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ABSTRACT Manufacturers are focusing on reconfigurable, resilient environments for Industry
5.0 paradigms. Applications like digital twins and mobile robots require communication networks to
meet latency, bandwidth, and reliability requirements. Beyond 5G (B5G) networks provide unprecedented
communications performance and flexibility through virtualization and network slicing, which generates
various logical partitions for particular applications with specific requirements. RAN slicing is an essential
section of 5G network slicing due to its vulnerability to errors, affecting its ability to meet stringent reliability
requirements. This paper presents a novel framework for optimizing resource allocation in 5G network
slicing by integrating Double Deep Q-Network with Prioritized Experience Replay (DDQN-PER) and
Pointer Network-based Long Short-Term Memory (PtrNet-LSTM). The proposed framework dynamically
adjusts the attention coefficient, balancing Service Satisfaction Level (SSL) and Quality of Experience
(QoE), improving system efficiency, spectrum efficiency, and user connectivity across diverse user scenarios.
The experiment illustrates that the combined PtrNet-LSTM framework within DDQN-PER outperforms the
baseline methods in terms of spectrum efficiency and user connectivity, demonstrating scalability and the
potential to address challenges in dynamic wireless networks.

INDEX TERMS RAN, RL, pointer network, LSTM, DDQN-PER.

I. INTRODUCTION
Mobile communication networks have seen substantial
advancements, progressing from 1G to 4G, offering
increasingly streamlined and effective services. The process
of evolution has propelled sociotechnical systems (STS),
facilitating the progress of both social and economic growth.
Future wireless networks are expected to expand and
diversify across several dimensions. This expansion is driven
by the rise in data sent across mobile networks, the growing
number of people using mobile devices, and the diverse
range of radio access technologies, services, and applications.
To ensure this expansion, it’s necessary to simultaneously
pursue various objectives, such as reducing latency, increas-
ing reliability, and improving data transmission speed tailored
to the specific service. Furthermore, the distribution of
resources must be dynamic, adapting to the ever-changing
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network circumstances and showcasing the resilience of the
network.

According to Ericsson’s estimation [1], the worldwide
mobile data traffic is projected to exceed 160 exabytes per
month by 2025. Network Slicing (NwS) is an innovative
technology developed by research and development teams
in industry and academic sectors. Its purpose is to enable
the digital transformation of 5G networks and beyond
5G+. It divides the network into portions with unique
features, catering to various user requirements. This approach
deviates from the conventional 2G-4G framework, giving
more adaptability, enhanced effectiveness, and innovative
service options forMobile Network Operators (MNOs). NwS
technology enables the provision of 5G services and facili-
tates the introduction of cutting-edge applications, adapting
to the advancements in 5G technology. The integration of
this technology into 6G networks can be anticipated due to
its flexibility and cost-effectiveness [2].

Network slicing includes the Core Network (CN) and
the Radio Access Network (RAN). CN is a straightforward
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process that may be accomplished by increasing the scale
of computer resources. RAN enables MNOs to segregate
and isolate several virtual networks on a single infrastruc-
ture. Each RAN slice is ensured to be autonomous in a
logical sense, enabling support for different types of 5G
applications [3]. Nevertheless, implementing RAN slicing
is still difficult because of the limited availability of radio
resources, the unpredictable nature of wireless channel
conditions, and the presence of interference. RAN slicing at
the spectrum level provides much isolation and customization
compared to other RAN slicing solutions at the Radio
Resource Management (RRM) level [4]. Spectrum resources
are divided into carriers, with each tenant being allocated a
distinct carrier to provide total performance isolation among
slices. This enables the customization of slices according to
the individual requirements of each tenant across all RRM
features. Furthermore, effective radio resource management
enhances the provision of services, usage of resources, and
generation of income for MNOs [5].

Machine learning (ML) is essential for advancing future
wireless networks because of their intricate nature, lack
of adequate models, and algorithm deficiencies. Machine
learning can tackle the intricacies of network systems while
delivering competitive performance. It can represent dynamic
networks’ complex and non-linear characteristics, which
are typically challenging to predict using basic modelling
methods. Moreover, ML may achieve an optimal equilibrium
between satisfactory system performance and intricacy,
guaranteeing that networks empowered by reinforcement
learning (RL) can efficiently manage the many complexities
of contemporary cellular networks [3]. RL strategies are
employed to address the RAN slicing challenge because they
can adjust to intricacies. Conventional approaches necessitate
a mathematical expression that cannot be derived because of
the diverse nature of slice Service Level Agreements (SLAs),
the unpredictability of wireless communications, and the
intricacy of resource-sharing methods based on queuing [6].
RL algorithms can adjust to various surroundings and
automatically consider future requirements.

TheRANdomain of 5G network slicing faces challenges in
managing finite resources to meet diverse service categories,
including EnhancedMobile Broadband (eMBB) services that
require high throughput, while Ultra-Reliable Low Latency
Communication (URLLC) services require strict latency
guarantees. These challenges should be balanced to guarantee
a high Service Satisfaction Level (SSL) for eMBB users and
overall network system capacity. Furthermore, the dynamic
nature of user traffic, channel conditions, and limited radio
resources increase the difficulty of achieving this balance

The main contribution of our study is the introduction of
a novel solution to mitigate the trade-off between enhancing
SSL and potential decreases in system capacity and Quality
of Experience (QoE) for eMBB users, which arise from
increasing the attention coefficient (α). We propose integrat-
ing DDQN-PER (Double Deep Q-Network with Prioritized
Experience Replay) with PtrNet-LSTM (PointerNetwork

Based Long Short-TermMemory) into the resource allocation
system to adjust α in real-time dynamically. This integration
optimizes the balance between SSL andQoE based on current
network conditions. Leveraging PtrNet-LSTM’s advanced
learning capabilities enhances adaptability to varying inputs
and network requirements, leading to more reliable and
efficient network solutions. Ultimately, our approach allows
for the improvement of SSL without significant sacrifices
in system capacity or QoE, achieving a more equitable
optimization of network performance.

This paper is structured as follows: In Section II,
we conduct a thorough review of the relevant research.
Section III explores the orchestration framework and outlines
the issue formulation referred to as QoE trade-off analysis.
We propose the integration of DDQN-PER with PtrNet-
LSTM to address this problem. Section IV indicates the
suggested reinforcement learning methodology, demonstrat-
ing the technical components of DDQN-PER and PtrNet-
LSTM integration. Section V highlights the experimental
configuration, including the training and testing method-
ologies used for model evaluation. Section VI examines
the outcomes, highlighting improvements in SSL, QoE,
and scalability. Section VII addresses the consequences,
limitations, and prospective directions for future research,
whereas Section VIII concludes the study by summarizing
the main findings and contributions.

II. RELATED WORK
The variability of radio channel conditions and the spe-
cific features of broadcasting provide difficulties for RAN
slicing, particularly in the context of End-to-End (E2E)
network slicing. Radio resources are commonly represented
as Physical Resource Blocks (PRBs) in both the time
and frequency domains, necessitating careful allocation of
limited spectrum resources. Researchers have investigated
several ways to handle these difficulties, from traditional
optimization techniques to recent reinforcement learning
(RL) and hybrid deep learning methods. This section presents
key contributions in these fields, with their advantages,
disadvantages, and relevance to our suggested framework.

A. TRADITIONAL OPTIMIZATION APPROACH
Traditional optimization approaches such as Integer Linear
Programming (ILP) and Convex Optimization have been
widely explored for network slicing. Ma et al. [7] proposed a
novel approach usingmixed-integer programming to enhance
spectral efficiency and ensure reliable Ultra-Reliable Low
Latency Communication (URLLC) in a virtualized wireless
network, while Li et al. [8] extended this by introducing
two-level medium access controls (MACs) that allocate
resource allocation dynamically. A complementary study
by Marabissi and Fantacci [9] introduced a two-tier PRB
scheduling technique that consists of an inter-slice scheduler
that determines the allocation of resources for each slice and
intra-slice schedulers that are particular to individual slices.
In [10], the authors proposed a resource allocation strategy
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that segments RAN and its transport network to enhance
URLLC performance while optimizing MNO profitability.
This model employs a Flexible Functional Split methodology
to allocate resources. The simulation findings indicate that
there is no simple solution owing to the non-linear character
of the problem.

B. REINFORCEMENT LEARNING METHODS
Given the limitations of traditional methods, RL has emerged
as a promising approach for resource allocation in 5G
networks. For example, Zhao et al. [11] presented a RL
method to enhance long-term utility in heterogeneous cellular
networks. Their approach utilized multi-agent reinforcement
learning to optimize a distributed system. They also pro-
posed a strategy called Dueling Double Deep Q-network
(D3QN), which allowed dispersed User Equipment (UE) to
efficiently acquire the whole state space while minimizing
communication and quickly reaching a subgame-perfect
Nash equilibrium (SPNE). The simulation findings showed
that D3QN surpassed other reinforcement learning methods
in effectively tackling complex learning issues on a broad
scale. Similarity, Ren et al. [12] developed a two-level
Cloud Radio Access Network (C-RAN). The deployment
module utilizes a Weighted GraphSAGE-assisted DDQN-
based two-stage service deployment (WDTSD) algorithm
to optimize service deployment. On the other hand, the
monitoring module employs a Bayesian Convolutional
Neural Network (BCNN) state monitoring model to detect
abnormal devices. The results indicate that the WDTSD
algorithm surpasses current solutions regarding memory use,
computational speed, end-to-end latency, and service access
ratio. Additionally, [13] the resource allocation model for the
Average age of Information (AoI) has been investigated in
Wireless powered Internet of Things (WIoT) networks. These
techniques aim to optimize transmission targets, channel
selection, data transmission duration, and power allocation.
The authors have implemented advanced reinforcement
learning techniques such as Deep Deterministic Policy
Gradient (DDPG) and Deep Q-Network (DQN) to resolve
these challenges. Their experimental results have illustrated
improved performance in terms of power consumption and
data transmission rate. However, it lacks dynamic mode
selection for energy harvesting Device-to-Device (D2D)
networks. This was dealt with by Liu et al. [14], who used
a Twin Delayed Deep Deterministic Policy Gradient (TD3)
approach to create Mode Selection and Resource Allocation
(MSRA). Their approach decreases Q-value overestimation
and adapts bandwidth, power, and mode selection. The
authors [15] provided an innovative RL approach for
scheduling cellular network resources, utilizing the Propor-
tional Fair (PF) scheduling method. They propose boosting
the convergence speed of the DRL agent’s performance
during exploration. The proposal suggests deploying both
algorithms as competitors and evaluating the RL reward by
comparing the system’s performance. In [16], the authors
introduced an evolutionary approach to allocating PRB that

relies on social connections among users connected to many
network slices. This system operates dynamically and evolves
to maximize transmission bit rate and resource usage. In this
approach, individuals are categorized into distinct groups
based on their similarities, assuming that all members of
a group require comparable service. The simulation results
demonstrate that the suggested technique outperforms [17] in
terms of transmission rate, resource consumption, and request
acceptance rate for both data and video slices. Previous
investigations in high mobility environments have mostly
focused on proactively managing user mobility to enable
handover before the wireless channel quality significantly
degrades [18]. The channel state of a very mobile user is often
impaired owing to the Doppler effect [19]. However, there
are exceptions to this. As highly mobile individuals move
across a cell coverage area, their channel connection quality
improves and worsens, leading to oscillations in the channel
condition [20]. The reference [21] offers a PRB allocation
system that utilizes distributed reinforcement learning. This
scheme aims to enable each slice to allocate radio resources
efficiently in parallel. In [22], the authors examined the
situation where eMBB and URLLC coexist and proposed
a combined scheduling approach to attain a long-term QoS
compromise between eMBB services and URLLC services.
The service satisfaction level (SSL) is intended to achieve
user-centric compromises and fairness for both users. When a
network controller effectively utilizes channel variations for
resource scheduling, even users who are often moving can
offset the decline in network performance.

C. HYBRID APPROACH METHOD
Recent studies have focused on hybrid models that combine
deep learning with RL to improve resource allocation.
Li et al. [23] integrated LSTM into a method based on deep
reinforcement learning (DRL) to acquire the capability to
monitor and predict user movement in the RAN slicing.
Nevertheless, this methodology solely employs LSTM for
forecasting alterations in packet arrival and exclusively
focuses on users with limitedmobility, specifically those trav-
eling at 30 km/h or lower speeds. Recently, the authors [24]
have been proposed a Deep Reinforcement Learning (DRL)
framework for RAN slicing, which dynamically allocates
network resources to each slice, ensuring quality of service
(QoS) criteria are met. The framework is utilized the
Action Factorization (AF) architecture, a soft-max layer,
and LSTM to address performance concerns for users with
frequent mobility. The system has been effectively distributed
bandwidth among slices, optimizing rewards for achieving
QoE for each user in high mobility situations. The authors
in [25] propose a centralized architecture that utilizes the
three-dimensional convolutional neural network (3DCNN)
approach to estimate resource demand in slices. The objective
is to reduce the total costs of resource provisioning. Similarly,
the authors in reference [26] propose a modified version
of LSTM to investigate the issue of predicting future
demand for specific slice services. Achieving high accuracy
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in hourly traffic forecasting is possible by combining the
sequence-to-sequence learning paradigm and a convolutional
long short-term memory (S2SConvLSTM) network. The
reference [27] investigated the resource allocation process in
future cellular networks, whereMNOsflexibly give resources
to third-party service providers (SPs). The primary objective
is to develop a cutting-edge technique empowering service
providers to optimize resource allocation, thereby reducing
potential financial risks actively. The study implemented a
data-driven approach that integrates deep neural networks
(DNNs) and LSTM recurrent networks solution for reserving
resources from the perspective of a SP. It showed that this
solution achieves higher accuracy compared to a hypothetical
baseline technique.

Resource management frameworks for network slicing
have integrated traffic forecasting features. The authors
in [28] develop a powerful collaborative learning framework
that utilizes LSTM for long-term hourly traffic forecasting
of each slice and Asynchronous Actor-Critic Agent (A3C)
for short-term traffic scheduling in the range of milliseconds.
This framework is designed to optimize resource utilization
andmaintain performance isolation among slices. In addition,
the authors in reference [29] combine LSTM with a
heuristic-based approach to significantly enhance the user
acceptance rate in their resource management framework.
LSTM is implemented to predict the bandwidth demand of
each slice, thereby improving the decision-making process
of the entire framework. It’s worth noting that all of these
initiatives are centralized forecasting methodologies, which
do not take into account the data privacy of slice tenants and
end-users. It is essential to mention that these studies analyze
traffic aggregated at the slice level rather than at the level of
individual base stations.

Reference [30] introduced a machine learning framework
designed to accelerate the convergence of deep reinforcement
learning agents in the scenario of downlink resource alloca-
tion for URLLC. The authors utilize generative adversarial
neural networks (GANs) to pretrain the DRL architecture by
combining authentic and artificial data. This approach allows
the DRL agent to gain offline experience by exposing it to
various network situations before being deployed in an actual
network. Moreover, this strategy has the potential to help
the DRL agent recover quickly when it encounters a severe
situation in the actual network.

In [31], a meta-learning strategy is suggested to fine-tune
an RL solution. The authors propose that a meta-tuned RL
agent would exhibit accelerated convergence in unfamiliar
situations. The proposal suggests utilizing a reinforcement
learning (RL) agent to address an optimum coverage problem
by controlling drone base stations (DBSs). In this scenario,
DBSs must offer uplink connectivity to ground users in
response to their random access requests. In [32], the
authors presented a Federated Proximal Long Short-Term
Memory (FPLSTM) framework for mobile network oper-
ators (MVNOs) that utilizes Federated Learning (FL).
This framework enables local models to be trained using

their datasets and then share the weight with a central
entity. This strategy attains comparable forecasting precision
while decreasing communication and computing expenses
compared to centralized systems. Nevertheless, the costs
associated with super dense network installations in networks
beyond 5G could represent significant barriers. The authors
suggested an Information-based Clustering FPLSTM (IC-
FPLSTM) clustering method to address the challenges of
managing large-scale networks and achieving computational
cost efficiency. The IC-FPLSTM exceeds current centralized
solutions and baseline models in terms of accuracy, scala-
bility, heterogeneity, sample efficiency, communication, and
computing efficiency.

Furthermore, several studies [33], [34], [35] have proven
the efficacy of satellite caching. The symbiotic connec-
tion between satellite caching and RAN resources can
be utilized when RAN edge resources are scarce. While
there has been notable progress in studying 3C resources
in RAN, the complexity and multi-dimensional nature of
3C resource allocation highlights the necessity for more
research and comprehension. The simultaneous examination
of 3C resources for RAN network slicing is a subject
that requires substantial further investigation. The authors
of [36] have investigated the application of network slicing
in low earth orbit (LEO) satellite caching-assisted commu-
nication. The system suggested a resource-slicing system
that employs the sequential quadratic programming (SQP)
iteration method while incorporating the LSTM and Soft
Actor-Critic (SAC) approach hierarchically. The technique
is specifically developed to tackle the resource allocation
problem in LEO-RAN edge settings, known as the 3C
challenge. It enhances the speed and decreases the delay
while meeting SLAs. Simulations demonstrated that the
method achieves a balanced 3C resource allocation more
effectively than the theoretical optimal option.

The study [44] examines the implementation of the
DDQN-PER algorithm for managing the distribution of
radio resources in RAN. When evaluated with 15 URLLC
customers and 5 eMBB users, this algorithm showed
better learning effects and stability than natural DQN and
DDQN, especially during 500 training episodes. Upon closer
examination of the attention coefficient (α), it is clear that
raising α enhances the SSL but leads to a decrease in
system capacity and QoE for eMBB users, indicating a
trade-off. We proposed a solution to tackle this problem is
the integration of DDQN-PER with PtrNet-LSTM (Pointer
Network Based Long Short-Term Memory) into the resource
allocation system. PtrNet-LSTM can dynamically adjust α

in real-time, optimizing the balance between SSL and QoE
based on current network conditions. The increased learning
capabilities of the system allow for improved adaptability
to varying inputs and network requirements, resulting in
more reliable and efficient solutions. By utilizing PtrNet-
LSTM, it is feasible to improve SSL without substantially
sacrificing system capacity or QoE, achieving a more
equitable optimization of network performance. Table 1
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TABLE 1. Comparison of resource allocation methods.
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depicts the RL-based resource allocationmethods, comparing
their algorithms, focus areas, optimization goals, use cases,
training methods, and development environments.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
This research introduces an innovative approach to resource
allocation in the context of RAN slicing, aimed at enhancing
network performance through the integration of advanced
reinforcement learning techniques. The method combines
Double Deep Q-Network with Prioritized Experience Replay
(DDQN-PER) and Pointer Network-based Long Short-
Term Memory (PtrNet-LSTM), enabling dynamic, real-time
resource distribution under unpredictable network condi-
tions.

Our system seeks to optimize the allocation of radio
resources by simultaneously improving the SSL and ensuring
a high QoE. A key feature of this approach is the adaptive
adjustment of the attention parameter, α, within the reward
function. This adjustment enables the system to dynamically
balance SSL and QoE based on current network conditions.
The proposed system offers significant improvements in
flexibility and resource utilization compared to conventional
solutions [44], which often rely on static parameters and
are less effective in responding to dynamic fluctuations in
user demand and network performance. The system model
is characterized as follows:

1) PRB ALLOCATION FRAMEWORK
The RAN controller operates on a matrix AMXN is used to
represent the PRB assignment result of the BS. Each element
A(m, n) is a binary decision variable that indicates whether
a specific PRB m is allocated to a user n. The meaning of
A(m, n) is formally defined as:

A(m, n) =

{
1, if PRB m is allocated to user n,
0, otherwise.

(1)

In this definition:
• m ∈ M = {1, 2, . . . ,M} represents the index of avail-
able PRBs, which are the fundamental time-frequency
resource units in the RAN.

• n ∈ N = {1, 2, . . . ,N } represents the index of users
in the network, each with specific Quality of Service
(QoS) requirements, such as throughput, latency, and
reliability.

The allocation matrix A(m, n) serves as a central decision
variable in resource allocation, determining how PRBs are
distributed among users to meet their QoS requirements. Its
binary nature ensures that a PRB is either allocated to a single
user (A(m, n) = 1) or left unallocated (A(m, n) = 0).

2) KEY CONSTRAINTS
According to Constraint in equation (2), the maximum
number of PRBs that users can occupy is limited to the total
number of PRBs, and Constraint in equation (3) indicates the

limit for PRB allocation. Pm is the symbol for the BS transmit
power of PRB. The maximum overall power for the BS is
defined in equation (4).∑

m

∑
n

A (m, n) ≤M (2)∑
n

A (m, n) ≤1 (3)∑
m

Pm ≤Pmax (4)

3) THROUGHPUT MODEL
To find the transmission rate, assume that user n is in the PRB
m as mentioned in equation (5), in which σ denotes spectral
density of noise, and I represent interference from other
BSs. The channel gain is denoted by gn, is a key parameter
in determining the achievable data rate. It is formulated
to account for large-scale fading effects between the BS
and the user, including both path loss and shadow fading.
Specifically, the path loss is calculated using a logarithmic
distance-based model: L(dist) = 37 + 30 log(dist) [45],
[46] where distance is the Euclidean distance between the
BS and the user. To account for environmental variations
caused by obstructions such as buildings and terrain, shadow
fading is modeled as a zero-mean Gaussian random variable
with a standard deviation of σ = 8 dB. The combined
effects of path loss and shadow fading are then used
to compute the channel gain in linear scale as: gn =
10−

L(distance)+Shadow Fading
10 . This formulation ensures that the

channel gain reflects realistic propagation environments,
making the derived data rate consistent with practical wireless
scenarios. The measurement of RBm,n is in kbps.

RBm,n = A (m, n)Bl log2

(
1+

Pmgn
σBl + I

)
(5)

The user throughput that has been estimated as mentioned
in equation (6).

Rn =
∑

m
A (m, n)RBm,n (6)

4) LATENCY MODEL
The operational delay observed by the URLLC service traffic
can be disregarded. To simplify the transmission model,
consider URLLC service traffic as an M/M/1 queuing model.
Let’s assume that the average packet length is represented
by the variable µ, and the rate at which packets arrive is
represented by the variable λ. The URLLC user’s average
transmission delay on the channel may be mathematically
expressed as follows in equation (7):

τ 1n =
1

Rn
µ
− λ
=

µ

Rn − µλ
(7)

The data streams carried by the eMBB protocol are regular
and periodic. Due to its ongoing transmission, data must
be sent within a specific time frame. In order to decrease
transmission delay and reduce RAN congestion, it is efficient
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to cache popular files near the network edge, such as at the
BS. The request ‘‘leaves’’ the network until the desired file
has been totally downloaded when an eMBB user performs a
specific file request handled by a related BS.

Every file in the BS should have a unique virtual queue.
Equation (8) [47] describes the edge delay that an eMBB
transmission encounters on its way from the base station to
the end user:

τ 1n = υ +
Lq(t)

S(t) (1− PK )
(8)

where:
• The variables υ are the processing time of the BS.
• Lq(t) is the number of packets in the queue.
• S(t) is the number of packets serviced in a specific time.
• PK the packet loss rate from the queue.

τ 1n = υ +
Lq(t)

Rn
µ

(1− PK )
= υ +

µLq(t)
Rn (1− PK )

= υ +
L

Rn (1− PK )
(9)

Rn ≥ Rrsv (10)

In the equation (9), L denotes the size of the requested
file. The eMBB users should meet throughput constraint (10).
Each user makes a distinct file request, which prevents a
backlog from forming at the BS. The variable Rn determines
the number of packets processed over time, while the user’s
perception of edge delay is illustrated in equation (10).
The latency constraint for all users is then given by:

τ 1n ≤ τRANn (11)

where τRANn is the maximum allowable RAN latency for user
n.

B. PROBLEM FORMULATION
The objective function of our system is to maximize both the
SSL for eMBB users and the overall system capacity QoE.
The optimization problem is framed as follows:

Maximize: α ·
∑

n∈eMBB

log10

(
1+

Rn
Rrsv

)
︸ ︷︷ ︸

SSL

+(1− α)

·

∑
n∈users xn
N︸ ︷︷ ︸
QoE

(12)

where:
• α ∈ [0, 1] is the attention coefficient that adjusts
the trade-off between service satisfaction and system
capacity.

• Rrsv is the reserved throughput level for eMBB users.
• xn is a binary variable that indicates whether user
n successfully accesses the network (1 if successful,
0 otherwise).

• N is the total number of users.

Subject to the following constraints:
- PRB Allocation: Each PRB can only be allocated to one

user:
N∑
n=1

A(m, n) ≤ 1, ∀m ∈ M . (12a)

- Latency: URLLC users must meet their latency
requirements:

τ 1n ≤ τRANn , ∀n ∈ URLLC users. (12b)

- Throughput: eMBB users must achieve the minimum
reserved data rate:

Rn ≥ Rrsv, ∀n ∈ eMBB users. (12c)

- Power Constraint: The total power consumption must
not exceed the maximum allowable power:

M∑
m=1

Pm ≤ Pmax. (12d)

- Binary Allocation: PRB allocation is binary:

A(m, n) ∈ {0, 1}, ∀m ∈ M ,∀n ∈ N . (12e)

The SSL for eMBB users is computed as:

SSL =
∑

n∈eMBB

log10

(
1+

Rn
Rrsv

)
(13)

The Equation (13) utility function is used to ensure fairness
in resource allocation among eMBB users. By employing this
function, the system avoids the over-allocation of resources to
a small subset of eMBB users with already high throughput,
thus promoting a more balanced distribution of resources.
This approach ensures that users with lower throughput
receive a proportional allocation of resources, improving their
service satisfaction.

The QoE metric is defined as the ratio of successfully
served eMBB andURLLC users to the total number of eMBB
and URLLC users. This can be mathematically expressed as:

QoE =

∑NeMBB
n=1 xeMBB

n +
∑NURLLC

n=1 xURLLCn

NeMBB + NURLLC
(14)

where:
• NeMBB is the total number of eMBB users,
• NURLLC is the total number of URLLC users,
• xeMBB

n is a binary variable for each eMBB user, where
xeMBB
n = 1 if the eMBB user n successfully receives the
required throughput, and xeMBB

n = 0 otherwise,
• xURLLCn is a binary variable for each URLLC user, where
xURLLCn = 1 if the URLLC user n successfully meets the
latency requirement, and xURLLCn = 0 otherwise.

In (14) formulation, the QoE metric reflects the proportion
of users who are successfully served, incorporating both
the high throughput requirements of eMBB users and the
stringent latency demands of URLLC users. The combination
of both user types in the metric allows for a comprehensive
evaluation of network performance across heterogeneous
traffic profiles.
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IV. PROPOSED APPROACH
DDQN enhanced resource allocation by addressing key
challenges in dynamic environments, such as network slic-
ing [48]. DDQN mitigated overestimation bias in traditional
Q-learning by using separate target networks, ensuring stable
and reliable decision-making. PER improved learning effi-
ciency compared to traditional experience replay techniques,
which treat all experiences equally [49]. PRB enhanced
the processes by focusing on transactions with huge errors
and rewards, resulting in faster convergence and enhanced
decision-making in dynamic environments. However, testing
found that DDQN-PER struggled to capture temporal depen-
dencies and adapt to rapidly changing network conditions.
The proposed hybrid approach addresses the optimization
problem in Equation 12 with constraints (12a–12e). The
issue is addressed using a two-stage process combining
Double Deep Q-Network with Prioritized Experience Replay
(DDQN-PER) and Pointer Network-based Long Short-Term
Memory (PtrNet-LSTM). In the first stage, DDQN-PER
tackles resource allocation by learning policies that meet to
PRB allocation (12a) and latency constraints (12b). In the
second stage, PtrNet-LSTM refines DDQN-PER’s outputs
to further optimize throughput (12c) and enforce binary
constraints (12e), ultimately improving system performance
metrics such as SSL and QoE.

A. DDQN-PER
RL is a process in which an agent learns by actively engaging
with the environment, taking actions, and getting feedback
on its performance. The primary objective is to optimize
the total reward, which may assist in finding suboptimal
solutions to intricate issues. The objective of this work is
to optimize the QoE and reward value for all eMBB and
URLLC users. The RAN domain controller functions as the
agent. The user’s SINR (Signal-to-Interference-plus-Noise
Ratio) is represented by the state, and it is normalized
before being inputted into the neural network. Normalization
assists in accelerating the rate at which the network reaches
convergence. Equation (15) illustrates the set as the state,
while equation (16) defines the action as assigning PRB and
power to the user.

st =
{
SINRnt

}
1×N (15)

at = {{ant }1×M , {Pnt }1×M }1×N (16)

Equation (17) defines the available choices for the user’s
transmission power.

Pn ∈
{
0,

Pmax

M − 1
,
Pmax

M − 2
, . . . ,Pmax

}
(17)

The reward function R = αSSL + (1 − α)QoE can be
established according to the objective function.

DQN, a deep reinforcement learning method, leverages
the Double Deep Q-Network with a Prioritized Experience
Replay (DDQN-PER) technique. This method, unlike the
traditional Q-Learning approach, determines the Q-value

using a neural network. DQN uses a neural network to
determine the Q-value for each action by considering the
present condition. DQN incorporates key concepts from Q-
Learning, replacing the previous Q value (s, a) with the
updated version (s, a; θ), which represents the parameters of
the neural network. To ensure the effectiveness of the training
process and minimize data correlation, DQN implements
two powerful strategies: experience replay and fixed Q-
targets, which have been proven to significantly enhance the
performance of the method.

DDQN addresses the issue of inaccurate estimation present
in DQN, which primarily arises from the maximization
operation in Q-Learning. Overestimation occurs when the
calculated value function exceeds the actual value function.
The loss function differs in DDQN compared to DQN, but
otherwise, the two methods are functionally similar. Unlike
DQN, which uses a single Q-network, DDQN introduces two
separate Q-networks: one for action selection and another
for action evaluation. This separation helps mitigate the
overestimation issue.

In DDQN, the target Q-value is determined in two steps:
1) Action Selection: The Q-network estimates the action

that maximizes the Q-value as demonstrated in equa-
tion (18):

amax = argmax
a′

Q(s′, a′; θ ) (18)

where θ is the parameter of the online neural network.
2) Target Calculation: The target Q-network then calcu-

lates the corresponding Q-value for this selected action
as illustrated in equation (19):

QT = r + γQ(s′, amax; θ
−) (19)

where γ is the discount factor, controlling the impact
of future rewards.

Bymerging the two procedures, onemay obtain the DDQN
loss function, which allows for unbiased action estimates
during training, as demonstrated in equation (20). The loss
function used in the DDQN-PER algorithm is crucial for
optimizing the Q-network during the training process. The
loss function is defined as:

LDDQN

=

[
r + γQ

(
s′, argmax

a′
Q(s′, a′; θ ); θ−

)
− Q(s, a; θ )

]2
(20)

The loss function expressed in equation (20) serves as the
primary mechanism for refining the action-value function
estimates within the DDQN framework. The minimization
of this loss function is conducted iteratively through the use
of the Adam optimizer, enabling the network to converge
towards an optimal policy. Below is a step-by-step description
of how the loss function is utilized in the training process:
• Initialization: The parameters of the neural network,
denoted by θ , are initialized. These parameters represent
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the weights and biases of the neural network used to
approximate the Q-values.

• State Input and Action Selection: The state st , which
in this case is the normalized SINR of the users, is passed
as input to the neural network. The DDQN algorithm
then selects an action at by computing the Q-values for
all possible actions and choosing the one that maximizes
the Q-value as demonstrated in equation (18).

• Reward Calculation: Once the action is taken, the
environment RAN returns a reward r , which is a function
of SSL and QoE, as defined by the reward function in
equation (19).

• Target Q-Value Calculation: The target Q-value is
calculated based on the reward r and the next state s′.
The target Q-value is computed using the target network,
with fixed parameters θ−, as illustrated in equation (19).

• Loss Function Computation: The loss function, shown
in equation (20), represents the squared difference
between the target Q-value and the predicted Q-value for
the current state-action pair. This loss function measures
how close the network’s Q-value predictions are to the
target Q-values.

• Parameter Update via Adam Optimizer: The Adam
optimizer is employed to update the neural network’s
parameters θ . The gradients of the loss with respect
to the parameters are computed, and Adam adjusts
the parameters based on these gradients, using adap-
tive learning rates and momentum (first and second
moments). The update rule for Adam is:

θt+1 = θt − α
m̂t√
v̂t + ϵ

(21)

Here, m̂t and v̂t are the biased-corrected first and second
moments of the gradients, α is the learning rate, and ϵ is
a small constant to prevent division by zero.

• Replay Buffer with Prioritized Experience Replay
(PER): The experience, consisting of the state, action,
reward, and next state, is stored in the replay buffer.
Unlike standard DQN, which samples uniformly from
the buffer, PER prioritizes transitions based on their
Temporal-Difference (TD) error. The TD error is
calculated as:

δ = |r + γQ(s′, amax; θ
−)− Q(s, a; θ )| (22)

Larger TD errors indicate that the model made signifi-
cant mistakes in predicting the Q-value for a transition,
making those experiences more important for learning.
Random sampling in the DQN procedure can reduce the
effectiveness of learning when the replay buffer grows
large. The goal of PER is to increase the likelihood of
sampling transitions with higher TD errors. PER assigns
a priority value pi to each transition, defined as:

pi = δ + ζ (23)

where ζ is a small constant added to ensure that even
transitions with low TD errors still have a non-zero

chance of being sampled. The sampling probability of
a transition is proportional to its priority:

P(i) =
pβ
i∑
j p

β
j

(24)

where β controls the level of prioritization. To efficiently
implement these priorities, a Sum-Tree data structure
is used, allowing for fast updates and sampling of
priorities.
This prioritization enhances the learning process by
focusing the network on more critical experiences,
which improves both the speed of training and decision-
making performance.

• Iterative Training: The neural network is trained iter-
atively by following the above steps. As the network’s
parameters θ are continuously updated to minimize the
loss function, the Q-value estimates become increas-
ingly accurate. Over time, this leads to improved policy
performance as the network learns to select actions
that maximize long-term rewards. By leveraging DDQN
to reduce overestimation bias and PER to prioritize
important transitions, the training process becomesmore
efficient and yields better results compared to standard
DQN approaches.

The DDQN-PER for the RAN resource allocation process is
summarized in Algorithm 1.

B. DDQN-PER WITH PTRNET-LSTM
Large-scale network topologies in the real world are com-
plicated, leading to a fast growth in physical complexity.
Like genetic algorithms, heuristic algorithms tend to become
trapped in local optimal solutions and exhibit delayed
convergence. Popular RL techniques, like Q-learning, are
time-consuming when exploring each state, making them
impractical for practical use.

Combinatorial optimization (CO) seeks to identify the
optimal selection of variables in a discrete decision space,
which aligns with the essential attribute of sequential
decision-making in RL [50], [51]. Integrating reinforcement
learning with pointer networks enhances the use of physical
nodes and increases the long-term benefit-cost ratio [45].
To increase the amount of data available for use in predicting
the Q-value of the component migration issue, we design a
PtrNet by incorporating the LSTM layer into a DDQN. This
allows us to recall data from earlier time slots. To predict the
current Q-value, we consider both recent experiences (s, a; θ )
and significant events that occurred in the distant past. Fig.1
illustrates the framework of the proposed PtrNet-LSTM with
DDQN.

Vinyals et al. [52] initially introduced the pointer network
design to learn difficulties in combinatorial optimization of
low and medium dimensions. Employing LSTM memory
cells in a DDQN agent offers several theoretical benefits. Pre-
vious research has demonstrated the effectiveness of LSTM
in various applications, such as forecasting usermobility [53],
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Algorithm 1 DDQN-PER for RAN Resource Allocation
Input: st = {SINRnt }1×N , Replay buffer D, Learning

rate α, Discount factor γ , Prioritization exponent
β, Target update rate τ , Max buffer size |D|,
Power levels {0, Pmax

M−1 , . . . ,Pmax}, Max BS power
Pmax

Output: Optimal PRB and power allocation policy
1 Initialization: Initialize Q-network parameters θ and

θ−, replay buffer D with PER, exploration rate ϵ, and
prioritization parameters.

2 for each episode do
3 for each time step t do
4 Input normalized SINR values st into the

Q-network;
5 Select action at using epsilon-greedy policy;
6 Execute action at , update PRB allocation matrix

AMXN , and compute reward rt ;
7 Ensure system constraints: PRB allocation and

power limits;
8 Store transition (st , at , rt , st+1) in D and

compute TD error;
9 Assign priority to the transition based on TD

error;
10 Sample a mini-batch from D using priority

probabilities;
11 Compute target Q-value QT using the target

network θ−;
12 Minimize the loss between predicted Q-value

and target Q-value using Adam optimizer;
13 if every τ steps then
14 Update target network parameters: θ−← θ ;

15 Decay exploration rate ϵ towards ϵmin;

16 Return optimal PRB and power allocation policy;

solving task scheduling problems [54], [55], and optimizing
resource allocation [56]. LSTM is an excellent tool for
solving time series issues with long-term dependencies
because of its capacity to remember past experiences [57].
This network consists of two sub-networks, specifically an
encoder and a decoder. The neural network architecture is
a modified version of the sequence-to-sequence model that
incorporates the attention mechanism. This architecture can
address combinatorial optimization problems where the size
of the output dictionary is defined by the length of the input
sequence. The pointer network’s fundamental concept is to
represent the output as a sequence of pointers that indicate the
components of the input sequence with a certain probability.

The input for the encoder in this research is a vector
{s1, s2, . . . , sNs} consisting of DDQN nodes. The decoder’s
output is an arrangement of the nodes’ coordinates. The
embedding layer applies a linear transformation to each
physical input node and sends the n-dimensional embedding
information to the encoder network. The linear transforma-

tion is defined in equation (25)

y = x · weight+ bias (25)

The weight is a matrix with dimensions (outfeature, infeature)
initialized from U (−k, k), where k = 1

√
infeature

. The number
of physical nodes determines the feature, whereas the current
number of DDQNnodes to bemapped determines the feature.
At each step, the encoder LSTM receives a new node as
input and transforms it into a collection of hidden states
{e1, e2, . . . , e|Ns|}, where each ei belongs to the set of real
numbers R|Ns|. The encoder transfers the state of the final
encoder step to the initial decoder step once it has read
all nodes. The decoder additionally stores the hidden state
{d1, d2, . . . , d|Nn|}, where each di is a real-valued vector of
size Ns. During each decoding phase, the decoder attention
mechanism calculates the probability distribution for all
DDQN nodes and passes the chosen nodes to the subsequent
decoder step. The symbol g represents the n-dimensional
zero matrix used during the decoder’s initial step. Every
subsequent step updates this matrix. During the first decoding
stage, especially when t = 0, the decoder uses the attention
mechanism to compute the likelihood of each node by
considering the hidden state. The black arrow pointing
towards the encoder indicates the node with the highest
probability for mapping. In the subsequent decoding phase,
the LSTM considers the previous output and the feature
vector of the selected node of the prior step. It then employs
the attention mechanism in sequence-to-sequence learning
to compute the probability of each node. This method is
formally represented as follows using specified symbols:

uti =

 vT tanh

([
We Wd

] [ ei
d

])
, if (1) holds

−∞, otherwise

(26)

Ãq =
[
a1, a2, . . . , a|Ns|

]T
= softmax

(
ut
)

(27)

where ν ∈ Rpis an attention vector, and We,Wd ∈ Rp×p

are attention matrices. Aq[. . .] is the attention function, and
softmax(·) is the softmax function, also known as the nor-
malized exponential function. The nodes are consecutively
chosen in this manner until a full selection is completed.
Furthermore, the decoder now refrains from choosing the
subsequent node once each node is picked, in order to
guarantee the accuracy of the outcome.

V. EXPERIMENT
A. OVERVIEW OF EXPERIMENTAL SETUP
1) SIMULATION ENVIRONMENT
In this study, we designed and implemented an experiment
to evaluate the proposed network slicing resource allocation
framework. The experiment simulates a RAN slicing envi-
ronment comprising eMBB and URLLC services, utilizing a
reinforcement learning approach based on DDQN-PER and
a PtrNet-LSTM model. The environment was configured to
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simulate dynamic resource demands across different services,
allowing the model to adaptively manage resources while
considering both latency and throughput. The network model
was simulated within a 100m × 100m region, where a base
station (BS) was placed and several users were distributed
randomly. The maximum achievable transmission power
Pmax was set to 46 dBm. The user’s distance from the BS
was denoted as dist, with the path loss calculated using the
equation L(dist) = 37+ 30 log(dist) [45], [46].

2) MODEL AND FRAMEWORK
The simulation was executed using Python with PyTorch,
with key parameters including a learning rate of 0.005 and
a discount factor of 0.995. The DDQN-PER model was
initialized with random weights, and PtrNet-LSTM was inte-
grated to model temporal sequences and capture long-term
dependencies. An experience replay memory buffer, con-
figured with 5000 samples, was employed. The simulation
model was constructed using both TensorFlow and PyTorch.
TensorFlow was selected for its scalability and compre-
hensive ecosystem, which supports large-scale simulations
with significant computational demands. The integration
of TensorBoard facilitated real-time monitoring, automatic
differentiation, and distributed computing, optimizing the
training of complex models. In contrast, PyTorch’s dynamic
computation graph provided greater flexibility for rapid
prototyping and model refinement. Its strong integration
with Python’s native debugging tools further streamlined the
experimental workflow. The combination of TensorFlow’s
robustness and PyTorch’s flexibility resulted in optimized
reinforcement learning models for 5G network slicing.

3) TRAINING AND TUNING PROCEDURES
The primary objective of the experiment was to assess
the scalability and robustness of the proposed framework
under varying user densities and traffic demands. The system
was evaluated for three distinct user densities: 30, 40, and
50 users, reflecting realistic network scenarios with fluctuat-
ing loads. The training process aimed to optimize long-term
network performance by balancing SSL and QoE through
dynamic adjustment of Physical Resource Block (PRB)
allocation and power levels. The model training included
adjusting the attention coefficient (α) to values of (0, 0.5,
0.75, and 1), with each configuration evaluated for its effect
on SSL and QoE under different network loads. Increased α

values improved SSL by allocating more resources to eMBB
services, while decreased values promoted a balance that
maintained URLLC latency requirements. This adjustment
allowed the model to enhance spectral efficiency and
connection across many conditions, successfully handling
network fluctuations. We selected the optimal configurations
based on their ability to maintain QoE under varying user
densities and fluctuating traffic demands. The model was
trained over multiple episodes, with each episode adjusting
α based on current network states to maximize both SSL
and QoE. We incorporated prioritized experience replay

TABLE 2. System parameters.

to improve training efficiency, which focused learning on
critical network states.

4) SYSTEM PARAMETERS
To evaluate the model’s performance, the proposed
PtrNet-LSTM integrated with DDQN-PER was tested in
a RAN environment. System parameters, including the
attention coefficient, were modified to thoroughly assess
performance under varying network conditions. The specific
parameters used in the simulation, such as PRB bandwidth,
base station transmit power, and delay constraints, are
summarized in Table 2. These parameters were chosen to
model a realistic 5G RAN environment with varying user
demands and network loads. Each user was assigned one
PRB, and the static latency runs were referenced from [44].
The RAN’s DDQN-PER algorithm and the PtrNet-LSTM
algorithmwere utilized to dynamically assign radio resources
based on the adjusted proportion. The system was configured
with a delay budget of 0.5 for the RAN, with scenarios
involving 30, 40, and 50 URLLC users and 15 eMBB users.

5) EVALUATION METRICS
The experiment was designed to balance the trade-off
between enhancing SSL and maintaining high QoE for
both eMBB and URLLC users. Evaluation metrics such
as throughput, latency, and system capacity were used to
determine the model’s ability to adapt to changing network
conditions and user requirements. The focus was on ensuring
that the model could dynamically allocate PRBs and power
levels to minimize URLLC service delays while maximizing
eMBB throughput within the constraints of real-world 5G
environments. The attention coefficient α was assigned
values of 0, 0.50, 0.75, and 1.0 to evaluate its effect on system
performance.
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FIGURE 1. Agent-environment interaction with DDQN-PER strategy.

B. TRAINING, TESTING, AND VALIDATION PROCESS
1) DDQN-PER TRAINING
The training of the DDQN-PER model follows a standard
reinforcement learning procedure, where the agent interacts
with the environment, takes actions, and learns from the
feedback (rewards). The key training steps are as follows:

• State Representation: The state space comprises net-
work metrics such as the packet transmission success
rate, SINR, and average latency across different ser-
vices.

• Action Selection: The action space includes the possible
resource allocation decisions, such as selecting the
power levels to allocate to each user.

• Reward Function: The reward function is designed to
balance QoE and throughput. For each action taken,
the agent receives a reward based on the performance
metrics (e.g., higher QoE and higher throughput result
in better rewards).

• Network Update: The Q-network (evaluation network)
is updated by minimizing the TD error, which is the
difference between the predicted Q-value and the target

Q-value (generated from the target network). The TD
error is calculated in equation 22.

• Experience Replay: Transitions (state, action, reward,
next state) are stored in a replay buffer. Experiences are
sampled based on their TD error using PER, meaning
transitions with higher TD errors are prioritized for
replay, which accelerates learning.

• Training Episodes: The agent is trained over multiple
episodes. During each episode, the agent interacts with
the environment for a certain number of time steps,
takes actions, receives rewards, and learns from these
experiences through backpropagation.

2) INTEGRATION PTRNET-LSTM INTO DDQN-PER
Once the DDQN-PER model converged and stabilized (i.e.,
the training reward plateaus), the trained output from the
DDQN-PER model (i.e., the action-value function Q(s, a))
was used as input for the PtrNet-LSTM model. The LSTM
model is responsible for capturing temporal dependencies in
resource demand and service requirements that change over
time. The key steps are:
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• Sequence Input: The LSTM receives a sequence of
feature vectors, each representing the output from the
DDQN-PER model over consecutive time steps. This
sequence represents historical resource demands.

• Memory Function: The LSTM’s memory function
allows it to track changes in resource demand over time,
making the model more adaptive to fluctuating network
conditions.

• Action Prediction: The output of the LSTM is
passed through fully connected layers that predict the
action to take in the next time step. These layers
adjust the weights iteratively to minimize the differ-
ence between the predicted Q-values and the target
Q-values.

• End-to-End Training: The entire process (DDQN-PER
+ PtrNet-LSTM) is trained end-to-end in the later stages
to refine both components. This training helps optimize
the final policy for resource allocation in the network
slicing environment.

3) TESTING AND VALIDATION
• Testing: After training, the model is tested using a
separate testing dataset. This dataset includes scenarios
that were not seen during training, allowing for an
unbiased evaluation of the model’s performance.

• Validation: Validation is performed on a validation
dataset, which is distinct from both the training and
testing datasets. The model’s performance is mea-
sured based on several metrics, including latency,
throughput, and QoE for both eMBB and URLLC
services.

• Performance Metrics: The primary performance met-
rics used in this study include:

– Latency: Measures the time delay for packet
transmission, with a focus on minimizing latency
for URLLC users.

– Throughput: Represents the rate of successful
message delivery over the communication channel.

– QoE: Quality of Experience, focusing on user
satisfaction levels across the network.

The validation results demonstrated that the LSTM model
effectively adapted to varying user demands, significantly
reducing latency while improving QoE. Additionally, the
model consistently outperformed traditional resource alloca-
tion algorithms, especially in high-demand scenarios. The
procedure is demonstrated in Fig. 1.

VI. RESULTS ANALYSIS
In this section, we evaluate the performance of the pro-
posed DDQN-PER with the PtrNet-LSTM model across
key metrics, including SSL, QoE, attention coefficient
impact on network performance, and reward optimization
in adaptive resource allocation. Each metric is analyzed
in detail to demonstrate the model’s advantages over
baseline methods in managing resources effectively, partic-

ularly under varying user densities and dynamic network
conditions.

A. IMPACT ON SERVICE SATISFACTION LEVEL (SSL)
This part examines the efficacy of the proposed DDQN-PER
with PtrNet-LSTM in sustaining a high SSL across varying
user densities and attention coefficients (α). The attention
coefficient values (0, 0.5, 0.75, and 1) were assessed to
determine their effect on SSL. As depicted in Fig. 2a,
the DDQN-PER model with PtrNet-LSTM consistently
outperforms the NatureDQN model in terms of SSL across
varying values of the attention coefficient α and different
user densities. With increasing α, which shifts the focus from
maximizing service satisfaction to optimizing system capac-
ity, both models exhibit improvements in SSL. However,
the DDQN-PER with PtrNet-LSTM maintains consistently
higher and more stable SSL, particularly in scenarios with
higher user counts (30, 40, and 50 users). This indicates
that the DDQN-PER with PtrNet-LSTM is particularly adept
at handling resource allocation under dynamic network
conditions. Conversely, although the NatureDQN model
shows improvement with higher α values, its performance is
more variable, especially as the number of users increases,
suggesting limitations in balancing system capacity with user
satisfaction. These results underscore the effectiveness of
the DDQN-PER with PtrNet-LSTM in efficiently managing
resources, making it a promising approach for complex
network environments where maintaining high QoE is
essential.

The comparison between the DDQN-PER with PtrNet-
LSTM and the standard DDQN-PER, illustrated in Fig. 2b,
reveals that the PtrNet-LSTM-enhanced approach consis-
tently achieves higher SSL across all tested α values and
user counts. For instance, while the standard DDQN-PER’s
SSL ranges from 5.71 to 6.86 for 30 users, the DDQN-PER
with PtrNet-LSTM significantly outperforms it, with SSL
values ranging from 8.77 to 9.43. This trend continues
as the user count increases, with the PtrNet-LSTM model
maintaining superior SSL even under more demanding con-
ditions with 50 users, where it achieves SSL values between
8.65 and 9.31 compared to the standard model’s 5.63 to
6.80. These findings suggest that integrating PtrNet-LSTM
into the DDQN-PER framework enhances its capability to
manage resources effectively, particularly in scenarios where
balancing service satisfaction with system capacity is critical.
The consistently better performance of the PtrNet-LSTM
model across varying conditions highlights its robustness and
suitability for deployment in complex network environments.

In particular, the proposed DDQN-PER with PtrNet-
LSTM framework excels in maintaining a high SSL across
varying user densities, outperforming alternative models
such as DDQN-PER with PtrNet-LSTM and Dueling DQN.
As shown in Fig. 2c With 30 users, the SSL achieved by
DDQN-PER with PtrNet-LSTM ranges from 8.77 to 9.43,
significantly higher than Dueling DQN’s range of 6.72 to
7.32. This advantage continues with 40 users, where SSL
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FIGURE 2. SSL variation with PtrNet-LSTM versus other state-of-the-art
methods for resource allocation under different alpha values and user
connectivity.

values for DDQN-PER with PtrNet-LSTM vary between
8.37 and 9.19, compared to the lower range of 5.35 to 5.97 for
DuelingDQN. Even as the user count increases to 50, DDQN-
PER with PtrNet-LSTM sustains high SSL values from
8.65 to 9.31, while Dueling DQN only reaches 7.05 to 7.64.
These results demonstrate that DDQN-PER with PtrNet-
LSTM more effectively handles the complexities of resource
allocation under high network load than Dueling DQN. The
PtrNet-LSTM’s ability to prioritize critical learning events
and account for temporal dependencies allows it to adapt
efficiently to dynamic resource demands. This consistent
performance advantage makes the DDQN-PER with PtrNet-
LSTM framework particularly suited for applications requir-
ing high user satisfaction in dynamic network environments,
highlighting its scalability and resilience.

FIGURE 3. QoE variation with PtrNet-LSTM versus other state-of-the-art
methods for resource allocation under different alpha values and user
connectivity.

B. EFFECT ON QUALITY OF EXPERIENCE (QoE)
This section analyzes the QoE performance, particularly
in contexts of elevated user density and changing network
requirements. QoE is assessed by analyzing user satisfaction
levels under varying network loads. The performance analy-
sis of the DDQN-PER model, as compared to NatureDQN
and the enhanced DDQN-PER with PtrNet-LSTM, reveals
significant disparities, particularly as user load increases.
As shown in Figure 3, using DDQN-PER during the initial
stages of user expansion results in a notable reduction in
performance, especially concerning the QoE. This decline
is primarily attributed to DDQN-PER’s limited capacity
to manage dynamic, user-driven environments that require
decision-making based on temporal dependencies.
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TABLE 3. Comparison of QoE with and without PtrNet-LSTM across different user counts and attention coefficients.

For instance, as presented in Table 3, when the number
of users increases to 50, the QoE without PtrNet-LSTM
integration drops to 0.817 at α = 0, compared to
a significantly higher QoE of 0.978 with PtrNet-LSTM.
In contrast, NatureDQN performs even less effectively under
similar conditions, with a QoE of 0.807 at α = 0 for
50 users, further highlighting the limitations of traditional
models in handling increased user demands. Systems incor-
porating PtrNet-LSTM demonstrate superior scalability and
resilience, consistently maintaining higher QoE levels as user
traffic intensifies. Across all user scenarios, PtrNet-LSTM
consistently enhances QoE. For example, with 40 users at
α = 0.75, the QoE with PtrNet-LSTM reaches 0.941,
whereas without PtrNet-LSTM, it significantly drops to
0.690, and NatureDQN performs similarly poorly with a
QoE of 0.755. Furthermore, as the user count increases,
PtrNet-LSTM plays an increasingly critical role in opti-
mizing system performance, particularly in environments
with larger user populations, thereby enhancing the overall
user experience. These findings, derived from experimental
data involving 30, 40, and 50 users as detailed in Table 3,
underscore the importance of integrating PtrNet-LSTM to
ensure robust and scalable performance in environments
with growing user demands. The results suggest that
while DDQN-PER is a reliable model, the integration of
PtrNet-LSTM offers substantial performance enhancements.
Meanwhile, NatureDQN, although functional, consistently
underperforms in comparison, particularly in complex, high-
demand environments, making the case for advanced model
integrations like PtrNet-LSTM even stronger. Compared to
Dueling DQN, the DDQN-PER model with PtrNet-LSTM
shows stronger performance across different user densities
and α settings. Its higher QoE scores across varying user
loads and α values suggest that DDQN-PER with PtrNet-
LSTM is better suited for adapting to changing network
conditions. For example, with 30 users and an α of 0,
DDQN-PER with PtrNet-LSTM achieves a QoE of 0.990,
outperforming Dueling DQN under the same conditions.
This advantage comes largely from PtrNet-LSTM, which
helps DDQN-PER detect temporal patterns and focus on
key learning events. Dueling DQN, on the other hand,
separates value from advantage to improve decisions but

FIGURE 4. Different attention coefficients impact SSL and QoE with
different users.

lacks PtrNet-LSTM’s flexibility. As a result, DDQN-PER
with PtrNet-LSTM is more suitable for applications that need
high user satisfaction in fluctuating network conditions.

C. ANALYSIS OF ATTENTION COEFFICIENTS ON NETWORK
PERFORMANCE
Spectrum efficiency, measured in bits per second per
Hertz (bps/Hz), is an essential parameter for assessing the
proposed framework’s resource use. The research examines
the influence of the attention coefficient α on SSL and QoE.
The attention coefficient was evaluated at various levels (0,
0.50, 0.75, and 1) to detect changes in these performance
indicators. The findings, as indicated in Fig. 4, show that
augmenting the attention coefficient α enhances both SSL
and QoE measurements.

The implementation of the DDQN-PER with PtrNet-
LSTM model demonstrates a significant impact on system
performance, particularly when varying the attention coeffi-
cient α. As illustrated in Figure 5, increasing the value of α

enhances session success rates and user experiences, thereby
boosting overall system performance. This improvement is
evident in the observed rise in spectrum efficiency (bps/Hz)
as α increases, reflecting the model’s ability to optimize
resource allocation effectively.

Specifically, the prioritization of radio resources for eMBB
services becomes more pronounced with higher α levels,
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FIGURE 5. Effect of attention coefficient α on spectrum efficiency and
user connectivity.

as indicated by the consistent increase in the number of
eMBB users accessed. Initially, the number of accessed
URLLC users also rises, indicating that the DDQN-PER
with PtrNet-LSTM model efficiently manages resource
availability for URLLC services. However, as α continues
to increase, the focus shifts towards maximizing eMBB
service access, highlighting a trade-off in resource allocation
between different service types. On the other hand, reducing
α facilitates a more equitable distribution of resources across
users, while still maintaining high success rates and positive
user experiences. This balance is essential for maximizing
system capacity and ensuring user satisfaction across varying
service demands. These findings underscore the importance
of optimizing α within the DDQN-PER with PtrNet-LSTM
framework to enhance spectrum efficiency and meet the
diverse needs of eMBB and URLLC users effectively.

D. REWARD OPTIMIZATION IN ADAPTIVE RESOURCE
ALLOCATION WITH DDQN-PER AND PtrNet-LSTM
INTEGRATION
The study evaluates reward performance metrics to assess
the model’s effectiveness in resource allocation under
dynamic network conditions. Specifically, it compares the
performance of NatureDQN, DDQN-PER, Dueling DQN,
and DDQN-PER enhanced with PtrNet-LSTM over a 5000-
step period, as illustrated in Fig. 6. NatureDQN, serving as
the baseline model, consistently underperforms compared to
the other two models, yielding the lowest average rewards
throughout the evaluation period. This underperformance
becomes particularly evident in complex environments with
an increasing number of users, where NatureDQN struggles
with stability and reward optimization. The limitations
of NatureDQN underscore its inadequacy in environments
that require higher adaptability and effective reward maxi-
mization. While DDQN-PER shows improved performance
over NatureDQN, it still exhibits variability in its reward
trajectory, suggesting that although DDQN-PER is more
capable than NatureDQN, it encounters challenges in main-
taining consistent learning and stability as the environment’s
complexity increases, especially with more users. However,

FIGURE 6. Comparison of the performance reward of Nature DQN,
DDQN-PER, Dueling DQN and DDQN-PER with PtrNet-LSTM for different
numbers of users.

the integration of PtrNet-LSTM with DDQN-PER signif-
icantly boosts performance across all key metrics. The
results demonstrate that the combined model consistently
outperforms the standard DDQN-PER. The graph illustrates
that DDQN-PER with PtrNet-LSTM achieves higher average
rewards and follows a more gradual and consistent growth
trajectory, indicating enhanced learning and adaptation
capabilities. This integration is particularly effective in
scenarios that require long-term learning, making the system
more proficient in maximizing rewards in environments
with numerous users. As the number of users increases,
DDQN-PER with PtrNet-LSTM continues to show a distinct
performance advantage right from the initial steps and
widens the gap as training progresses towards 5000 steps,
reinforcing the robustness of the research findings. Overall,
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the results indicate that DDQN-PER combined with PtrNet-
LSTM is a more effective and efficient approach for
handling the complexities of multi-user systems, offering
superior stability, scalability, and reward optimization. This
enhanced model surpasses NatureDQN in all respects and
sets a new benchmark for performance in environments
that demand high adaptability and advanced reinforcement
learning capabilities.

Regarding optimization of rewards, stability, and flexibility
under various network loads, the performance comparison
between DDQN-PER with PtrNet-LSTM and Dueling DQN
demonstrates a clear advantage for DDQN-PER with PtrNet-
LSTM. The results show that DDQN-PER with PtrNet-
LSTM is more stable and resilient, with higher average
payouts and fewer fluctuations across all situations examined
(30, 40, and 50 users). However, Dueling DQN exhibits more
volatility and lower average rewards under significant user
loads, which might be a sign of dynamic resource allocation
restrictions. These findings suggest that PtrNet-LSTM inte-
grated with DDQN-PER improves resource allocation, which
makes it an excellent choice for complicated 5G network
slicing applications.

VII. DISCUSSION
This study introduces a hybrid reinforcement learning
framework that integrates DDQN-PER and PtrNet-LSTM to
address dynamic resource allocation challenges in 5G RAN
slicing. Experimental results demonstrate that the proposed
model effectively balances SSL and QoE across varied
network conditions, achieving notable improvements over
traditional baseline models.

A. KEY FINDINGS AND ANALYSIS
The findings reveal that modifying the attention coefficient,
α, significantly impacts both SSL and QoE, allowing an
adaptive balance between eMBB and URLLC services.
Increasing α directs more resources towards eMBB, thereby
enhancing spectral efficiency and connectivity, while reduc-
ingα prioritizes the latency requirements of URLLC services.
This adaptability is essential in environments with fluctuating
network loads and diverse user densities, demonstrating the
model’s capability to optimize resource utilization across
heterogeneous traffic demands.

B. ADVANTAGES OVER BASELINE MODELS
The enhanced model, incorporating DDQN-PER with
PtrNet-LSTM, demonstrates clear advantages over con-
ventional models such as NatureDQN, particularly under
high network loads. The PtrNet-LSTM component improves
temporal learning, enabling the model to adjust its resource
allocation strategies based on historical usage patterns. This
results in consistently higher SSL and QoE performance
in high-demand scenarios, highlighting the framework’s
effectiveness in dynamic resource allocation. PtrNet-LSTM’s
ability to handle temporal dependencies also strengthens

the model’s scalability and stability in complex, multi-user
environments.

C. LIMITATIONS AND POTENTIAL EXTENSIONS
The PtrNet-LSTM model requires an expansion for further
validation. However, it has shown promising performance
under diverse user densities and traffic demands. Experiments
should be conducted with varying network circumstances
and load intensities to assess its resilience further. Improving
factors like energy efficiency and user fairness might provide
further insights into its suitability for real-world applications.
There is a lack of testing on the model’s scalability to more
significant, more diverse network topologies, which is a
problem since next-generation networks often include large-
scale, multi-cell situations. On top of that, situations with
limited resources could struggle with PtrNet-LSTM because
of its computational complexity.

D. FUTURE RESEARCH DIRECTIONS
Further studies may assess the efficacy of this framework
under diverse load conditions and other network topologies
to enhance its use. The best possible outcomes may be
attained in dynamic network environments via the use of
multi-agent frameworks or advanced hybrid reinforcement
learning techniques. Research may test the framework in
simulated or real-world settings to get beyond these restric-
tions, considering hardware limits, interference patterns, and
cellular interactions. Investigating computational advances
for PtrNet-LSTM and implementing adaptive interference
management methodologies are necessary to improve the
framework for 6G applications. These improvements would
provide the groundwork for future adaptable and scalable
networks. If these problems could be resolved, the credibility
of the framework would be increased, and methods for
managing resources in wireless networks would advance.

VIII. CONCLUSION
This study presents a novel solution for optimizing
resource allocation in a RAN environment by integrating a
PtrNet-LSTM with the DDQN-PER algorithm. The primary
objective of this research was to enhance the SSL and
QoE while maintaining system capacity under varying
network conditions. The proposed solution achieves this
by dynamically adjusting the attention coefficient in real-
time, effectively balancing SSL and QoE based on current
network conditions. Simulation results, implemented using
Python frameworks, demonstrated significant improvements
in SSL and QoE metrics across a wide range of user
loads, validating the approach’s effectiveness. Furthermore,
the study underscored the importance of considering
different user categories, such as eMBB and URLLC users,
in optimizing system throughput and resource allocation.
By addressing these distinct user needs, the solution ensures
a more efficient and fair distribution of network resources.

The integration of PtrNet-LSTM with DDQN-PER offers
a promising and scalable approach for optimizing resource
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allocation in RAN environments. This approach meets
the research objectives by delivering enhanced network
performance and adaptability in dynamic and high-demand
scenarios. This approach not only meets but exceeds the
original objectives by providing a robust and adaptable
framework, with potential applications extending to future
wireless networks, including 6G.
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