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Abstract—Due to the inherent inductive bias of operations,
convolutional neural networks (CNN) cannot model global infor-
mation of remote sensing (RS) images. In contrast, Transformer-
based methods can establish long-range dependencies of images
through self-attention (SA) mechanism, but it faces the challenges
of computational complexity and memory requirements, but also
ignores the exploration on the feature redundancy removal of RS
images. To address these two issues, we propose a network based
on dynamic sparse encoding and cross-temporal collaborative
attention (DSECTCA-Net) for RS image change detection (CD).
First, we implement dynamic sparse encoding (DSE) by de-
signing hierarchical sparse Transformer module (HSTM), which
decreases the correlation calculation of the SA mechanism and
effectively reduces the computational complexity and parameter
amount of Transformer. Secondly, we propose cross-temporal
collaborative attention (CTCA) to model RS images in time
series and fully explore the interactivity between dual-temporal
RS images, so as to better extract the global understanding of
visual scenes. Extensive experiments on two large-scale public
RS datasets show that the proposed method not only provides
higher detection accuracy, but also achieves lower computational
complexity and required storage space than most popular CD
networks.

Index Terms—remote sensing image, change detection, sparse
encoding, collaborative attention, Transformer.

I. INTRODUCTION

Change detection (CD) is a technique that used to identify
and analyze changes of surface features over time by utilizing
remote sensing (RS) images and related geospatial data of the
same area at different times. It has been widely applied in
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many fields such as urban planning, farmland management
and environmental monitoring [1], [2].

In recent years, the rapid development of deep learning
has provided a broader exploration space for the research on
CD tasks. Convolutional neural network (CNN) -based and
Transformer-based methods have made significant progress.
Although CNN-based methods can effectively learn local
information of RS images, more RS images are required to
compensate for their shortcomings due to the inherent induc-
tive bias of convolution operations. In contrast, Transformer-
based methods successfully capture the global information of
images through the self-attention (SA) mechanism. However,
these methods often face the challenges of a high computa-
tional complexity and a large memory requirement due to the
calculation of the pairwise sequence correlations between all
spatial positions [3]. To address this problem, many methods
have been proposed [4], [5] to improve the performance in
processing long sequences of RS images. These methods
include reducing the complexity from quadratic to linear by
changing the order of matrix multiplication or reducing com-
putation by reducing the dimensionality of attention weights
[6], such as local windows, hole windows and axial attention
[7]. However, these sparse attention mechanisms usually rely
on manually selected sparsity patterns, without fully exploring
the correlation between feature vectors query (Q), key (K)
and value (V). To address these issues mentioned above, we
mainly made the following three contributions:

1) A dynamic sparse encoding (DSE) module is proposed
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to focus on a small number of related sequences in a
query-adaptive manner, thereby reducing the computa-
tion of irrelevant sequences and the feature redundancy.

2) A cross-temporal collaborative attention (CTCA) mod-
ule is designed to fully explores the interaction feasibil-
ity between dual-temporal RS images through incorpo-
rating temporal information.

3) We propose a network based on dynamic sparse
encoding and cross-temporal collaborative attention
(DSECTCA-Net). Experimental results show that com-
pared with existing popular methods, our method not
only provides higher detection accuracy, but also re-
quires less storage space and computational cost.

II. METHOD

A. Overall Network Structure

The structure of the proposed method DSECTCA-Net as
shown in Fig. 1, mainly including the DSE module, the CTCA
module, and the feature decoding module.
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Fig. 1. The overall structure of DSECTCA-Net.

In the coding phase, the RS images are firstly segmented
into patches, where each patch’s feature dimensions are pro-
jected into arbitrary dimensions via patch embedding. Sec-
ond, multiple DSE modules and downsampling layers are
utilized to extract different feature representations with global
information, aiming to optimize the model performance while
reducing the computational cost. Finally, at each stage of the
encoder, the feature maps obtained from the corresponding
layers of the dual branches are fed into the CTCA module.
These refined feature maps are subsequently skip-connected
to the corresponding layers in the decoder, enriching change
target feature maps.

In the decoding phase, the decoder consists of upsam-
pling layers and lightweight convolution modules. To improve
contour detection and robustness to image transformations
(e.g., rotations or flips), we introduce the asymmetric ghost
convolution within the lightweight convolution module [2],
which can enhance the capture of horizontal and vertical edge
information and reduce network parameters.

B. Dynamic Sparse Encoding Module

Unlike previous works [8], [9], the DSE module is specifi-
cally designed to efficiently capture the detailed features and

long-range dependencies of RS images through the advanced
visual Transformer. Specifically, a 3×3 depthwise convolution
is utilized in the initial stage of the DSE module to capture
the key position information. The feature maps are then nor-
malized through a LayerNorm (LN) layer. Subsequently, a hi-
erarchical sparse Transformer module (HSTM) is constructed
to compute attention in a coarse-to-fine manner. Finally, the
feature maps are processed through a multilayer perceptron
(MLP) layer.

In the HSTM structure, the input image X ∈ RH×W×C ,
is firstly divided into non-overlapping patches of size S ×
S through the patch embedding, and each patch contains
HW/S2 feature vectors. These feature vectors are linearly
mapped to obtain X ∈ RS2×HW/S2×C , and then subjected
to three different linear transformations to obtain Q, K,
V ∈ RS2×HW/S2×C respectively. As shown in Fig. 2.
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Fig. 2. The structure of HSTM.

Spatial averaging is performed on the obtained vectors
Q, K and V in each region to obtain vectors Qm, Km,
Vm ∈ RS2×C separately. Then Qm is multiplied by the
transpose of Km and Vm respectively to construct region-
to-region adjacency matrices Kr, Vr ∈ RS2×S2

. Based on
this, the top h most relevant regions are recorded. Their
corresponding weights and indexes are saved in the weight
index matrix. The top h most relevant regions Kh and Vh, are
selected and subjected to fine-grained matrix multiplication,
followed by a non-linear activation function Softmax(·) to
obtain the attention matrix Aatt. To supplement the local
contextual information, we use the function LE(·) to augment
V with local information, employing depthwise convolution.
The finally output is obtained as follows:

O = Aatt + LE(V) (1)

Specifically, the detailed process of the DSE module is as
follows:

Ĉl−1
out = DW(Cl−1

out ) +Cl−1
out (2)

Ĉl
out = Attention(LN(Ĉl−1

out )) + Ĉl−1
out (3)

Cl
out = MLP(LN(Ĉl

out)) + Ĉl
out (4)

where Ĉl−1
out , Ĉl

out and Cl
out represent the depthwise convo-

lution of the lth layer, HSTM and MLP outputs, respectively.
Based on these, our model focus only on sequences that

are highly relevant to the current query in a query-adaptive
way, while avoiding distraction caused by irrelevant sequences,
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thus reducing the computation and minimizing the feature
redundancy without sacrificing performance.

C. Cross-Temporal Collaborative Attention

Before calculating the true differences between dual-
temporal RS images, it is necessary to deeply explore the
interactions between features to avoid irrelevant disturbances
such as seasonal changes, variations in lighting angles, and
building renovations. We design a CTCA module which fa-
cilitates attention allocation to truly changed regions through
interactive learning between dual-temporal RS images.
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Fig. 3. The structure of CTCA module.

To strike a balance between memory usage and computa-
tional efficiency, we introduce the idea of efficient attention
(EA) [10]. The computational complexity is reduced to a linear
level by simply changing the matrix multiplication order of the
original SA mechanism, achieving more efficient computation.

Aeff = Softmax(
K>V√

dk
)Q (5)

where the scalar factor
√
dk is introduced to avoid concen-

trated weights and gradient vanishing.
Based on the above background, we design a CTCA mod-

ule, as shown in Fig. 3. The CTCA module comprehensively
considers the special characteristics of time span and target
changes. Channel fusion and EA are performed on the Q of
dual-temporal RS images.

Cout = Sub((A1out +X1), (A2out +X2)) (6)

where A1out and A2out are calculated by (5).
The CTCA module can support single-temporal RS images

to fuse feature representations of another temporal while pre-
serving their own features, overcoming semantic differences
between dual-temporal RS images. Through a clever channel
fusion mechanism, true differential features can be better
captured from single-temporal RS images. In this way, it
effectively explores the feasibility of interaction between dual-
temporal images, which not only improves the sensitivity of
the model to changed regions, but also reduces the influence
of irrelevant factors.

III. EXPERIMENTS

To further verify the effectiveness of the proposed method
in high-resolution RS image CD, experiments are conducted
on two public CD datasets: the LEVIR-CD dataset [11] and
the DSIN-CD dataset [12].

A. Training Details

The experiments are conducted using the deep learning
framework PyTorch. We implemented the proposed method
with the batch size set to 32 for 200 epochs on the device with
an NVIDIA GeForce RTX 3090 GPU, and the initial learning
rate is 0.0001. The Adam optimizer is used to optimize the
model with momentum of 0.99 and weight decay of 0.0005.
We use a combination of BCE Loss and Dice Loss to optimize
network weights.

B. Evaluation and Results

To evaluate the superiority of the proposed method, the
DSECTCA-Net is compared with 11 state-of-the-art CD meth-
ods, which can be roughly categorized into two groups. Firstly,
CNN-based methods: FCN-PP [13], STA Net [11], FDCNN
[14], SNUNet [15], IF-Net [12], and DSAMNet [16]. Sec-
ondly, Transformer-based methods: BIT [3], Hybrid-TransCD
[17], SwinSUNet [18], ChangeFormer [19], and WNet [20].

Quantitative Evaluation: To verify the effectiveness of the
proposed method, we conducted the comparative experiments,
mainly using three metrics for comprehensive evaluation of the
proposed method, including Precision (Pre), Recall (Rec), and
the harmonic index F1-score. As shown in Table I, the best
values of the experimental results are shown in bold and the
second-best are underlined. On the LEVIR-CD dataset, the CD
performance of our proposed method surpasses the second-
ranked method, ChangeFormer, by 0.46% with 41.11% of the
number of its parameters and 4.69% of its computation. While
on the DSIFN-CD dataset, the CD performance of the pro-
posed method outperforms the second-ranked method, Swin-
SUNet, by 1.04% with 33.09% of its parameters and 44.88%
of its computation. The CD performance of methods with
smaller number of parameters or computation amount, such
as STA-Net, BIT, etc., generally performed less effectively on
the both datasets. These results fully prove the effectiveness of
our proposed method, which is able to effectively reduce the
number of parameters and computation amount of the model
while ensuring the feature extraction capability, and achieve
better detection results.

Qualitative Evaluation: To show the significant advantages
of the proposed method, we selected representative samples for
visual comparison, as shown in Fig. 4. In the yellow box in the
first row of the figure, RS images may exhibit similar behavior
between target objects and backgrounds due to changes in
lighting angles. Methods such as STA-Net and FDCNN may
mistakenly learn shadow areas resulting in serious false de-
tection. However, when introducing time factors, DSECTCA-
Net can alleviate the problem of shadow interference. It not
only effectively suppresses irrelevant factors, but also exhibits
excellent internal integrity of changed objects.
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Fig. 4. Comparative experiments on two public datasets. (a) T1 images. (b) T2 images. (c) labels. (d) FCN-PP. (e) STA-Net. (f) FDCNN. (g) SNUNet. (h)
IF-Net. (i) DSAMNet. (j) BIT. (k) Hybrid-TransCD. (l) SwinSUNet. (m) ChangeFormer. (n) WNet. (o) Ours.

TABLE I
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS

Method Type Number Network LEVIR-CD DSIFN-CD Params(M) FLOPs(G)Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

CNN

1 FCN-PP [13] 80.31 89.48 84.64 56.42 59.25 57.80 28.13 34.65
2 STA-Net [11] 86.17 89.39 87.73 66.22 67.16 66.69 16.93 6.58
3 FDCNN [14] 82.99 88.71 85.76 64.42 68.38 66.34 13.71 32.40
4 SNUNet [15] 89.06 87.53 88.29 62.47 69.74 65.90 12.03 33.04
5 IF-Net [12] 89.73 86.06 87.80 72.36 63.86 67.85 50.71 41.18
6 DSAMNet [16] 82.75 88.39 85.48 61.28 75.41 67.62 16.95 75.29

Transformer

7 BIT [3] 89.24 89.37 89.31 68.36 70.18 69.26 6.93 8.44
8 Hybrid-TransCD [17] 91.45 88.72 90.06 68.79 70.42 69.69 166.57 51.38
9 SwinSUNet [18] 90.51 89.72 90.11 68.72 71.68 70.17 50.95 21.19
10 ChangeFormer [19] 92.05 88.80 90.40 69.38 70.51 69.94 41.01 202.83
11 WNet [20] 90.48 90.17 90.33 68.85 69.03 68.94 42.56 19.20

ours 12 DSECTCA-Net 90.52 91.21 90.86 70.96 71.46 71.21 16.86 9.51

C. Ablation Experiments

The foundational network framework of the proposed
method uses the original four-stage Transformer network as
the encoding part, and the decoding part uses asymmetric
ghost convolution to replace the original 3 × 3 convolution,
and the difference maps obtained by subtracting feature maps
from each layer are connected by skip connections. Table II
shows a series of ablation experiments of DSECTCA-Net on
the LEVIR-CD dataset.

TABLE II
ABLATION EXPERIMENTS

Methods Pre(%) Rec(%) F1(%) Params(M) FLOPs(G)
Base 89.20 89.52 89.36 25.92 12.51

Base+CTCA 89.95 89.67 89.81 25.94 13.35
Base+DSE 89.95 90.64 90.29 16.28 9.15

Base+DSE+CTCA 90.52 91.21 90.86 16.86 9.51

After combining the DSE module and the CTCA module,
the detection accuracy F1 is improved by 1.50%, while the
amount of parameters is reduced by 9.06M, and the amount of
computation is reduced by 3.0G compared to the base network.
This fully proves the effectiveness of the proposed modules.

By replacing the encoder in the base network with the
dynamic sparse encoder, and reducing the feature correlation
computation through the HSTM in the DSE module, the F1
is improved by 0.93% over the baseline. Additionally, the pa-
rameter of the model as well as the computational complexity
is effectively reduced compared to the base network.

By adding the CTCA module to the base network, our
network fully models the dual-temporal RS images by intro-
ducing temporal information, which enables the real difference
features captured from single-temporal RS images, effectively
explores the feasibility of the interaction between the dual-
temporal. This not only improves the sensitivity of the model
to the changing regions, but also reduces the interference of
irrelevant factors to a certain extent.

IV. CONCLUSION

In this paper, we have proposed a DSECTCA-Net method
for CD tasks. First, a DSE module is designed to reduce the
computation of feature correlation and irrelevant sequences by
using HSTM, being able to extract features dynamically and
adaptively. Secondly, a CTCA module is introduced to model
the temporal concepts between dual-temporal RS images by
fully exploring the feasibility of interaction, and shifting the
attention to the real changed features so as to reduce the
occurrence of false detection and missed detection. Finally,
the analysis of full comparative experiments and ablation
experiments on the two public CD datasets is conducted to
further demonstrates the effectiveness of our DSECTCA-Net.
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