains a basis of early detection,
particularly improving treatment success and survival rates by
identifying abnormalities before symptoms become apparent,
even in low and middle-income countries with limited health-
care access [9], [10], [11], [12]. Digital mammography offers
high diagnostic accuracy, matching traditional screen-film
mammography (SFM) while excelling in detecting tumours
in dense breast tissue [13]. However, the screening process
has limitations, including high costs, procedural complexity,
false positives, and human error. Additionally, existing imag-
ing techniques have inherent drawbacks; for instance, up to
35% of breast cancer may be missed during screening, often
due to dense or overlapping breast tissue, leading to interval
cancers detected between screenings [14], [15].

Integrating advanced technologies is crucial for overcom-
ing limitations in breast cancer screening by improving accu-
racy, efficiency, and patient outcomes. Al-powered diagnostic
systems are at the forefront of this transformation, providing
invaluable support to physicians. Utilising advanced algo-
rithms, these tools detect subtle patterns in medical data that
are often missed by human analysis. This improved analyt-
ical precision reduces false positives, providing clinicians
with more reliable initial evaluations. Moreover, accuracy is
essential in diagnostics, enabling informed decisions about
patient treatment and management. By enhancing decision-
making, these technologies not only support clinicians but
also improve patient care and health outcomes, advancing the
efficiency of healthcare systems [16].

Computer-aided diagnosis (CAD) systems have trans-
formed mammogram-based breast cancer detection by over-
coming limitations in manual interpretation, including high
error rates, inconsistencies, and challenges posed by dense
breast tissue. By enhancing image quality, automating fea-
ture detection, and utilising advanced technologies such as
deep learning, CAD improves sensitivity and specificity in
identifying abnormalities such as microcalcifications and
masses. As a ‘“‘second opinion” for radiologists, CAD
reduces diagnostic errors, alleviates workload, and supports
early cancer detection, which is necessary for effective treat-
ment and improved survival rates. Research demonstrates that
CAD-integrated mammography enhances diagnostic accu-
racy, lowers costs, and reduces the need for double readings,
solidifying its role as an essential tool in contemporary breast
cancer screening [17], [18], [19], [20].

Traditional Machine Learning (ML) techniques have sig-
nificantly advanced CAD systems for breast cancer detection
using mammography. Support Vector Machines (SVM) are
widely utilised for binary classification tasks, often com-
bined with feature extraction methods such as wavelets
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and texture analysis. Artificial Neural Networks (ANNs),
including Multi-Layer Perceptron (MLP), are also promi-
nent but require careful parameter tuning. Decision Trees
(DT) and Random Forests (RF) offer interpretable and
robust classification, while ensemble methods such as
AdaBoost enhance performance through improved generali-
sation. Feature extraction techniques, such as texture analysis
(e.g., Gray-Level Co-occurrence Matrix) and morphological
descriptors, are critical, with dimensionality reduction meth-
ods such as Principal Component Analysis (PCA) aiding
efficiency. Despite their strengths with small datasets, tradi-
tional ML techniques face challenges, including reliance on
handcrafted features and limited scalability [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31].

Although traditional techniques were effective, princi-
pally with limited annotated data, the field has gradually
shifted toward deep learning (DL). Unlike conventional
techniques, DL automates feature extraction directly from
raw mammogram images, eliminating the need for manual
feature engineering. This allows models to learn discrimi-
native features independently. For example, several studies
have demonstrated the effectiveness of convolutional neural
networks (CNNs) for feature extraction and classification,
achieving high accuracy across multiple datasets. They are
widely applied in four key areas: breast density classifica-
tion, asymmetry detection, calcification detection, and mass
detection. For breast density classification, CNNs utilise
pre-trained networks such as ResNet and VGGNet, with
attention-based mechanisms enhancing feature extraction.
In asymmetry detection, CNNs analyse bilateral features
from Craniocaudal (CC) and Mediolateral-Oblique (MLO)
views, using deep residual networks and attention mech-
anisms to improve performance. Calcification detection
benefits from CNNs’ ability to segment microcalcifica-
tions in high-resolution images, with architectures such
as U-Nets and dilated CNNs capturing fine details. Mass
detection employs two-stage CNN architectures, combining
region-based CNNs for initial detection and classification
CNNs for malignancy assessment, while multi-view CNNs
integrate CC and MLO views to enhance accuracy. The suc-
cess of CNNs in mammography is supported by advanced DL
architecture such as AlexNet, VGGNet, ResNet, DenseNet,
EfficientNet and U-Net, each fitted to specific tasks. Training
strategies, including data preprocessing, augmentation, and
transfer learning, further optimise performance. Multi-view
learning and hybrid approaches, which combine hand-crafted
radiomics features with deep learning, have also proven
effective. Evaluation metrics such as accuracy, sensitivity,
specificity, and AUC-ROC demonstrate CNNs’ superior per-
formance over traditional machine learning models, with
state-of-the-art models achieving AUC values exceeding
0.95 in mass detection tasks [32], [33], [34].

Despite advancements in CNN-based techniques, several
challenges continue to impact performance. Issues such as
limited labelled data and class imbalance can hinder effective-
ness; however, strategies like data augmentation, synthetic
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data generation, and transfer learning can help mitigate
these problems. Additionally, the interpretability of CNNs
remains a significant concern. Attention mechanisms such as
Gradient-weighted Class Activation Mapping (Grad-CAM)
and the Shapley additive explanations (SHAP) can partially
address this issue [35], [36].

Transfer learning enables models pre-trained on large-
scale datasets such as ImageNet to be fine-tuned on
domain-specific medical imaging datasets. Using pre-trained
CNN models, transfer learning improves model generalisa-
tion, accelerates training, and lowers computational resource
needs, making it an effective method for mammographic
analysis [37]. Various studies have investigated the effective-
ness of transfer learning in mammographic analysis. Early
studies showed that VGG16, ResNet50, and InceptionV3
were effective for tumour classification, achieving high accu-
racy and sensitivity in differentiating between benign and
malignant cases [38]. For instance, Guan et al. utilised
VGG16 for mammographic analysis, achieving 90.5% accu-
racy on the MIAS and DDSM datasets, while Falconi et al.
stated an AUC of 0.844 on CBIS-DDSM using fine-tuned
VGG16. Additional studies focused on improving CNN
architecture for mammographic classification. Alruwaili et
al. examined ResNet50 and NasNet-Mobile, finding that
ResNet50 achieved an accuracy of 89.5% on the MIAS
dataset. Furthermore, a recent study evaluated five popular
CNN pre-trained architectures: VGG19, ResNet50, Efficient-
NetB4, MobileNetV2, and InceptionV3. It demonstrated
differences in performance related to dataset size, computa-
tional efficiency, and feature extraction capabilities [36].

While CNNs have advanced mammographic analysis by
automating feature extraction and achieving high diagnostic
accuracy, their dependence on local spatial features presents a
significant limitation. CNNs stand out at capturing localised
patterns but may fail to effectively model global dependen-
cies, which are equally critical for accurate breast cancer
detection. Mammograms present intricate tissue structures
where local and global contextual information are essential
for distinguishing between benign and malignant lesions.
This highlights the need for approaches that integrate both
local and global features to enhance diagnostic precision.

In contrast to CNNs, multi-layer perceptron (MLP)
mixers present a novel approach by capturing both spa-
tial and channel-based features through token-mixing and
channel-mixing mechanisms. The MLP-Mixer model is
architecturally distinct from convolutional and attention-
based models. Unlike CNNs, which extract features through
local receptive fields and require multiple stacked layers to
capture global context, MLP mixers perform token-mixing
operations that allow global spatial feature interaction at
each layer. This enables more direct modelling of long-range
dependencies in mammographic images, which is particu-
larly beneficial in detecting distributed subtle anomalies. This
capability makes them particularly promising for addressing
the limitations of CNNs, such as identifying understated
textural variations and architectural distortions that are
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critical for accurate diagnosis. While CNN-based pre-trained
architectures such as DenseNet, ResNet50, and EfficientNet
have demonstrated strong performance in analysing mammo-
grams, their dependence on local feature hierarchies and deep
stacking can lead to significant computational complexity
and latency. Moreover, in contrast to hybrid models such
as MoEffNet or deep ensembles, MLP-mixer models allow
for the modelling of both local and global contexts from the
early layers through token-mixing MLPs, thereby reducing
the need for deep hierarchies and offering a simpler and
more unified structure with fewer parameters, low latency,
and greater interpretability. These characteristics make it a
novel and fundamentally different paradigm for breast cancer
detection in medical imaging.

This study represents, to the best of our knowledge, the first
comprehensive evaluation of pre-trained MLP-Mixer models
for breast cancer detection using mammograms. We propose
a novel framework that:

1) Matches or exceeds the diagnostic performance of

state-of-the-art CNNSs,

2) Reduces inference time by up to 50%.

3) Demonstrates consistent generalisation across multiple

mammographic datasets.

Through systematic evaluation of four pre-trained MLP-
Mixer variants (B/16, L/16, B/32, and L/32) on three bench-
mark mammography datasets, CBIS-DDSM, INbreast, and
MIAS, this study explores the effectiveness of token-mixing
architectures as an alternative to CNN-based models for
breast cancer detection. We compare their performance
against state-of-the-art CNN baselines using key clinical
metrics such as accuracy, sensitivity, specificity, and AUC.
By utilising the unique token-mixing and channel-mixing
mechanisms of MLP-Mixers, we aim to assess whether
these models can enhance diagnostic accuracy, reduce false
positives and negatives, and offer improved interpretability.
Ultimately, this research contributes to the advancement of
scalable, reliable, and real-time Al-driven decision support
systems in radiology.

The main contributions of this article are summarised as
follows:

« Introduction of MLP-Mixer Architectures for Mammo-
graphic Image Classification: This study is the first to
systematically evaluate pre-trained MLP-Mixer archi-
tectures (Mixer-B/16, Mixer-L/16, Mixer-B/32, Mixer-
L/32) for breast cancer detection using mammograms
across multiple benchmark datasets, including CBIS-
DDSM, INbreast, and MIAS. By introducing this
token-based MLP approach to breast cancer detection,
our work addresses a critical gap in the literature and
demonstrates the potential of MLP-Mixer models as
a novel alternative to CNNs and Transformers in the
analysis of mammographic images.

« Architectural novelty and simplicity: Unlike traditional
CNNs and hybrid attention-based models, MLP-Mixers
eliminate convolutional and attention layers, relying
only on token- and channel-mixing MLPs. This allows
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early and direct global spatial interaction across the
image, enabling more efficient feature representation
and reducing model complexity. This represents a
novel architectural paradigm for medical imaging and
directly overcomes the limitations of CNNs in modelling
long-range patterns critical to detecting subtle and dis-
tributed mammographic abnormalities.

o Superior diagnostic performance and generalisation:
Extensive experiments on three benchmark mammo-
graphic datasets (CBIS-DDSM, INbreast, and MIAS)
demonstrate that MLP-Mixer models achieve classifi-
cation performance (Accuracy, Sensitivity, AUC) that
is comparable to or exceeds state-of-the-art CNN and
hybrid models, with notably better generalisation across
dataset variations.

« Computational efficiency and clinical scalability: MLP-
Mixer models achieve faster inference times of 30-50%
lower than deep CNNs such as DenseNet and ResNet,
while maintaining high diagnostic accuracy. This makes
them highly suitable for deployment in real-time and
resource-constrained clinical environments, including
mobile diagnostics and rural screening settings.

o Comprehensive comparative analysis: The study pro-
vides a detailed comparison with existing state-of-the-
art methods [34], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], including traditional, CNN-based,
hybrid, segmentation-guided, and ensemble approaches.
Our results demonstrate that MLP-Mixer models offer
a simpler yet more effective alternative for Al-assisted
breast cancer detection, both architecturally and diag-
nostically.

The remainder of this paper is structured as follows:
Section II details the materials and methods, including dataset
descriptions, preprocessing techniques, and model architec-
ture. Section III presents experimental results, comparing
the performance of MLP-Mixer models against CNN-based
models. Finally, Section IV draws some conclusions from this
study and outlines potential directions for future research.

Il. MATERIALS AND METHODS

A. DESCRIPTION OF THE MLP-MIXER MODEL

The MLP-Mixer represents an innovative neural network
architecture designed for image classification, distinguished
by its reliance solely on multi-layer perceptron (MLP) rather
than convolutions or attention mechanisms. As depicted in
Figure 1, this architecture is structured around three key
components: patch embedding, mixer layers, and a classi-
fication head. MLP-Mixer processes image features along
two axes: (1) Channel Mixing, which enables communication
between feature channels within individual patches, and (2)
Token Mixing, which facilitates communication across spa-
tial locations between different patches. This separation of
operations, achieved through dense matrix multiplications,
reshaping, and nonlinearities, sets the MLP-Mixer apart from
traditional convolutional or attention-based models [39],
[40], [41].
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FIGURE 1. Overview of the MLP-mixer architecture for image
classification.

1) PATCH EMBEDDING

The architecture begins with patch embedding, where an
input image of the size H x W x C (height, width, and chan-
nels) is divided into non-overlapping patches of size P x P.
Each patch is flattened and projected into a fixed-dimensional
embedding vector of size D. If H and W are divisible by P,
the number of patches N is computed as follows:

N="1r (1)

These patches are then linearly projected into a D-
dimensional embedding space, forming a patch embedding
table Zy that can be represented as follows:

Zo = [z1,22. ..., 2v] € RVP 2)

Here each z; € RP corresponds to the embedding of the
ith patch extracted from an image. This patch embedding,
{z1, 22, - . ., znv}, forms the input sequence used for processing
in vision models, with each z; encoding spatial and structural
information from its respective region.

2) MIXER LAYERS

The core of the MLP-Mixer lies in its mixer layers, which
consist of two primary components: the Token-Mixing MLP
and the Channel-Mixing MLP. These components operate
sequentially, with skip connections to preserve input sig-
nals and ensure stable gradient flow during training. The
Token-Mixing MLP operates on the columns of the patch
embedding table, mixing information spatially across patches
while keeping channels independent. Mathematically, this is
expressed as:

T
Z' = Zy + W5.GELU (Wl Norm (ZO)T) 3)

Here Norm (Zp) denotes layer normalisation, Wy and W»
are learnable weight matrices of the MLP, and GELU (Gaus-
sian Error Linear Unit) serves as the activation function.
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The GELU activation function can be defined as follows:
GELU (x) = x.® (x) 4)

Here & (x) is the cumulative distribution function (CDF)
of the standard normal distribution that provides smooth and
continuous activation and can be represented as follows:

® (x) = % (1 terf (%)) (5)

Here erf (x/\/z) is the error function. GELU often
approximated for computational efficiency as:

2
GELU (x) ~ 0.5 x(1 + tanh(,/ = (x + 0.044715x%)  (6)
T

The Channel-Mixing MLP operates across channels, mix-
ing information within each patch while keeping patches
independent, such that

Z" =Z' + W4.GELU (W3.Norm (Z')) )

Here, W3 and W, are learnable weight matrices for channel
mixing. Each mixer layer applies these two MLP blocks
sequentially, with skip connections ensuring robust training
dynamics.

3) CLASSIFICATION HEAD

After processing through N mixer layers, the final output
Zfinal undergoes global average pooling to aggregate infor-
mation across patches, generating a pooled representation 4:

1 N
h= 2 Ginali ®)

This representation is then mapped to class probabilities
using a fully connected layer:

y = Softmax (W,.h) ©)]

Here W, is the weight matrix of the classification layer.

The MLP-Mixer offers several strengths, including sim-
plicity, as it avoids the complexity of convolutions or
self-attention mechanisms, relying instead on lightweight
operations like matrix multiplication and normalisation.
Its positional invariance is achieved through token mix-
ing, which essentially encodes spatial relationships without
requiring explicit positional embedding. The architecture is
also scalable, with computational complexity scaling linearly
with the number of patches, O (N), unlike vision transform-
ers, which scale quadratically, O (N 2). Finally, the MLP
mixer demonstrates flexibility, performing competitively on
large and small datasets when combined with regularisation
and data augmentation techniques. These features make the
MLP mixer a potentially powerful alternative to traditional
deep-learning models for image classification tasks.
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B. DETAILED DESCRIPTION OF PRE-TRAINED MLP MIXER
ARCHITECTURES: B/16, B/32, L/16, AND L/32

Four pre-trained MLP-Mixer variants were explored in this
study, including B/16, B/32, L/16, and L/32. These models
provide varying levels of flexibility in model size, depth,
patch resolution, and computational efficiency, allowing a
balance between performance and resource requirements.
These configurations enable the architecture to scale effec-
tively for different applications, balancing computational cost
with predictive accuracy. The following sections provide a
detailed overview of these configurations and their implica-
tions for breast cancer detection tasks.

Table 1 presents a comparative overview of different
MLP-Mixer model configurations, highlighting their key
architectural parameters. The models vary in patch resolution
(P x P), hidden size (C), number of layers, and the MLP
dimensions used for channel and token mixing. The sequence
length (S), which depends on the patch resolution, affects
how spatial features are processed, while the total number
of parameters (in millions) indicates the computational com-
plexity of each model.

TABLE 1. Summary of MLP mixer architectures: B/16, B/32, L/16,
and L/32.

Model B/16 B/32 L/16 L/32

Patch Resolution (PxP) 16x16 | 32x32  16x16 32x32

Hidden Size (C) 768 768 1024 1024
Number of Layers 12 12 24 24

MLP Dimension 3072 3072 4096 4096

(Channel Mixing, D)
Sequence Length (S) 196 49 196 49
MLP Dimension 384 384 512 512
(Token Mixing, D)

Parameters (Millions) 59 60 207 206

The MLP-Mixer architecture processes images by dividing
them into patches, with patch resolution (P x P) defining
the number and size of these patches. Models with smaller
patch resolutions (16 x 16), such as B/16 and L/16, produce
a higher sequence length (S = 196), enabling finer-grained
feature extraction at the cost of increased computation,
whereas larger patch resolutions (32 x 32), as in B/32 and
L/32, reduce sequence length (S = 49) and computational
demands but may lose spatial granularity. The B/16 and B/32
models feature a hidden size of 768 with 12 layers, while
the L/16 and L/32 models employ a larger hidden size of
1024 with 24 layers, allowing for more complex feature
representation and deeper hierarchical learning. The MLP
dimensions (D¢ and Dg) govern two essential operations:
channel-mixing MLP (D¢), which enhances feature interac-
tions across channels, and token-mixing MLP (Dg), which
enables spatial feature integration across tokens. The L-series
models have larger MLP dimensions (4096 for channel mix-
ing and 512 for token mixing) compared to the B-series
models (3072 and 384, respectively), further contributing to
their increased capacity and number of parameters. Larger
models, such as L/16 (207M parameters), offer higher
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FIGURE 2. MLP-mixer-based framework for breast cancer detection using mammography [39].

learning capacity but require greater computational resources
than smaller configurations like B/16 (59M parameters).

Understanding these adjustments is particularly important
in breast cancer detection using mammography, where diag-
nostic accuracy and computational efficiency play key roles.
A key objective of this study is to evaluate these compromises
in the context of breast cancer detection using mammography
and develop a practical guide for selecting the most effec-
tive MLP-Mixer model based on diagnostic performance and
computational feasibility.

Figure 2 illustrates the MLP-Mixer-based framework
for breast cancer diagnosis using mammograms, highlight-
ing its key components. The architecture includes patch
embedding, which transforms mammographic images into
tokenised representations, followed by mixer layers that facil-
itate both spatial (token) and feature (channel) interactions.
The final classification pipeline is augmented for extracting
and analysing critical patterns in mammographic images to
enhance diagnostic accuracy.

C. OVERVIEW OF CNN-BASED PRETRAINED MODELS FOR
MAMMOGRAPHIC ANALYSIS

Deep learning models have played a transformative role in
breast cancer detection using mammography, with CNN-
based pre-trained models being the most widely used due
to their proven feature extraction capabilities [37], [38].
These architectures employ convolutional layers, pooling
operations, and residual connections to learn hierarchical
representations, making them highly effective for image clas-
sification and segmentation in medical imaging. By capturing
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TABLE 2. An overview of commonly used CNN-based pre-trained models.

Model Input Number = Filter Size = Number of
Resolution of Parameters
Layers (Millions)
Xception 299x299 36 3x3 229
VGG16 224x224 16 3x3 138
VGG19 224x224 19 3x3 144
ResNet50V2 77
224x224 50 (initial), 25.6
3x3
(residual)
ResNet52V2 Tx7
224x224 152 (initial), 60.4
3x3
(residual)
MobileNet 3x3
224x224 | Variable & (depthwise 42
separable)
MobileNetV2 3x3
224x224 Variable = (depthwise 34
separable)
DenseNet121 224x224 121 3x3 8.0
DenseNet169 224x224 169 3x3 14.3
DenseNet201 224x224 201 3x3 20.0

local and broader structural patterns, CNNs enable robust
tumor and anomaly detection in mammographic images.

Table 2 provides an overview of commonly used CNN-
based pre-trained models, detailing their input resolution,
depth (number of layers), filter sizes, pooling strategies, and
parameter count. The table includes lightweight architectures
such as MobileNetV2 (3.4M parameters), deeper networks
like ResNet152V2 (60.4M parameters), and high-capacity
models like VGG19 (144M parameters).
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These models are introduced to serve as a baseline for
comparison against MLP-Mixer-based architectures, allow-
ing for a comprehensive evaluation of their effectiveness
in mammographic image classification. By analysing their
performance across key metrics, this study aims to determine
whether MLP-Mixer models provide a viable alternative to
traditional CNN-based approaches in breast cancer detection.

A key difference between CNN-based and MLP-Mixer-
based models lies in how they process spatial dependencies,
which is particularly important in medical imaging applica-
tions such as breast cancer detection using mammography.
CNNs rely on convolutional kernels, which slide over an
image to capture local patterns such as edges, textures, and
fine details. These kernels extract hierarchical representa-
tions, where shallow layers detect low-level features (e.g.,
contours and gradients), while deeper layers combine these
into complex structures (e.g., tissue patterns and tumours).
Generally, convolutional layers inherently focus on local
receptive fields, but capturing long-range dependencies and
global spatial relationships requires deeper architectures.
This is why architectures such as ResNet152V2 (152 layers)
and VGG19 (19 layers) are significantly deeper, to enable
them to combine gradually local features into a more holistic
understanding of the image.

While CNNs excel in localised pattern recognition, their
reliance on convolutional layers with fixed kernel sizes makes
it challenging to model long-range dependencies efficiently
without significantly increasing depth. This can be a limita-
tion in mammography, where both fine-grained details such
as microcalcifications and tumour margins, as well as broader
structural patterns such as breast tissue asymmetry and lesion
localisation, are equally important.

MLP-Mixer models consider spatial feature extraction in a
different way by separating an image into fixed-size patches
and processing them using fully connected (MLP) layers.
Instead of relying on local kernels, they use token-mixing
MLP layers, which allow direct global interactions between
different image regions, even in early layers. This means
that spatial dependencies across distant regions of the mam-
mogram can be learned more efficiently without requiring
deep hierarchies like CNNs. For example, in MLP-Mixer
models, an image is first divided into patches of size 16 x
16 or 32 x 32 pixels, forming a sequence of tokenised
representations. Each token (patch) is then processed using
channel-mixing MLP layers, which extract feature rela-
tionships across different image regions, and token-mixing
MLP layers, which allow the model to exchange informa-
tion across the entire image at every stage. This structure
inherently supports long-range dependencies without need-
ing depth-intensive architectures, making it possibly useful
for capturing localised lesions and broader mammographic
patterns.

Given the widespread use of CNN-based pretrained models
for mammographic analysis, this study investigates whether
MLP-Mixer models, with their distinct architectural design,
can offer comparable or improved performance. We focus
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on evaluating their accuracy, computational efficiency, and
feature extraction capabilities across multiple benchmark
mammography datasets. This sets the foundation for a more
in-depth comparative analysis in the following sections.

Ill. EXPERIMENTAL STUDY

A. DATASETS

This section details the validation of four pre-trained MLP-
Mixer architectures, B/16, B/32, L/16, and L/32, in the
context of breast cancer diagnosis utilising mammographic
imaging. The evaluation is performed using three promi-
nent publicly accessible datasets: the MIAS (Mammographic
Image Analysis Society database), the CBIS-DDSM (Curated
Breast Imaging Subset of the Digital Database for Screen-
ing Mammography), and the INbreast dataset. The datasets
include a diverse range of mammographic images, enabling
a thorough assessment of model performance across various
imaging conditions and diagnostic challenges.

1) CURATED BREAST IMAGING SUBSET OF DDSM
(CBIS-DDSM)

The Curated Breast Imaging Subset of DDSM (CBIS-
DDSM) is an optimised and standardised version of the
Digital Database for Screening Mammography (DDSM),
aimed at improving the quality and accessibility of mammo-
graphic data for CAD research [42], [43]. Unlike its original
DDSM, CBIS-DDSM offers full-field digital mammograms
in DICOM format, providing high-resolution and decom-
pressed images that are consistent with current computer
vision datasets. Additionally, the dataset features a selection
of cases meticulously reviewed by expert mammographers,
enhanced mass segmentations, and structured annotations.
These attributes show that CBIS-DDSM is an invaluable

FIGURE 3. Sample images from the CBIS-DDSM dataset: Full and cropped
mammograms for malignant (a, c¢) and benign masses (b, d).
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resource for the development and benchmarking of deep
learning algorithms in breast cancer detection.

The CBIS-DDSM dataset consists of 1,644 cases, system-
atically classified into four main categories: Benign Calcifi-
cation, Benign Mass, Malignant Calcification, and Malignant
Mass. Within this collection, there are 753 instances of cal-
cifications and 891 instances of masses. Each case comes
with comprehensive annotations detailing the lesion type and
corresponding pathology, to enable in-depth analysis and
study in the field of mammography. This study is focused on
mass lesions, utilising a training set comprising 355 benign
and 336 malignant cases, along with a testing set containing
117 benign and 83 malignant cases. Cases with calcifications
have been excluded from this phase of investigation to enable
a more concentrated analysis of mass-based breast cancer
classification.

The CBIS-DDSM dataset is essential to our research owing
to its high-quality imaging and the diverse presentation of
cases, complemented by expert-reviewed segmentations crit-
ical for the development of robust computer-aided detection
(CAD) algorithms. Figure 3 shows representative examples
from the CBIS-DDSM mammogram dataset, highlighting the
variety of breast tissue patterns, lesion classifications, and
imaging modalities encompassed within the dataset.

2) INBREAST DATABASE

The INbreast dataset is an integral resource in the domain
of breast cancer research and CAD systems, comprising
high-resolution full-field digital mammography (FFDM)
images [44]. The INbreast dataset was collected from the
Centro Hospitalar de S. Jodo in Porto, Portugal, it includes
410 mammographic images derived from 115 distinct cases
that represent a comprehensive array of both pathological
and normal findings. A key aspect of the INbreast dataset
is its meticulous annotation of lesions, which encompasses
various types including masses, calcifications, asymmetries,
and architectural distortions. Each abnormality is accu-
rately delineated by radiologists to ensure the dataset offers
high-quality ground truth annotations. These annotations are
available in XML format, streamlining their integration into
machine learning workflows for model training and valida-
tion. This organised annotation format not only enhances
the dataset’s usability for algorithm development but is par-
ticularly beneficial for the detection and classification of
subtle mammographic features essential for early breast can-
cer diagnosis. The combination of high-resolution imaging,
detailed lesion annotations, and the representation of diverse
pathological entities solidifies INbreast’s importance as an
invaluable asset for developing CAD systems. Figure 3 illus-
trates representative examples from the INbreast dataset.

3) MAMMOGRAPHIC IMAGE ANALYSIS SOCIETY (MIAS)
DATABASE

The Mammographic Image Analysis Society (MIAS)
database is a cornerstone resource in breast cancer research,
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(b)

FIGURE 4. Typical images from the INbreast dataset: (a) Craniocaudal
(€C) and (b) Mediolateral Oblique (MLO) Views of both breasts.

well-recognised for its essential role in benchmarking CAD
systems. MIAS was developed collaboratively by a consor-
tium of UK research groups. It offers a thoroughly structured
and standardised dataset that allows comprehensive evalu-
ation of image-based diagnostic algorithms [45], [46]. The
dataset comprises 322 mammographic images sourced from
161 cases, each containing comprehensive annotations on
lesion type and anatomical location. Specifically, the col-
lection includes 63 benign, 52 malignant, and 207 normal
images, all acquired in mediolateral oblique (MLO) views
from both the left and right breast. Initially, the images were
digitised using a high-precision scanning microdensitometer,
achieving a spatial resolution of 50um x 50um, with each
pixel represented in 8-bit depth. For improved accessibility
and computational efficiency, the images were subsequently
downscaled to a pixel resolution of 200um, consistent with
methodologies outlined in prior studies. The MIAS provides
high-resolution images at 1024 x 1024 pixels in PGM format,
which serves as a critical tool for algorithm development,
performance validation, and comparative studies. Figure 5
depicts a selection of images from the MIAS dataset, illus-
trating its application in research.

FIGURE 5. Typical samples from the MIAS mammogram dataset:
Illustrating (a) Normal, (b) Benign, and (c) Malignant cases.
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B. DATA PRE-PROCESSING

To ensure uniform input dimensions for compatibility
with CNNs and MLP-mixer architectures, all mammogram
images were resized while preserving their aspect ratio.
This approach preserved the original proportions, necessary
for avoiding distortion and maintaining critical diagnostic
details. Bilinear interpolation was utilised to facilitate smooth
pixel transitions, ensuring high-quality feature representa-
tion. Furthermore, padding and cropping techniques were
employed to normalise the images to the required resolution,
employing zero padding to safeguard the integrity of the
core mammographic content. These preprocessing steps are
important in enhancing the model’s ability to extract relevant
features effectively, leading to consistent training and evalu-
ation outcomes.

To enhance the generalisation capabilities of the model,
we implemented a range of data augmentation techniques
specifically for the training dataset. These transformations
are designed to simulate real-world variations commonly
encountered in mammographic imaging, thus improving the
model’s robustness to positional differences and intensity
variations. The augmentation strategies employed include
rotations of —10°, 0°, and 10° to account for minor mis-
alignments, as well as translations by —11, 0, and +11
pixels to reflect potential patient movement during imaging.
Scaling transformations at factors of 0.9x, 1.0x, and 1.1x
were applied to approximate variations in imaging distances.
To further refine the model’s adaptability, we incorporated
horizontal flipping to accommodate laterality differences.
Adjustments to contrast and brightness, specifically with
parameters alpha = 1.1 and beta = 10, facilitated the learning
of illumination-invariant features [34]. These augmentation
techniques significantly increased the diversity of the dataset,
enabling MLP-Mixer and CNN models to analyse a wider
array of patterns. This is particularly critical in medical
imaging scenarios where labelled data is often limited. Impor-
tantly, the testing dataset was kept unchanged to guarantee its
reliability as a benchmark for evaluating the model. By imple-
menting these preprocessing strategies, this study aims to
develop a robust and adaptable deep-learning framework to
enhance breast cancer detection systems.

C. MODEL TRAINING AND EVALUATION SETUP

In this study, we build on the preprocessing and data
augmentation strategies previously outlined to establish a
comprehensive training and evaluation framework for breast
cancer detection using mammographic images. Given the
essential variability in mammographic imaging, the training
of deep learning models requires a well-structured approach
that optimises predictive accuracy while ensuring computa-
tional efficiency.

Four pre-trained MLP-Mixer architectures, specifically
B/16, B/32, L/16, and L/32, were fine-tuned for the task of
binary breast cancer classification, utilising a patch-based
approach to effectively capture spatial and structural fea-
tures in mammography images. These models were accessed
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through the PyTorch Image Models (timm) library, which is a
robust open-source resource that provides an extensive array
of state-of-the-art pre-trained deep learning models optimised
for various computer vision applications [47], [48]. The timm
library offers highly optimised implementations and a range
of pre-trained weights while incorporating advanced training
utilities. This makes it an important tool for transfer learning
and model benchmarking, particularly within the deep learn-
ing research landscape.

To ensure input consistency across the datasets, a detailed
pre-processing was applied to all images, which involved
resizing them to a uniform resolution of 224 x 224 pixels
to ensure compatibility with the input structure of pre-trained
models. Selective data augmentation techniques were system-
atically applied to the training dataset to reinforce the model’s
ability to generalise and enhance its robustness, as outlined
in the data pre-processing section above. These techniques
included rotations, translations, scaling, and contrast adjust-
ments, each contributing to the introduction of variability in
the training data. The dataset was randomly partitioned into
three subsets, where 64% was allocated for training, 16%
for validation, and 20% reserved for testing. Augmentations
were confined exclusively to the training set to guarantee an
unbiased assessment of the model’s performance.

The model was trained for 50 epochs with early stop-
ping based on validation loss to ensure convergence without
overfitting. The Adam optimiser, which is known for its
efficient convergence properties, was used alongside a spec-
ified learning rate of 0.00001 to ensure stable fine-tuning
of pre-trained models on relatively small medical datasets.
A cross-entropy loss function was implemented to measure
the difference between the predicted and actual outcomes.
A batch size of 16 was selected to provide an optimal
balance between computational efficiency and the stability
of convergence during training. Throughout this process,
a comprehensive set of performance metrics was diligently
monitored, including accuracy, specificity, precision, recall
(sensitivity), F1-score, area under the ROC curve (AUC), and
distance from the ideal position (DIP). This rigorous tracking
enabled a thorough evaluation of the model’s predictive capa-
bilities. Additionally, to support reproducibility, we trained
each model 10 times independently. We carefully combined
the results to provide a strong performance assessment. This
detailed process strengthened the credibility of our findings
and gave us more insights into how reliable and effective the
model is under different training conditions.

D. PERFORMANCE EVALUATION METRICS

To evaluate thoroughly the performance of the MLP-Mixer
models in breast cancer detection, we employed a com-
prehensive set of evaluation metrics, ensuring a balanced
assessment of predictive accuracy, reliability, and clinical
applicability. These metrics include accuracy, specificity, pre-
cision, recall (sensitivity), Fl-score, area under the ROC
curve (AUC), and distance from the ideal position (DIP).
Each of these measures provides a unique perspective on
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model performance, capturing different aspects of predictive
capability. The foundation of these metrics is based on true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), which serve as fundamental components
for evaluating classification models [34]:

o True Positives (TP): Correctly classified positive cases
(e.g., correctly identifying malignant tumours).

o False Negatives (FN): Cases where the model incor-
rectly classifies positive instances as negative (e.g.,
missing a malignant tumour).

o True Negatives (TN): Correctly classified negative cases
(e.g., correctly identifying benign cases).

« False Positives (FP): Cases where the model incorrectly
classifies negative instances as positive (e.g., falsely
predicting cancer in a benign case).

Utilising these definitions, the following key metrics were
computed to assess the effectiveness of the trained models.

1) Accuracy: A fundamental measure of overall classi-
fication performance, representing the proportion of
correctly classified instances across both classes. It is
defined as:

Accuracy = TP+ TN (10)
YT TPLTIN + FP+ FN

2) Specificity: Also known as the true negative rate, speci-
ficity quantifies the model’s ability to correctly identify
negative cases, minimising false positives. High speci-
ficity is very necessary in medical diagnostics to reduce
unnecessary interventions for patients without disease.
Specificity can be calculated as:

Specifici N 1
pecificity = IN + FP (11)

3) Precision: Precision measures how many of the pre-
dicted positive cases are positive, helping to evaluate
the reliability of positive classifications. Precision can
be computed as follows:

. TP
Precision = —— (12)
1P + FP
4) Recall (Sensitivity): Sensitivity assesses how effec-
tively the model captures all actual positive cases,
ensuring that malignant cases are not overlooked:
TP

Recall = —— (13)
TP + FN

5) Fl1-Score: The F1-score provides a balanced metric by
incorporating both precision and recall, ensuring that
neither metric is favoured disproportionately:

Precisi Recall
F1 — score = 2 x —[2ctston x eca (14)
Precision + Recall

6) Area Under the ROC Curve (AUC-ROC): AUC-ROC
evaluates the model’s ability to distinguish between
positive and negative cases. The ROC curve plots the
true positive rate (recall) against the false positive rate,
and the AUC quantifies the area under this curve.
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7) Distance from the Ideal Position (DIP): Unlike tradi-
tional classification metrics, DIP provides a holistic
performance measure by considering multiple inde-
pendent metrics. It is calculated using the Euclidean
distance from the ideal performance value (1 for each
metric), normalised by the number of metrics, and
transformed into a score ranging from O to 1:

V2 A=m)?
JN

Here m; is the value of the ith metric, and N is the
number of metrics. A higher DIP value indicates better
performance, with 1 being the best possible score. DIP
has been proven to be superior to Fl-score in high-
performance settings, making it particularly useful for
fine-grained model evaluation [49].

DIP =1 — (15)

E. EXPERIMENTAL RESULTS AND ANALYSIS

To systematically assess the efficacy of MLP-Mixer pre-
trained models in breast cancer diagnosis through mammog-
raphy, we carried out a series of experiments utilising the
three established benchmark datasets described above: CBIS-
DDSM, INbreast, and MIAS. Each dataset presents a unique
set of imaging features, enabling a comprehensive evaluation
of the model’s performance across varied mammographic
data characteristics.

Table 3 provides a detailed performance assessment of
MLP-Mixer pre-trained models across three datasets. This
evaluation considers validation accuracy, test accuracy, and
testing time, offering valuable insights into the efficiency of
different model configurations in breast cancer classification
tasks.

TABLE 3. Performance comparison of MLP-Mixer models across
CBIS-DDSM, INbreast, and MIAS datasets.

Dataset { Model Validation Test Testing Time
Accuracy Accuracy (Mean = Std)
(%) (%)

(Mean + Std) | (Mean =+ Std)
B/16 99.86£0.10 ! 99.73+£0.15 ! 0.85+0.03s
CBIS- L/16 99.90 +0.07 99.81£0.12 ! 0.98 +0.04s
DDSM B/32 99.57+0.15 99.54+0.18 | 0.78 +0.03s
L/32 99.43+£0.20 | 99.43+0.22 ! 0.92+0.05s
B/16 99.72 £0.05 99.71£0.03 | 0.82+0.02s
L/16 99.62 £0.13 99.62£0.11 0.94 +0.04s
INbreast | B/32 87.65 £ 0.80 87.35+1.25 | 0.76 +£0.02s
L/32 88.97 +6.83 88.75+6.76 i 0.89+0.03s
B/16 99.02 +0.08 99.09£0.10 | 0.65+0.02s
L/16 99.21 £0.05 99.22+£0.07 | 0.74+0.03s
MIAS B/32 98.89 +£0.12 98.90+0.15 | 0.58+0.01s
L/32 08.82+0.16 | 98.82+0.18 | 0.68+0.02s

The results highlight how patch size, model complex-
ity, and dataset characteristics notably affect classification
performance, highlighting the balance between diagnostic
accuracy and computational efficiency. Across all tested
datasets, models utilising smaller patch sizes (B/16 and L/16)
consistently demonstrated enhanced accuracy compared to
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their larger patch variants (B/32 and L/32). This trend
is particularly clear in the CBIS-DDSM dataset, where
the L/16 model achieved a validation accuracy of 99.90%
and a test accuracy of 99.81%, outperforming all other
configurations. The B/16 model closely followed with a val-
idation accuracy of 99.86% and a test accuracy of 99.73%,
supporting the opinion that reduced patch sizes facilitate
superior feature extraction and generalisation capabilities.
In contrast, the B/32 and L/32 models showed lower test
accuracies of 99.54% and 99.43%, respectively, indicating
that larger patch sizes may reduce the model’s capability
to capture fine-grained mammographic structures. Moreover,
testing times for CBIS-DDSM varied from 0.78 seconds
per image for B/32 to 0.98 seconds for L/16, reflecting the
increased computational demands required by deeper and
larger models, which produce only marginal performance
improvements.

A similar trend was observed in the INbreast dataset, where
B/16 and L/16 models achieved the highest test accuracies
of 99.71% and 99.62%, respectively. B/32 and L/32 strug-
gled with test accuracies dropping to 87.35% and 88.75%,
respectively. The substantial decline in performance suggests
that larger patch models may fail to capture critical mammo-
graphic patterns essential for accurate classification. The high
variability in L/32 performance (£ 6.76%) further indicates
model instability, possibly due to increased sensitivity to
dataset variations or inefficient feature representations. This
finding highlights the challenge of using large patch sizes in
high-resolution mammography, where complex details such
as microcalcifications and subtle architectural distortions are
important for distinguishing malignant and benign cases.
Testing times for INbreast remained within a similar range,
with B/16 being the most efficient (0.82s per image), while
L/16 required 0.94s.

The MIAS dataset results align with the stated trends,
where L/16 and B/16 outperformed the larger patch mod-
els. The L/16 model recorded 99.21% validation accuracy
and 99.22% test accuracy, slightly outperforming B/16,
which achieved 99.02% and 99.09% accuracy, respectively.
In contrast, B/32 and L/32 displayed slightly lower accuracy
(98.90% and 98.82%), supporting the fact that larger patches
may lead to feature loss and reduced classification effective-
ness. Testing times were slightly lower for MIAS compared
to CBIS-DDSM and INbreast, ranging from 0.58s (B/32) to
0.74s (L/16), likely due to the smaller dataset size and lower
complexity of mammographic images in MIAS.

These results clearly compromise model complexity, patch
size, and classification performance. The L/16 model consis-
tently outperformed others across all datasets, demonstrating
the benefits of a deeper model utilising smaller patch sizes.
This indicates that fine-grained feature extraction is cru-
cial in breast cancer detection, where texture and structural
patterns are critical for accurate diagnosis. However, the
increased computational demands of L/16 (0.98s per image
in CBIS-DDSM and 0.94s in INbreast) suggest that B/16
may be a strong alternative, offering comparable performance
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FIGURE 6. Comparison of key performance metrics for MLP-Mixers:
Evaluating precision, Recall, F1-Score, AUC, specificity, and DIP across
different MLP-Mixer pretrained models using the CBIS-DDSM Dataset.

with reduced inference time. The B/32 and L/32 models
were computationally efficient but showed poor classifi-
cation accuracy, especially on the INbreast dataset, which
highlights the limitations of using larger patch sizes in mam-
mographic imaging. The findings highlight the importance
of selecting the appropriate deep-learning architectures for
mammographic analysis. While deep and complex models
provide superior accuracy, their computational cost must
be considered, particularly for real-time applications and
resource-constrained settings. The superior performance of
B/16 and L/16 highlights the importance of preserving local
structural details in mammograms, which are often lost when
using larger patch-based models. Additionally, the reduced
accuracy of B/32 and L/32 in INbreast indicates that certain
datasets require enhanced spatial representations to maintain
classification performance.

To perform a detailed evaluation of the MLP-Mixer models
for breast cancer diagnosis, we implemented a comprehen-
sive validation process employing additional performance
metrics such as precision, recall, Fl-score, AUC, speci-
ficity, and the DIP. These metrics help assess how well each
model detects malignant cases, reduces false positives, and
maintains consistent performance across different datasets.
Given the critical nature of early breast cancer detection, this
extended validation ensures that the selected models not only
achieve high accuracy but also demonstrate reliability, and
generalisability.

Figures 6, 7, and 8 provide a comparative analysis of
the four MLP-Mixer architectures (B/16, L/16, B/32, and
L/32) using the six additional validation metrics described
earlier, including Precision, Recall, F1-score, AUC, Speci-
ficity, and DIP. These evaluations were conducted across the
three mammographic datasets utilised in our study. As shown
in Figure 6, the four MLP-Mixer architectures demonstrate
consistently high values (generally > 0.985), reflecting the
efficacy of MLP-Mixer architectures in medical image classi-
fication. Among them, L/16 achieves the highest performance
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FIGURE 7. Comparison of key performance metrics for MLP-Mixers:
Evaluating precision, Recall, F1-Score, AUC, Specificity, and DIP across
different MLP-mixer pretrained models using the INbreast dataset.
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FIGURE 8. Comparison of key performance metrics for MLP-Mixers:
Evaluating precision, Recall, F1-Score, AUC, Specificity, and DIP across
different MLP-mixer pretrained models using the MIAS dataset.

across all metrics, achieving a Precision of 0.998, a Recall
of 0.997, an Fl-score of 0.997, an AUC of 0.998, a Speci-
ficity of 0.998, and a DIP of 0.992. These results indicate
exceptional classification stability and strong sensitivity for
detecting malignancies. Following closely is B/16, which
displays a Recall of 0.994 and a DIP of 0.990. While slightly
behind L/16 in precision and F1-score, B/16 offers a practical
efficiency-performance trade-off. Its testing time of 0.85 sec-
onds is approximately 13% lower than L/16’s 0.98 seconds,
making it a competitive and computationally efficient alter-
native. In contrast, B/32 and L/32 demonstrate reduced
performance, particularly in recall (0.985) and DIP (0.984).
These results suggest that larger patch sizes may overlook
critical localised features, such as microcalcifications or
irregular lesion boundaries, resulting in a higher rate of false
negatives. Although their AUC values remain high (>0.991),
the decrease in recall and DIP underscores the trade-off
between computational simplicity and spatial sensitivity.
The results presented in Figure 7, which focuses on
the INbreast dataset, illustrate that the classification task

VOLUME 13, 2025

becomes more difficult due to the limited sample size and
higher image resolution of the dataset. Consequently, there is
a more significant variance in model performance. The L/16
model outperforms the others, achieving a Recall of 0.985,
an Fl-score of 0.985, and a DIP of 0.980, which highlights
its robustness even under more complex and variable imaging
conditions. The B/16 model remains competitive but scores
slightly lower across all metrics. In contrast, the performance
of the B/32 and L/32 models declines sharply, with the
Recall for L/32 dropping to 0.930 and the DIP to 0.915. This
6.5-point decrease in DIP from L/16 indicates considerable
instability and poor generalisation, likely due to the reduced
spatial granularity resulting from larger patches. These mod-
els seem less capable of capturing the significant patterns
essential for accurate malignancy detection in complex cases.

As depicted in Figure 8, the performance disparities
among models utilising the MIAS dataset are comparatively
minimal. All architectures demonstrate commendable perfor-
mance, with Precision, Recall, and F1-scores all equal to or
exceeding 0.988. Notably, the L/16 model maintains a slight
advantage with a DIP of 0.991, closely followed by the B/16
model. Conversely, while the B/32 and L/32 models continue
to produce satisfactory results, they demonstrate a subtle yet
consistent decline in both recall and DIP. This observation
proves the conclusion that larger patches, even within simpler
datasets, correspond to a slight reduction in performance.

The performance trends observed across all three datasets
highlight the advantages of MLP-Mixer models with smaller
patch sizes (16 x 16). The L/16 model consistently achieves
the highest performance across all metrics, demonstrating
its ability to capture both local and global mammographic
features effectively. The B/16 model follows closely, high-
lighting the magnitude of fine-grained feature extraction.
In contrast, the larger patch-size models (B/32 and L/32)
present reduced performance, particularly in recall and F1-
score, indicating challenges in detecting sensitive malignancy
patterns. The high AUC values across all models suggest that
MLP-Mixers retain strong classification capabilities, but the
DIP metric reveals that smaller patch models offer greater
stability and robustness.

Table 4 summarises the performance of MLP-Mixer mod-
els across three mammographic datasets, highlighting the
best models, key trends, and the impact of patch size on
classification accuracy. Smaller patch sizes (16 x 16) consis-
tently outperform larger ones, enhancing feature extraction
and diagnostic precision. The findings highlight the impact
of model architecture and patch resolution on the efficacy of
mammographic analysis. By employing smaller patch sizes,
MLP-Mixer models are capable of extracting more complex
and detailed feature representations from mammographic
data. This capability not only amplifies their diagnostic accu-
racy but also enables a deeper understanding of the visual
patterns associated with breast tissue abnormalities.

The results suggest that a focused optimisation of patch
resolution, combined with the innovative MLP-Mixer archi-
tecture, can lead to significant enhancements in breast cancer
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TABLE 4. Performance summary of MLP-Mixer models across
mammographic datasets.

Dataset Best Key Performance Insights
Performing Observations
Model
L/16 Consistently Smaller patch sizes
CBIS-DDSM high precision, (16x16) allow for
recall, F1- better feature
score, and extraction, enhancing
specificity. diagnostic
performance.
L/16,B/16 | Significant Finer patch
performance resolutions are
INbreast gap between crucial for handling
16x16 and high-resolution
32x32 models, mammograms and
with larger capturing subtle
patch sizes malignancies
showing effectively.
reduced recall
and Fl-score.
L/16,B/16 | Models with Large patch-size
smaller patch models struggle with
MIAS sizes subtle feature
outperform extraction, impacting
larger ones in malignancy detection
all metrics, accuracy.
particularly
recall and F1-
score.
Overall L/16 AUC values MLP-Mixer models
Performance | consistently | remain high benefit from fine-
Trend leads, across all grained feature
followed by | models, extraction, and
B/16 indicating smaller patches
strong significantly enhance
classification classification
ability. DIP performance in
scores confirm mammography.
that smaller
patch-size
models are
more stable and
reliable.

detection rates. This advancement has profound implications
for the future of Al-driven mammography analysis, as it
provides critical insights that could support the development
of more advanced diagnostic tools and offer important direc-
tions for future developments in Al-driven mammography
methodologies.

Interpretation of Observed Improvements and Trade-Offs

The observed improvements in L/16 stem from its abil-
ity to capture both global context and local detail through
finer patch representation and early spatial mixing. This is
particularly beneficial in mammography, where fine-grained
structural cues are vital. However, this comes at the cost of
a longer inference time of 0.98 seconds per image. The B/16
model provides a practical compromise with slightly lower
performance but faster inference, taking just 0.85 seconds per
image. This makes it ideal for resource-limited environments
or high-throughput screening settings. On the other hand, the
32 x 32 patch models, while potentially quicker to train,
sacrifice important spatial resolution. This loss results in
poorer recall and reduced classification stability, which can
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be particularly concerning in clinical scenarios where it is
crucial to minimise missed malignancies.

Implications for Clinical Applications and the Broader
Field

The findings indicate that token-based MLP-Mixer mod-
els, particularly those utilising 16 x 16 patches, can be
highly effective components in breast cancer diagnosis. Their
ability to generalise across datasets of varying sizes and
complexities suggests that these models could be applied
in both high-resource diagnostic settings and low-resource
environments, such as mobile units or telehealth platforms.
Furthermore, the strong performance in metrics such as AUC,
Fl-score, and DIP indicates that MLP-Mixer architectures
may serve as a lighter-weight alternative to convolutional and
attention-based models. This could potentially reduce model
complexity while maintaining accuracy.

Limitations and Future Research Directions

While our results are promising, it is important to acknowl-
edge certain limitations. The higher inference cost of L/16
might present deployment challenges in large-scale systems
without GPU acceleration. Furthermore, our models were
evaluated on public datasets; external validation with varied
real-world data is essential to confirm their generalisability.
Future research should investigate adaptive patch sizing or
multi-scale token mixing, as the optimal patch size may
vary across imaging modalities and resolutions. Additionally,
this study did not delve into explainability or uncertainty
estimation, which are crucial for clinical trust and integra-
tion. We aim to explore a hybrid MLP architecture, develop
interpretability mechanisms (e.g., attention heatmaps), and
extend our evaluation to other modalities such as ultrasound
and CT in future work.

F. EVALUATION OF CNN-BASED PRETRAINED MODELS
FOR BREAST CANCER DETECTION

This section presents a series of experiments conducted
using CNN-based pretrained models on the same prepro-
cessed mammographic datasets used for MLP-Mixer models.
The objective is to establish a direct performance com-
parison between traditional convolutional architectures and
the MLP-Mixer framework. Various CNN architectures,
including lightweight models (e.g., MobileNetV2), deep net-
works (e.g., ResNet152V2), and high-capacity architectures
(e.g., VGG19), were fine-tuned on the mammographic data
to assess their classification accuracy, computational effi-
ciency, and overall diagnostic potential. The experimental
results provide insights into the strengths and limitations
of CNN-based feature extraction in breast cancer detec-
tion, forming a foundation for evaluating the advantages of
MLP-Mixer models in this domain.

Table 5 presents the classification performance of various
deep learning models across the CBIS-DDSM, INbreast,
and MIAS datasets, revealing substantial differences in
generalisation and robustness. Models trained on CBIS-
DDSM achieve consistently high accuracy, with DenseNet201
(99.83% =+ 0.15), MobileNet (99.80% =+ 0.17), and
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TABLE 5. Classification performance of CNN-based pretrained models on
CBIS-DDSM, INbreast and MIAS datasets.

TABLE 6. Testing time (seconds) for CNN-based models on CBIS-DDSM,
INbreast, and MIAS datasets based on model complexity.

Model CBIS-DDSM INbreast MIAS Model CBIS-DDSM INbreast MIAS
Xception 99.77 £0.22 99.25 +0.05 98.96 +0.37 Testing Time Testing Time (s) Testing Time
VGGI16 54.59+£9.24 67.06 +4.18 98.72 + 0.55 (s) (s)
VGGI19 58.31+7.47 67.06 + 8.27 92.84 +7.42 MobileNet 0.85 0.82 0.65
ResNet50V2 99.78 £ 0.13 91.19+1.18 99.02 +0.25 :

ResNet52V2  99.79+0.11 98.67+035  988+0.12 MobileNetV2 0-94 09 072

MobileNet 99.80+0.17 97.36 + 0.60 98.78 £ 0.15 Xception 1.1 1.07 0.85

MobileNetV2 : 99.20 £ 0.63 98.59 + 0.45 98.70 £ 0.17

DenseNet121 | 99.71 % 0.23 9890+039 | 99.01+0.14 VGG16 127 123 0.98

DenseNet169 : 99.57 +0.05 94.52 +£0.42 98.9 £ 0.29 VGG19 1.36 131 1.04

DenseNet201 99.83 £ 0.15 84.80 +0.45 98.8 £0.28

ResNet50V2 1.44 1.39 1.1
ResNet52V2 (99.79% = 0.11) outperforming others. These ResNet52V2 1.49 1.43 1.14
architectures leverage deep feature extraction, residual con- DenseNet121 153 128 117
nections, and efficient parameterisation, contributing to
. . . C. DenseNet169 1.7 1.64 1.3

superior discrimination of mammographic abnormalities.
In contrast, VGG16 (54.59% + 9.24) and VGG19 (58.31% + DenseNet201 1.95 1.89 1.49

7.47) exhibit significantly lower accuracy, underscoring the
limitations of networks lacking feature reuse mechanisms.

The INbreast dataset presents a more challenging eval-
uation scenario due to its high-resolution images and lim-
ited sample size, increasing the risk of overfitting. While
Xception (99.25% =+ 0.05) and DenseNet121 (98.90% =+
0.39) maintain strong performance, deeper architectures
such as DenseNet201 (84.80% =+ 0.45) and ResNet50V2
(91.19% =+ 1.18) exhibit a marked decline. This degradation
suggests that complex architectures with extensive param-
eterisation may struggle to generalise when dataset size is
constrained. The performance of VGG16 (67.06% =+ 4.18)
and VGG19 (67.06% =+ 8.27) remains notably weak, further
reinforcing their limited suitability for mammographic anal-
ysis in high-resolution settings.

On the MIAS dataset, a smaller collection of lower-
resolution mammograms, models achieve uniformly high
accuracy. ResNet50V2 (99.02% = 0.25), DenseNetl21
(99.01% = 0.14), and Xception (98.96% = 0.37) rank among
the top performers, with VGG16 (98.72% = 0.55) performing
unexpectedly well compared to its results on INbreast. This
suggests that smaller datasets with lower complexity may
mitigate the architectural deficiencies of early convolutional
models. MobileNetV2 (98.70% = 0.17) and DenseNet169
(98.90% =+ 0.29) maintain competitive performance, while
the higher variance in VGG19 (92.84% =+ 7.42) indicates
instability during training.

Collectively, the results highlight that lightweight archi-
tectures such as MobileNetV2 and Xception consistently
perform well across datasets, demonstrating adaptability and
efficiency. In contrast, deep residual networks (ResNet52V2,
DenseNet201) excel on large datasets but show vulner-
ability to overfitting on smaller ones. The VGG family
remains largely unsuitable for modern mammography tasks,
lacking the architectural innovations necessary for robust
feature extraction. These findings highlight the importance
of selecting models based on dataset-specific characteristics
to optimise deep learning applications in breast cancer detec-
tion. Furthermore, Table 6 presents model testing times per
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image across CBIS-DDSM, INbreast, and MIAS, revealing
distinct computational demands. MobileNet (0.855—0.65s)
and MobileNetV2 (0.945-0.72s) demonstrate the highest
efficiency, leveraging depthwise separable convolutions to
minimise processing costs. Xception (1.1s—0.85s) remains
competitive due to its factorised convolutional structure.

In contrast, VGG16 (1.27s-0.98s) and VGG19 (1.36s—
1.04s) exhibit increased latency, reflecting the inefficien-
cies of early CNN architectures. ResNet50V2 (1.44s—1.10s)
and ResNet52V2 (1.49s—1.14s) show moderate computa-
tional demands, benefiting from residual connections that
enhance feature propagation. The DenseNet family, par-
ticularly DenseNet201 (1.95s—1.49s), acquires the highest
latency due to extensive feature reuse, which, while improv-
ing accuracy, increases inference time.

Inference times remain consistent across datasets, with
MIAS exhibiting slightly lower values, likely due to reduced
image resolution and dataset complexity. MobileNet and
MobileNetV2 offer the most promising balance between
accuracy and efficiency, while DenseNet models, despite
their superior classification performance, impose com-
putational constraints that may limit real-time -clinical
deployment.

G. COMPARATIVE ANALYSIS OF MLP-MIXER AND
CNN-BASED PRETRAINED MODELS

The comparative analysis of MLP-Mixer and CNN-based
pretrained models across CBIS-DDSM, INbreast, and MIAS
underscores key differences in classification performance
and computational efficiency. On CBIS-DDSM, MLP-Mixer
variants B/16 (99.73% = 0.15) and L/16 (99.81% =+ 0.12)
achieved accuracy comparable to DenseNet201 (99.83%
£+ 0.15), while maintaining significantly lower testing
times (0.85s and 0.98s vs. 1.95s). Similarly, in INbreast,
B/16 (99.71% =+ 0.03) and L/16 (99.62% = 0.11) sur-
passed CNN counterparts, including Xception (99.25% =+
0.05) and DenseNetl121 (98.90% =+ 0.39), demonstrating
superior generalisation despite dataset limitations. B/32
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(87.35% =+ 1.25) and L/32 (88.75% =+ 6.76) demonstrated
substantial accuracy degradation, suggesting that larger patch
sizes compromise fine-grained spatial learning. On MIAS,
where dataset complexity is lower, MLP-Mixer models per-
formed on same level with ResNet50V?2 (99.02% =+ 0.25) and
DenseNet121 (99.01% =+ 0.14), with B/16 (99.09% =+ 0.10)
and L/16 (99.22% =+ 0.07) matching or exceeding CNN accu-
racy. Importantly, inference times for MLP-Mixer models
remained consistently lower across all datasets, particularly
in MIAS (B/32: 0.58s vs. ResNet50V2: 1.10s), highlighting
their computational efficiency.

These findings highlight MLP-Mixer’s capacity to deliver
CNN-level accuracy with reduced inference time (30 — 50%
faster), particularly on large-scale datasets such as CBIS-
DDSM, where hierarchical convolutions are less critical.
The token-mixing design allows for early global context
aggregation without the computational cost of deep convo-
lutional hierarchies. On the INbreast, MLP-Mixer models
showed greater generalisation and stability, outperforming
complex CNNs such as DenseNet201, which suffered from
performance drops due to data size constraints. The results
suggest that MLP-Mixer models, especially those utilising
smaller patches (B/16, L/16), provide an effective alter-
native to deep CNNs in mammogram analysis, offering
a promising balance between accuracy and speed, filling
a significant gap in current literature where most models
favour depth over efficiency. CNNs, particularly DenseNet
and ResNet, remain viable for applications requiring deeper
feature hierarchies, but their increased inference times pose
limitations for real-time clinical workflows. The efficiency
of MLP-Mixer models, particularly in high-resolution mam-
mography, supports their potential for scalable deployment
in resource-constrained medical imaging applications, where
rapid and precise diagnosis is essential.

H. PERFORMANCE EVALUATION OF MLP-MIXER B/16
AND L/16 MODELS AGAINST STATE-OF-THE-ART
METHODS IN MAMMOGRAPHY

Key Architectural Differentiators and Advantages of MLP-
Mixer Models:

Having demonstrated the superior performance of the
MLP-Mixer B/16 and L/16 models across multiple mam-
mographic datasets, we now examine the architectural
foundations that drive their effectiveness. The MLP-Mixer
introduces a novel paradigm in medical image analy-
sis by entirely replacing traditional convolutional and
attention-based mechanisms with a pure multilayer percep-
tron. This design presents a series of structural and clinical
advantages that are particularly relevant for the classification
of mammographic images.

1. Fundamentally Different Design: Beyond Convolu-
tions and Attention: Unlike CNNs and Vision Transformers
(VTs), MLP-Mixer models eliminate the utilisation of con-
volutions and attention mechanisms. Instead, they employ
a methodology of token-mixing and channel-mixing MLP
layers. This allows for direct spatial and cross-channel
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interactions across the entire input, thereby simplifying archi-
tectural depth and reducing parameter complexity while
maintaining the model’s capacity to capture and integrate
both local and global features. In the context of mammog-
raphy, where abnormalities may occupy substantial spatial
areas or manifest as subtle distributed patterns, this direct and
comprehensive processing approach is particularly effective.

2. Early Integration of Global Context: CNNs typically
develop a global spatial understanding through progres-
sively deeper layers, which may result in increased latency
and heightened risks of overfitting when applied to smaller
datasets. Conversely, MLP-Mixers facilitate global infor-
mation flow from the initial token-mixing layer, which
ensures that long-range spatial relationships are captured
early and efficiently. This capability significantly enhances
the detection of dispersed features, such as microcalcifica-
tions, architectural distortions, or subtle masses, which are
challenging to model with localised convolution filters.

3. Robust Generalisation Across Datasets: The
MLP-Mixer models show strong and consistent perfor-
mance across mammographic datasets that vary in size,
resolution, and acquisition characteristics. Our evaluation
revealed that both the B/16 and L/16 models maintained
consistently high accuracy and sensitivity across the MIAS,
CBIS-DDSM, and INbreast datasets, without the need for
dataset-specific architectural adjustments. In contrast, deeper
CNNs like DenseNet201 tend to overfit on smaller datasets
such as INbreast, which limits their generalisability. The
MLP-Mixer’s ability to generalise without modifications
demonstrates its architectural robustness and suitability for
various real-world applications.

4. Diagnostic Metrics Beyond Accuracy: While classi-
fication accuracy is often used as a standard metric in deep
learning studies, it does not fully reflect the clinical diagnostic
performance of models. To provide a more comprehensive
evaluation, we assess our models using additional clini-
cally relevant metrics, including the Area Under the Curve
(AUC) and Distance from the Ideal Position (DIP). The DIP
measures how much a model’s performance deviates from
that of an ideal classifier across several independent met-
rics, specifically sensitivity, specificity, and accuracy. This
approach offers a more complete perspective on diagnostic
reliability. The MLP-Mixer models consistently demonstrate
low DIP values, signifying a strong alignment with optimal
performance and effective balances between true positive and
true negative rates. Furthermore, their high sensitivity, which
is at least 99.2%, highlights their effectiveness in reliably
detecting malignant cases, an essential factor in breast cancer
screening aimed at minimising missed diagnoses.

5. Reduced Complexity and Deployment Efficiency:
When compared to CNNs, which often comprise millions
of parameters and intricate connectivity (e.g., ResNet152V2
with over 60 million parameters or DenseNet201 with
densely connected skip connections), MLP-Mixer mod-
els provide a lightweight and efficient alternative. They
are simpler to implement and fine-tune, require fewer
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hyperparameters, and are well-suited for optimisation in
low-power or real-time clinical environments. Their reduced
architectural burden and rapid inference times render them
particularly promising for scalable deployment in resource-
constrained settings, such as mobile diagnostics or rural
screening units.

Comparison of Results

To further evaluate the effectiveness of MLP mixers-
based pre-trained models, we compare their performance
with recently published results [34], [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], utilising the same
datasets used in this study. Table 7 presents the datasets in
the first column, followed by reference numbers in the sec-
ond. The subsequent columns show accuracy, sensitivity, and
AUC, which provide a structured evaluation of classification
performance across methods. This comparison allows for a
comprehensive assessment of MLP-Mixer models (B/16 and
L/16) against various CNN-based architectures and hybrid
machine-learning techniques used for breast cancer detection
with mammography.

In [50], a method employs a 2D-Fourier Bessel decom-
position technique (2D-FBDM) to extract texture features
from mammograms, followed by linear regression to clas-
sify benign and malignant masses. In [51], a method
employs Deep Multiple Instance Learning (MIL) to inte-
grate bidimensional empirical mode decomposition (BEMD)
to improve ROI-based analysis, demonstrating robust per-
formance on INbreast. Moreover, Wavelet-transform-based
models, utilising 2D-DWT and statistical feature selection,
and classification using a back-propagation neural network
(BPNN) to differentiate between normal, benign, and malig-
nant breast tissues [52]. In [53], transfer learning approaches
where features from mammogram images are extracted using
pre-trained CNN architectures such as VGG16, ResNet50,
and InceptionV3. These features are then fine-tuned and used
in combination with classifiers such as SoftMax and SVM to
enhance the diagnostic performance across various evaluation
metrics, particularly on the MIAS dataset.

In [54], a method is presented that integrates multi-feature
fusion for breast mass classification. This approach extracts
complementary features including SIFT, GIST, HOG, LBP,
ResNet, DenseNet, and VGG. It also involves mining
cross-modal pathological semantics and applying dynamic
weight computation for mid-level fusion. Finally, it employs
ensemble learning with voting strategies for the final classi-
fication. In [55], a technique for classifying breast tumours
involves two automated methods. The first method utilises
region-growing segmentation, with thresholds set by a trained
artificial neural network (ANN). The second method employs
cellular neural network (CNN) segmentation, where param-
eters are optimised using a genetic algorithm (GA). This
is followed by feature extraction and classification using
ANN and other classifiers. A method integrates pre-trained
CNN models, such as EfficientNet, with ensemble learning
that employed majority and soft voting strategies to clas-
sify mammogram images [56]. Furthermore, a three-stage
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TABLE 7. Comparative performance of MLP-mixer models and state-of-
the-art methods across three benchmark mammography datasets (MIAS,
CBIS-DDSM, INbreast) using accuracy, sensitivity, and AUC metrics.

Validation Metrics
Dataset Method/Ref Accuracy Sensitivity AUC
(%) (%)

2D-FBDM [50] 96.2 96.02 0.96

MIL+BEMD 98.04 98.12 0.9817

[51]

2D-DWT + 94.2 100 0.95
MIAS BPNN [52]

VGGl16 98.96 97.83 0.995

Transfer [53]

MoEffNet [34] 99.4 99.2 0.992

MLP-mixers

(B/16) 99.09 99.07 99.08

(L/16) 99.22 99.2 99.3

2D-FBDM [50] 99.06 98.48 0.99

MIL+BEMD 98.62 98.60 0.9818

[51]

DL Fusion [54] 90.91 82.96 0.983

ANN + CNN 96.47 96.87 -
CBIS-

[55]
DDSM

EfficientNet 96.05 - -

Ensemble [56]

EfficientNet 92.98 85.13 93.44

Transfer + 2-

View [57]

Segmentation + 98.87 98.98 09888

Pretrained CNN

[58]

MoEffNet [34] 99.6 99.5 0.995

MLP-mixers

(B/16) 99.73 99.71 99.71

(L/16) 99.81 99.78 99.81

MIL+BEMD 98.26 97.60 0.9823

[51]

Discriminative 99.8 - -
INbreast | CNN  Transfer

Learning [59]

CNN  Transfer 95.5 - 0.97

Learning [60]

MoEffNet [34] 99.8 99.8 0.997

ML.P-mixers

(B/16) 99.71 99.72 99.74

(L/16) 99.62 99.62 99.65

transfer learning process utilising EfficientNet for breast
cancer diagnosis in two-view mammography is described
in [57]. The model is trained sequentially on natural images,
mammogram patches, and complete mammogram views.
This approach successfully achieves high accuracy by using
complementary information from both views. Reference [58]
introduces a method that utilises a modified U-Net model for
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the segmentation of mammogram images, followed by classi-
fication using pre-trained CNN models such as InceptionV3,
DenseNet121, ResNet50, VGG16, and MobileNetV2. The
technique employs transfer learning and data augmentation
to improve performance.
A study in [59] describes a technique for training a
deep-learning model to diagnose breast cancer. This involves
using discriminative fine-tuning, which assigns different
learning rates to each layer of the deep convolutional neu-
ral network (CNN), and mixed-precision training to lower
computational requirements. The approach also incorporates
data augmentation to improve the model’s performance on
a small dataset, resulting in rapid convergence and high
accuracy. A method that employs deep Convolutional Neu-
ral Networks (CNNs) to classify mammogram images is
described in [60]. The approach employed transfer learn-
ing and fine-tuning strategies using pre-trained architectures,
including VGG16, ResNet50, and Inception v3. Finally,
MoEffNet [34], a hybrid architecture integrating EfficientNet
with a Mixture of Experts (MoE) framework, dynamically
allocates features to specialised subnetworks.
Table 7 provides a detailed comparison of the proposed
MLP-Mixer models (B/16 and L/16) against a wide range
of state-of-the-art methods [34], [50], [51], [52], [53], [54],
[55], [56] described above. The listed references can be sum-
marised into a variety of model categories:
« Traditional methods (e.g., 2D-FBDM [50], 2D-DWT +
BPNN [52]),

o CNN-based transfer learning approaches (e.g., VGG16
[53], ResNet [60]),

« Hybrid and ensemble models (e.g., MoEffNet [34], Effi-
cientNet Ensembles [56]),

o Segmentation and fusion techniques (e.g., DL-
Fusion [54], U-Net + CNN [58]),

o Advanced deep learning pipelines (e.g., MIL+BEMD
[51], Discriminative Transfer Learning [59]).

Across the MIAS, CBIS-DDSM, and INbreast datasets, the
results consistently demonstrate that the MLP-Mixer models
(B/16 and L/16) either outperform or match the best results
achieved by the other listed studies. For instance, on the
MIAS dataset, the MLP-Mixer models achieved an accuracy
of 99.09% to 99.22%, which is closely aligned with the
highest-performing model in the literature, which reported an
accuracy of 99.4%. Additionally, they demonstrated remark-
able sensitivity (99.07% to 99.2%) and AUC values (99.08%
to 99.3%). In the CBIS-DDSM dataset, MLP-Mixers sur-
passed most CNN-based approaches with accuracy figures
ranging from 99.73% to 99.81%, and sensitivity between
99.71% to 99.78%. These results exceed those of previous
methods and are in line with MoEffNet, which achieved an
accuracy of 99.6%. The AUC values, ranging from 99.71%
to 99.81%, further confirm their robust performance in
malignancy detection. For the INbreast dataset, MLP-Mixers
achieved accuracy rates ranging from 99.71% to 99.62%.
These results are comparable to the highest-performing
model reported at 99.8% and exceed previous CNN-based
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models. Their sensitivity ranged from 99.72% to 99.62%,
with AUC values between 99.74% and 99.65%, reinforc-
ing their diagnostic capabilities. These results show that
MLP-Mixer models generalise effectively across various
datasets, achieving classification precision comparable to
leading CNNs while remaining computationally efficient.
This makes them particularly suitable for breast cancer detec-
tion using mammograms.

IV. CONCLUSION

This study systematically evaluated the effectiveness of pre-
trained MLP-Mixer models for breast cancer diagnosis using
mammographic images. We assessed the performance of four
MLP-Mixer variants (B/16, L/16, B/32, L/32) across three
benchmark datasets, CBIS-DDSM, INbreast, and MIAS, and
compared them with state-of-the-art CNN-based models. The
findings indicate that MLP-Mixer pre-trained models using
smaller patch sizes (B/16 and L/16) consistently achieve
classification accuracy, sensitivity, and AUC comparable to
or exceeding those of CNN-based approaches, while also
maintaining lower computational costs and inference time.
Unlike CNNs, which approximate global context through
deep hierarchies, the MLP-Mixers model long-range depen-
dencies directly through token mixing, allowing for early and
efficient global spatial feature integration.

The consistent performance of B/16 and L/16 across
datasets of varying resolution and complexity confirms their
strong generalisation capabilities without requiring dataset-
specific adjustments. In contrast, larger patch models (B/32
and L/32) underperformed, particularly on high-resolution
datasets, highlighting the importance of fine-grained spatial
representation in mammographic analysis and the need to
balance computational efficiency with diagnostic precision.

The comparative evaluation confirms that MLP-Mixer
models offer a simpler yet more effective alternative to tra-
ditional CNNs and hybrid ensemble methods. Their reduced
architectural complexity, faster inference, and single-stream
design eliminate the need for deep or multi-branch networks
while preserving diagnostic reliability. This work estab-
lishes token-mixing MLP architectures as a promising new
direction in Al-assisted breast cancer diagnosis, with strong
potential for integration into clinical decision support systems
and CAD workflows. Future research should explore the inte-
gration of MLP-Mixers with multimodal imaging modalities,
hybrid feature extractors, and explainability frameworks to
further enhance clinical interpretability, diagnostic accuracy,
and deployment readiness.

Data Access Statement

In this study, we use three publicly available datasets:
MIAS (Mammographic Image Analysis Society database)
(https://www.repository.cam.ac.uk/items/b6a97f0c-3b9b-40ad-
8f18-3d121eef1459), CBIS-DDSM (Curated Breast Imaging
Subset of the Digital Database for Screening Mammogra-
phy) (https://www.cancerimagingarchive.net/collection/cbis-
ddsm/), and INbreast (http://medicalresearch.inescporto.pt/
breastresearch/index.php/Get_INbreast_Database).
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