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Abstract
With the commercialization of large language models (LLMs) and
their integration into daily life, addressing their susceptibility to
hallucinations—unfactual information in generated outputs—has
become an urgent priority. Existing uncertainty quantification (UQ)
methods often rely on access to LLMs’ internal states, which is
unavailable for closed-source models like GPTs, or are primarily
designed for short text. Current research on long text typically eval-
uates sentences individually, overlooking smaller semantic units
that better capture the text’s complexity. Recognizing the potential
of knowledge graphs (KGs) to extract structured relationships from
unstructured text, we propose KG-UQ, a UQ method leveraging
KGs to address the semantic intricacies of long text. Our approach
involves constructing KGs from long-text outputs and utilizing their
embeddings to estimate uncertainties. Through our analysis, we
demonstrate that knowledge graphs are an effective tool for decom-
posing long text into fundamental statements. However, we also
highlight the increased uncertainty introduced during KG construc-
tion, stemming from inherent challenges in accurately capturing
all semantic information.
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1 Introduction
With the rapid development of Large Language Models (LLMs),
their exceptional performance in natural language processing (NLP)
tasks has been well illustrated [2, 4, 26, 37, 45], alongside their
applications in various other areas [3, 32, 33, 44]. Applications, such
as ChatGPT, have seamlessly integrated into everyday life. However,
LLMs are often prone to hallucinations, generating responses that
may be unfactual or unfaithful. Traditionally, researchers have
relied on human evaluation, manually verifying decomposed atomic
information. Alternatively, approaches have been developed to
quantify the factuality of LLM responses or assess the confidence
levels of LLMs in their outputs.

Existing uncertainty quantification (UQ) methods predominantly
rely on accessing the internal states of LLMs, such as token likeli-
hoods [8, 20, 41]. However, with the increasing commercialization
of LLMs, closed-source proprietary models like GPTs restrict access
to such internal states, offering only API-level interaction. Another
significant challenge lies in handling the complexity of long text.
While Natural Language Inference (NLI) models are often used to
determine whether a piece of text is supported by its source, they
perform well when dealing with fragmented information. However,
long text is known for its intricate semantic structure, making it
challenging to verify whether an entire passage is supported by
its knowledge source. In existing literature, LUQ [42] tackle this
by analyzing long text sentence by sentence, using NLI to deter-
mine whether each sentence is supported. Another approach [12]
involves decomposing LLM responses into factoids and clustering
these factoids by meaning to evaluate factuality.

2071

https://orcid.org/0000-0002-3930-6600
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3701716.3717660
https://doi.org/10.1145/3701716.3717660
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701716.3717660&domain=pdf&date_stamp=2025-05-23


WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yingqing Yuan et al.

Knowledge graphs (KGs), widely recognized for their ability to
represent structured data and organize relationships derived from
unstructured data, and have demonstrated significant potential
in tasks like retrieval-augmented generation. GraphEval [38] has
picked up on this and leveraged this capability by feeding LLM
outputs into a KG construction prompt and then evaluating the
factuality of each generated triple using NLI.

Building on insights from current research, we propose multiple
KG-UQ, an uncertainty quantification method based on knowledge
graphs, with comparisons of existing UQ methods performance by
measuring the correlation with factuality scores. The key contribu-
tions of our work are summarized as follows:

• We introduce knowledge graphs (KG) as a tool for extracting
logical information, fully leveraging the capabilities of KGs to
address the limitations of current uncertainty quantification
(UQ) methods for long text.

• Through analysis, we uncover the inherent limitations of
current knowledge graph construction methods due to their
intrinsic uncertainty.

• Through extensive experiments across different models and
datasets, we demonstrate the superior generalization abil-
ity of our algorithm, surpassing the state-of-the-art (SOTA)
methods.

2 Related Work
2.1 Uncertainty Quantification in Machine

Learning Models
Uncertainty quantification (UQ) [10, 15, 27, 39, 40], plays a cru-
cial role in machine learning, helping models provide predictions
along with measures of confidence. Traditional approaches include
Bayesian methods, such as Bayesian Neural Networks (BNNs),
which use posterior distributions to capture uncertainty in model
parameters [27]. Non-Bayesian methods, like Monte Carlo Dropout
[15] and Deep Ensembles [10], offer more practical alternatives
for estimating predictive uncertainty. Before the rise of Large Lan-
guage Models (LLMs), UQ was already a key area of research in
machine learning [15]. Uncertainty is typically divided into two
categories: aleatoric and epistemic uncertainty [7, 16]. Aleatoric un-
certainty, also known as statistical uncertainty, refers to the natural
randomness in data or outcomes caused by inherent variability [18].
Epistemic uncertainty, on the other hand, arises from incomplete
knowledge, such as missing data or uncertainty in model parame-
ters [18]. While aleatoric uncertainty cannot be reduced, epistemic
uncertainty can often be addressed through better models or more
data.

2.2 Uncertainty in Knowledge Graphs
Knowledge graphs (KGs) are widely used to represent structured
data and relationships, but effectively managing uncertainty is key
to their usefulness. Probabilistic knowledge graphs enhance tradi-
tional KGs by assigning confidence scores to the facts or triples they
contain, making it possible to represent uncertain information [5].
Advanced methods such as Markov Logic Networks [? ] have been
developed to propagate and infer uncertainty within the structure of
a graph. Embedding techniques allow uncertain knowledge graphs

to be represented in a continuous vector space, supporting tasks
like link prediction, entity classification, and fact verification [5].
These methods address challenges like missing, noisy, or conflicting
data, enabling more robust reasoning and decision-making. Appli-
cations of these approaches include question answering systems
and personalized recommendations, where the ability to handle
uncertainty is crucial.

2.3 Uncertainty Quantification in LLMs
For Large Language Models (LLMs), uncertainty quantification
(UQ) is particularly important as their outputs often lack clear in-
dications of reliability. One widely used approach is calibration,
which adjusts model confidence scores to better match actual accu-
racy [14]. Perturbation-based methods have also gained traction;
these involve introducing small changes to the input to measure
how stable the model’s responses are [14]. Another approach is
embedding-based analysis, which incorporates semantic checks
to evaluate the consistency and reliability of generated text [25].
Tools like FACTSCORE go further by breaking down generated
responses into individual facts, comparing these facts against a
reference source, and evaluating factual accuracy [30]. UQ meth-
ods for LLMs are often categorized based on whether they require
access to the model’s internal mechanics. White-box methods, for
instance, rely on logit-based evaluations that assess sentence uncer-
tainty by analyzing token-level probabilities or entropy [22, 31, 46].
These approaches contrast with black-box methods, which operate
independently of the model’s internal structure. The importance of
UQ in LLMs extends to high-stakes areas such as medical decision-
making [19] and content moderation, where ensuring reliability
and trustworthiness is critical. As LLMs are increasingly applied
in diverse real-world scenarios, UQ remains an essential area of
research for improving their interpretability and reliability.

3 Methods
Our method is a black-box method intended to estimate the uncer-
tainty of LLMs’ outputs based on knowledge graphs. It consists of
three parts, and the framework is illustrated in Figure 1.

(1) Generate responses from LLMs.
(2) Construct a set of knowledge graphs for the responses.
(3) Estimate uncertainty by computing similarities between

knowledge graphs.

For a given query prompt 𝑞𝑎 , let R = {𝑟1, 𝑟2, 𝑟3, . . . } denote all
the sampling responses generated by a LLM. As discussed, deter-
mining the similarity between long text responses is inherently
challenging due to the intricate semantic relationships embedded
across sentences and paragraphs. To address this, we propose de-
composing each long text response 𝑟𝑖 into a collection of simple
sentences that capture the core ideas of the text. This decomposi-
tion is achieved by constructing a set of knowledge graphs G for
the responses, where each knowledge graph 𝑔𝑖 comprises a set of
triples 𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝑖 = {𝑡𝑟𝑖𝑝𝑙𝑒𝑖1 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑖2 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑖3 , . . . }. Each triple con-
sists of a head, a relationship, and a tail, analogous to the subject,
predicate, and object in grammatical structure, collectively repre-
senting a specific semantic fact extracted from the original text.
By assembling these triples, we can effectively distill the complex
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Figure 1: Overview of KG-UQ. For a given user query, we generate response n times using a LLM. Each response is then used to
construct a corresponding knowledge graph. Embeddings are generated for each KG, and a similarity matrix is computed based
on these embeddings. From this matrix, we derive the uncertainty associated with the LLM’s responses to the user query.

semantic structure of the long text into a concise format.

𝑟𝑖
Construct Knowledge Graph
−−−−−−−−−−−−−−−−−−−−−−−→ 𝑔𝑖 = {𝑡𝑟𝑖𝑝𝑙𝑒𝑖1 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑖2 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑖3 , . . . }

𝑡𝑟𝑖𝑝𝑙𝑒𝑖 𝑗 = (ℎ𝑒𝑎𝑑𝑖 𝑗 , 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖 𝑗 , 𝑡𝑎𝑖𝑙𝑖 𝑗 )
To determine if facts 𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝑖 = {𝑡𝑟𝑖𝑝𝑙𝑒𝑖1 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑖2 , 𝑡𝑟𝑖𝑝𝑙𝑒𝑖3 , . . . }

that are decomposed from a long response are supported by others,
we concatenate these triples into a simplified paragraph 𝑝𝑖 and
embed it into latent space. This approach ensures that the semantic
content of the triples is preserved in a form suitable for embedding
into a shared latent space. The process can be formalized as follows:

G = {𝑔1, 𝑔2, 𝑔3, . . . }
Concat Triples
−−−−−−−−−−−−→ P = {𝑝1, 𝑝2, 𝑝3, . . . }

P = {𝑝1, 𝑝2, 𝑝3, . . . }
Embed−−−−−→ E = {𝑒1, 𝑒2, 𝑒3, . . . }

where G represents the collection of knowledge graphs constructed
from responses R, P represents the corresponding simplified para-
graphs after concatenating the triples, and E represents the embed-
dings of these paragraphs in the latent space.

All responses generated using the same prompt are embedded
into the same latent space, enabling semantic comparison between
them. Specifically, the Euclidean distance in this space represents
the semantic distance between responses. Let D denote the seman-
tic distance matrix, where 𝑑𝑖 𝑗 represents the semantic distance
between paragraph 𝑝1 and 𝑝2, corresponding to response 𝑟𝑖 and 𝑟 𝑗 .

The semantic distance matrix is defined as:

D =

©­­­­«
𝑑00 𝑑01 · · · 𝑑0𝑛
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.
.
.

.

.

.

𝑑𝑛0 𝑑𝑛1 · · · 𝑑𝑛𝑛

ª®®®®¬
To quantify the confidence score of each response 𝑟𝑖 concerning

the query prompt 𝑞𝑎 , we define the confidence score C(𝑟𝑖 , 𝑞𝑎) as
the average semantic distance between 𝑟𝑖 and all other responses:

C(𝑟𝑖 , 𝑞𝑎) =
1
𝑛

𝑛∑︁
𝑗=0
𝑖≠𝑗

𝑑𝑖 𝑗

The overall uncertainty U for the query prompt 𝑞𝑎 is then calcu-
lated as the average confidence score aross all responses:

U(𝑞𝑎) =
1
𝑛

𝑛∑︁
𝑖=0

𝐶 (𝑟𝑖 , 𝑞𝑎)

Another approach to obtaining the embedding of each knowl-
edge graph is by leveraging a Graph Convolutional Network (GCN)
[21]. In this framework, each knowledge graph is treated as a het-
erogeneous graph structure, where the head and tail of a triple are
modeled as nodes in the graph, and the relationship between them
serves as the edge connecting these nodes. A key aspect of this
approach is the utilization of node types, which serve as an essential
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property to distinguish the nodes. For example, consider a head
node like Donald Trump. Depending on the context, this node could
carry the property of being a Person, a President, or a Real Estate
Entrepreneur. Node types allow the GCN to effectively encode such
distinctions, enabling the model to better capture the semantic and
structural nuances of the knowledge graph. The process can be
formalized as follows:

G = {𝑔1, 𝑔2, 𝑔3, . . . }
Graph Embedding
−−−−−−−−−−−−−−→ GE = {𝑔𝑒1, 𝑔𝑒2, 𝑔𝑒3, . . . }

where GE denotes the set of graph embeddings generated by GCN.
Similarly, we can compute the pairwise distance matrix and

uncertainty.

4 Experiments
4.1 Dataset and Evaluation Metric
We followed the experimental settings of LUQ [43] by utilising
FACTSCORE [29], a fine-grained evaluation metric designed for
factuality assessment of long-form text. FACTSCORE provides an
automated method to estimate the factuality score of a given text
by first decomposing it into atomic facts using LLMs and then
verifying these facts against a custom knowledge source through
retrieval. With a low error rate of just 2%, FACTSCORE ensures a
high level of accuracy in quantifying the factuality of long text.

FACTSCORE also offers datasets for evaluation, which includes
183 names with human-annotated factuality labels corresponding
to their respective Wikipedia titles, as well as an unlabeled dataset
containing 500 additional names. To enhance the factuality assess-
ment process, we batch-crawled page content from Wikipedia to
construct our own comprehensive knowledge source. This custom
knowledge source allowed us to further measure the factuality
scores of text responses generated by various LLMs.

We determine the factuality score of a query prompt 𝑟𝑎 by averag-
ing the FACTSCOREs based on the responses. Then we use Pearson
Correlation Coefficient (PCC) to quantify the linear relationship
between the factuality scores and uncertainties. Additionally, we
use the Spearman Correlation Coefficient (SCC) to measure the
monotonic relationship between the two.

4.2 LLMs and Baseline Methods
We utilised six top-performing large language models (LLMs) to
conduct our evaluation: ChatGPT-4o [35], ChatGPT-4 [1], ChatGPT-
3.5-turbo [34], Llama-3.1-8B [9], Llama-3.1-70B [9], and Vicuna-33B
[6]. This selection includes both lightweight models, such as Llama-
3.1-8B, and larger parameter models, like Llama-3.1-70B and Vicuna-
33B, along with the state-of-the-art ChatGPT series. These models
provide a comprehensive range for assessing the capabilities of
uncertainty quantification.

Our study follows the framework of LM-Polygraph [11], which
implements a variety of uncertainty estimation methods. For white-
box approaches, we selected three prominent methods: Maximum
Sequence Probability (MSP), Monte Carlo Sequence Entropy (MCSE)
[28], and Semantic Entropy (SE) [23]. These methods directly lever-
age the internal mechanics of LLMs for estimating uncertainty.

Additionally, we included several black-boxmethods as baselines,
which operate independently of the internal states of the model:

Lexical Similarity (LexSim) [13], Number of Semantic Sets (Num-
Sets) [24], Sum of Eigenvalues of the Graph Laplacian (EigV) [24],
Degree Matrix (Deg) [24], Eccentricity (Ecc) [24], and Long-Text
Uncertainty Quantification (LUQ) [43].

5 Uncertainty Quantification Results
Effectiveness for Open-Source Model Table 1 presents the corre-
lation coefficients between the uncertainties derived from various
uncertainty quantification methods and the factuality scores de-
termined by FACTSCORE. Ideally, greater uncertainty in a LLM
should correspond to lower factuality in its outputs. Our proposed
methods demonstrate a strong correlation with factuality scores,
particularly in open-source models such as Llama-3.1-8B, Llama-
3.1-70B, and Vicuna-33B. The effectiveness of our method extends
across both lightweight models with 8 billion parameters and larger-
scale models with 70 billion parameters. While baseline approaches
such as LUQ, LexSim, and EigV occasionally exhibit robustness,
our methods consistently provide stability for these open-source
models. NumSets interestinly displays a unique behavior, showing
near-zero correlation, indicating its limited capability for uncer-
tainty quantification in open-source models. Moreover, white-box
methods consistently outperform black-box methods, delivering
greater reliability and stability across different models.

For GPTs Uncertainty quantification methods, in general, ex-
hibit low correlation between predicted uncertainties and factuality
scores for GPTs models, highlighting limited effectiveness in accu-
rately assessing uncertainty. Moreover, white-box methods are not
applicable in this context due to the inaccessibility of internal model
states. Certain methods, such as Deg and LUQ, even display posi-
tive correlations, which suggests poor uncertainty quantification
performance, as higher uncertainty should ideally correspond to
lower factuality. While our methods don’t acquire the highest score
for each model, they consistently maintain a strong correlation
with factuality scores as measured by FACTSCORE, demonstrating
the robustness and effectiveness in uncertainty quantification.

Effectiveness of Knowledge Graph As discussed, our method
consists of three parts, with the construction of a knowledge graph
serving as a preprocessing step to break down long texts into dis-
tinct statements, thereby simplifying their semantic structure. We
compare the performance of the pipeline with and without the
knowledge graph construction step, and Table 2 demonstrates its
effectiveness. Knowledge graphs prove inherently beneficial for
Llama models, significantly improving the correlation between un-
certainty and FACTSCORE. However, the performance with knowl-
edge graph took a dive with other models.

This disparity arises because constructing a knowledge graph
from long text is inherently challenging, and current methods can-
not guarantee capturing all key information points. Existing ap-
proaches, such as LangChain and REBEL[17], rely on LLMs[36],
which exhibit inherent uncertainty. The information extracted from
the same sentencemay vary across iterations, and there is nomecha-
nism to ensure that the triples generated by LLMs comprehensively
cover all critical information points.

Additionally, the expectation that a knowledge graph should
encapsulate all aspects of a long text may be inherently unrealistic.
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Table 1: Performance Comparison of Various Methods with Different LLMs

White-Box Methods Black-Box Methods

MSP MCSE SE LexSim Ecc NumSets EigV Deg LUQ Our OpenAI OpenAI-KG
FACTSCORE-BIO

PCC - - - -0.4954 0.0335 -0.1553 -0.2367 0.1095 0.1948 0.1253 -0.6647 -0.4577GPT-4o SCC - - - -0.4449 0.0967 -0.1404 -0.0041 0.2158 0.1790 -0.1970 -0.4634 -0.2588
PCC - - - 0.0908 0.0918 -0.2399 -0.1534 0.1469 0.2385 -0.1922 -0.4207 -0.2395GPT-4 SCC - - - -0.3383 0.1184 -0.2415 -0.0967 0.1628 0.3445 -0.2552 -0.3849 -0.2433
PCC - - - -0.5520 -0.3636 -0.6334 -0.6817 -0.6201 0.6849 -0.1350 -0.6727 -0.5447GPT-3.5-turbo SCC - - - -0.5083 -0.4389 -0.6058 -0.6441 -0.6403 0.6509 -0.1581 -0.5630 -0.4665
PCC -0.2634 -0.5035 -0.3933 0.1439 -0.2473 -0.0929 -0.5171 -0.3198 -0.6542 -0.3752 -0.2387 -0.5536Llama-3.1-8B SCC -0.3550 -0.5088 -0.4991 -0.0109 -0.1906 -0.0936 -0.5640 -0.2955 -0.6492 -0.4777 -0.2566 -0.7978
PCC -0.3821 -0.6171 -0.5748 -0.2078 -0.3207 -0.2979 -0.6285 -0.4144 -0.3084 -0.3503 -0.6509 -0.6299Llama-3.1-70B SCC -0.4306 -0.6259 -0.6082 -0.4185 -0.3197 -0.3072 -0.6802 -0.4172 -0.2697 -0.4780 -0.6204 -0.7303
PCC -0.5358 -0.7509 -0.7728 -0.7863 -0.2878 -0.1464 -0.5310 -0.4003 0.6150 -0.2183 -0.8355 -0.7715Vicuna-33B SCC -0.5579 -0.7603 -0.7826 -0.7936 -0.1693 -0.1240 -0.5358 -0.3805 0.6520 -0.2323 -0.8317 -0.7735

Table 2: Performance Comparison of With and Without Knowledge Graph

Models GPT-4o GPT-4 GPT-3.5-turbo Llama-3.1-8B Llama-3.1-70B Vicuna-33B
PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

Without Knowledge Graph -0.6647 -0.4634 -0.4207 -0.3849 -0.6727 -0.5630 -0.2387 -0.2566 -0.6509 -0.6204 -0.8355 -0.8317
With Knowledge Graph -0.4577 -0.2588 -0.2395 -0.2433 -0.5447 -0.4665 -0.5536 -0.7978 -0.6299 -0.7303 -0.7715 -0.7735

For instance, consider the sentence from Botak Chin’s autobiogra-
phy we got from LLM: "His life took a drastic turn when he entered
the world of crime at the age of 20, starting with petty thefts and
gradually escalating to armed robberies." This sentence comprises
four distinct statements:

• His life took a drastic turn.
• He entered the world of crime at the age of 20.
• He started with petty thefts.
• He escalated to armed robberies.

Extracting all four statements simultaneously is challenging, and
the extracted information often varies. For example, statement c
could be rephrased as "He began to steal petty things", which conveys
the same semantic meaning but introduces significant differences
in the resulting knowledge graph, thereby increasing uncertainty.
Moreover, the extracted statements may fail to capture the full
context of the original sentence. For instance, statement c alone
does not convey that these events occurred when "his life took a
drastic turn."

Although knowledge graphs are inherently effective at decom-
posing long text into discrete statements intended to capture the
full semantic meaning of the original text, current methods fall
short of achieving this goal. To our understanding, no approach
to construct knowledge graphs that consistently extracts complete
and identical information across iterations has been found .

6 Conclusion
In this work, we address the current limitations of uncertainty
quantification methods for long text and explore the potential of
knowledge graphs for their ability to transform unstructured text
into structured data. This capability aids in deconstructing the
complex semantic relationships inherent in long text. We propose

KG-UQ, a UQ method based on KGs, which decomposes long text
into multiple statements that collectively preserve the semantic
meaning of the original text. Instead of treating the text as a single
entity or relying on sentence-level consistency, KG-UQ identifies
the smallest semantic units within lengthy paragraphs, effectively
overcoming the challenges associated with long text. Our findings
demonstrate that KGs are an effective tool for improving the cor-
relation between estimated uncertainties and factuality scores for
both open-source and closed-source LLMs. However, the process of
constructing KGs remains challenging due to its reliance on LLMs,
which often results in capturing only partial semantic meaning from
the original text. This work highlights the promising applications
of knowledge graphs in UQ and lays the groundwork for future
research to further refine and expand upon these methodologies.

7 Limitation
This work has several limitations, which present opportunities for
further exploration and improvement:

• Knowledge Graph Construction Methods: In this study,
we construct KGs using LangChain and REBEL, both of
which are LLM-based methods. However, the output KGs
generated by these methods often fail to fully capture the
complete semantic meaning of long text. Traditional meth-
ods for KG construction, which may offer complementary
strengths, were not investigated and should be explored in
future work.

• Evaluation Metrics: We rely on FACTSCORE as the pri-
mary metric to evaluate the correlation between estimated
uncertainties and factuality scores.While effective, FACTSCORE
may not always reflect real-world factuality accurately. In-
corporating human evaluation-based methods could provide
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a more precise assessment of the factuality of generated text,
offering valuable insights for model improvements.

• Temperature Sensitivity: We observe that temperature
plays a crucial role in uncertainty quantification. Specifi-
cally, higher temperature settings often result in stronger
correlations between uncertainties and factuality scores. Fu-
ture studies could delve deeper into how temperature and
other decoding parameters influence uncertainty estimation
across different models and datasets.

• Scalability and Efficiency: While KGs are effective in han-
dling the semantic complexity of long text, their construc-
tion process can be computationally expensive, especially
for large-scale applications. Optimizing KG generation for
scalability and efficiency would be a valuable direction for
future research.

Acknowledgements
This research was supported by the Macquarie University Research
Acceleration Scheme (MQRAS) and Data Horizon funding.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Pranav Bhandari, Nicolas Fay, Michael Wise, Amitava Datta, Stephanie Meek,
Usman Naseem, and Mehwish Nasim. 2025. Can LLM Agents Maintain a Persona
in Discourse? arXiv preprint arXiv:2502.11843 (2025).

[3] Pranav Bhandari, Usman Naseem, Amitava Datta, Nicolas Fay, and Mehwish
Nasim. 2025. Evaluating Personality Traits in Large Language Models: Insights
from Psychological Questionnaires. arXiv preprint arXiv:2502.05248 (2025).

[4] Shijing Chen, Mohamed Reda Bouadjenek, Shoaib Jameel, Usman Naseem, Basem
Suleiman, Flora D Salim, Hakim Hacid, and Imran Razzak. 2025. Leveraging
Taxonomy and LLMs for Improved Multimodal Hierarchical Classification. arXiv
preprint arXiv:2501.06827 (2025).

[5] Xuelu Chen, Muhao Chen, Weijia Shi, Yizhou Sun, and Carlo Zaniolo. 2019.
Embedding uncertain knowledge graphs. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 33. 3363–3370.

[6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/

[7] Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or epistemic? Does it
matter? Structural safety 31, 2 (2009), 105–112.

[8] Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu,
Bhavya Kailkhura, and Kaidi Xu. 2024. Shifting Attention to Relevance: Towards
the Predictive Uncertainty Quantification of Free-Form Large Language Models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand,
5050–5063. https://doi.org/10.18653/v1/2024.acl-long.276

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[10] Romain Egele, Romit Maulik, Krishnan Raghavan, Bethany Lusch, Isabelle Guyon,
and Prasanna Balaprakash. 2022. Autodeuq: Automated deep ensemble with
uncertainty quantification. In 2022 26th International Conference on Pattern Recog-
nition (ICPR). IEEE, 1908–1914.

[11] Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev,
Sergey Petrakov, Kirill Fedyanin, Daniil Vasilev, Elizaveta Goncharova,
Alexander Panchenko, Maxim Panov, Timothy Baldwin, and Artem Shel-
manov. 2023. LM-Polygraph: Uncertainty Estimation for Language Models.
arXiv:2311.07383 [cs.CL] https://arxiv.org/abs/2311.07383

[12] Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. 2024. Detecting
hallucinations in large language models using semantic entropy. Nature 630,
8017 (2024), 625–630.

[13] Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco
Guzmán, Mark Fishel, Nikolaos Aletras, Vishrav Chaudhary, and Lucia Spe-
cia. 2020. Unsupervised Quality Estimation for Neural Machine Translation.
arXiv:2005.10608 [cs.CL] https://arxiv.org/abs/2005.10608

[14] Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. 2024. SPUQ:
Perturbation-Based Uncertainty Quantification for Large Language Models. In
Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), Yvette Graham and Matthew
Purver (Eds.). Association for Computational Linguistics, St. Julian’s, Malta, 2336–
2346. https://aclanthology.org/2024.eacl-long.143

[15] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok
Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, et al. 2023. A survey of uncertainty in deep neural networks.
Artificial Intelligence Review 56, Suppl 1 (2023), 1513–1589.

[16] Stephen C Hora. 1996. Aleatory and epistemic uncertainty in probability elicita-
tion with an example from hazardous waste management. Reliability Engineering
& System Safety 54, 2-3 (1996), 217–223.

[17] Pere-Lluís Huguet Cabot and Roberto Navigli. 2021. REBEL: Relation Extraction
By End-to-end Language generation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021. Association for Computational Linguistics, Punta
Cana, Dominican Republic, 2370–2381. https://aclanthology.org/2021.findings-
emnlp.204

[18] Eyke Hüllermeier and Willem Waegeman. 2021. Aleatoric and epistemic uncer-
tainty in machine learning: An introduction to concepts and methods. Machine
learning 110, 3 (2021), 457–506.

[19] Di Jin, Shuyang Gao, Seokhwan Kim, Yang Liu, and Dilek Hakkani-Tür. 2022.
Towards textual out-of-domain detection without in-domain labels. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 30 (2022), 1386–1395.

[20] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain,
Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-
Johnson, Scott Johnston, Sheer El-Showk, Andy Jones, Nelson Elhage, Tris-
tan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Gan-
guli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane
Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah,
and Jared Kaplan. 2022. Language Models (Mostly) Know What They Know.
arXiv:2207.05221 [cs.CL] https://arxiv.org/abs/2207.05221

[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. Semantic uncertainty:
Linguistic invariances for uncertainty estimation in natural language generation.
arXiv preprint arXiv:2302.09664 (2023).

[23] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. Semantic Uncertainty: Lin-
guistic Invariances for Uncertainty Estimation in Natural Language Generation.
arXiv:2302.09664 [cs.CL] https://arxiv.org/abs/2302.09664

[24] Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2024. Generating with Confi-
dence: Uncertainty Quantification for Black-box Large Language Models. Trans-
actions on Machine Learning Research (2024). https://openreview.net/forum?id=
DWkJCSxKU5

[25] Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun,
Mika Oishi, Takao Osaki, Katsushi Matsuda, Jie Ji, Guangji Bai, Liang Zhao, and
Haifeng Chen. 2024. Uncertainty Quantification for In-Context Learning of
Large Language Models. In Proceedings of the 2024 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), Kevin Duh, Helena Gomez, and Steven
Bethard (Eds.). Association for Computational Linguistics, Mexico City, Mexico,
3357–3370. https://doi.org/10.18653/v1/2024.naacl-long.184

[26] Haohui Lu and Usman Naseem. 2024. Can Large Language Models Enhance
Predictions of Disease Progression? Investigating Through Disease Network Link
Prediction. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing. 17703–17715.

[27] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and An-
drew Gordon Wilson. 2019. A simple baseline for bayesian uncertainty in deep
learning. Advances in neural information processing systems 32 (2019).

[28] Andrey Malinin and Mark Gales. 2021. Uncertainty Estimation in Autoregressive
Structured Prediction. arXiv:2002.07650 [stat.ML] https://arxiv.org/abs/2002.
07650

[29] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen tau Yih, PangWei Koh,
Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-
grained Atomic Evaluation of Factual Precision in Long Form Text Generation.
arXiv:2305.14251 [cs.CL] https://arxiv.org/abs/2305.14251

[30] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh,
Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-
grained Atomic Evaluation of Factual Precision in Long Form Text Generation.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 12076–12100. https://doi.org/10.18653/
v1/2023.emnlp-main.741

[31] KentonMurray and David Chiang. 2018. Correcting length bias in neural machine
translation. arXiv preprint arXiv:1808.10006 (2018).

[32] Akram Mustafa, Usman Naseem, and Mostafa Rahimi Azghadi. 2025. Large
language models vs human for classifying clinical documents. International

2076

https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2024.acl-long.276
https://arxiv.org/abs/2311.07383
https://arxiv.org/abs/2311.07383
https://arxiv.org/abs/2005.10608
https://arxiv.org/abs/2005.10608
https://aclanthology.org/2024.eacl-long.143
https://aclanthology.org/2021.findings-emnlp.204
https://aclanthology.org/2021.findings-emnlp.204
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2302.09664
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://doi.org/10.18653/v1/2024.naacl-long.184
https://arxiv.org/abs/2002.07650
https://arxiv.org/abs/2002.07650
https://arxiv.org/abs/2002.07650
https://arxiv.org/abs/2305.14251
https://arxiv.org/abs/2305.14251
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741


KG-UQ: Knowledge Graph-Based UncertaintyQuantification for Long Text in Large Language Models WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Journal of Medical Informatics (2025), 105800.
[33] Abdulsalam obaid Alharbi, Abdullah Alsuhaibani, Abdulrahman Abdullah

Alalawi, Usman Naseem, Shoaib Jameel, Salil Kanhere, and Imran Razzak. 2025.
Evaluating Large Language Models on Health-Related Claims Across Arabic
Dialects. In Proceedings of the 1st Workshop on NLP for Languages Using Arabic
Script. 95–103.

[34] OpenAI. 2022. Introducing ChatGPT. https://openai.com/index/chatgpt/
[35] OpenAI. 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/
[36] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.

2024. Unifying Large Language Models and Knowledge Graphs: A Roadmap.
IEEE Transactions on Knowledge and Data Engineering 36, 7 (July 2024), 3580–3599.
https://doi.org/10.1109/tkde.2024.3352100

[37] Amin Qasmi, Usman Naseem, and Mehwish Nasim. 2025. Competing LLM
Agents in a Non-Cooperative Game of Opinion Polarisation. arXiv preprint
arXiv:2502.11649 (2025).

[38] Hannah Sansford, Nicholas Richardson, Hermina Petric Maretic, and Juba Nait
Saada. 2024. GraphEval: A Knowledge-Graph Based LLM Hallucination Evalua-
tion Framework. arXiv:2407.10793 [cs.CL] https://arxiv.org/abs/2407.10793

[39] Linwei Tao, Minjing Dong, and Chang Xu. 2023. Dual focal loss for calibration.
In International Conference on Machine Learning. PMLR, 33833–33849.

[40] Linwei Tao, Haolan Guo, Minjing Dong, and Chang Xu. 2024. Consistency
Calibration: Improving Uncertainty Calibration via Consistency among Perturbed
Neighbors. arXiv preprint arXiv:2410.12295 (2024).

[41] Artem Vazhentsev, Akim Tsvigun, Roman Vashurin, Sergey Petrakov, Daniil
Vasilev, Maxim Panov, Alexander Panchenko, and Artem Shelmanov. 2023. Effi-
cient Out-of-Domain Detection for Sequence to Sequence Models. In Findings
of the Association for Computational Linguistics: ACL 2023, Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Lin-
guistics, Toronto, Canada, 1430–1454. https://doi.org/10.18653/v1/2023.findings-
acl.93

[42] Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. 2024. LUQ: Long-
text Uncertainty Quantification for LLMs. arXiv preprint arXiv:2403.20279 (2024).

[43] Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. 2024. LUQ: Long-
text Uncertainty Quantification for LLMs. arXiv:2403.20279 [cs.CL] https:
//arxiv.org/abs/2403.20279

[44] Zhihao Zhang, Carrie-Ann Wilson, Rachel Hay, Yvette Everingham, and Usman
Naseem. 2025. BeefBot: Harnessing Advanced LLM and RAG Techniques for
Providing Scientific and Technology Solutions to Beef Producers. In Proceed-
ings of the 31st International Conference on Computational Linguistics: System
Demonstrations. 54–62.

[45] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2024. A Survey of Large
Language Models. arXiv:2303.18223 [cs.CL] https://arxiv.org/abs/2303.18223

[46] Younan Zhu, Linwei Tao, Minjing Dong, and Chang Xu. 2025. Mitigating Object
Hallucinations in Large Vision-Language Models via Attention Calibration. arXiv
preprint arXiv:2502.01969 (2025).

2077

https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.1109/tkde.2024.3352100
https://arxiv.org/abs/2407.10793
https://arxiv.org/abs/2407.10793
https://doi.org/10.18653/v1/2023.findings-acl.93
https://doi.org/10.18653/v1/2023.findings-acl.93
https://arxiv.org/abs/2403.20279
https://arxiv.org/abs/2403.20279
https://arxiv.org/abs/2403.20279
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

	Abstract
	1 Introduction
	2 Related Work
	2.1 Uncertainty Quantification in Machine Learning Models
	2.2 Uncertainty in Knowledge Graphs
	2.3 Uncertainty Quantification in LLMs

	3 Methods
	4 Experiments
	4.1 Dataset and Evaluation Metric
	4.2 LLMs and Baseline Methods

	5 Uncertainty Quantification Results
	6 Conclusion
	7 Limitation
	References



