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Abstract

The evolution of sixth-generation (6G) wireless networks introduces a complex landscape
of cybersecurity challenges due to advanced infrastructure, massive device connectivity,
and the integration of emerging technologies. Traditional intrusion detection systems
(IDSs) struggle to keep pace with such dynamic environments, often yielding high false
alarm rates and poor generalization. This study proposes a novel and adaptive IDS that in-
tegrates statistical feature engineering with a deep autoencoder (DAE) to effectively detect
a wide range of modern threats in 6G environments. Unlike prior approaches, the pro-
posed system leverages the DAE’s unsupervised capability to extract meaningful latent
representations from high-dimensional traffic data, followed by supervised classification
for precise threat detection. Evaluated using the CSE-CIC-IDS2018 dataset, the system
achieved an accuracy of 86%, surpassing conventional ML and DL baselines. The results
demonstrate the model’s potential as a scalable and upgradable solution for securing next-
generation wireless networks.

Keywords: 6G wireless communications; cybersecurity; deep learning; deep autoencoder;
intrusion detection systems; machine learning

1. Introduction

Although sixth-generation (6G) wireless communication systems remain in the con-
ceptual and exploratory stages, they are projected to introduce transformative capabilities
such as ultra-high data rates, extremely low latency, and intelligent automation across
hyper-connected and virtualized environments [1,2]. These theoretical advancements are
anticipated to support futuristic applications, including holographic communications, im-
mersive extended reality (XR), autonomous systems, and large-scale Internet of Everything
(IoE) integration [3]. However, as research into 6G progresses, it becomes clear that such
innovations will significantly expand the network attack surface and introduce new cy-
bersecurity challenges stemming from the increased architectural complexity and system
heterogeneity [4-8].

Within this hypothetical framework, artificial intelligence (Al) is expected to play a
foundational role in managing, optimizing, and securing 6G infrastructures. Nevertheless,
the integration of Al also introduces risks, particularly when faced with unknown threats
and adversarial behaviors in dynamic and decentralized virtual networks. Conventional
intrusion detection systems (IDSs), typically designed for static or semi-dynamic architec-
tures, are unlikely to remain effective in these high-speed, adaptive environments, espe-
cially when confronting zero-day or previously unseen attacks [9].
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Sixth-generation networks are expected to support large-scale, heterogeneous devices
and high-volume traffic flows managed through terahertz (THz) base stations, creating
new operational dynamics in terms of computation, sensing, and communication [10].
Within this landscape, detecting sophisticated and previously unknown threats, particu-
larly zero-day attacks, remains a significant challenge for conventional intrusion detection
systems (IDSs) [11].

To explore a viable approach suitable for future 6G architectures, this study proposes
a deep autoencoder-based intrusion detection model. Unlike traditional machine learn-
ing (ML) systems that depend on labeled data and are often vulnerable to class imbal-
ance and high-dimensional noise, the proposed model leverages unsupervised learning
to autonomously extract latent patterns from simulated network traffic. Anomalies are de-
tected through reconstruction error, allowing the system to identify both known and novel
threats in an efficient manner [12].

The contributions of this work are summarized as follows:

e Designing a deep autoencoder framework that learns latent patterns from raw traffic
data, enabling unsupervised anomaly detection suited for 6G.

e Enhancing the detection of minority and rare attack types by mitigating class imbal-
ance through feature generalization.

e Improving model accuracy and reducing false alarms using reconstruction-based
scoring mechanisms.

This study evaluates the system using the SCE-CIC-IDS2018 dataset, which
includes a diverse range of modern cyberattacks, to demonstrate its effectiveness in
realistic conditions.

This model offers a lightweight and scalable solution for intelligent threat detection,
positioning it as a viable security component for next-generation wireless networks. This
work structure includes the related works presented in Section 2, while a background is
provided in Section 3. Furthermore, Section 4 contains a detailed proposal and methodol-
ogy, and Section 5 describes the dataset implementation. Section 6 discusses experimental
findings. Section 7 summarizes the conclusions along with future directions.

2. Related Work

IDSs have gained the interest of academia and cybersecurity research communities,
resulting in a plethora of articles published in recent years. Important research work in this
field is discussed and summarized, focusing on imbalanced datasets and various types of
ML and DL classifiers.

In [13], the authors explored the utilization of the random forest (RF) algorithm for
feature selection (FS) integrated to various ML techniques, i.e., linear regression, k-nearest
Neighbor (k-NN), CART, Bayesian methods, multi-layer perceptron (MLP), and XGBoost,
developing an ID Support System. The experimental findings indicated that the MLP al-
gorithm attained 96% accuracy.

In [14], researchers used the FS stage method called hybrid-correlation FS and forest-
panelized attributes. In the classifier stage, they used four different classifiers (SVM, k-
NN, RF, naive Bayes). The prediction results reached 84%. This research faces complex-
ity in the FS and classification steps. Furthermore, it prolonged training times in the
training part.

The work In [15] utilized ensemble learning algorithms for detecting anomalies
in communication networks. The system involved several stages and utilized diverse
datasets. Additionally, the researchers utilized Adaboosting and bagging algorithms by
using RF and support vector machine classification. It achieved high accuracy rates in
three datasets; however, its complexity in execution and data training should be noted.
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The research in [16] presented a novel meta-ML anomaly-detecting model for network
traffic inspection. The model achieved high performance, although further improvements
were still required to reduce false negative/positive rates and to improve the training pro-
cess’s computational efficiency.

In the study of [17], researchers employed the hybrid convolutional recurrent neural
network (CRNN) as an IDS. They leveraged the strengths of CNN to extract the features
and RNN to capture tentative features. The objective was to evaluate the effectiveness of
the HCRNNIDS, and to achieve this, experiments were conducted using free ID data, par-
ticularly the contemporary/realistic CSE CIC-DS2018 dataset. Their simulations revealed
the outperformance of the HCRNNIDS system over existing ID methodologies, achieving
a remarkable malicious attack detection accuracy of 97.75% for the dataset when subjected
to 10-fold cross-validation.

Table 1 presents a systematic comparison of related work, displaying datasets uti-
lized, the achieved performance, and the employment of oversampling (OS) and under-
sampling (US) methodologies. However, the studies included have mainly employed out-
dated datasets, e.g.,, KDD-Cup99 and NSL-KDD, rendering the detection of the latest at-
tacks difficult. Using previous datasets like KDD-Cup99 or NSL-KDD is insufficient for
identifying evolving threats. Hence, a current dataset is required to develop a more effec-
tive IDS. In addition, the majority of earlier IDS deployments primarily tested the system’s
performance/accuracy to detect normal behavior and examine its efficiency.

Table 1. Related work.

Datasets and Refs.

Classifiers Average Results Over/Under Sampling

KDD-Cup99, [18].
NSL_KDD, [14].

UNSW _nb15, [15].

CIC_IDS17, [16].
NSL-KDD, [19].

K-Means and Sequential

Minimal Optimization. 98.2 05

SVM, KNN, NB, and RF. 99 No

Ensemble learning methods. 97.3 Us
Metamodel. 98 0s/Us

AE 90 oS

As far as authors are aware, this work attains an exceptional performance as com-
pared with the existing systems (enhanced system to 86%). The proposed system sur-
passes state-of-the-art performance when tested using various datasets and significantly
obtains remarkable rates for detection and false alarm/negative rates while requiring the
least amount of time/complexity.

3. Background
3.1. Security Vulnerabilities in 6G and the Urgent Need for Intelligent Defense Mechanisms

The emergence of 6G wireless networks promises significant advancements in com-
munication capabilities, including the use of THz frequency bands, intelligent reflecting
surfaces (IRS), and ultra-dense network infrastructures. However, these innovations also
expand the attack surface, exposing 6G systems to an increased variety of cyber threats
such as jamming, spoofing, eavesdropping, and adversarial machine learning attacks [20].
Additionally, the inherently decentralized and heterogeneous architecture of 6G networks
presents challenges in ensuring secure authentication, establishing trust, and protecting
cross-domain data.

Traditional static security solutions lack the flexibility needed to address the dynamic
and evolving nature of these threats. Consequently, there is an urgent demand for Al-
driven, adaptive IDS capable of analyzing complex, high-volume network data in real time
to identify novel and sophisticated attacks [20,21]. Recent studies emphasize the role of
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formal verification, behavioral modeling, and privacy-preserving Al techniques as criti-
cal components in securing 6G networks against both known vulnerabilities and zero-day
attacks [22-24]. Such intelligent defense mechanisms are vital to safeguarding critical ap-
plications in 6G, including autonomous transportation, smart healthcare, and industrial
automation, where reliability and trustworthiness are essential.

3.2. Datasets

Effective training and evaluation of IDS models require datasets that represent both
normal and malicious network activities. Several publicly available datasets are commonly
used in intrusion detection research:

KDD_Cup99 Dataset: Developed in 1998 by DARPA, this dataset contains around
5 million records, consisting of a mixture of normal and various attack traffic categorized
into five groups. Despite its widespread use, it has limitations such as redundancy and
outdated attack types.

NSL-KDD Dataset: Animproved version of KDD_Cup99, this dataset removes redun-
dant entries and provides a more balanced distribution of attack types, facilitating more
accurate evaluation of IDS models [25].

CIC_IDS2017 Dataset: Created in 2017, this dataset features realistic network traffic
with updated attack types and 86 features, including IP addresses, protocols, and times-
tamps. It addresses some limitations of earlier datasets by incorporating more current
cyber threats [25].

CSE_CIC_IDS2018 Dataset: Developed by the Canadian Institute for Cybersecurity
during 2018-2019, this dataset builds upon the standards set by CIC_IDS2017. It contains
approximately 4.5 million records covering various attack types and benign activities, with
detailed statistical features capturing traffic in both forward and backward directions [25].
The dataset’s high quality, low duplication, and comprehensive attack coverage make it
well-suited for evaluating modern IDS frameworks, particularly for environments like 6G
Tables 2 and 3.

Table 2. SCE_CICIDS18 description.

Class_Name Attacks_Number
Benign 2,856,035
Brute_Force 513
SQL injection 53
Infiltration 93,063
DoS 1,289,544
Bot 286,191
Total 4,525,399

Table 3. SCE_CICIDS18 information.

Datasets Class1 Class2 Class3 Class4 Classb5 Class6
KDD_Cup99 4,111,035 553,301 45,268 18,599 112
NSL_KDD 77,035 14,077 14,077 4,833 119 .
CIC_IDS17 2,311,035 453,438 15,967 1,966 35 21
CSE_CIC_IDS18 2,211,035 1,289,544 286,191 93,063 513 53

Table 3 shows that the datasets exhibit class imbalance, which can affect the accuracy
of the system’s evaluation. Thus, a balanced formulation is required to accurately measure
the system’s performance. The degree of imbalance can be quantified using (1) and can be
utilized as a metric:

p = max(ci)/min(ci) ))
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where p is the imbalanced ratio and ci is the dataset class.

The imbalance present in these datasets, quantified by the ratio between the most
and least represented classes, poses challenges in evaluating IDS performance accurately.
Addressing this imbalance is critical for robust detection, especially of rare attack types.

3.3. Deep Learning Algorithms

The AE architecture contains encoding/decoding operations: firstly, it converts the
input data vector into a generally smaller form by the encoder. Secondly, it tries to decode
the compressed vector to recover the original input by the decoder. The AE can extract
important characteristics from unlabeled data after being trained in an unsupervised man-
ner [26-29]. A traditional AE model with a single hidden layer is displayed in Figure 1.
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Figure 1. Traditional AE architecture.

A lower representation, e, is created from the input data vector z:
e=¢ X (zx W+b) 2)

Here, W stands for the weighting matrix, b for the biasing vector, and ¢ for the en-
coder’s activation function. The input (z) is then recreated from the encoded form (e)
via decoding:

= (eWT + b) 3)

The reconstructed vector is represented by z, while the decoder’s activation function
is shown by ¢. An RNN LSTM unit is referred to as a memory block [29]. A typical LSTM
architecture is shown in Figure 2. A cell (g), input (i), output (o), and forget gate(s) are all
included (3). The layer of LSTM units can figure out the long-term relationships between
different time-series data time steps. The hidden state (i.e., output state), which holds an
output at the time step t, and the cell state, which retains knowledge gained from earlier
time steps, are the two states of such an LSTM layer.

M 4 N\
o, O

©

Forget Input

gate gate Candidate Oulput

memory gate

¢, [tah] © II
Hidden state j
H, L r '

Input X,

Figure 2. Traditional LSTM architecture.
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The aforementioned gates are used to update the hidden and cell states at each time

step &
ct=Iltx O xct—1+it x O x gt 4)
ht=ot x O x tanh(ct) (5)
it = og(Wiz + Riht — 1 + bi) 6)
ft=09 (Wfz+Rfht — 1 +10f) (7)
gt = tanh (Wgz + Rght — 1 +bg) 8)
ot =0g (Woz + Roht — 1 + bo) 9)

where: W stands for the weighting matrix, R for the recurrent weighting matrix, and b for
bias, whereas o represents the sigmoid activation function.

4. Methodology

For developers, developing an IDS with accurate detection capabilities is considered
the most critical factor in several recent relevant works. System accuracy is significantly
influenced by class imbalance in the dataset, where a particular group constitutes the ma-
jority of the dataset and dominates. In similar situations, relying solely on statistical ac-
curacy is not appropriate, as it becomes misleading. Consequently, to maximize attack
effectiveness, skilled attackers may focus on a limited set of attack types when a severe im-
balance exists between the majority and minority groups. Given that many modern IDSs
rely on anomaly detection and employ six ML and DL (i.e., AE, and MLP) algorithms to
identify anticipated data, several practical tools were developed previously. The system
methodology is described as follows.

4.1. General Flowchart Structure of the Proposed System

Figure 3 demonstrates the general system steps to monitor untrustworthy
traffic activities.

Intelligent Reflecting X e
Surface (IRS) o UAV- Base Station
o based

W™

Data Plane ; spoofing “\ ((e))
Sy Base Station

THZ Jamming
Attack

U

Fdausion Attack

Firrawall

6G-Al Integrated
THz Jammlng/ Intru5|on Detection Frameroinework a Control Plane

UAV-based L Edge Al

IDS ** 1_-
q--—»

Al Plane

Data agregatlon
loT/1leT Dewces Multi-class

& & Preprocessmg ]—> ngsﬁﬁtse

Al Plane GE-au a
Integratiod =~ "L Edge Al Server

® Bryte Force [ ] Data Plane
SQL Injection | [ Control Planc
Infiltration |:| Al Plane
DoS

SRl l_e —>[ Procescessmg }—\ Server
4

Figure 3. The general structure of the proposed system.
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Figure 3 illustrates the system’s stages for detecting suspicious and malicious traffic
activities transmitted via 6G networks (anomalous behavior).

4.2. Preprocessing Stage

The dataset undergoes comprehensive preprocessing, consisting of three main steps:
filtration, transformation, and normalization. It is then split into a 70% training set and a
30% testing set. The distribution processes are carried out by utilizing ML classifiers for
robust and effective model training and evaluation.

1. Filtration removes outliers from the dataset using a median absolute deviation esti-
mator (MADE):
MADE =P xmed (fj — |med(fj)!) (10)

Here, med denotes the operator, fj denotes the attribute, and P (multiplicative) is a
constant, equal to 1.4.

2. Transformation converts categorized features (e.g., protocol type, service, and flag)
into enumerated values via the one-hot encoding function. For instance, the protocol
type attribute (i.e., TCP, UDP, and ICMP) is encoded as binary-type vectors ([1,0,0],
[0,1,0], and [0,0,1]), respectively.

fi> MADExP (11)
3. Normalization applies Minimax scaling as:
xiValues = XVal—in/max—min (12)

4.3. Feature Extraction Stage

It extracts the most relevant characteristic features. The proportion of zeros is calcu-
lated for the continuous dataset’s feature. Features with more than 80% zeros are excluded
from further analysis. A total of 100-dimensional feature vectors are constructed by com-
bining the other 18 persisting features with 84 transformation vectors, while 20 variables
construct the vectors of more specific features with related attributes. The resulting vector
with the most correlated features is used as input to the classifier models in the next stage.
Figure 4 presents a histogram of the dataset’s null values.

NUMERIC-FEATURE
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Figure 4. Histogram of the dataset’s null values.
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4.4. Classifiers Techniques Stage

To effectively distinguish between benign and malicious traffic activities in the
SCE_CIC_IDS18 dataset, comprising various attack classes such as DoS, Bot, Infiltration,
SQL Injection, and Brute Force, this study employs a deep autoencoder (DAE) model for
feature extraction and classification. Additionally, the performance of the DAE is bench-
marked against several machine learning and deep learning classifiers, including LSTM,
SVM with linear and quadratic kernels, and discriminant analysis (DA) in both linear
(LDA) and quadratic (QDA) forms. Algorithm 1 describes the outlines of DAE.

Algorithm 1 Outlines a deep autoencoder (DAE) designed for unsupervised feature
extraction followed by supervised classification. Below is a clarified and enhanced
step-by-step description of the architecture and training process.

Input:

z: Input feature vector (dimensionality = 100)

AE [100:50:100]: Autoencoder structure (encoder — bottleneck — decoder)
SCG: Scaled Conjugate Gradient optimization.

¢(s): Saturating linear activation function

MSE: Mean Squared Error loss function.

Output:

z: Reconstructed input vector

J: Class prediction using SoftMax (binary or multiclass)

Algorithm Steps:

Initialization:

Encoder: Compresses input vector z € R*100 into a 50-dimensional latent vector e.
Decoder: Reconstructs z from e using ¢(s) activation.

Activation: Saturating linear units in decoder; SoftMax for final classification layer.
Unsupervised Pretraining;:

Train the autoencoder using 100 epochs and SCG optimizer.

Loss function: MSE(z, Z;)

Stop training once least error < 0.0083 is achieved.

Latent vector e retains essential features from input z.

Supervised Fine-Tuning;:

The 50-dimensional vector e is fed into a fully connected SoftMax classifier.
Train the output classifier using labeled data for binary or multiclass decisions.
Use cross-entropy loss and early stopping to avoid overfitting.

Evaluation:

Model performance is assessed using accuracy, precision, recall, and F1-score.
Both binary and multiclass scenarios are supported.

Table 4 demonstrates the algorithm parameters and values.

Table 4. DAE Parameters with values.

Parameter Value
Hidden Layers 3 (Input-Encoder-Decoder)
Neurons 100 — 50 — 100
Epochs 100
Optimizer Scaled Conjugate Gradient
Loss Function Mean Squared Error (MSE)

Activation Functions Saturating Linear, SoftMax
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Table 4. Cont.
Parameter Value
Regularization Early stopping + Dropout (if needed)
Architecture Objective Minimize reconstruction error; extract latent features
Training Mode Layer-wise pretraining — supervised fine-tuning

The DAE architecture was designed based on empirical analysis to ensure low recon-
struction error and effective handling of high-dimensional network traffic data. A bot-
tleneck layer with 50 neurons was selected to retain key discriminative features while re-
moving irrelevant information, striking a balance between model complexity and gener-
alization. During training, the reconstruction error, measured by MSE, reached an op-
timal value of 0.0083, validating the effectiveness of this configuration. The learned 50-
dimensional feature representation was then passed to a fully connected SoftMax layer
for binary or multiclass classification. A supervised fine-tuning phase was subsequently
applied to further enhance classification performance, as illustrated in the corresponding
architectural Figure 5.

Autoencoder Autoencoder
classifiers
@ (@
— dm N @l
Gz (Z2 /\ e
—_— N T Dos
S =
: Bot
Brute Force
SQL Injection
C..’.'z_n"?D Infilteration
= Softmax
e
5/
[100x1] [100x1] [100x1]
a b

Figure 5. AE-based on classifiers: (a) after training AE [100:50:100] and (b) retrained using a super-
vised learning approach.

Designing the DAE architecture required thoughtful consideration of several factors
to ensure efficient feature extraction and accurate data reconstruction. Key elements in-
cluded the complexity and dimensionality of the input data, which influence the depth
and width of the network. An optimal balance between compression and reconstruction
layers was maintained to preserve critical features while reducing redundancy. The se-
lection of activation functions played a vital role in enabling the model to learn nonlinear
patterns effectively.

To avoid overfitting, the model’s capacity was controlled through appropriate layer
sizing and regularization techniques. The architecture was finalized through iterative ex-
perimentation, guided by performance metrics such as reconstruction accuracy and gen-
eralization ability. Moreover, task-specific needs, such as anomaly detection, and prac-
tical limitations, like computational resources and training time, shaped the final design.
For comparative evaluation, other classification techniques were also implemented, as out-
lined in Algorithm 2.
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Algorithm 2: Developing techniques (i.e., MLP, LSTM, SVM, and DA). Input:
data-vector (z), i.e.,, AE [100:50:100], MSE, Wi, SCG.

e  Output: Reconstruct vector using (saturating linear activation function ¢ (s)) and
measurements for binary and multi-classification forms.

e  Begin:

e Initialization:

e  Fine-tuning strategy, least error = 0.0083, hidden neurons = 50, hyperparameter,

Wi=0, bias =1, K=1, learning rate = 0. 001.s, classifiers (Ci) (i.e., MLP, LSTM,

LSVM, QSVM, LDA, and QDA).

For each Ci, apply the following steps:

Apply the following steps for C1/* where C1 is MLP*/.

For construction, apply the following steps:

Convert zi into a dimensional vector (e) (i.e., 50) using SCG (1)/* convert it into a
smaller representation®/.

Extract important characteristics from unlabeled zi.

For reconstruction, apply the following steps:

Saturating linear activation function for "z using (2).

End for

Compute SoftMax function

Stopping criteria: when the error rate is less than 0.0083.
/* Note: MLP and AE designs have the same structure. */.
Apply the following steps for C2/* where C2 is LSTM*/.
Employed 50 cells to encode the input data.

Determine: Learning rate = 0.001, mini-batch size = 128.

The output was then input into a dense, fully connected layer with 2 or 4 neurons
(a SoftMax activation function).

Compute ADAM (adaptive moment estimation).
e  Apply the following steps for C3/* where C3 is SVM*/.

e  The hyperplane with the most significant degree of class separation is found
via SVM.

e  Compute the vectors Vi for both LSVM and QSVM.

e  Update the weight.

e  Apply the following steps for C4/* where C4 is DA*/.

e  Reducing dimensionality while maintaining strong class separability is the aim of
DA./* It projects the data samples into a lower-dimensional space to maximize
class separability and minimize sample dispersion within a class*/.

e End for

e  Compute the measurements for binary and multi-classification forms.

e End.

Algorithm 2 outlines the steps of alternative techniques, beginning with the MLP clas-
sifier. It is a supervised learning technique used to train this feed-forward neural network.
Figure 6 shows the suggested MLP classifier mechanism. The MLP employs a SoftMax
output layer for classifications and a hidden layer with 50 neurons. Moreover, the LSTM
classifier (shown in Figure 7) is structured with an input layer and an output (dense) layer.
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5. Implementation

Softmax
[5x1]

The proposed system is developed and evaluated using the SCE-CIC-IDS2018 dataset,
which is partitioned into 70% for training and 30% for testing. Performance assessment is

conducted based on a set of extracted features. Subsequently, a pioneering ID approach

is introduced using the DAE algorithm, with a comprehensive performance comparison

against other contemporary techniques across binary and multiclass classification contexts.

The implementation is carried out in Python 3.8 within the Google Colab environ-

ment, utilizing the Scikit-learn and TensorFlow libraries. Experiments are run on a system

equipped with an Intel Core i7 processor and a 64-bit Windows 11 operating system.

To evaluate the effectiveness of the proposed method, several key performance met-

rics are employed, including precision, detection rate (DR), F1-score, and overall accuracy.

F1-Score = 2(Precision X Recall)/(Precision + Recall)

Precision (P) = Tp/(Tp + Fp)

Recall = Tp/(Tp + Fn)

Accuracy = (Tp + Tn)/(Ip + Fp + Tn + Fn)

(13)
(14)
(15)
(16)

True negatives (In refer to the number of instances correctly identified as normal,

while true positives (Tp) represent the number of abnormal instances accurately detected.
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False positives (Fp) are normal traffic patterns incorrectly classified as anomalous, whereas
false negatives (Fn) are abnormal traffic patterns mistakenly identified as normal.

6. Results, Discussion, and Evaluation

The DAE-architected system performance is expressed in two classification forms: bi-
nary class and multi-class. Table 5 demonstrates the accuracy of the proposed classifiers
in binary and multi-classification forms.

Table 5. Comparison accuracy of the different proposed classifiers in binary-accuracy and multi-
accuracy forms.

Classifiers Binary-Accuracy Multi-Accuracy
DAE 84.2% 81.3%
MLP 84.2% 81.3%

LSTM 84.2% 81.3%
LSVM 84.2% 81.3%
QSVM 84.2% 81.3%
LDA 84.2% 81.3%
QDA 84.2% 81.3%

6.1. Binary Class Form Result

Table 6 illustrates the results of DAE with different developing classifiers in the binary
classification forms (i.e., normal and abnormal) with various measurements.

Table 6. Measurements of different classifiers in binary classification forms.

Classes DAE MLP LSTM LSVM QSVM QDA CNN-LSTM
Normal 84.7% 80.1% 73.1 78.1 80% 77% 79.6%
Abnormal 85.1% 79.2% 76% 81% 76.3% 78.9% 77.9%
Recall
Normal 84.2% 81.3% 76.5% 84% 81.1% 75% 75%
Abnormal 82.1% 79.1% 78.1% 71% 77.2% 82% 82%
Accuracy
Normal 84.7% 82% 77.8% 80% 87.9% 77.9% 80.2%
Abnormal 82.1% 81% 79.2% 75% 73.8% 84.1% 83.1%
F1-Score
Normal 84% 82.3% 78.9% 86% 88.2% 78.7% 87.6%
Abnormal 82% 71.4% 79.4% 78% 79.3% 84.5% 85.3%
FP Rate
Normal 87.6% 83.5% 78.5% 83% 87.2% 76.2% 78.7%
Abnormal 86.1% 70.9% 80.1% 77.1% 80.1% 85.5% 80.5%
FN Rate
Normal 85.6% 79.1% 73.5% 80% 80% 74.2% 81%
Abnormal 83.1% 73% 77% 73% 81% 79% 82%

The evaluation results in Table 6 reveal that the denoising autoencoder (DAE) classi-
fier outperforms traditional and deep learning models in anomaly detection tasks. Among
the classical models, the quantum support vector machine (Q-SVM) demonstrated supe-
rior performance over linear SVM (L-SVM), achieving higher F1-scores for both normal
and abnormal classifications. Similarly, quadratic discriminant analysis (QDA) showed
better overall performance than linear discriminant analysis (LDA), though LDA was more
effective in identifying normal samples. The multi-layer perceptron (MLP) and long short-
term memory (LSTM) models also yielded competitive results, with LSTM achieving a
78% average F1-score. However, the DAE classifier surpassed all others, reaching an av-
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erage Fl-score of 82% and an accuracy of 86%. The study also utilized ROC curves and
AUC metrics to visualize classifier performance, highlighting DAE’s superior capability in
distinguishing between normal and anomalous instances.

Figure 8 offers a dual-view assessment of classifier performance. On the left, the bar
chart compares F1-score and accuracy across models, with the DAE outperforming all oth-
ers in both metrics. Q-SVM surpasses L-SVM in F1-score, while QDA shows a slight edge
over LDA in anomaly detection. LSTM maintains moderate, balanced performance. On
the right, the ROC curve highlights the DAE’s strong classification capability, achieving
an AUC of 0.91, indicating excellent distinction between normal and anomalous data. Col-
lectively, these findings confirm the DAE'’s robustness, achieving the best accuracy (86%),
highest F1-score (80%), and outstanding AUC, making it especially suitable for intrusion
detection in next-generation 6G cybersecurity systems.

90%
80%
70% 1

mmm Fl-score
B Accuracy

e

y AUC =091

00 02 04 06 08 1.0 1.0

S S S @
& \?A Ve D False Positive Rate

F1-score ROC curve
Figure 8. F1-score and ROC curve for all the classifiers.
6.2. Multi-Class Form Result

The findings of multi-classification forms are detailed in Table 7.

Table 7. Measurements of different classifiers in (multi-class) classification forms.

Precision Measurement

DAE MLP LSTM LSVM QSVM QDA
DoS 84.7% 80.1% 73.1 78.1 80% 77%
SQL-Injection 84.7% 80.1% 73.1 78.1 80% 77%
Infiltration 84.7% 80.1% 73.1 78.1 80% 77%
Brute force 84.7% 80.1% 73.1 78.1 80% 77%
Bot 85.1% 79.2% 76% 81% 76.3% 78.9%
DoS 84.7% 80.1% 73.1 78.1 80% 77%
Recall measurement
DoS 84.2% 81.3% 76.5% 81% 81.1% 75%
SQL-Injection 84.2% 81.3% 76.5% 80% 81.1% 76%
Infiltration 84.2% 81.3% 76.5% 82% 81.1% 75%
Brute force 84.2% 80.6% 76.5% 80% 81.1% 75%
Bot 82.1% 79.1% 76.2% 71% 77 2% 82%
Accuracy measurement
DoS 84.7% 80% 77.8% 80% 87.9% 77.9%
SQL-Injection 84.7% 79% 78% 80% 87.9% 77.9%
Infiltration 84.7% 81% 76.3% 81% 79% 77.9%
Brute force 84.7% 80% 75.9% 80% 75.9% 71.6%

Bot 82.1% 83% 79.2% 75% 73.8% 80.1%
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Table 7. Cont.

Precision Measurement

DoS
SQL-Injection
Infiltration
Brute force
Bot

84%

86%

85%
86.1%
87.8%

F1-Score measurement
82.3% 78.9% 76% 80.2% 78.7%
71.4% 79.4% 78% 79.3% 84.5%
70.4% 77.3% 78% 79.1% 82.5%
74.1% 78.4% 79% 73% 78%
75% 74.9% 76% 78% 81%

Simulation experiments confirm that the DAE delivers the strongest overall perfor-
mance. However, the impact of false-positive and false-negative alarms is determined by
the security objectives, the protected network’s characteristics, and the operational context.
Balancing these error types is therefore a persistent challenge in ID design. Continuous
refinement—through algorithm fine-tuning, threshold recalibration, and alignment with
the organization’s risk tolerance and operational requirements—is essential for maintain-
ing an effective IDS.

6.3. Reduction of Complexity and Procedural Time

This section outlines the efficiency benefits of using DAE for intrusion detection. By
compressing input data, DAEs effectively reduce dimensionality, which lowers computa-
tional demands during both training and inference. The model also enhances performance
by extracting only the most relevant features, eliminating noise and redundancy. These op-
timizations contribute to faster classification and anomaly detection processes.

Additionally, reduced data dimensions lead to lower memory usage and quicker data
processing. The system’s architecture supports parallel computation, enabling deploy-
ment on GPUs and distributed platforms for improved speed.

To assess the system’s computational efficiency, several metrics are proposed: train-
ing and inference times, resource usage (CPU, GPU, and memory), and scalability across
datasets of different sizes and complexities. These measures provide a comprehensive eval-
uation of the system’s performance in real-world and resource-constrained environments.

6.4. Comparison with Relevant Works

Table 8 illustrates the proposed study compared with other related studies in terms
of datasets, FS techniques, used classifiers, and accuracy results.

Table 8 shows the best accuracy result of 86% when applying DAE to the SCE_CIC_ID-
S18 dataset with the feature extraction method.

Table 8. Comparison with other related studies.

Refs.

Datasets

Feature-Selection Classifiers Accuracy Precision Recall F1-Score

[30]

[14]

[1e]

NSL-KDD

UNSW_NB15
CIC_IDS17

NSL-KDD

UNSW_NB15
CIC_IDS18

SCE_CIC_IDS17

[15]

NSL_KDD
SCE_CIC_IDS17

CFS_FPA KNN 84% 83% 82.7% 84%

RF Hybrid classifiers 82% 81.7% 82.3% 82%
CFS_FPA 84.5% 84.2% 83.5% 84.3%

84.9% 84% 84.1% 85%

Ensemble learning methods 81% 81.3% 82.5% 81%

82% 81.7% 82.3% 82%

RF Meta-Model 84% 83% 82.7% 84%

85% 84% 84.6% 85%
Correlation with Anomaly detection using 84.1% 84.2% 83.5% 84.3%
random forest ensemble learning 84.7% 84.6% 84% 84.1%
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Table 8. Cont.
Refs. Datasets Feature-Selection Classifiers Accuracy Precision Recall F1-Score
Standard CNN layers
[31] Erﬁs)‘(/\_]ﬁlj "?Illg - followed by LSTM 82% 83.7% 81.3% 84%
temporal layers
[19] NSL_KDD Correlal?s"“ with AE 85% 85.1% 84.9% 85%
[32] NSL_KDD Kfi’i/fe:;‘:rd}:gw CNN-LSTM 82% 83% 84% 84.8%
P;;’St‘;eld SCE_CIC_IDs1g ' eature extraction, DAE 86% 86.3% 85.7% 86%

7. Conclusions and Future Directions

This study presented a DAE-based ID framework that demonstrated superior per-
formance on the CSE-CIC-IDS2018 dataset when benchmarked against several advanced
classifiers, including LSVM, QSVM, LSTM, and MLP. The DAE architecture effectively cap-
tured intricate and nonlinear patterns in network traffic, enabling accurate differentiation
between normal and malicious behavior, which traditional models often miss due to their
limited representation capacity.

As wireless networks evolve toward 6G—with its requirements for ultra-reliable
low-latency communication, massive device connectivity, and intelligent automation —the
need for adaptive and efficient threat detection becomes critical. The proposed DAE model
shows strong potential in addressing these needs due to its ability to autonomously learn
abstract features from raw traffic data, supporting both scalability and
real-time deployment.

Moving forward, future research will focus on expanding this work in several key
directions. This includes integrating the proposed IDS into realistic 6G network en-
vironments, e.g., base station-level implementation or edge-cloud collaboration mod-
els. Additionally, further experimentation will be conducted using diverse and evolving
datasets, e.g., CIC-FlowMeter and other IoT-oriented traffic repositories, to validate cross-
domain generalizability. Furthermore, attention will be given to optimizing the system for
resource-constrained environments, enhancing its suitability for deployment in embedded
or hardware-accelerated platforms. Overall, this DAE-based detection framework offers a
promising and intelligent solution to the growing challenges of ID in next-generation wire-
less systems. It lays the foundation for building more secure, adaptive, and autonomous
cybersecurity defenses in the emerging 6G era.
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