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Abstract— The development in machine learning (ML) tech-
nology has brought new horizons for the prediction of subglacial
lakes (SLs) using radio-echo sounding (RES) data, offering fresh
perspectives toward the automated identification of SLs. Nonethe-
less, the inherent data imbalance across various classes within
the dataset presents significant analytical challenges. To address
this limitation, the artificial bee colony (ABC) optimization
algorithm is introduced to automatically predict SLs in Gam-
burtsev Province in East Antarctica, using an optimized stacking
ensemble learning approach. The proposed method predicts SLs
by using five representative features selected through importance
and correlation analyses of eight features derived from RES
data. The experimental outcomes demonstrate the superiority
of this method in overcoming the significant imbalance of RES
data, successfully identifying known lakes in the validation
dataset. Furthermore, this study summarizes an inventory of SLs
across the Gamburtsev subglacial mountains in East Antarctica,
and a total of 55 new candidate SLs with lengths ranging
from 108 to 38 130 m have been predicted using our novel method.
The source code is publicly available at https://github.com/vivian-
ma97/ABC-Stacking-for-Subglacial-Lakes

Index Terms— Antarctica, ensemble learning, feature extrac-
tion, radio echo sounding, subglacial lakes.

I. INTRODUCTION

INCE the discovery of the first subglacial lake (SL) in
S Antarctica, the prediction and identification of subglacial
water systems have attracted worldwide attention from geo-
physicists, glaciologists, microbiologists, and geologists [1],
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[2], [3], [4], with the motivation stemming from their impor-
tance in glaciology, biology, climatology, and geology. For
instance, SLs are one of the key integral components of the
subglacial hydrological system, exerting significant influence
on the dynamics, evolution, flow velocity, and mass balance
of ice sheets [5].

The formation of SLs is attributed to a confluence of multi-
faceted factors, such as the subglacial topography, geothermal
heat flux, insulation, and pressure of the overlying ice sheet
[6], [7], [8]. For instance, subglacial topographic basins offer
natural gathering corners of subglacial waters that may be
melted from ice by geothermal heat transferred from the
Earth’s interior, and it is such heat that controls the ice
rheology and hence decouples the ice sheet from the bedrock
in the context of subglacial waters [9].

Remote sensing and geophysical technologies have revo-
lutionized the observation of the cryosphere, with advanced
equipments being developed and employed on a wide range of
ground-based, airborne, and orbital platforms [10], [11], [12].
Among these, radio-echo sounding (RES) is widely recognized
as an effective tool to shed light on the hard-to-observe
subglacial water-saturated environment below kilometers of
ice sheet [13]. Since the first inventory of 17 SLs in East
Antarctica discovered by RES surveys [14], there have been
five comprehensive SLs inventories reported to date [13], [14],
[15], [16], [17]. In the most recent global inventory, there are
675 possible SLs located in Antarctica. More than 80% of
the stable lakes, implying either a closed hydraulic system
or approximately balanced inflows and outflows, have been
predominantly detected by RES [13].

Although the widely adopted visual inspection and inter-
pretation method offers an intuitive means to identify SLs
by establishing some predefined picking criteria, such as
relative brightness, topographic/hydraulic flatness, and echo
abruptness [18], this approach is subjective and time-
consuming, making itself impractical for modern large-scale
RES data collection [19], [20]. Consequently, more sophisti-
cated semi-automated or fully automated methodologies have
been proposed, implemented, and optimized to enhance the
efficiency and accuracy of SL prediction from large-volume
RES B-scope data. For instance, Carter et al. [21] developed an
automated technique leveraging the distinctive radar reflection
characteristics of different basal materials for a systematical
categorization of SLs. Among various parameters, the basal
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radar reflectivity is the most important quantitative metric
for the prediction of subglacial water [12]. However, the
dielectric loss in the overlying ice layers complicates its
accurate calculation. In 2013, Wolovick et al. [18] further
refined the prediction process by combining reflectivity anal-
ysis with manual digitization. In their reflectivity analysis,
highreflectivity anomalies were used to identify potential SLs
in RES B-scope data. Simultaneously, their manual digitization
approach involved an operator who not only examined the
radargrams but also selected basal reflectors as potential water
bodies based on their morphological alignment with predefined
criteria. This work provided a comprehensive inventory of SLs
detected in Antarctica’s Gamburtsev Province (AGAP) region.
Building upon this foundational work, Livingstone et al. [13]
expanded to a worldwide SL inventory with a systematic
three-stage identification method. In the first stage, they con-
ducted a visual inspection on RES data, manually looking
for continuous, bright, and flat reflectors—features commonly
associated with SLs. In the second stage, they evaluated
potential lake candidates by analyzing bed return power (BRP)
in relation to surrounding topographic variations. Finally,
in the third stage, they examined the BRP variability to
assess the SL candidates. On the other hand, for distinct
characteristics of the ice—water interface compared with the
ice-bedrock interface, numerous studies have endeavored to
identify SLs by synergistically combining basal topographic
features [22], [23], RES waveform shapes [24], [25], reflection
characteristics [26], [27], and roughness [28]. Despite the
progress made with manual and semi-automated methods for
SLs prediction, the limitations of these approaches become
evident when faced with vast datasets typical of modern RES
data collection. This has paved the way for the development
of more advanced technologies that leverage both spatial and
temporal data characteristics.

In contrast to traditional SL prediction methods, which
solely rely on statistical information from the 2-D RES B-
scope data, such as BRP, reflectivity, roughness, and hydraulic
head, the inherent time—frequency characteristics of 1-D RES
signals (A-scope) are often overlooked. Starting from this,
we recently proposed an automated method for predicting
SLs utilizing joint time—frequency analysis (JTFA) meth-
ods, in particular, the short-time Fourier transform (STFT)
technique [29]. The STFT is a powerful mathematical tool
that allows for the analysis of time-varying signals in the
frequency domain [30]. By applying the STFT to the RES
data, we can extract the frequency characteristics and temporal
variations associated with the SLs, which is effectively a
simpler quantification of the A-scope shape feature utilized
in [31]. In our previous work [29], we defined STFT feature
with an empirically determined variable which also integrated
the time—frequency information with terrain slope. Although
such an empirical formula of the STFT feature successfully
demonstrated good accuracy in subglacial water bodies, the
method itself lacks intuitive physical meaning and relies on
selected empirical thresholds for decision-making. Therefore,
it potentially can lead to the overestimation or underestimation
of subglacial water bodies, thereby affecting the prediction
accuracy. These limitations spark the motivation to explore
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new methods to automatically optimize the prediction process
with reduced reliance on empirical parameters and enhanced
objectivity and adaptability of the model.

On the other hand, machine learning (ML) techniques are
becoming another popular stream of investigation on SLs [22],
[31], [32]. For instance, Ilisei et al. [31] developed an auto-
mated SL prediction technique employing ML techniques,
in particular, the support vector machine (SVM) algorithm.
Their methods aim to enhance the prediction of SLs by auto-
matically extracting a defined set of discriminant features from
the ice—basal interface, including terrain, shape, and statistical
characteristics. These features are used to capture the unique
signatures of SLs in RES data, which the SVM algorithm can
classify. Their automatic approach ensures consistent results
for RES datasets across two Antarctic regions. The ratio of
positive and negative samples in their training sample is about
1:2. Lang et al. [22] proposed a semiautomatic approach
based on local and regional characteristics to identify the
subglacial dry—wet transition zones. By combining an SVM
classifier with the synthetic minority over-sampling technique,
they successfully demonstrated the potential of ML models
in dealing with the issue of data imbalance. In their case,
the classification effect is verified when the ratio of positive
and negative samples is approximately 1:3. More recently,
Dong et al. [32] identified the distribution of different cate-
gories of the basal reflector features using an unsupervised
encode-cluster algorithm, effectively mitigating the imbalance
between SLs and non-SLs. Unsupervised learning methods are
generally considered to have strong generalization capabilities;
however, some researchers claim that unsupervised learning
methods might fall short of supervised learning methods in
terms of precise prediction [33]. Therefore, how to achieve
reliable classification results for SLs using such an extremely
imbalanced number of positive and negative samples remains
an area for further study.

The stacking method, one of the representative methods of
ensemble learning, can construct and integrate multiple learn-
ers through a predefined combination strategy [34]. If these
base learners are well-differentiated, the overall model will be
more robust to data noise overfitted by any single learner [35].
This efficacy stems from their capacity to amalgamate diverse
and heterogeneous algorithms, creating a synergistic effect that
enhances predictive accuracy. In addition, the stacking model
combines the predictions of multiple different base learners
to form the final output, which can alleviate the problem of
imbalanced classification of samples. This is because different
base learners may have different sensitivities to different
majority or minority parts of the dataset. Especially when
dealing with imbalanced data, by combining the predictions
of these base learners, the stacking model is able to capture
the characteristics of the dataset fully [36].

In this study, the artificial bee colony (ABC) optimiza-
tion algorithm is adopted to automatically predict SLs using
an optimized stacking ensemble learning approach, which
effectively handles extremely imbalanced positive-to-negative
sample ratios. First, five representative features for SL predic-
tion are identified through importance and correlation analyses
of eight features derived from RES data.
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Subsequently, the ABC optimization algorithm is employed
to select the optimum ensemble learning model, as well as the
most suitable base learner and metalearner for the following
stacking fusion, which is then utilized for SL prediction.
To validate the effectiveness of our proposed method, we con-
ducted a set of experiments and evaluated the results from
both quantitative and qualitative perspectives. The experimen-
tal results demonstrate that the optimization algorithm can
effectively identify SLs, demonstrating strong stability even
in cases of highly imbalanced data distribution.

The main contributions of this study are as follows.

1) The proposed approach signifies a strategic shift
in addressing the issue of data imbalance, focusing
on model architecture adjustments to accommodate
and mitigate the challenges posed by uneven data
distributions.

2) Compared with existing ML approaches, we propose a
stacking-based ensemble learning approach that aids in
selecting the optimum classifier combination, contribut-
ing to an enlarged overall prediction accuracy even under
conditions of extreme data imbalance.

3) An updated inventory of SLs in AGAP region, with an
additional 55 new candidate SLs, is provided in this
article.

The remainder of this article is organized as follows.
Sections II and III present a comprehensive review of the
characteristics of the basal interface, as well as the feature
extraction and feature selection operations. Section IV pro-
vides a detailed description of the proposed stacking-based
ensemble learning method for SL prediction. The experimental
results on real RES data and subsequent discussions are
presented in Section V. Finally, we summarize the key findings
of this study in Section VI.

II. CHARACTERISTICS OF THE BASAL INTERFACE
A. Basal Topography and Hydraulic Characteristics

As illustrated in Fig. 1(a), SLs are primarily located in
topographic depressions. In addition, the gradient of hydraulic
heads in SLs is typically low, allowing water to accumu-
late [37]. This pattern of water accumulation, governed by the
contours of the subglacial terrain and hydraulic head, promotes
the formation of SLs in regions characterized by hydraulic
flatness, which is a fundamental hydrological attribute of SLs.
Roughness is a critical statistical parameter for describing
the irregularity and complexity of subglacial topography [38].
Areas with lower roughness typically indicate smoother and
more continuous terrain, which can facilitate the convergence
of subglacial water flows and the formation of SLs. Con-
versely, areas with higher roughness are characterized by
greater terrain undulations, which may impede the continuous
flow of water, thus hindering lake formation.

B. Basal Reflectivity Contrast

When a radar wave encounters the interface between ice,
water, and bedrock, the permittivity contrast of these different
materials leads to changes in the returned power of the echo
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signal. Assuming the vertical incidence of radar waves, the
reflectivity p at the interface between ice and basal material
is expressed as

p= N (D
()

where ¢,, is the relative permittivity of ice and ¢,, is the relative
permittivity of the basal material, e.g., water or bedrock.
Water provides a much sharper electromagnetic boundary
due to its higher relative permittivity (~81), compared with
bedrock (3~30) and ice (~3.17) [39]. It is worth noting that
the dielectric permittivity of these subglacial materials may
slightly differ from the values presented here, as they can
be influenced by factors such as temperature fluctuations and
material composition. For instance, the dielectric permittiv-
ity of water may increase to around 88 near the freezing
point [40].

The difference in dielectric properties between ice and
water/bedrock results in a change in the reflectivity and pene-
tration of radar waves across the interface [27], as illustrated
in (1). The high permittivity contrast can result in stronger
reflected signals with more concentrated frequency compo-
nents. In addition, specular reflections occur more often at
the ice—water interface, while deeper penetration and multiple
reflections are common for bedrocks [41]. When incident
waves encounter discontinuities at rugged basal boundaries,
coherent cancellation may occur, leading to a gradual weaken-
ing of the reflected signal strength, leading to a wider A-scope
waveform, as illustrated in Fig. 1(b) [31].

ITII. FEATURE EXTRACTION AND FEATURE SELECTION

In this section, we utilize a general feature selection proce-
dure on the selected (sub)glacial features, with which further
features for other applications can also be included, examined,
and selected.

A. Feature Extraction

Eight features encapsulating the most salient characteristics
of SLs are included in this study: hydraulic head, hydraulic
head gradient, topographic roughness, BRP, corrected BRP
(CBRP), time—frequency characteristics of A-scope, ice thick-
ness, and basal elevation. Here, we define the basal elevation
as the elevation at the bottom of the overlying ice sheet,
so it could be the elevation at the ice—water interface or the
ice-bedrock interface.

1) Hydraulic Head and Hydraulic Head Gradient:
Hydraulic head serves as the fundamental driving force for
water movement and profoundly influences its direction [42],
[43]. Subglacial water naturally flows from regions with higher
hydraulic heads to those with lower ones. The areas char-
acterized by a high hydraulic head are less likely to harbor
water, whereas areas with a low subglacial hydraulic head are
more prone to contain water. Consequently, the computation
of subglacial hydraulic head can serve as an indicator of
the presence possibility of subglacial water. Following the
traditional method in [21] and [37], we use the hydraulic head
and its gradient as features of SLs. The hydraulic head ® at
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Fig. 1.
waveforms crossing the ice—water and ice—bedrock interfaces.

the bottom of an ice sheet is defined by its surface elevation
(S) and the basal elevation beneath the ice (B), as

(1
where the density of ice p; is 917 kg/m* and the density of
water p,, is 1000 kg/m?>.

The gradient of the hydraulic head reflects the direction
of the water flow, and a smaller gradient means a smaller

direction change in the hydraulic head. In this study, the
gradient of the hydraulic head w is defined as

p="Llsy
Pu

2

_Az

0= —
Ax

3)
where Az is the difference in hydraulic head between two
adjacent A-scope peaks, Ax is the horizontal distance between
two adjacent A-scopes, and the unit for both variables is in
meters.

2) Topographic Roughness: The ice—water interface is nor-
mally relatively flat with a low topographic roughness in the
SL area, while the ice—bedrock interface commonly has a
higher topographic roughness. Here, we define the local eleva-
tion changes of the basal terrain as the roughness feature [37].
The local elevation changes ¢ is calculated by

1 " _
{=—" l_;[z(xi) -zl 4)

where n is the number of A-scopes corresponding to the
minimum predictable lake length. A survey of the existing
lakes in the AGAP area inventory [13], [18] revealed that these
lakes are all over 100 m in length. Therefore, if the horizontal
resolution of the profile is 18 m, n = 5. If the horizontal
resolution is 30 m, n = 3. 7 is the mean value of z(x;), which
can be defined by

Z(x;) = E(z(xi)) ®)

where E is the expectation operation.
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(a) Typical B-scope radargram with one clear SL (L-1) in the Gamburtsev subglacial mountains in East Antarctica. (b) Comparison of two A-scope

3) BRP and CBRP: The BRP from RES surveys pro-
vides insights into the properties of the ice—basal interface,
encompassing the basal material and the roughness of the
interface [44]. Particularly strong changes in relative echo
strength are commonly associated with changes in bed wet-
ness, enabling radar techniques to be used to map SLs in
Antarctica [45]. Considering the dissipation of radar waves
within bedrock and the less specular reflections at the
ice-bedrock interface, such complex interactions altogether
lead to progressive attenuation of radar echo intensity, as can
be discerned via the RES A-scope data [31]. In addition,
adhering to the principles outlined in [41], CBRP is commonly
implemented to compensate for the depth-related attenuation
difference, which is formulated as

[P.lag = [Plas +2[(h+ )} +2d(N) (6)
B

d
Ve
where [P]qg = 10log,,(P) denotes the recorded BRP in dB,
h represents the aircraft’s height above the ice surface, d is
the thickness of the ice, €, is the relative permittivity of ice,
and N is 11.7 dB/km as calculated by Wolovick et al. [18] for
the AGAP regional attenuation rate.

4) Time—Frequency Characteristics: To analyze the inher-
ent frequency characteristics of each A-scope, we employed
the time—frequency feature (TFF) derived from the STFT
to quantify the shape of the A-scope waveform. Similar to
Hao et al. [29], we utilized the time—frequency characteris-
tics at the ice-bed interface. However, unlike the empirical
equation [29, eq. (9)] in [29], we defined the TFF in (7) with
two key parameters, namely, F, the normalized maximum fre-
quency of the A-scope, and A, the magnitude of that maximum
frequency. By doing so, we circumvented the use of empirical
parameters established by Hao et al. [29], offering a more
direct and objective approach for analyzing the time—frequency
characteristics

TFF = F x A. (7

Fig. 2 elucidates the procedure of calculating the STFT
response. The waveform at the ice—water and ice—bedrock
interfaces is presented in Fig. 2(a) and (d). To ensure that
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the mean value within each time window is close to 0, the
sliding window, represented by different colors, is placed
around the main peak of the A-scope waveform at different
time steps along the range direction. In this study, we chose
to utilize a Hanning window due to its ability to effec-
tively reduce high-frequency interference and spectral leakage.
Fig. 2(b) and (e) displays the mean values of the signal at these
time points, where the decrease in mean values indicates sig-
nificant changes in signal strength or characteristics over time.
Fig. 2(c) illustrates the frequency response at the ice—water
interface, where the highest response no longer appears at
zero frequency. This is attributed to the presence of strong
high-frequency components in the ice—water interface signal,
resulting in an enhanced response at nonzero frequencies.
In contrast, as shown in Fig. 2(d), the signal behavior at the
ice—bedrock interface is different. Here, the window either fails
to fully cover the entire main peak as shown in Fig. 2(e),
or the mean value within the window is quite high, resulting
in a very strong zero-frequency component as depicted in
Fig. 2(f). Therefore, the STFT response at the zero-frequency
component can be used to distinguish between the ice—water
interface and the ice—bedrock interface.

In addition, we investigate the effect of window size
on capturing the signal characteristics of the ice—water and
ice-bedrock interfaces. By comparing the known SL inventory

with the identified results using the TFF, we evaluate the corre-
spondence between the TFF results and the labels for different
window sizes. As shown in Fig. 3, the F1 score stabilizes
and remains nearly unchanged when the window size is set to
30 samples or larger values, indicating that this window size
of 30 samples effectively captures the signal characteristics.
Further increasing the window size has minimal impact on
model performance.

5) Basal Elevation and Ice Thickness: The basal elevation
and ice thickness are features integral to the overall analysis
because they may considerably influence the attenuation of
the RES signals, which in turn has a significant impact
on the prediction of subglacial waters. The ice thickness is
determined using two two-way travel times of the radar signal:
one for the radar wave traveling from the device to the ice
surface and return and the other for the wave traveling from
the device through the ice to the bottom and returning to the
device.

By calculating the difference between these two timestamps,
the total travel time of the radar waves through the entire ice
layer is determined. This duration, when multiplied by the
velocity of radar waves within the ice, allows for the estimation
of the actual distance between the ice surface and the ice
bottom, corresponding to the ice thickness. Basal elevation is
then calculated by subtracting this derived ice thickness from
the surface elevation.

B. Feature Selection

In order to decrease the model’s complexity and avoid the
multicollinearity problem that redundant features might cause,
it is necessary to first assess the importance and correlation
of these features to identify the suitable input features for
our model. As shown in Fig. 4, we initially used the Lasso
regression for feature importance analysis. After determining
the importance scores, we conducted a Pearson correlation
analysis on eight features. As presented in Fig. 5, over 80% of
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the correlation values are below 0.4, with only five correlation
coefficients being relatively high, specifically between BRP
and CBRP, BRP and ice thickness, BRP and basal elevation,
ice thickness and basal elevation, and hydraulic head and basal
elevation. Combing with the feature importance presented in
Fig. 4, we removed BPR, ice thickness, and hydraulic head.
Finally, five features—TFF, CBRP, roughness, basal elevation,
and hydraulic head gradient—are retained.

IV. ABC-ASSISTED STACKING ENSEMBLE LEARNING
METHOD

The stacking ensemble learning technique can enhance
overall prediction performance by combining the outputs of
multiple base models with a metalearner. This method is par-
ticularly advantageous for handling imbalanced data tasks, as it
leverages the strengths of various models to improve the recog-
nition of minority class samples more effectively [34], [46].
However, achieving effective collaboration among diverse
base models and selecting the most complementary model
combinations are key challenges in constructing a stacking
model. To navigate the complexities in stacking and opti-
mize its configuration, researchers have increasingly turned to
metaheuristic optimization algorithms [47]. These algorithms
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excel in exploring the vast combinatorial space of possible
model configurations, thereby identifying the most potent
combinations.

In line with this advanced approach, we employed the
ABC algorithm [48], a metaphorical, honey bee-inspired
metaheuristic optimization framework, to ascertain the opti-
mal assemblage of base learners and suitable metalearners.
By leveraging the ABC algorithm, we aim to harness its robust
optimization capabilities to fine-tune our stacking ensem-
ble, ensuring that we utilize the best possible combination
of models and algorithms for our study’s objectives. The
optimization process for the ABC-assisted stacking ensemble
learning method is shown in Fig. 6.

First, eight classic tree-based models—adaptive boosting
(AdaBoost), categorical boosting (CatBoost), light gradient
boosting machine (LightGBM), extreme gradient boosting
(XGBoost), random forest (RF), extra trees (ETs), gradient
boosting decision tree (GBDT), and decision tree (DT)—
are selected as the initial configuration for the optimization
process. The rationale behind this choice is that these mod-
els are well-known for their data augmentation capabilities,
which is particularly advantageous in addressing issues of data
imbalance [49], [50], [51].

Then, as shown in Fig. 6, we randomly select a configuration
from the eight models and calculate its F1 score to assess its
performance in the model selection part. Next, we optimize
the model configurations using two different search strategies:
local search and global search. During the local search phase,
we first calculate the fitness value F'(x;) of each classifier
using (8), where the fitness value is calculated to represent the
classifier’s performance based on the F1 score. Specifically,
the F'1 score is used as an objective measure to assess the bal-
ance between precision and recall for each classifier, ensuring
that their performance is evaluated. Then, the probability P;
of each classifier being selected is calculated using (9). Those
classifiers with higher F'1 scores have a greater chance of being
selected; thereby, these high-quality classifiers are prioritized
for further local search

1/ + f(x)
L+ [f(x)l

where F'(x;) represents the fitness value which can be calcu-
lated by f(x;), and f(x;) is the F1 score

F(xi)
P = 72,[ Fx)
i=1 i
where n is the number of candidate classifiers currently in the
optimization process.

At the same time, the global search seeks new possibilities
by randomly selecting new model configurations. After each
round of search, we calculate the F1 score of the new
configuration and compare it with the original configuration,
retaining the one that performs better. The search process
is optimized by iteratively repeating the above steps. After
each iteration, the algorithm evaluates the F1 scores of all
model configurations and retains the configuration with the
best performance. Furthermore, the optimal combination is
obtained through iterative refinement, with ET, CatBoost, and

if f(xi) =0

Fl) = if f(x) <0

(®)

€))
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Fig. 6. Flowchart of the ABC-assisted stacking ensemble learning method.

LightGBM selected as the base learners, and ET serving as the
meta learner. Finally, this set of models is applied to predict
SLs in other regions of the AGAP.

V. EXPERIMENTS AND RESULTS

To validate the performance of our proposed method,
we conducted tests on RES datasets from the AGAP region
in East Antarctica. This region is renowned for its complex
subglacial topography, which includes numerous subglacial
mountains and an extensive network of subglacial water sys-
tems [2]. The area has been extensively surveyed by airborne
RES as part of the Gamburtsev Airborne Geophysical Mapping
of Bedrock and Ice Targets (GAMBIT) Project, with longitu-
dinal spacing of 33 km and lateral spacing of 5 km [18].

The primary data utilized in this study were sourced from
the Multi-Channel Radar Depth Sounder (MCRDS), developed
by the Center for Remote Sensing of Ice Sheets (CReSIS)
at the University of Kansas [52], [53], [54], [55]. To pro-
vide a comprehensive summary of the SLs in the AGAP
region, we conducted an in-depth analysis of the existing
datasets. Although the data from Livingstone et al. [13] and
Wolovick et al. [18] were collected during the same flight
missions, they were processed using different focusing algo-
rithms. Lamont-Doherty Earth Observatory (LDEO) employed
the 1D-SAR algorithm, while CReSIS used the FK migration
algorithm. To ensure consistency and comparability, we used
the survey lines provided by CReSIS as a baseline and
supplemented them with lines from the LDEO dataset that
contains SLs not found in the CReSIS inventory. This effort
specifically targeted those lines containing SLs identified by
Wolovick et al. [18]. Through this process, we added a total
of 18 B-scopes files and 25 517 A-scopes data entries. Overall,
the dataset includes 923 RES B-scopes and contains a total of
1573006 A-scopes. A full description of the radar system’s
specifications and the RES dataset can be found in [54], which
are also summarized in Table 1.

In our model, we adopted all the SL locations provided
by Livingstone et al. [13] and Wolovick et al. [18] as labels
in our training and validation process. Specifically, only the
survey lines containing inventoried SLs were selected, and
each survey line was treated as a distinct dataset in a.mat file
provided by CReSIS and LDEO, thus ensuring spatial inde-
pendence. A 1:2 ratio was applied to randomly select a subset
of these survey lines for the training and validation datasets,
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TABLE I
PARAMETERS OF THE RES SYSTEM FOR THE AGAP REGION
Parameter Description
Campaign AGAP
Radar system MCRDS
Number of B-scope radargrams 923
Number of valid A-scopes 1,573,006

Twin Otter aircraft
Varied, hundreds of meters

Platform type
Platform height above ice sheet surface

Central frequency 150 MHz
Wavelength in ice ~1.12 m
Pulse duration (low gain) 3 us
Pulse duration (high gain) 10 ps
Bandwidth 10 MHz
Range resolution in ice (pulse compressed) 84 m
Along-track resolution 18 m, 30 m
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Fig. 7. Division of the training and validation datasets for our model.
ensuring randomness, unbiasedness, and representativeness in
the sample distribution. Furthermore, the spatial distribution
of the training and validation datasets was examined to ensure
uniformity, allowing the validation dataset to effectively assess
the model’s performance across different regions in Gamburt-
sev area. As displayed in Fig. 7, the gray survey lines indicate
the regions from which training samples are derived, while the
red survey lines represent the validation dataset employed to
evaluate model performance.

A. Quantitative Analysis

To rigorously assess the performance of our proposed
method, especially in the context of our highly imbalanced
dataset, we utilize two metrics: F1 score and the distance
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TABLE I
PERFORMANCE OF VARIOUS MODELS UNDER DIFFERENT
POSITIVE-TO-NEGATIVE SAMPLE TRAINING RATIOS, LE., 1:10

(POSITIVE: 1927 AND NEGATIVE: 19270); 1:50 (POSITIVE:
1927 AND NEGATIVE: 96350); AND 1:100 (POSITIVE:
1927 AND NEGATIVE: 192 700)

ET LightGBM RF CatBoost Ours

1:10 0.8185 0.7947  0.8152 0.7944 0.8195

1:50 0.8016  0.7734  0.7983 0.7720 0.8192

F1 Score 7" -1.69% -213% -1.69% -2.23% -0.03%
1:100 0.8000  0.7639  0.7959 0.7595 0.8163

) -1.85% -3.08% -1.93% -3.49% -0.32%

1:10 0.8178 0.7944  0.8141 0.7940 0.8187

1:50 0.8012  0.7727 0.7976 0.7711 0.8183

DIP T 166%  -217% -1.65% -2.29% -0.04%
1:100 0.7996  0.7626  0.7949 0.7583 0.8153

) -1.82% -3.18% -1.92% -3.57% -0.34%

from the ideal position (DIP) [56], to evaluate the classification
effectiveness of our method.

The aim of our study is to understand the impact of class
imbalance on model accuracy. To address this, we created
training datasets with three different positive-to-negative sam-
ple ratios: 1:10, 1:50, and 1:100, as listed in Table II. The value
“1” (i.e., 1927) represents the total number of A-scope traces
extracted from the gray survey lines in Fig. 7, corresponding
to SL inventories identified by Livingstone et al. [13] and
Wolovick et al. [18]. The negative samples, with counts equal
to 10, 50, and 100 times the positive samples, were randomly
selected from A-scope traces in regions of the gray survey
lines where no SLs are present.

Table II presents the F'1 score and DIP of base classifiers and
our model under these different positive-to-negative sample
ratios. The percentages indicate the decline rate in the metrics
compared with the positive-to-negative sample ratio of 1:10.

The experimental results show that at a mild imbalanced
sample ratio of 1:10, all models exhibited relatively high F1
scores. Among them, our model performed the best with an
F1 score of 0.8195. However, as the sample imbalance ratio
increased to 1:50 and 1:100, the performance of all models
declined. Notably, the F1 score of our model decreased by
only 0.03% at a 1:50 ratio and by 0.32% under the extreme
imbalance condition of 1:100. Compared with other models,
this performance decline is significantly smaller. In addition,
the DIP value, another important indicator for assessing a
model’s ability to handle sample imbalances, also showed
minimal reductions in our model. At a 1:10 sample ratio,
our model’s DIP value was 0.8187, with decreases of only
0.04% and 0.34% at 1:50 and 1:100 ratios, respectively. This
further demonstrates the stability of our model in handling
various imbalanced sample scenarios. These findings under-
score the significant advantages of our model in countering
sample imbalance in practical applications, compared with
other models as a collective benchmark.

B. Qualitative Analysis

In this section, we present the qualitative analysis of the
automated prediction of SLs by our stacking model and
showcase their distribution in the AGAP region.
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Fig. 8. SL prediction results for various radar profiles within the AGAP
region validation dataset. Red strips represent predicted SLs using our model,
while blue strips represent SLs in the inventories. (a) L-1 and W-19. (b) W-39.
(c) L-12. (d) L-37.

Fig. 8 presents four examples of prediction results for
different radar profiles within our validation dataset in the
AGAP region. For SLs predicted by Wolovick et al. [18],
we use the notation “W-*" where “*” represents the corre-
sponding lake’s number in Wolovick’s list. For lakes identified
by Livingstone et al. [13], we use “L-*,” where “*” indicates
the lake’s number in their list.

Specifically, Fig. 8(a)—(c) displays the comparison between
our predicted results and the lakes previously identified by
Livingstone et al. [13] and Wolovick et al. [18]. It is evident
from the figures that the locations and lengths of the lakes
predicted by our model closely match those listed in the exist-
ing records, visually confirming their accuracy. In Fig. 8(d),
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Fig. 9. Examples of newly predicted SLs include (a) C-43, (b) C-1, and

(c) C-16 and C-17.

lake L-37 is located in the northwestern part of the AGAP
region, where the terrain appears relatively flat and the BRP
is constantly higher than the adjacent regions. However, the
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location reported by Livingstone et al. [13] is slightly offset
judged from the radargram, and from the length perspective,
our result is more conservative and only the central region is
predicted as the lake.

Next, we present the newly discovered candidate SLs
identified by our model in regions outside of the original
training and validation areas in the AGAP region. We also
visualize the extracted features used as input for our stacking
ensemble learning method, illustrating their contributions to
the final prediction outcomes for the processed radargram
frames. We denote these lakes as “C-*,” where “*” corresponds
to the lake’s specific number in our list. The provided list
of candidate SLs is evaluated based on CBRP values. The
evaluation criterion is that if the difference in mean CBRP
value between the current prediction range and any of the
adjacent regions is greater than or equal to 15 dB [18], [57],
[58], [59], the predicted lake can be listed. This additional step
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Fig. 13. SLs newly predicted in two adjacent B-scopes.

of screening is to ascertain the accuracy and reliability of our
updated inventory, which is a conservative inventory.

Some examples of newly identified candidate SLs, which
were not reported by Livingstone et al. [13] or Wolovick et al.
[18], are presented in Fig. 9. The length of these candidate
SLs, designated as C-43 [see Fig. 9(a)], C-1 [see Fig. 9(b)],
C-16, and C-17 [see Fig. 9(c)], is approximately 558 m, 5 km,
1530 m, and 780 m, respectively. Based on the feature values
and the traditional visual judgment of radargrams, all four
lakes exhibit flat topography, high reflectivity, and elevated
TFF values, with the CBRP exceeding that of the surrounding
areas by more than 15 dB.

C. Discussion

1) Smoothing of the Prediction Results Based on A-Scope:
Since our method is based on A-scope level recognition,
the predicted results may exhibit discontinuities, as shown in
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Fig. 10(a). To address this issue, we applied a least squares
fitting to the subglacial topography and used the first-order
coefficient as the slope value to capture terrain variations. If the
difference between the maximum and minimum slope values
within a given interval is less than the empirically determined
threshold, the region was considered suitable for smoothing for
an SL. The slope values are shown in Fig. 10(b). In principle,
this smoothing method transforms the prediction of subglacial
water bodies at the A-scope level to the prediction of SLs,
which effectively handles the discontinuity issue. However,
such a smoothing operation is inevitably based on an empirical
threshold, which serves as one of the limitations of the model.
In the current study, we determine this threshold with which
the predicted subglacial water bodies can be smoothed to
match the inventoried SLs with an accuracy of 100%. From
the perspective of continuous imaging, this smoothing method
effectively enhances the model’s performance in handling
discontinuities.

However, the smoothing process may cause two nearby
SLs to merge into a single SL. As depicted in Fig. 11, L-31
and L-32 are two separate SLs in the inventory provided by
Livingstone et al. [13], but they are interpreted as a single SL
after the smoothing process. This misclassification is likely
due to the relatively flat terrain between the two lakes, which
increases the probability that the model perceives them as
a single, contiguous water body. For this case, we do not
recognize this SL as a newly predicted SL.

2) SLs Newly Predicted in the Validation Dataset: In our
predicted results, some newly predicted SLs are located on
the survey line in the validation dataset. As shown in Fig. 12,
SL C-50, predicted by our model, is not included in the current
inventories. When accessing the accuracy of our prediction
results, lake C-50 is classified as false positives, which may
lower our F1 score and DIP.

3) SLs Predicted in Two Adjacent B-Scopes: In our results,
some SLs are predicted at the ends of adjacent B-scopes,
which likely represent the same lake. As shown in Fig. 13,
we concatenate the two B-scope files, marking the boundary
with a dashed line, resulting in a candidate SL of approxi-
mately 38 km in length. Overall, the lake exhibits pronounced
CBRP characteristics and stable TFF. However, between
60 and 66 km, there is a decrease in CBRP, an increase in
topographic roughness, and zero response in TFF (marked
by yellow arrows). Nevertheless, our smoothing algorithm
indicates that the terrain is relatively flat on a macroscopic
scale. It may suggest the presence of a moist ice—bedrock
interface, which might lead to speculation that this section
may still be part of the same shallow lake. This interesting
phenomenon suggests that future research should integrate
additional data to conduct a thorough analysis of the geological
and environmental characteristics of this area, to validate our
current interpretations and to explore other possible geograph-
ical or climatic influences.

4) Updated SL Inventory in the AGAP Region:
Wolovick et al. [18] produced an inventory for SLs in the
AGAP region in 2013, which was included and updated in
the worldwide SL inventory by Livingstone et al. [13]. The
SLs in these two inventories are manually predicted, and
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it is found that there are certain overlaps between these
inventories for the AGAP region. Through this study, our
proposed method advances the traditional SL prediction by
using an automated prediction model based on optimized
stacking ensemble learning. Its capability in handling extreme
data imbalance situations is validated for the AGAP region
application, which has the lake-to-nonlake ratio approaching
1:100. We have predicted a total of 55 new candidate SLs
with lengths ranging from 108 to 38 130 m. A new inventory
is generated with a positive-to-negative sample ratio of 1:100.
Noting that the actual positive-to-negative ratio in AGAP is
1:164, this reflects a much more realistic lake-to-nonlake ratio,
compared with existing works [22], [31]. These candidate SLs,

in Table III. To enhance the clarity of regions where SLs
appear densely clustered or overlapping in the main map, three
inset panels—(I)—(III)—are provided to magnify these specific
areas. The SLs previously reported by Livingstone et al. [13]
and Wolovick et al. [18] are marked with yellow triangles
and green pentagrams, respectively, while the newly identified
candidate SLs in our study, which have not been reported
before, are shown as blue circles. Furthermore, in Fig. 14,
we use dashed circles to mark the locations of the only three
lakes missed in the validation dataset, namely, L-26, L-42,
and L-44. Taking L-42 as an example (as shown in Fig. 15),
its CBRP contrast to neighboring areas is lower than that of
the predicted lake C-52, and the local topographic slope is
not prominent. These factors may collectively contribute to its
omission by our algorithm.
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TABLE IIT
INVENTORY OF SLS IN THE AGAP REGION OF ANTARCTICA
ID Lake Name File Name Latitude Longitude Length (m) Resolution (m)
1 L-1 Data_img_02_20081223_01_006 -83.2861 71.1630 1880 18
2 L-2 Data_img_02_20081223_01_007 -82.9580 71.5740 7240 18
3 L-3 Data_img_02_20081223_01_007 -82.8890  71.6550 990 18
4 L-4 Data_img_02_20081223_01_009 -82.0390  72.5390 350 18
5 L-5 Data_img_02_20081223_01_014 -79.9050  74.1080 180 18
6 L-6 Data_img_02_20081223_01_022 -82.2260  74.0255 1330 18
7 L-7 Data_img_02_20081225_02_024 -83.0400 69.9760 1490 30
8 L-8 Data_img_02_20081225_02_024 -83.0630  69.9440 1020 30
9 L-9 Data_img_02_20081225_02_024 -83.1010  69.8870 730 30
10 L-10 Data_img_02_20081225_02_024 -83.1480  69.8200 580 30
11 L-11 Data_img_02_20081225_04_018 -81.3270  77.9170 1370 30
12 L-12 Data_img_02_20090102_03_011 -80.3300  80.0000 1070 18
13 L-13 Data_img_02_20090102_03_015 -80.3020  81.0650 1210 18
14 L-14 Data_img_02_20090105_02_008 -79.8980  71.2250 610 30
15 L-15 Data_img_02_20090106_05_009 -80.9450 71.6260 300 30
16 L-16 Data_img_02_20090106_05_017 -79.9660 59.4450 3080 30
17 L-17 Data_img_02_20090107_03_015 -82.3960 72.7120 820 30
18 L-18 Data_img_02_20090107_03_015 -82.4200 74.3590 1460 30
19 L-19 Data_img_02_20090107_03_015 -82.4250 74.7131 2630 30
20 L-20 Data_img_02_20090107_05_020 -80.9640 65.5070 1460 30
21 L-21 Data_img_02_20090108_01_016 -80.2800  80.7960 2340 30
22 L-22 Data_img_02_20090108_01_016 -80.4240  80.8080 880 30
23 L-23 Data_img_02_20090108_01_017 -80.6780  80.8300 1170 30
24 L-24 Data_img_02_20090108_03_021 -82.2630 74.3350 730 30
25 L-25 Data_img_02_20090108_03_021 -82.3990  74.2340 780 30
26 L-26 Data_img_02_20090109_01_018 -80.7910 74.1070 420 30
27 L-27 Data_img_02_20090109_04_005 -83.2310 70.4630 2920 30
28 L-28 Data_img_02_20090109_04_024 -83.2060 72.4140 2480 30
29 L-29 Data_img_02_20090110_01_008 -82.1180  81.9590 1800 30
30 L-30 Data_img_02_20090110_01_008 -81.9470 81.9180 1520 30
31 L-31 Data_img_02_20090110_01_009 -81.5840 81.8370 180 30
32 L-32 Data_img_02_20090110_01_009 -81.5740  81.8350 670 30
33 L-33 Data_img_02_20090111_02_025 -82.4070  72.0420 270 18
34 L-34 Data_img_02_20090106_05_013 -80.3710  66.2579 290 30
35 L-35 Data_img_02_20090106_05_013 -80.3552  65.8700 5610 30
36 L-36 Data_img_02_20090106_05_013 -80.3248  65.1567 1760 30
37 L-37 Data_img_02_20090109_04_004 -83.3956  70.2276 8310 30
38 L-39 Data_img_02_20090108_03_005 -82.9679 71.9315 1750 30
39 L-40 Data_img_02_20090108_03_021 -82.4606 74.1864 730 30
40 L-41 Data_img_02_20081228_01_006 -82.5455 75.1611 1980 30
41 L-42 Data_img_02_20090108_01_007 -82.2566  80.3314 480 30
42 L-43 Data_img_02_20090108_01_009 -81.7247  80.3187 1020 30
43 L-44 Data_img_02_20090102_03_015 -80.3345  81.0697 1005 18
44 W-1 Data_img_02_20081225_02_014 -79.7050  71.9570 740 30
45 W-2 Data_img_02_20081229_01_026 -83.9400 66.7540 1780 18
46 W-3 Data_img_02_20081229_01_018 -80.7890  71.2840 1170 18
47 W-4 Data_img_02_20081229_01_007 -82.8890  69.4530 1250 18
48 W-5 Data_img_02_20081229_01_010 -81.6730  70.9900 640 18
49 W-6 F45a_1.320-175_HGe4 -83.1550  69.4240 610 30
50 W-7 F45a_1.320-182_HGe4 -82.9490  69.7350 3050 30
51 W-8 F45a_1.320-181_HGe4 -82.9730  69.7000 630 30
52 W-12 Data_img_02_20081228_03_026 -83.1800  70.1540 2570 18

53 W-13 Data_img_02_20081228_03_024 -82.3180  71.2510 330 18
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TABLE III

(Continued.) INVENTORY OF SLS IN THE AGAP REGION OF ANTARCTICA

ID Lake Name File Name Latitude Longitude Length (m) Resolution (m)
54 W-16 Data_img_02_20081228_03_006 -83.3100 70.7460 7500 18
55 W-17 Data_img_02_20081228_03_006 -83.2590 70.8180 710 18
56 W-18 Data_img_02_20081228_03_007 -82.8820  71.2960 2710 18
57 W-19 Data_img_02_20081223_01_006 & 007 -82.9910 71.5360 1210 18
58 W-21 Data_img_02_20081223_01_009 & 010 -81.7150 72.8280 230 18
59 W-22 Data_img_02_20081223_01_012 -80.8450  73.5050 350 18
60 W-23 Data_img_02_20081223_01_014 -79.9040 74.1080 350 18
61 W-25 Data_img_02_20090109_01_023 -83.0000 72.2630 280 30
62 W-26 Data_img_02_20090109_01_018 -80.8610  74.0630 1940 30
63 W-28 Data_img_02_20090109_01_012 -79.9480 75.1140 390 30
64 W-30 Data_img_02_20081223_01_021 -82.1830 74.0630 1910 18
65 W-34 Data_img_02_20081228_01_020 -82.3960 74.5760 2640 30
66 W-35 Data_img_02_20081228_01_020 -82.3390 74.6150 1170 30
67 W-36 Data_img_02_20081227_01_023 -82.9970 74.4840 320 30
68 W-37 Data_img_02_20081227_01_022 -82.4650 74.8690 850 30
69 W-38 Data_img_02_20081227_01_022 -82.4500 74.8790 670 30
70 W-39 Data_img_02_20081228_01_009 -81.0020 75.9860 430 30
71 W-40 Data_img_02_20081231_01_007 -82.2880  76.9940 1450 30
72 W-41 Data_img_02_20081231_01_008 -81.7950  77.1740 640 30
73 W-42 Data_img_02_20081225_04_020 -82.3470  77.6440 510 30
74 W-43 F51c_L540-309_HGe4 -82.4250 77.9630 2410 30
75 W-44 F51c_L540-310_HGe4 -82.4120  77.9660 1330 30
76 W-45 F51c_L540-308_HGe4 -82.3980 76.9690 1780 30
77 W-46 Data_img_02_20090113_01_005 -82.5490 78.2730 3640 30
78 W-47 Data_img_02_20090113_01_006 -82.5070  78.2820 980 30
79 W-48 Data_img_02_20090113_01_006 -82.4920 78.2850 870 30
80 W-49 Data_img_02_20090113_01_006 -82.4530 78.2950 1070 30
81 W-50 Data_img_02_20090113_01_008 -81.2580 78.5260 370 30
82 W-51 F15b_L580-252_HGe4 -81.9180 79.3620 440 30
83 W-52 Data_img_02_20090110_03_023 -83.7030  79.5950 450 30
84 W-53 Data_img_02_20090102_03_008 -81.8180  79.9990 310 18
85 W-55 Data_img_02_20090108_01_008 -81.7460 80.3120 790 30
86 W-57 F42a_1.620-085_HGe4 -82.8880 80.7210 1090 30
87 W-58 Data_img_02_20090108_01_019 -81.7400  80.9350 790 30
88 W-61 Data_img_02_20090102_03_023 -83.6740  81.6230 610 18
89 W-62 Data_img_02_20090102_03_021 -82.7950 81.4270 570 18
90 W-63 Data_img_02_20090102_03_016 -80.6280  81.1000 310 18
91 W-65 F18a_L.650-211_HGe4 -82.1500 81.6410 400 30
92 W-68 Data_img_02_20090110_01_008 -81.9500 81.9190 920 30
93 W-69 Data_img_02_20090110_01_008 -82.0060 81.9330 670 30
94 W-73 Data_img_02_20090105_01_007 -82.6970  82.4700 1420 30
95 W-74 Data_img_02_20090105_01_010 -81.5410  82.1360 540 30
96 W-75 Data_img_02_20090105_01_014 -79.8770  81.7860 1250 30
97 W-76 F42b_1.690-262_HGe4 -81.4140 82.7030 920 30
98 W-77 Data_img_02_20090103_02_020 -81.3780  82.9930 430 18
99 W-78 Data_img_02_20090103_02_010 -81.5120  84.5600 400 18
100 W-79 Data_img_02_20090103_02_012 -80.9110 84.2590 910 18
101 W-80 Data_img_02_20090105_02_019 -81.5160 84.8670 980 30
102 W-81 F52a_T10120-126_HGe4 -83.2480 69.3270 1010 30
103 W-82 F52a_T10120-120_HGe4 -83.2770  70.7460 1630 30
104 W-83 F52a_T10120-119_HGe4 -83.2820 71.0390 2390 30
105 W-84 F52b_T10130-153_HGe4 -82.9490 69.7030 1240 30
106 W-85 F52b_T10130-160_HGe4 -82.9850 71.4680 520 30
107 W-86 F52b_T10130-162_HGe4 -82.9980 72.2330 910 30
108 W-87 F52b_T10130-194_HGe4 -83.0600 80.9720 2380 30
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TABLE III
(Continued.) INVENTORY OF SLS IN THE AGAP REGION OF ANTARCTICA

ID Lake Name File Name Latitude Longitude Length (m) Resolution (m)
109 W-91 Data_img_02_20090107_03_015 & 016 -82.4260 74.7750 320 30
110 W-92 Data_img_02_20090107_03_016 & 017 -82.4530 78.2360 720 30
111 W-93 Data_img_02_20090107_03_017 -82.4530 78.2810 340 30
112 W-94 Data_img_02_20090107_03_016 & 017 -82.4530 78.1640 500 30
113 W-95 Data_img_02_20090107_03_016 -82.4530 78.1320 490 30
114 W-96 Data_img_02_20090107_03_016 -82.4520 78.1070 290 30
115 W-97 Data_img_02_20090107_03_016 -82.4520 78.0740 650 30
116 W-98 Data_img_02_20090107_03_016 -82.4520 78.0380 290 30
117 W-99 Data_img_02_20090106_04_010 -82.1520 81.5590 890 30
118 W-100 Data_img_02_20090106_04_010 -82.1510 81.6330 310 30
119 W-101 Data_img_02_20090106_04_010 -82.1500 81.7830 930 30
120 W-102 Data_img_02_20090111_02_013 -81.5430 82.1220 550 18
121 W-103 Data_img_02_20090111_02_014 -81.5190 84.8920 1500 18
122 W-104 Data_img_02_20090109_03_015 -80.9190 84.2730 1550 30
123 W-105 Data_img_02_20090109_03_018 -80.6390  81.0220 790 30
124 C-1 Data_img_02_20081223_01_015 -79.5831 74.5711 4932 18
125 C-2 Data_img_02_20081225_02_028 -84.3856  73.4685 360 30
126 C-3 Data_img_02_20081226_02_004 -83.6404  82.4832 1998 18
127 C-4 Data_img_02_20081226_02_026 -83.2581  82.5699 990 18
128 C-5 Data_img_02_20081227_01_010 -80.7354  76.3785 120 30
129 C-6 Data_img_02_20081228_03_011 -81.3163  72.8579 108 18
130 C-7 Data_img_02_20081229_01_009 -82.1214  70.4773 108 18
131 C-8 Data_img_02_20081229_01_016 -79.7886  72.1339 2484 18
132 C-9 Data_img_02_20081231_01_005 -83.0351 76.6761 360 30
133 C-10 Data_img_02_20081231_01_009 -81.2581 77.3368 390 30
134 C-11 Data_img_02_20081231_01_010 -80.8103  77.4741 120 30
135 C-12 Data_img_02_20081231_01_018 -80.7524  76.9207 270 30
136 C-13 Data_img_02_20081231_01_019 -80.6125 76.6185 630 30
137 C-14 Data_img_02_20081231_03_006 -83.1558  69.3630 450 30
138 C-15 Data_img_02_20081231_03_009 -82.8176  64.9017 780 30
139 C-16 Data_img_02_20081231_03_011 -83.2504  65.4084 1530 30
140 C-17 Data_img_02_20081231_03_011 -83.2986  65.7526 780 30
141 C-18 Data_img_02_20090101_01_008 -81.8189  80.0071 144 18
142 C-19 Data_img_02_20090101_01_008 -81.7088  79.9994 108 18
143 C-20 Data_img_02_20090103_03_018 -80.8617 83.6714 270 30
144 C-21 Data_img_02_20090103_03_019 -81.0642  83.7503 360 30
145 C-22 Data_img_02_20090103_03_019 -81.2010 83.8107 240 30
146 C-23 Data_img_02_20090105_01_005 -83.2787  82.6752 690 30
147 C-24 Data_img_02_20090105_02_017 -80.9324  84.5547 1770 30
148 C-25 Data_img_02_20090105_02_018 -81.0727 84.6264 150 30
149 C-26 Data_img_02_20090105_03_005 -83.7178 79.3174 5040 30
150 C-27 Data_img_02_20090105_03_012 -80.8816  83.8409 240 30
151 C-28 Data_img_02_20090106_01_012 -81.2236  83.5261 300 30
152 C-29 Data_img_02_20090106_04_004 -83.2407 82.4197 690 30
153 C-30 Data_img_02_20090106_04_026 -83.7919  80.1360 1020 30
154 C-31 Data_img_02_20090106_05_019 -79.5730  62.6904 4260 30
155 C-32 Data_img_02_20090106_05_020 & 21 -79.7214 65.6525 38130 30
156 C-33 Data_img_02_20090107_03_002 -83.7113  81.7111 420 30
157 C-34 Data_img_02_20090107_05_010 -81.4677 62.5884 1440 30
158 C-35 Data_img_02_20090108_03_002 -84.3429  72.8579 150 30
159 C-36 Data_img_02_20090108_03_007 -82.4095 72.5205 480 30
160 C-37 Data_img_02_20090109_03_005 -82.4465  72.5499 120 30
161 C-38 Data_img_02_20090109_03_026 -82.5863  75.4818 3540 30
162 C-39 Data_img_02_20090110_01_011 -81.0189  81.7243 360 30

163 C-40 Data_img_02_20090110_01_018 -81.3963  82.3929 300 30
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TABLE III
(Continued.) INVENTORY OF SLS IN THE AGAP REGION OF ANTARCTICA

ID Lake Name File Name

164 C-41 Data_img_02_20090110_01_018
165 C-42 Data_img_02_20090110_03_010
166 C-43 Data_img_02_20090111_02_006
167 C-44 Data_img_02_20090111_02_007
168 C-45 Data_img_02_20090111_02_011
169 C-46 Data_img_02_20090111_02_016
170 C-47 Data_img_02_20081228_03_026
171 C-48 Data_img_02_20081229_01_007
172 C-49 Data_img_02_20090103_02_020
173 C-50 Data_img_02_20090106_05_013
174 C-51 Data_img_02_20090106_05_017
175 C-52 Data_img_02_20090108_01_007
176 C-53 Data_img_02_20090108_01_008
177 C-54 Data_img_02_20090109_01_023
178 C-55 Data_img_02_20090113_01_008

Latitude Longitude Length (m) Resolution (m)
-81.4440  82.4085 180 30
-80.6137  79.1766 510 30
-82.3189  71.2807 558 18
-81.8197  70.3866 342 18
-81.5372  76.9461 324 18
-81.2315 83.3768 846 18
-83.1099  70.2539 234 18
-82.8431 69.5211 864 18
-81.4288  83.0068 252 18
-80.3074  64.7632 750 30
-79.8636  59.6943 7950 30
-82.3138  80.3341 210 30
-81.8300 80.3145 480 30
-83.1518  72.0934 2550 30
-81.3475  78.5091 420 30

Fig. 16 shows the length distribution of newly predicted SLs
and those in the existing inventories [13], [18]. In the AGAP
region, the lengths of SLs are primarily concentrated between
300 and 3000 m, with most newly predicted SLs measuring
less than 1 km. This phenomenon is closely related to the
topographical features of the AGAP region. The rugged terrain
of the Gamburtsev Mountains facilitates the accumulation of
water in small bedrock depressions, leading to a prevalence
of small lakes in these low-lying areas [18]. On the other
hand, a rather large lake is predicted, as displayed in Fig. 13.
It measures 38 130 m in length, although we speculate that
this SL may be segmented by wet sediment in the middle.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed an automated method for predict-
ing SLs. The novelty of this approach lies in addressing the
inherent imbalance issue in RES data using an ABC-assisted
stacking ensemble learning method, which aids in selecting
the optimum classifier combination. We implemented the
proposed method in the AGAP region of East Antarctica,
conducting a comprehensive analysis that includes both quan-
titative and qualitative assessments. It is found that the
performance of the proposed SLs prediction method is much
more stable than the traditional models, as the imbalance
between positive and negative samples increases. Another
advantage of our method is its prediction capability at the
A-scope level with the highest possible along-track resolution,
demonstrating its adaptability and precision across various
SL sizes, including the ability to predict small SLs. Finally,
we generated an updated SL inventory for the AGAP region,
predicting a total of 55 new candidate SLs with lengths
ranging from 108 to 38130 m. The spatial and temporal
distribution of these new SLs and their potential hydraulic
connections present an intriguing direction for future research.
We also plan to further investigate the impact of basal
roughness on radar reflection signals and explore how sig-
nificant changes in RES data are commonly associated with

changes in bedrock wetness [44], [45]. It is worth investigating
the temperature-dependent variations in the permittivity of
the same material, as well as the relationship between the
dielectric permittivity of materials and their moisture content.
In addition, we will incorporate seismology or other geo-
physical data to more accurately assess the existence of SLs
[60], [61].
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