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ABSTRACT Computed Tomography (CT) scan, pivotal for medical diagnostics, involves exposure to
electromagnetic radiation, potentially elevating the risk of leukemia and cancer. Low-dose CT (LDCT)
imaging has emerged to mitigate these risks, extensively reducing radiation exposure by up to 86%.
However, it significantly reduces the quality of LDCT images and introduces noise and artifacts, degrading
the diagnostic accuracy of the Computer Aided Diagnostic (CAD) system. This study presents a novel
U-Net architecture, featuring several key enhancements. The model integrates residual blocks to improve
feature representation and employs a custom hybrid loss function that combines structural loss with gradient
regularization using the Euclidean norm, promoting superior CT image quality retention. Additionally,
incorporating Attention Gates in the up-sampling layers of a proposed model optimizes the extraction of
critical features, ensuring more precise denoising of CT images. The proposed model undergoes iterative
training, using a custom loss function to refine its parameters and improve CT image denoising progressively.
Its performance is rigorously evaluated both qualitatively and quantitatively on the '2016 Low-dose CT
AAPM Grand Challenge dataset’. The results, assessed through the metrics Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and Root Mean Square Error (RMSE), demonstrated
promising improvements compared to state-of-the-art techniques. The model effectively reduces noise while
preserving critical fine details, establishing itself as a highly efficient solution for LDCT image denoising.

INDEX TERMS Attention gate, deep learning, image enhancement, LDCT image denoising, residual blocks.

I. INTRODUCTION
In modern medicine, CT is a prevalent technique used
to generate intricate cross-sectional images of the human
body, enabling non-invasive detection of various pathological
abnormalities like cancer, tumors, fractures, and vascular
diseases at early stages [1], [2], [3], [4], [5], [6]. CT scans
play a multifaceted role in advanced medical diagnostics [1],
[3], [7]. However, ionizing radiation has diverse effects on
the human body. Children exposed to the cumulative dose
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of three head scans are likely to develop leukemia and brain
cancer, specifically, the risk of leukemia is significantly
increased, with an odds ratio (OR) of 1.55 and a 95% con-
fidence interval (CI) of 1.42 to 1.68 [3], [8]. Additionally,
since the interior structure of veins is not visible in a regular
CT scan, a supplementary substance known as ‘iodinated
contrast agent’ is used to boost the visibility of veins. In this
situation, the radiation absorbed by the human body during a
CT scan is doubled [1], [9], [10]. FIGURE 1 compares radi-
ation absorbed by the body parts during standard CT scans,
when iodinated contrast agents are injected, and the duration
required for the body to naturally absorb an equivalent dose of
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FIGURE 1. CT radiation absorption variability in the human body.

radiation from the environment, as represented by the diverse
colors. Furthermore, to minimize the effect of ionized radi-
ation, the ‘‘As Low as Reasonably Achievable (ALARA)’’
principle is adopted during the CT acquisition process [10],
[11]. Additionally, X-ray flux is minimized to introduce an
LDCT image to mitigate the health hazard. However, LDCT
degrades the image quality and creates noise and artifacts,
compromising the diagnostic accuracy of a CAD system [7],
[12]. Consequently, various methods are used to uphold the
image’s quality and accuracy by alleviating the impact of
these noise and artifacts [8], [13].

The LDCT image denoising techniques are broadly clas-
sified into three main categories, ‘‘Preprocessing of Pro-
jection Data’’, ‘‘Statistical Iterative Reconstruction’’ and
‘‘Post-Reconstruction Image Processing’’ [14], [15]. In pre-
processing projection data techniques, any noise or artifacts
present in the projection data are initially eliminated. Fur-
ther, conventional reconstruction approaches such as Filtered
Back Projection (FBP) are used to remove the noise and
artifacts [16], [17]. However, Iterative Reconstruction (IR)
methods surpass the traditional FBP and iteratively enhance
CT image quality using synthetic raw data and prior informa-
tion [18], [19]. Although IR methods significantly improve
LDCT image quality, however, they increase computational
complexity and pose a potential risk of content loss [18], [20].
The ‘‘Post-Reconstruction Image Processing’’ techniques

are directly applied to constructed images and remove noise
and artifacts [4], [21]. Further, these techniques are clas-
sified into two types to suppress the noise and artifacts
in LDCT images i.e., ‘‘Traditional methods’’ and ‘‘Deep
learning-based methods’’ [22], [23]. Traditional methods
typically establish a straightforward connection between
relevant information and image noise, after which optimiza-
tion algorithms are employed to acquire denoised LDCT

images [24]. Such methods usually rely on prior knowl-
edge of noise [25]. Among traditional denoising techniques,
‘‘Wavelet-based denoising’’ and ‘‘Block-matching 3D filter
(BM3D)’’ are popular ones [25], [26], [27].The former algo-
rithms efficiently reduce noise by decomposing the image
into different frequency scales. It excels in multi-resolution
noise reduction while retaining image structures [7], [28].
Conversely, the later technique effectively preserves textures
and minute details, offering robust denoising performance
[4], [29]. Furthermore, ‘‘Dictionary learning’’ methods and
‘‘Non-local Means (NLM)’’ filters, both are advantageous
techniques [3], [30], where ‘‘Dictionary learning methods’’
leverage data-driven dictionaries to capture complex patterns,
making them effective for various noise types [23], [31]. Fur-
ther, ‘‘NLM filters’’ exploit non-local similarities to preserve
image structure, yielding impressive results even in cases of
high noise levels [14], [32]. However, the balance between
LDCT noise reduction and detail retention is still a complex
and challenging task. To address these challenges, a novel
framework has been proposed that effectively removes the
noise and artifacts to enhance the quality of CT images.
This approach aims to overcome the limitations of existing
methods, ensuring clearer, more accurate CT image recon-
structions. The main contribution of this paper is as follows.

1. An Attention Gate (AG) has been developed for LDCT
image denoising, which selectively emphasizes signifi-
cant features and regions while effectively filtering out
noise and irrelevant details.

2. A hybrid loss function, termed SGLoss, has been pro-
posed that combines the SSIM and Gradient loss with
the Euclidean norm to improve perceptual quality and
edge preservation in reconstructed CT images.

3. The proposed model, integrating Attention Gates (AG)
and Structural Gradient Loss (SGLoss) within a U-Net
framework enhanced by residual blocks, is evaluated
on the 2016 Low-Dose CT AAPM Grand Challenge
datasets using metrics such as PSNR, SSIM, and
RMSE.

4. The results of the proposed model are compared
with those of previous algorithms used for denoising
LDCT images, demonstrating superior performance
in both quantitative and visual quality. Additionally,
an ablation study confirms that each component of
the proposed model significantly enhances its overall
effectiveness.

The structure of this paper is organized as follows:
Section II provides a review of the relevant literature, while
Section III delineates the methodology, offering a com-
prehensive overview of the proposed approach. Section IV
presents an in-depth analysis of the results obtained, and
Section V concludes the study with a summary of key find-
ings and future work.

II. RELATED WORKS
Numerous efforts have been made to denoise LDCT images
while preserving essential diagnostic information, utilizing
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deep learning techniques. The discussion can be divided into
three distinct categories, as outlined below.

A. DIVERSE DEEP LEARNING MODELS
Recent advancements in deep learning have shown signifi-
cant promise in various fields, including medical imaging.
Specifically, for LDCT noise reduction. Novel approaches
like the three-layer Convolutional Neural Network (CNN)
and the convolutional autoencoder-decoder with residual
learning (RED-CNN) have emerged, offering effective solu-
tions [33]. Additionally, deep CNNs incorporate directional
wavelet transforms and shortcut connections for similar pur-
poses in LDCT imaging [15], [33]. In the realm of LDCT
image denoising, numerous advanced models with distinct
techniques have emerged. However, overcoming persistent
difficulties necessitates additional studies to enhance these
models for the unique complexities of LDCT imaging. Like-
wise, Huang et al. [15] proposed TS-RCNN combining
RCNN, wavelet transformations, and perceptual loss, though
this is computationally complex. Furthermore, Chen et al.
[16] proposed FRCNN using CNN, FTV loss, and residual
learning for better noise reduction and detail preservation in
LDCT images, however, it could be more computationally
intensive than simpler denoising approaches. Additionally,
Song et al. [17] proposed CMSNet, containing MSNet and
a refinement network, predicts noise based on earlier layers
of supervision, yet still, there are blurry effects. Similarly,
Li et al. [18] proposed that ASWCNN uses wavelet trans-
form and sub-pixel convolution in a top-down architecture.
It maintains image structure and texture while removing noise
and artifacts. However, further research is needed to enhance
its performance. Furthermore, Kim et al. [20] introduced
CNN denoisers for LDCT without real paired data, though
imprecise kernel estimation can lead to errors in data syn-
thesis. Additionally, Marcos et al. [21] utilized ResNet with
dilated convolutions, batch normalization, and ReLU layers
with fused spatial, and channel-attention modules, however,
the proposed model is complex.

Furthermore, Gou et al. [22] introduce GRCNN by com-
bining pixel-wise and gradient losses with the Sobel operator,
nevertheless Sobel operator may not suit all structures and
noise types. Moreover, Yan et al. [23] proposed a TLD-CDL
framework, however, the suggested network may not fully
capture the specific characteristics and complexities of LDCT
images. Similarly, Shan et al. [24] proposed a MAP-NN
consisting of a series of network modules, each incrementally
improving image quality, though the model is complex. Addi-
tionally, Usui et al. [25] used DnCNN for denoising, includ-
ing general CNN and transfer learning models. However,
the method struggled with effective noise reduction at doses
below 10% of the original, especially at incredibly low doses.

B. GENERATIVE ADVERSARIAL NETWORK(GAN)
GAN enhances the LDCT images through a generator net-
work that transforms noisy images into cleaner versions,

guided by a discriminator network for realism, resulting
in improved image quality and diagnostic accuracy. Fur-
thermore, Huang et al. [34] proposed DU-GAN, a novel
approach utilizing GANs and U-Net-based discriminators
to enhance LDCT image quality, however, the computa-
tional cost is higher. Likewise, Yi and Babyn [35] proposed
SAGAN which incorporates adversarial and sharpness losses
to address blur effects in LDCT images. Conversely, the
proposed model detects subtle blurs, which could limit the
improvement of overall sharpness. Moreover, Zhang et al.
[36] introduced artifact and detail attention GAN, which
uses a multi-channel generator to focus on noise, artifacts,
edge features, and a multi-scale Res2Net discriminator to
enhance discrimination. Yet, the computation cost is exceed-
ingly high. Further, Ma et al. [37] utilize a noise learning
Generative Adversarial Network (GAN) with specialized
loss functions, including least squares, structural similarity,
and L1 losses. However, it needs a large amount of data
for effective training. Also, Wang and Hu [38] introduce
a Progressive Wasserstein Generative Adversarial Network
(PWGAN) with a Weighted Structurally Sensitive Hybrid
loss Function (WSHL) to improve the LDCT image denois-
ing. Further, Han et al. [26] proposed DESD, which contains
a generator that includes a Pyramid Non-Local Attention
(PNLA) module for feature correlation, and auxiliary shal-
low and deep feature processing modules to enhance feature
extraction, However, the proposed network is sensitive to
hyperparameters.

C. U-NeT ARCHITECTURE
This study utilized the deep encoder-decoder architecture,
known as U-Net. The original U-Net was introduced by
Ronneberger et al. [39] for medical image segmentation.
The primary motivation for employing the U-Net framework
in CT image denoising lies in its exceptional capabil-
ity to extract hierarchical features across multiple spatial
scales. This multi-scale approach enables U-Net to effec-
tively identify and mitigate noise patterns that may vary
in frequency and resolution, ensuring that critical structural
details within the image are preserved. As a result, U-Net
demonstrates a robust performance in enhancing image qual-
ity while maintaining the integrity of anatomical features,
making it a preferred choice for medical imaging appli-
cations [39], [40]. Further, Zhang et al. [41] propose a
CT image denoising method using U-Net and three atten-
tion modules: local, multi-feature channel, and hierarchical
attention. The multi-attention mechanism effectively reduces
noise while preserving structural details in CT images, how-
ever, it adds complexity. Also, Zubair et al. [13] introduced
the U-Net autoencoder with dilated convolution and batch
normalization layer to denoise the LDCT images, however,
need to check on real LDCT datasets. Also, Zhang et al.
[28] combine Transformer and CNN. The encoder CNN
extracts local features, and the decoder includes a Dual-
Path Transformer Block (DPTB) for structure and detail.
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Multi-feature Spatial Attention Block (MSAB) enhances
key regions and merely needs longer training. Moreover,
Liu et al. [29] proposed ERA-WGAT which combines
a residual autoencoder, edge enhancement, and a novel
WGAT structure to address non-local information extrac-
tion in low-dose CT denoising, however utilizing much
computational resources. Furthermore, Zubair et al. [42].
introduced DoG-UNet+, a model that integrates a DoG
Sharpening Layer and an attention mechanism to enhance
critical features, while the model effectively removes noise,
its complexity is a drawback. Further, Jeon et al. [43] intro-
duced MM-Net with a two-step training process involving
MSAU-Net and U-Net-based denoiser. MM-Net is versatile
and adaptable to various CT systems and protocols with-
out ground-truth data. Still, it may exhibit lower denoising
accuracy. Additionally, Liu et al. [44] proposed SureUnet,
which addresses LDCT image artifacts and noise by inte-
grating a sparse auto representation encoder with a U-Net
architecture, yet, its practical feasibility in real-time has an
impact.

III. METHODS
The methodology of the proposed model is further divided
into the subparts below.

A. ATTENTION GATE
To denoise the LDCT image, an Attention Gate (AG) is
introduced to enhance the feature selection in the U-Net
architecture. The AG focuses on relevant regions of the
feature maps and suppressing less important information,
improving the denoising performance, especially around crit-
ical structures [45]. X is the input feature map, with a size
of 255 × 255, as extracted from the LDCT image, after
passing through several convolutional layers. It captures fine
local details and textures of the image. While, G is the
gating signal, which also has the same spatial dimensions,
and is derived from a coarser feature map. It encapsu-
lates more global context, providing a broader understanding
of the image’s structure and features. These two inputs
are passed into the AG for further processing as given
below.

1) Linear Transformations: Both the inputs X and
G undergo linear transformation through convolu-
tion operations, denoted as φx(X) and φg(G) to
reduce the dimensionality of the feature maps, mak-
ing the subsequent operations more computationally
efficient.

2) Combination and non-linearity: The transformed fea-
ture maps are then combined via element-wise addition
(φx(X)+φg(G) and passed through a non-linear activa-
tion function δ(), such as ReLU. This step introduces
non-linearity to the combined signal, enhancing its rep-
resentational capacity.

3) Linear Transformation: The output from the non-linear
activation is subjected to another linear transforma-

tion ϕ(), refining the combined feature representation
and preparing it for the final attention mask
computation.

4) Sigmoid Normalization: The refined signal is passed
through a sigmoid function σ (), which normalizes the
values to the range [0,1]. This produces the attention
mask S, which highlights the regions of the input fea-
ture map X that are considered most important by the
model.

5) Attention Modulation: The attention mask S is then
applied to the original input featuremapX of the LDCT
image through element-wise multiplication Y = S.X
[46]. This operation ensures that only the important
regions of X, as indicated by S, are emphasized in
the output Y, the whole process has expressed in
Equation (1).

S = σ (φ(δ(φx(X ) + ϕg(G)))) (1)

The attention gates empower the U-Net model to concentrate
on the most important features of the input LDCT images,
facilitating more accurate reconstruction. Diagrammatically
it can be represented as given in FIGURE 2.

FIGURE 2. Attention Gate.

Where H represents the height, W stands for the width, and
D indicates the depth, which corresponds to the number of
channels of the CT image. In this study, H = 256, W = 256,
and D = 1.

B. HYBRID LOSS
The objective of the proposed denoising method is to elimi-
nate noise from CT images while preserving critical details,
such as edges. However, minimizing the Mean Squared
Error (MSE) between the denoised CT images and the
NDCT images often leads to excessive blurring, which neg-
atively impacts the perceived quality of the CT images.
This approach is known to have a weak correlation with
human assessments of CT image quality. Additionally, the
ideal MSE estimator is prone to the regression-to-mean
phenomenon, resulting in denoised LDCT images that may
appear excessively smooth, unnatural, and unrealistic. In this
study, a hybrid loss function is developed that incorporates the
structure loss, SSIM, and Gradient loss to encapsulate both
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structural similarity and edge preservation [47]. To assess the
similarity between the denoised CT image and its normal-
dose counterpart, the classic SSIM can be employed as given
in Equation (2).

SSIM (x,y) =

(
2uxuy + C1

)
∗ (2σ xy + C2)

(µ2
x + µ2

y + C1) ∗ (σ 2
x + σ 2

y + C2)
(2)

where ux , uy, σx , σy and σxy represent the means, standard
deviation, and correlation between the two images being com-
pared. Additionally, C1 and C2 are the constants introduced
to prevent division and eliminate the singularities. When
x and y are nearly identical, the SSIM value approaches 1.
In such cases, the SSIM loss can be expressed as shown in
Equation (3).

LossSSIM = 1 − ssim
∑

(x, y) (3)

where SSIM refers to the Structural Similarity Index, a mea-
sure that ranges from −1 to 1, with 1 indicating identical
images. When the SSIM value is close to 1, it suggests that
the two images are highly similar, and as a result, the SSIM
loss approaches zero. On the other hand, as the SSIM value
decreases, the loss value increases. During the training the
goal is to minimize this loss, which encourages the out-
put image y to become increasingly like the reference CT
image x. Gradient loss plays a critical role in preserving edge
information and local details during the denoising process of
LDCT images. Unlike traditional pixel-wise loss functions,
which can obscure important structural features, gradient loss
emphasizes the gradients in the image. This focus ensures
that the model effectively retains vital details that are crucial
for accurate interpretation, particularly in medical imaging
scenarios. The horizontal and vertical gradients for both the
ground truth CT image I true and the predicted (denoised) CT
image Ipred are calculated using Sobel kernels. Let Gu repre-
sent the horizontal Sobel kernel and Gv represent the vertical
Sobel kernel, which are used to capture edge information in
the respective directions. Further, the respective kernels are
given in Equations (4) and (5).

Horizontal Sobel Kernel Gu =

−1 0 1
−2 0 2
−1 0 1

 (4)

Vertical Sobel Kernel Gv =

−1 −2 −1
0 0 0
1 2 1

 (5)

The horizontal and vertical gradients of both, the ground
truth CT image I true and the predicted CT image Ipred are
computed by convolving them with Sobel kernel as given
below. The Gradient of the ground truth CT image is given
in Equation (6) and (7).

Horizontal Gradient = Gu(Itrue) = Itrue ∗ Gu (6)

Vertical Gradient = Gv(Itrue) = Itrue ∗ Gv (7)

Similarly, the Gradient for the predicted CT image is given
below in Equations (8) and (9).

Horizontal Gradient = Gu(Ipred ) = Ipred ∗ Gu (8)

Vertical Gradient = Gv(Ipred ) = Ipred ∗ Gv (9)

For each pixel, the gradient magnitude using the Euclidean
norm of the horizontal and vertical gradients at pixel P is
calculated as given in Equation (10).

∥∇I true(p)∥ =

√
Gu(itrue(p))2 + Gv(itrue(p))2 (10)

where Gu(itrue) is the gradient in the x-direction (horizon-
tal edges), and Gv(itrue) is the gradient in the y-direction
(vertical edges). Similarly, the gradient magnitude of the
predicted

(
ipred

)
CT image at pixel P is given in given in

Equation (11).∥∥∇Ipred (p)
∥∥ =

√
Gu(ipred (p))2 + Gv(ipred (p))2 (11)

The gradient loss is computed by taking the squared differ-
ence between the gradient magnitudes of the ground truth
and predicted images at each pixel, summing over all pixels,
and normalizing by the total number of pixels N as given in
Equation (12).

lossGrad =
1
N

N∑
P=1

(∥∇I true(p)∥ −
∥∥∇Ipred (p)

∥∥)2 (12)

Substituting the gradient magnitudes from Equations (10)
and (11) as given in Equation (13).

lossGrad =
1
N

N∑
P=1

(Gu(itrue(p))2+Gv(itrue(p))2−(Gu(ipred (p))2

+ Gv(ipred (p))2))2 (13)

This indicates the squared difference between the gradient
magnitudes calculated using the Sobel filters in both hori-
zontal and vertical directions of the ground truth CT image
I true and the predicted Ipred, summed over all pixels and
normalized by the total number of pixels N [22]. So hybrid
loss function is the combination of Loss

SSIM and Lhybrid as
given in Equation (14).

Lhybrid = α ∗ 1 − ssim
∑

(x, y) + β +
1
N

N∑
P=1

(Gu(itrue(p))2

+ Gv(itrue(p))2−(Gu(ipred (p))2 + Gv(ipred (p))2))2 (14)

where the equation (14) represents a hybrid loss function
Lhybrid , which combines SSIM and gradient-based loss to
denoise the CT image. Further, x and y represent the refer-
ence (true) and predicted CT images, respectively. The SSIM
loss focuses on the perceptual quality of the CT image by
considering luminance, contrast, and structural features. This
helps to reduce artifacts and blurring, maintaining the overall
integrity of the CT image. Further, Gradient loss enhances the
preservation of fine edges and transitions by comparing the
gradients of the predicted and true images. Together, these
loss functions provide a balanced approach to noise reduc-
tion, improving both the perceptual and clinical quality of
LDCT images by minimizing noise and preserving essential
features. Further, α and β are the coefficient or weighting
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FIGURE 3. Residual blocks and Attention Gate.

factors that control the contribution of each individual loss
component. Where parameter α controls the balance between
SSIM and the gradient-based loss. A higher value of α gives
greater importance to preserving the image’s structure and
details, which is critical for retaining diagnostic information
in CT images. On the other hand, β emphasizes the preser-
vation of edges details and fine structures, which are vital for
accurate CT image denoising. In this study, based on trial and
error, the values of α = 0.006 and β = 0.008 were used.

C. NETWORK DESIGN
To address the limitations of basic U-Net architecture, this
study enhances the U-Net model by introducing residual
blocks, Attention gate, and hybrid loss function. The network
begins with a 256 × 256 × 1 input CT image that under-
goes successive convolutional and max-pooling operations
to reduce spatial dimensions while extracting increasingly
complex features [48]. This down-sampling is complemented
by residual blocks. The configuration of residual blocks with
batch normalization following the convolution operations.
This ensures that activations are normalized across the batch,
maintaining a stable distribution of feature map values and
mitigating issues like vanishing or exploding gradients, thus
promoting smoother convergence during training. Mathe-
matically the residual block can be represented as given in
Equation (15).

Z = F(x) + X (15)

Further, the network’s deepest point, the bottleneck layer
captures the abstract features representing the core struc-
ture of the CT image. The decoder then reconstructs the
CT image by progressively sampling the features and
concatenating them with corresponding layers from the
encoder via skip connections, allowing the model to retain
important spatial information. The concatenation layers

ensure the dimensional consistency by aligning the spatial
dimensions of feature maps from the encoder and decoder
paths before merging them. This alignment is typically
achieved through cropping the encoder feature maps to match
the decoder dimensions, using padding during convolutions
to prevent size mismatches. Similarly, the up-sampling oper-
ations in the decoder expand feature maps to the same size
as their corresponding encoder layers. This process allows
the U-Net to combine high-resolution spatial details from
the encoder with contextual information from the decoder,
preserving both low-level and high-level features for accu-
rate image reconstruction. The addition of attention gates
further enhances the focus on relevant features during up-
sampling, improving the overall CT image quality [49]. The
structure of the up-sampling layer in the proposed model,
along with Residual blocks and Attention Gates is given in
FIGURE 3.
The training of the enhanced proposed model utilizes a

hybrid loss function that combines the SSIM and Gradi-
ent Loss to minimize reconstruction loss to enhance LDCT
image quality. The SSIM component evaluates the similarity
between reconstructed images and high-dose references by
analyzing luminance, contrast, and structural information,
ensuring that the generated CT images preserve essential
visual characteristics critical for diagnosis. Meanwhile, Gra-
dient Loss focuses on maintaining fine details and edges by
assessing image gradients, thereby preventing blurring and
ensuring sharpness in key regions. The optimization process
iteratively adjusts model parameters to minimize a combined
loss.

Through backpropagation, gradients of the total loss are
computed, allowing for effective updates to the model
weights. As training progresses and loss decreases, the
proposed enhanced U-Net model generates high-quality
CT images that are both statistically like high-dose references
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FIGURE 4. Proposed enhanced U-Net architecture with Residual Blocks, Attention Gate, and hybrid custom loss fusion.

and visually accurate, enhancing its capability for producing
clinically relevant reconstructions [37]. The architecture of
the enhanced proposed U-Net model is along the residual
blocks, Attention Gate, and hybrid loss function is given in
FIGURE 4.

IV. EXPERIMENT
A. DATASET FOR MODEL TRAINING
The enhanced U-Net model has been tested on the real '2016
Low-dose CT AAPM Grand Challenge Dataset,’which com-
prises 10 patient scans of the abdominal regions in DICOM
format. These CT scans have a thickness of 1 mm and
a dimension of 512 × 512 x 1. The dataset was partitioned
into three parts: training, testing, and validation. The training
set constituted 80% of the dataset, encompassing 4,617 pairs
of LDCT images along with their corresponding high-dose
counterparts. Further, the testing and validation subsets were
meticulously assigned 10%, including 577 image pairs in
each category. Each image in the dataset has been rescaled
to the range [0,1]. To address overfitting and enhance the
diversity and robustness of the improvedU-Netmodel for bet-
ter generalization to unseen data, two key augmentations are
incorporated: horizontal flipping and random cropping. Addi-
tionally, early stopping is implemented to prevent overfitting
by monitoring the validation loss during training and halting
when performance on the validation set starts to deteriorate.

B. MODEL PARAMETERS
The proposed enhanced U-Net model utilizes a hybrid loss
function that combines SSIM and gradient loss with weight
parameters α = 0.006 for SSIM and β = 0.008 for Gra-
dient loss to effectively preserve structural similarity and
fine-grained details in the denoised CT images. Further, the
learning rate, set at 1.00E-03. The batch size is 32, indicating
the number of samples processed before updating the model’s
weights. Training is conducted over 31 epochs, allowing the
model to fully learn from the dataset. The Adam optimizer is
used for efficient optimization. The ReLU activation function
is applied to the output of each layer, ensuring non-linearity.
A batch normalization is applied to normalize the inputs to
each layer, promoting stable learning. The input images are
256 × 256 pixels with a single channel, corresponding to
grayscale CT images.

C. PERFORMANCE COMPARISON
To assess the efficacy, a comparison was conducted between
the proposed method and several classical techniques, includ-
ing [50] BM3D, [51] NLM, [52] K-SVD, [53] CNCL, [30]
WGAN-VGG, [12] EDCNN, and [54] CTformer. For quan-
titative evaluations, three assessment metrics are employed:
PSNR, SSIM, and RMSE. The ablation study was conducted
to evaluate the performance of the enhanced U-Net model by
systematically assessing the impact of various components
and modifications made to the architecture.

VOLUME 13, 2025 6915



M. Zubair et al.: Novel Attention-Guided Enhanced U-Net With Hybrid Edge-Preserving Structural Loss

FIGURE 5. Comparison of denoising results of various methods for case-1.

FIGURE 6. Comparison of denoising results of different of various methods for case-2.

D. MAYO EXPERIMENT
The denoising effects of various methods are illustrated on
two representative slices, referred as Case-1 and Case-2,

demonstrated in FIGURE 5 and FIGURE 6. To illustrate
the detailed preservation performance, a Region of Interest
(ROI) has been selected in both cases and highlighted by a
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TABLE 1. Quantitative results of the different methods (Means+SD).

red circle. For the qualitative analysis in Case-1, BM3D (d),
NLM (e), and K-SVD (f) effectively reduce noise, but they
blur fine anatomical structures. Furthermore, K-SVD intro-
duces grainy textures along with artificial details, impacting
the overall image quality. In Case-2, these traditional meth-
ods also suppress noise but perform poorly in preserving
small structures, particularly in lung regions, where some fine
details are either oversmoothed or lost.

In Case-2, CNCL (g) maintains a more balanced output
compared to traditional approaches, providing better struc-
tural preservation. However, the finer textures are slightly
smoothed out, affecting the clarity of smaller anatomi-
cal regions. WGAN-VGG (h) shows similar behaviours to
Case-1, with effective noise reduction and structural reten-
tion, but in Case-2, the edges appear softer, and some areas
lack sharpness. EDCNN (i) performs reasonably well, pre-
serving key structures in both cases, but the residual noise
is more pronounced in Case-2, affecting its overall visual
quality.

Further, CTformer (j) demonstrates a good balance
between noise suppression and structural integrity in both
cases, yet it struggles slightly in Case-2 to maintain high
contrast and detail sharpness, especially around complex
lung textures. In contrast, the proposed method (c) demon-
strates consistently superior performance in both Case-1 and
Case-2, providing CT images that closely resemble the
NDCT references CT images in terms of noise suppres-
sion, structural clarity, and contrast enhancement. In Case-1,
the method effectively reduces noise while preserving fine
anatomical structures, resulting in high PSNR and SSIM
values. Similarly, in Case-2, it excels at maintaining intri-
cate details and subtle textures without over-smoothing or
introducing artifacts, achieving the best qualitative results
among all themethods. Thismakes the proposed approach the
most reliable solution across both cases, offering an optimal
balance between noise reduction and structural preservation
for low-dose CT image denoising. The visual comparison of
the proposed methods along with classical methods is given
in FIGURE 5 and FIGURE 6.

Further, a quantitative comparison of various denois-
ing methods applied to LDCT images, focusing on their

performance in two distinct regions of interest (ROIs) as illus-
trated in FIGURE 5 and FIGURE 6. The metrics utilized for
comparison include PSNR, SSIM, and RMSE, with their cor-
responding average quantitative values, means, and standard
deviations presented in TABLE 1. The highest values are
highlighted in red, and the second-highest values are marked
in sky blue.

Among traditional methods, BM3D and NLM perform
reasonably well, with PSNR values around 33-34 dB and
SSIM values below 0.8 in both cases. However, K-SVD
exhibits the poorest performance, with high RMSE values
and significantly lower PSNR and SSIM, reflecting excessive
smoothing and loss of structural details. Additionally, the
deep learningmodels demonstrate varying levels of denoising
efficacy, with each exhibiting distinct strength. CNCL, the
first of these, attains PSNR values of 35.08 dB in Case-1
and 35.13 dB in Case-2, alongside SSIM scores of 0.97 and
0.96, respectively. The results suggest there may be room for
improvement compared to other advanced models. Further-
more, WGAN-VGG and EDCNN show competitive results,
with PSNR values ranging from 36-37 dB and SSIM 97-
95 scores. However, slightly higher RMSE values suggest a
marginally reduced capacity for accurate noise suppression
compared to CTformer. Also, CTformer clearly outperforms,
achieving consistently high PSNR values of 37.21 dB in
Case-1 and 37.24 dB in Case-2, alongside SSIM values
exceeding 0.98. The notably low RMSE values in both
cases, highlight CTformer’s superior ability to maintain CT
image quality and effectively suppress the noise. Finally,
the proposed method outperforms all other CT denoising
approaches in both PSNR and SSIM. However, CTformer
achieves a slightly higher SSIM score of 0.0049 compared
to the proposed method, highlighting its superior effective-
ness in preserving structural details during the LDCT image
denoising process.

The presented bar graphs in FIGURE 7 provide a
comprehensive comparison of various denoising tech-
niques applied to LDCT images across two ROIs. The
PSNR graph highlights the superior performance of the
proposed model, achieving the highest peak signal-to-
noise ratio, indicating enhanced image quality retention
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FIGURE 7. Quantitative performance of different ROIs in Figures 5 to 6.

TABLE 2. Quantitative performance of ablation studies (Means values).

in both ROI 1 and ROI 2. In the SSIM graph, the
CTformar slightly shows better structural preservation,
achieving high similarity to reference images, particularly
in ROI 2.

TheRMSEgraph further emphasizes themodel’s effective-
ness, showcasing the lowest root mean square error, which
reflects minimal reconstruction errors across both regions.
These graphs are essential for objectively validating the
proposed model’s ability to enhance image fidelity, pre-
serve structural details, and outperform existing denoising
approaches.

1) ABLATION STUDY
The ablation study assesses the impact of architectural
components of any method. An ablation experiment was
conducted to demonstrate the effectiveness of the proposed
model using the ‘‘2016 Low-dose CT AAPM Grand Chal-
lenge Dataset’’. The average values of the selected ROIs from
Case-3 in FIGURE 8, in terms of PSNR, SSIM, and RMSE,
are provided in TABLE 2.

For simplicity, the proposed method is denoted as E, while
the other variants of the proposed methods are labelled A,
B, C, and D, respectively. A representative slice from Case-3
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FIGURE 8. Comparison of denoising results of different of various methods for case-3.
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FIGURE 9. Boxplot of denoised results of ablation experiments on
the mayo dataset.

was selected, focusing on ROI-3, with the highlighted regions
marked by red rectangles.

The qualitative results for each proposed model vari-
ant are distinctly presented in the top-left corner of the
respective denoised CT image as shown in FIGURE 8.
where, Figure 8(A) and its zoomed version illustrate effec-
tive noise reduction; however, the preservation of structural
details is suboptimal, leading to noticeable blurring in critical
areas. Figure 8(B) and B(Zoom) demonstrate a signifi-
cant improvement in structural preservation when compared
to the MSE-based model, showcasing sharper anatomical

FIGURE 10. Line graph results of ablation experiments on the Mayo
dataset.

boundaries and finer textural details. Nonetheless, a few
minor noise artifacts remain detectable.

Further, Figure 8(C) presents enhanced denoising results
relative to previous models, with marked improvements
in image fidelity, perceptual quality, and average error.
However, there remains room for enhancement in edge sharp-
ness, texture preservation, and overall contrast. Furthermore,
Figure 8(D), along with its zoomed counterpart D(zoom),
clearly indicates a substantial improvement in overall quality
and edge preservation compared to earlier model iterations.
Nevertheless, some challenges regarding edge sharpness
and contrast persist. Finally, Figure 8(E) and its zoomed
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version further illustrate that the proposed model signifi-
cantly surpasses prior versions in visual quality metrics. The
enhancements in clarity, detail, edge preservation, and con-
trast yield a more visually appealing image, characterized by
improved sharpness and reduced noise compared to earlier
iterations.

The performance of different components of a proposed
model used in the ablation study was evaluated on the test
dataset by analysing PSNR, SSIM, and RMSE metrics
through boxplots, as shown in FIGURE 9. These boxplots
summarize the data using five key statistics: minimum, max-
imum, lower quartile, upper quartile, and median values.
Based on the upper quartile values, model E demonstrates
the highest robustness in terms of PSNR, SSIM, and RMSE.
Additionally, the median values suggest that models D, and
E lead in PSNR and SSIM, and RMSE.

Further, the line graphs of PSNR, SSIM, and RMSE over
31 epochs in FIGURE 10 clearly demonstrate that Model D
and E consistently outperform the other models in the abla-
tion study, achieving higher PSNR and SSIM values, which
indicate improved perceptual fidelity and reduced distortion.
While the improvement in RMSE is more modest, However,
Model E still demonstrates a clear advantage in minimizing
pixel-wise errors, further reinforcing its robustness and over-
all performance in comparison to the other models.

V. DISCUSSION AND FUTURE WORK
This study presents an enhanced U-Net model designed for
denoising LDCT images. The enhancements to the U-Net
model are categorized into two main types: architectural
improvements and the optimization of the cost function. The
proposed cost function is a novel combination of structural
similarity index (SSIM) and Gradient loss. The SSIM com-
ponent focuses on preserving the perceptual quality of the
CT images by assessing luminance, contrast, and structural
elements, thereby effectively reducing artifacts and blurring
while maintaining the structural integrity of CT images.
Conversely, the gradient loss emphasizes the preservation of
sharp edges and smooth transitions by analysing the gradi-
ent differences between the predicted and reference images.
Together, these loss functions offer a comprehensive strategy
for denoising, enhancing both the visual fidelity and clini-
cal relevance of LDCT images by minimizing noise while
protecting critical image features. The effectiveness of the
proposed loss function is demonstrated through quantita-
tive and qualitative results presented in the ablation study
(TABLE 2, Index C) and illustrated in FIGURE 8(C), high-
lighting its contribution to performance improvements in
the proposed model. Further, enhanced the architecture,
deep residual blocks have been integrated, which facilitate
improved gradient flow and mitigate the vanishing gradi-
ent problem, allowing the model to learn residuals more
effectively. This approach not only enhances generalization
and increases network depth but also preserves essential
features within the images. The quantitative benefits of
the residual blocks are evidenced in the ablation study

(TABLE 2, Index D), while qualitative results are depicted in
FIGURE 8(D). Furthermore, the incorporation of Attention
Gates within the proposed model architecture has resulted in
significant enhancements in both quantitative and qualitative
metrics. This is corroborated by the results showcased in
(TABLE 2, Index E) and FIGURE 8(E). The study presents an
enhanced U-Net model for denoising low-dose CT (LDCT)
images, featuring a novel cost function that combines struc-
tural similarity index (SSIM) and gradient loss with the
Euclidean norm to effectively reduce noise while preserv-
ing critical image features. Additionally, incorporating deep
residual blocks and Attention Gates enhances gradient flow
and improves feature selection capabilities. Both qualitative
and quantitative comparisons, as well as an ablation study,
demonstrate that the proposed model outperforms bench-
mark algorithms in terms of PSNR and RMSE. Although
the CTformer shows slightly better SSIM results in ROI-2
compared to other techniques, the overall performance of the
proposed model validates its effectiveness in enhancing the
quality of low-dose CT images. Future work will focus on
validating and evaluating this technique on larger datasets to
further enhance its generalizability and robustness.
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