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Abstract

Automated movement intention is crucial for brain-computer interface (BCI) applications.
The automatic identification of movement intention can assist patients with movement
problems in regaining their mobility. This study introduces a novel approach for the
automatic identification of movement intention through finger tapping. This work has
compiled a database of EEG signals derived from left finger taps, right finger taps, and a
resting condition. Following the requisite pre-processing, the captured signals are input into
the proposed model, which is constructed based on graph theory and deep convolutional
networks. In this study, we introduce a novel architecture based on six deep convolutional
graph layers, specifically designed to effectively capture and extract essential features from
EEG signals. The proposed model demonstrates a remarkable performance, achieving an
accuracy of 98% in a binary classification task when distinguishing between left and right
finger tapping. Furthermore, in a more complex three-class classification scenario, which
includes left finger tapping, right finger tapping, and an additional class, the model attains
an accuracy of 92%. These results highlight the effectiveness of the architecture in decoding
motor-related brain activity from EEG data. Furthermore, relative to recent studies, the
suggested model exhibits significant resilience in noisy situations, making it suitable for
online BCI applications.

Keywords: BCI; CNN; graph theory; EEG; movement intention; finger tapping

1. Introduction

The brain—computer interface (BCI) allows direct interaction between the human brain
and external equipment. Electroencephalography (EEG) data utilized in motor imagery
brain—computer interfaces (BCls) enable users to accomplish a variety of tasks without
requiring physical movement [1]. EEG signals are used in many ways to detect emotions,
detect sleep stages, detect driver fatigue, detect epilepsy, and detect depression [2]. This ap-
proach’s impact on the rehabilitation of persons with disabilities has raised it to a prominent
interdisciplinary issue in recent years. Motor imagining (MI)-EEG analyzes and interprets
signals from imagined tasks to control peripherals, wheelchairs, and prostheses [1].

The foundation for the majority of BCIs is established by evoked activity paradigms,
including visually evoked steady-state potentials (SSVEPs) [3,4], event-related potentials
(ERPs) [5], and motor-related paradigms like motor imagery [6]. Visual and attentional
processes are necessary for the reliable elicitation of a quantifiable response in SSVEP
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and ERP. Conversely, movement neural correlates enable the voluntary generation of
movement intents without the need for external inputs, thereby facilitating the intuitive
control of BCIs [7,8]. Power changes across numerous EEG frequency bands are employed
to assess movement intent. This method disregards the movement-related information
present in the broader EEG spectrum and temporal domain due to the non-stationarity
of the EEG signal. Neural movement correlates, such as motor-related cortical potential
(MRCP) and event-related synchronization (ERD/S), are frequently employed to assess
voluntary movement intention, execution, and visualization using EEG [9]. ERD and ERS
are frequently employed to assess movement intention and imaging, resulting in a decrease
in u[10] and P [11] power and an increase in power. In order to ascertain tasks associated
with movement, numerous features are extracted from the EEG spectral domain. The most
prevalent method of evaluating ERD is through the analysis of power spectral density (PSD)
and time frequency [12,13]. A progressive negative cortical potential, or MRCP, is detected
at low frequencies and manifests approximately two seconds prior to voluntary movement.
Identification is challenging due to the fact that the amplitude of MRCP is small (8-10 pV) in
comparison to spontaneous EEG activity (100 1V) [14]. The average of numerous voluntary
movement EEG samples is a widely used method for determining MRCP. In the following,
recent studies of computational techniques for evaluating and tracking movement intention
that are automatically developed based on EEG data are reviewed.

Haw et al. [15] used a single-channel EEG signal to automatically identify the move-
ment intentions of five healthy individuals. The movement intention was categorized
using the BP component. Two-stage classification was based on error thresholds and
correlation. The technique has an accuracy rate of 70%. One of the study’s weaknesses
was the difference in the proposed method’s performance among people. The use of a
single-channel EEG signal in their study proved to be favorable. Yom et al. [16] employed
a sample of five healthy adults to determine movement intention automatically. EEG
waves were employed in nine channels during the experiment. To capture the signal, a
finger-tapping action was also used. The researchers employed the MRP component to
characterize movement intentions. The part was pre-processed using a low-pass filter set at
10 Hz. Categorization was accomplished using the K-nearest neighbor (KNN) and support
vector machine (SVM). Bai et al. [17] conducted an experiment with 12 participants to assess
the automated identification of movement intention. They recorded using 122 channels
of EEG signals. Finger tapping provided the framework for the movement performed in
their experiment. The researchers employed the MRP and ERD components to characterize
movement intentions. The part was pre-processed using a Butterworth low-pass filter
of the third order. The classification accuracy in the two stages using artificial neural
networks (ANNs) was 75%. One of the method’s disadvantages is that it employs 122 EEG
signal channels, which may be unpleasant for patients and increase power consumption
in prosthetic devices. Kato et al. [18] used a single-channel EEG signal to automatically
identify the purpose of movement in seven healthy persons. Their experiment revealed
tapping-based movement. The contingent negative variation (CNV) component was used
to classify movement intentions. For classification, the SVM was utilized. Boye et al. [19]
employed a single volunteer to automatically determine movement intention. The EEG
signal was obtained by tapping the finger. The researchers employed the MRP component
to characterize movement intentions. In the pre-processing step, a low-pass filter and prin-
cipal component analysis (PCA) were applied. The classification challenge was performed
using the KNN and SVM algorithms. They found a 96% classification sensitivity for the two
stages. The testing on a single subject was a limitation of the study. Lew et al. [20] utilized
eight healthy participants and two stroke survivors to automatically measure movement
intention. For signal recording, sixty-four EEG channels were employed. They employed
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arm motion as the foundation for movement in their experiment. In the pre-processing
step, an IR filter with a cutoff frequency of 0.1 was used. The KNN was used to categorize
data. Their technique of distinguishing movement intention was shown to be effective 76%
of the time. According to studies, the proposed algorithm was effective 82% of the time
for healthy participants and 64% of the time for sick individuals. In the study by Niazi
et al. [21], 16 healthy volunteers” movement intentions were automatically recognized.
The data were collected utilizing 10 channels of EEG signals. Leg movement served as
the foundation for the movement type in their study. The researchers employed the BP
and MRCP components to classify movement intentions. For categorization, the Neyman—
Pearson Lemma (NPL) was utilized. Niazi et al. [22] conducted studies on twenty healthy
people and five stroke sufferers to automatically assess movement intention. The study
utilized ten channels of EEG signals for re-recording and focused on limb movements. The
researchers employed the MRP component to characterize movement intentions. During
the data-processing step, a band-pass filter was applied in the frequency range of 0.05
to 10 Hz. Ahmadian et al. [23] conducted experiments with three healthy participants.
The study acquired data for the automated identification of movement intention utiliz-
ing 128 channels of EEG signals. The signal was captured using a tapping motion with
the fingertips. The researchers employed the BP component to characterize movement
intentions. The pre-processed component used an ideal filter with a frequency range of
0.5 to 70 Hz. Furthermore, the dimensionality of the feature vector was reduced using the
independent component analysis (ICA) technique. It took around 51 s for the algorithm
to discriminate between the blind sources. The study’s limitations were the huge number
of channels employed in the EEG signal and the small number of samples collected. In
order to automatically recognize movement intention, Jochumsen et al. [24] conducted an
experiment with 12 healthy volunteers. Moreover, the signal was recorded using 10 chan-
nels of EEG signals. Additionally, the way they moved was determined by how their legs
moved during the trial. In the study, 0.5 to 10 Hz was the perfect filter they employed for
the pre-processed portion. The feature-vector dimension was decreased by the researchers
using the constraint-satisfaction—problem (CSP) technique. For the classification, SVM was
also employed. Their approach was claimed to have an 80% overall effectiveness rate in
differentiating movement intention. Xu et al. [25] included nine healthy participants. To
capture the signal, they used nine EEG wave channels. They used the MRCP component
in the experiment, and their movement style was also determined by foot movement. To
pre-process the data, they used a band-pass filter with frequency ranges of 0.5 to 3 Hz. They
claimed 75% classification accuracy for the first two phases using KNN. Jiang et al. [26]
studied nine healthy people. They used nine EEG channels to record the signal for automat-
ically recognizing movement intention. Furthermore, they used the MRCP component to
classify movement intention and determined the movement type based on leg movement
during the trial. They increased the SNR by using LSE. Their two-stage classification was
estimated to be 76% accurate. Wairagkar et al. [27] recruited nine healthy participants,
six men and eight women, aged 22 to 30. The autocorrelation function was used in this
analysis. The researchers used the ERD component to categorize movement intentions. The
categorization process also made use of the KNN. They claimed that their two-stage classi-
fication was 78% sensitive. Shahini et al. [28] presented a new method for automatically
detecting movement intention using EEG signals. They used basic convolutional neural
networks (CNNSs) for feature selection/extraction and classification, achieving significant
accuracy in two and three different classes of finger strokes. Their network architecture
included 10 convolutional layers and two fully connected layers. Jochumsen et al. [29] used
EEG and electromyography (EMG) signals to automatically detect movement intention in
Parkinson’s disease patients. These researchers used engineering methods for feature selec-
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tion/extraction and were able to collect and classify a database in three distinct scenarios.
The three-class mode has the highest reported classification accuracy of around 89%. Lutes
et al. [30] used EEG signals to automatically detect movement intentions. In this study, they
combined convolutional networks and achieved an accuracy of 98.50 for negative skew.
When compared to other networks like EEGNet and GraphNet, their model outperformed
them all. Choi et al. [31] used EEG signals to classify movement intentions. They selected
and extracted features from an offline dataset using a proposed pipeline. They also used
the SVM classifier for classification. The final classification accuracy was reported to be 86%.
Dong et al. [32] proposed automatically detecting movement intention using EEG signals.
These researchers used transfer learning to identify movement intention based on the
affected arm’s bidirectional movement. They collected a database of 12 healthy individuals
who were able to recognize movement intention using machine learning techniques on
virtual reality (VR) induction. The average accuracy reported in this study was 85%.

Analysis of prior studies indicates that the majority necessitate elevated EEG channels
for optimal efficacy. This issue can enhance the computational efficiency of the algorithm
and render its application in artificial prostheses unfeasible. Furthermore, the processes
of feature selection, extraction, and classification in the majority of studies are conducted
manually and through engineering techniques. This necessitates prior understanding of the
issue and is inappropriate for BCI applications. Moreover, research utilizing deep learning
is not without its limitations. A fundamental limitation of these studies is the absence of
a substantial database for network training, as deep learning networks require extensive
data. Furthermore, owing to the low SNR ratio of EEG signals, the robustness of the deep
models discussed in studies concerning movement intention in noisy environments has
not been assessed. This research aims to address the challenges associated with recent
studies and offer a dependable method for the automatic classification of movement
intention. In this study, a comprehensive database of EEG signals was collected under
three distinct conditions in two scenarios: resting state, right finger movement, and left
finger movement. Upon completion of the pre-processing phase, the recorded data will
proceed to the automated feature selection and extraction phase, utilizing a combination of
graph theory and deep convolutional networks to classify various categories within the
specified scenarios.

A. Preparation of a database of EEG signals during movement intention testing in two
separate scenarios

B. Automatic presentation of an intelligent system in the automatic classification
of movement intention based on the combination of graph theory and deep
convolutional networks

C. Presenting a new model with high speed and accuracy for classifying left finger stroke,
right finger stroke, and the resting state

D. Achieving the highest classification accuracy for the two-class mode compared to
recent research

E.  Ability to apply the algorithm in noisy environments in order to use the proposed
model in online applications

The article’s remaining sections are arranged as follows: The model used in this study
is mathematically analyzed in the Section 2. The proposed model used in this study is
thoroughly described in the Section 3, which also includes a suggested architecture, data-
recording techniques, and other relevant information. The simulation results are shown in
the Section 4 along with a comparison with current research findings. The conclusion is
covered in the Section 5.
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2. Materials and Procedures

In this section, the mathematical basis of the algorithms used in this research, which
include generative adversarial networks (GANs) and graph neural networks (GNNSs), is
fully examined.

2.1. Generative Adversarial Networks (GANs)

In 2014, Ian J. Goodfellow and his associates proposed the GAN. In machine learning,
GANSs perform unsupervised learning tasks. These networks are made up of two models
that recognize and incorporate the patterns in the input data on their own. The generator
and discriminator are the names given to these two models. The discriminator and the
generator compete to identify, record, and reproduce changes made to the dataset. New
samples that are statistically representative of the original dataset can be generated by
GANSs [33].

A neural network functions as the generator, creating artificial data for the discrim-
inator’s training. The generator gains the capacity to produce adequate data. For the
discriminator, the generated instances are considered negative training examples. The
generator creates a sample after receiving a fixed-length random noise vector as input. The
generator’s main goal is to fool the discriminator into thinking that its output is “genuine”.
The component of the GAN responsible for training the generator includes (a) a noisy input
vector; (b) a generative network that converts the random input into a data sample; (c) a
discriminative network, which categorizes the produced data; and (d) generative losses,
which penalize the generative network for perceiving the differentiator as foolish.

The backpropagation algorithm adjusts each weight appropriately by assessing the
impact of the weight on the output. This method is employed to acquire gradients, which
can facilitate modifications to the productive weights.

A discriminator is a neural network that differentiates authentic data from synthetic
data produced by the generator. The training data for the differentiator is sourced from two
distinct origins: (a) The discriminator utilizes authentic data samples, including medical
images, medical signals, human subjects, and currency notes, as positive examples in the
training process. (b) During the training process, counterfeit samples produced by the
generator are utilized as negative samples.

Throughout the training process, the discriminator is linked to two loss functions. In
the training of the discriminant network, productive losses are disregarded, and solely dis-
criminant losses are utilized. The discriminator, throughout the training process, classifies
the authentic data and the fabricated data provided by the generator. The discriminant
loss penalizes the misclassification of a genuine data sample as a counterfeit sample or
vice versa. The discriminator adjusts its weights by backpropagating the losses through
its network.

In GANSs, the following equation is minimized in the training stage:

. log(1—D(Gz)))
%V(Gr D) = Ex — Paaa [log D(x)} 1)
+ Epz(z) [log(l - D(G(Z))]

To properly distinguish between real and fake data, the discriminator (D) in the above
equation needs to be set up. The aforementioned equation requires iterative algorithms
because it cannot be solved in a closed form. In order to address the problem of overfitting,
the generator function (G) is also optimized once for every k function D optimization [33].
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2.2. Graph Convolutional Network

A GNN is designed to operate diagonally on graphs, which are data structures com-
posed of nodes (also known as vertices) and the edges that connect them [34]. GNNs have
radically revolutionized how we use and assess graph-organized data.

GNNss are typically used to learn an embedding of the graph structure, in which the
GNN records the features of the nodes (i.e., what they contain) as well as the topology
of the graph. These representations may then be used to perform various tasks such as
classifying whole graphs, predicting the existence of an edge between two nodes, and
determining a node’s label. The following section discusses some of the themes linked to
GNNs [34].

Vertices and edges: A graph comprises a collection of points (vertices) interconnected
by lines (edges). Vertices denote entities, objects, or concepts, whereas edges signify
relationships or connections among them. Directed versus Undirected: In a directed graph,
the edges possess a direction that signifies the flow of the relationship. Weighted Graph: In
these graphs, edges possess associated weights. Graph representation encodes the structure
and attributes of a graph for neural network processing. Graphs incorporate node data
along with the interconnections between data points. A graphical representation is required
to illustrate the connections among nodes. Presented below are several prevalent graph
representations utilized in deep learning. Adjacency Matrix: This matrix enumerates all
vertices that are connected to a specific vertex (all nodes linked to a node). Incidence Matrix:
An N x M matrix where N represents the number of nodes and M denotes the edges of the
graph. It is utilized to represent the graph as a matrix. The value is 1 if the node possesses
a specific edge and 0 if it does not. Degree Matrix: A diagonal matrix that enumerates the
edges associated with each node [35].

An adjacency matrix is employed to connect each vertex in the graph. Furthermore,
the degree matrix can be derived from the adjacency matrix. The diagonal elements of this
diagonal matrix correspond to the sum of the edges connected to the respective vertex. The
degree matrix is denoted as D € RV*N and the graph matrix as W € RN*N, with the i-th
diagonal element of the degree matrix defined as follows:

Dj =) W 2)
i
An alternative definition of the Laplacian matrix is as follows:
L=D-—WeRN*N 3)

L=uAur (4)

The Laplacian matrix is known to be formed by subtracting the degree matrices from
the adjacency matrix, as per the preceding relation. Graph basis functions are calculated
using this matrix. In the Laplacian matrix, Singular Value Decomposition (SVD) may be
used to produce graph basis functions. Additionally, the matrix of singular values and
the matrix of eigenvectors in the form of Relation (5) may be used to define the Laplacian
matrix. The columns of the eigenvector matrix match the eigenvectors of the Laplacian
matrix, as stated in Equation (5). Based on these eigenvectors, it is also feasible to perform
a Fourier transform. The diagonal eigenvalues, which include A = diag([Ao,. An—_1]) in
the connection shown below, determine the Fourier bases:

u= [uo,...,uN_l] GRNXN (5)
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To enhance comprehension, Relations (7) and (8) define the Fourier transform and
inverse Fourier transform of a signal, such that

g=U"q (6)

g=Uuu’qg=U4 (7)

Equation (7) states that § stands for the graph’s Fourier transform. Additionally, the
feature vector for a signal like g with Fourier bases and the graph’s Fourier transform is
feasible, according to Equation (8). Another method for calculating the graph convolu-
tion operator is to use the Fourier transform of each signal to perform a convolution of
two signals in the graph domain. For ease of comprehension, the relationship between the
convolution of two signals, z and y, and the operator *, is as follows:

zxg = U((U2) @ (UTy)) 8)

In the connection above, a graph convolution operator combined with neural networks
is described by the g() filter function. z is the version that g(L) filtered, based on the
relationship mentioned above:

y=2g(L)z ©)

The following definition of graph convolution may be obtained by setting the Lapla-
cian matrix and breaking it down into singular values and eigenvectors [34,35]:

(10)

3. Proposed Model

This section delineates the suggested methodology of this work for detecting move-
ment intention from EEG data. This section addresses the procedures for database recording,
data pre-processing, network architecture design, optimization of architectural parameters,
and the allocation of training and testing data. Figure 1 visually illustrates the proposed
flowchart of the investigation.

EEG Recording

°
2
&
o

£
s
&

k)
o]
)

£

i

Pre-Processing

Proposed GCN Model
o

(Graph Embedding

Repeated § Times

Training Testing

|

Figure 1. The main framework of this study used to automatically detect movement intention from
EEG signals.
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3.1. Data Acquisition

This study involved the collection of an extensive database utilizing EEG signals for
the automatic classification of movement intention. Sixteen undergraduate and graduate
students (eight women and eight men), aged between 20 and 33 years with an average BDI
of 22, were solicited to partake in the signal recording experiment for movement intention.
The experiment was described to all participants, and informed consent was obtained
from them. Furthermore, ethics permit number IR.TBZ.1399,5,4 was granted by the ethics
committee of Tabriz University for the documentation of EEG data. An open BCI amplifier
from an American company was utilized in this test to record the signal according to the
10-20 standard. The sampling frequency of this 21-channel amplifier was 1024 Hz for
signal recording, with Al and A2 channels utilized as references. This experiment aimed
to classify three states: resting, right-hand finger tapping, and left-hand finger tapping.
Consequently, two distinct scenarios were evaluated for classification. The initial scenario
comprises classes for right-hand finger taps and left-hand finger taps. The second scenario
encompasses right-hand finger strikes, left-hand finger strikes, and a resting state.

The signal recording had 40 repetitions, the length of each mode was 5 s, and for each
mode, 5 x 1024 = 5120 sampling points with 40 repetitions were available. Among the
participants in the experiment, 12 were right-handed and 4 were left-handed. According
to studies [27,28], only 6 pairs of electrodes were considered for signal recording, which
included F3-C3, Fz-Cz, F4-C4, C3-P3, Cz-Pz, and C4-P4, and the rest of the electrodes were
not used for recording and processing. This work reduces the computational complexity
for the classification operation to a significant extent. Thus, the dimensions of the data for
each class of left finger tap, resting state, and right finger tap were equal to 40 (repetitions)
x 5120 (sampling points) = 204,800 per participant. The devices used for testing are shown
in Figure 2.

Figure 2. Example of a tapping device and recording of EEG signals.

3.2. Pre-Processing of EEG Data

All processing in this study was performed offline. This sub-section contains the pre-
processing pertinent to this study. Before the data gathered in this bulletin can proceed to
the classification processing stage, it must undergo pre-processing. This study includes pre-
processing techniques such as the application of a notch filter, a second-order Butterworth
filter, data enhancement, and data normalization. Subsequently, each of these steps is
elucidated individually:
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IL

III.

Iv.

3.3.

To eliminate the interference caused by the 50 Hz frequency of municipal electricity,
a notch filter was applied to the EEG data collected from the F3-C3, Fz-Cz, F4-C4,
C3-P3, Cz-Pz, and C4-P4 channel pairs.

The recorded data underwent processing through a second-order Butterworth filter,
targeting the frequency range of 0.05 to 60 Hz for the respective channels of the
recorded signals.

The recorded data are augmented through GANSs to mitigate the occurrence of over-
fitting. Data augmentation in the GAN is performed by the generator and the
discriminator, as previously stated. The subsequent section will provide a com-
prehensive description of the data augmentation process utilizing the GAN. The
generator and discriminator in the GAN execute data augmentation, as previously
mentioned. A uniformly distributed 100-dimensional vector is transformed into a
1 x 204,800-dimensional signal by the generating network. The generator produces
a one-dimensional signal with vector dimensions of 100, characterized by a uni-
form distribution. The generating network consists of six convolutional layers, each
with dimensions of 512, 1024, 2048, 40,996, 8192, and 204,800. Batch normalization
and Relu activation are utilized in each layer. The repetitions and learning rate are
established at 150 and 0.01, respectively. The discriminative network receives a one-
dimensional vector as input and assesses its authenticity. This network consists of six
dense layers. Employing adversarial generative networks, the data is enhanced from
204,800 dimensions to 250,000 dimensions.

During the final phase, data normalization is executed to optimize the training process
within the range of 0 to 1.

Graph Design

Following the determination of the functional relationship between the EEG channels,

a proximity matrix is created. This may be achieved by assessing the channel correlation

and showing the findings as an EEG channel connection matrix. To eliminate the network

adjacency matrix, the sparse approximation of the connectivity matrix is set to a threshold.

The recommended model utilizes the constructed graph as input to select, extract, and

classify information. Figure 3 shows an overview of the proposed architecture.

Layers of Graph Convolution
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Figure 3. An overview of the architecture presented in this study.
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3.4. Customized Architecture

This subsection delineates the deep architecture developed for classifying movement
intention into two and three distinct classes. Figure 4 illustrates the intricately designed
architecture. This figure indicates that following a dropout layer, the data arrives at the
initial layer of the convolutional graph, accompanied by a max pooling layer and a batch
normalizer utilizing the Leaky-Relu activation function. To select or extract the automatic
feature, these layers are reiterated five additional times. The data is subsequently input
into a dropout layer. Subsequently, the data undergoes a flattening operation. The classes
pertaining to the right finger stroke, resting state, and left finger stroke are evaluated using
a Softmax activation function to classify into two and three distinct categories.

oy A
N R
aEy Tt A
/LR \/L g Automatic Automatic detection of movement
\"J
DA i
: A : \ G ’ z - . Right Right
{ i fos
(szé&xﬁisfw
ey O:
Rril%vmefnﬁ.:' Dropout
Figure 4. Detailed architecture of the proposed deep model along with dimensions of samples in
each layer.
The proposed deep architecture features a node graph representing the quantity of
EEG channels considered. In the proposed architecture, each vertex receives 1000 samples.
The coefficients of X;—Xg¢ are presented as Chebyshev polynomial coefficients for each layer
in Table 1.
Table 1. Details about hyperparameters in the proposed deep architecture.

Layer Shape of Weight Tensor Shape of Bias Number of Parameters
Graph 1 (x1, 250,000, 250,000) 250,000 62,500,000,000 x xq + 250,000
Graph 2 (x2, 250,000, 125,000) 125,000 31,250,000,000 x xp + 125,000
Graph 3 (x3, 125,000, 62,500) 62,500 7,812,500,000 x x3 + 62,500
Graph 4 (x4, 31,250, 15,625) 15,625 488,281,250 x x4 + 31,250
Graph 5 (x5, 15,625, 7813) 7813 122,078,125 x x5 + 15,625
Graph 6 (x6, 7813, 3907) 3907 30,525,391 x xq + 7813

Flattening Layer - 2 3907

3.5. Series of Tests, Validation, and Training

This subsection delineates the methodology for partitioning the data into training
and evaluation sets. Specifically, 70% of the data is allocated for network training, 20% for
the validation set, and 10% for the test set. The design methodology employs a trial-and-
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error approach concerning variables and algorithms. Consequently, Table 2 presents the
parameters, variables, and various optimization algorithms pertinent to the development
of the proposed deep architecture.

Table 2. Selected variables in the proposed architecture.

Model Parameters Values Optimal Value
GAN Batch Size 4,6,8,10, 12 10
Optimizer Adam, SGD, Adamax Adam
Conv layers 3,4,5,6 6
Learning Rate 0.1, 0.01, 0.001, 0.0001 0.01
Number of GConv 2,3,4,5,6,7 6
ConvGraph Batch Size in DFCGN 8,16,32 32
Batch Normalization ReLU, Leaky-ReLU Leaky-ReLU
Learning Rate in DFCGN 0.1, 0.01, 0.001, 0.0001, 0.00001 0.0001
Dropout Rate 0.1,0.2,0.3 0.1

Weight of Optimizer 10 x 1073,10 x 1074, 10 x 1072,10 x 10~°

4. Experimental Results

This section will delineate the results pertaining to the proposed model. This section
comprises multiple subsections: the first presents the results of the proposed network
optimization, the second details the simulation results, and the third offers a comparison
with recent research. The simulation results of this study were conducted on the Python

version 3.10 programming platform within the Google Colab Prime environment, utilizing
32 GB of RAM and a 60 GPU.

4.1. Enhancing Outcomes

This subsection will present the optimization results derived from the proposed deep
architecture. Figure 5 illustrates the outcomes pertaining to the determination of the num-
ber of layers in the proposed deep network. This figure indicates that the selection of six
convolutional graph layers has proven optimal for accurately classifying movement inten-
tion. Thus, augmenting the number of layers minimally impacts classification accuracy
while significantly elevating the algorithm’s computational complexity. Figure 6 illustrates
the outcomes of Chebyshev polynomial selection for the classification of automatic move-
ment intentions. Thus, selecting X = 5 can accelerate the network’s convergence to the
target value.

Accuracy (%)
Time (s)

3layers of Graph 4 Layers of Graph 5 Layers of Graph 6 Layers of Graph

. Accuracy  ——fc— Time

Figure 5. Accuracy and time related to movement intention classification considering different
graphConv layers.



Biomimetics 2025, 10, 506 12 of 20

100%

90% r— -y

- T~
N i

S 60% *\
g = >/
40% /
30% / —— X X—5
20% N Xa =3
- X Xs=1
10%
. S
10 20 30 40 50 60 70 80

Number of iterations

Figure 6. Classification accuracy of movement intention by considering different polynomial variables.

4.2. Results of the Simulation

This subsection will present the simulation results of the proposed model.

Figure 7 illustrates the accuracy and error of movement intention classification across
150 iterations of the network for two classes (left finger tap and right finger tap) and three
classes (left finger tap, resting state, and right finger tap). Figure 7a indicates that the
network’s accuracy has attained 98% after 150 iterations for the classification of two classes
and has stabilized. Furthermore, as indicated by the same figure, the accuracy for the three-
class mode stabilizes at approximately 92% following 120 iterations. Figure 7b additionally
illustrates the classification error for both the two-class and three-class modes. According
to the same figure, as the number of repetitions for two-class and three-class classification
increases, the network error attains its minimum value. Table 3 analyzes the outcomes
pertaining to the assessment criteria for the binary and ternary classifications. This study
employs evaluation criteria comprising accuracy, precision, sensitivity, specificity, and the
kappa coefficient. In the two-class mode, all evaluation metrics exceed 97%, demonstrating
the efficacy of the proposed deep network. Figure 8 illustrates the receiver operating
characteristic (ROC) curve analysis for the classification of various classes. Consequently,
it is established that for the classification, both scenarios fall within the range of 0.9 to 1,
indicating the optimal performance in the automatic classification of movement intention
across two and three distinct classes. Figure 9 illustrates instances of the left finger tap, right
finger tap, and resting state in both the initial and final layers of the proposed deep network.
It is evident that, in the two-class mode, nearly all samples are distinctly separated in the
final layer of the network.

Table 3. Different evaluation indices used to automatically classify movement intention.

Measurement Accuracy Sensitivity Precision Specificity Kappa
Index (%) (%) (%) (%) Coefficient
2-class 98.1 974 97.4 97.8 0.88

3-class 922 91.7 89.4 914 0.81
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Figure 7. Accuracy and error of the proposed model in two-class and three-class scenarios for
150 network iterations. (a) Accuracy of network, (b) Loss function of network.
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Figure 8. Analysis of ROC curves for different classes of movement intention.
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Figure 9. Recorded EEG samples related to left finger tap, right finger tap, and resting state in two
different scenarios for the input and output of the proposed network.
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4.3. Comparison with Current Methodologies and Research

This subsection contrasts the proposed method with current methodologies and
studies. Table 4 delineates the methodologies and accuracy of contemporary studies focused
on classifying movement intention. The proposed model demonstrates enhanced accuracy
compared to recent studies, attaining a classification accuracy of 92% for three classes,
whereas studies [31,32] report accuracies of approximately 85% and 86%, respectively. It is
essential to recognize that the databases employed in recent studies vary, making direct
comparison unjust. The parameters for recording brain signals, participant numbers in
each study, sampling frequencies, and additional factors differ among research studies.
Based on the current evidence, to guarantee equitable comparative conditions, we utilized
modern methodologies from the registered database and compared the results with our
proposed model. This research utilizes pre-trained networks Inception [36], VGG [37],
U-net [38], and basic CNN [28]. Figure 10 displays the results obtained for the classification
of two categories. The proposed model has clearly converged to the target value more
swiftly. Additionally, we implemented a supplementary comparative strategy employing
manual feature selection/extraction and feature learning techniques. Thus, for the manual
approach, the attributes of mean, variance, peak coefficient, power, kurtosis, and skewness
were derived from the recorded EEG signals, and classifications were executed utilizing
the KNN [39] SVM [40], multi-layer perceptron (MLP) [41], basic CNN [28], and the
proposed method. The feature learning method entailed classifying the recorded signals
without the use of feature selection or extraction, relying on the designated classifications.
Table 5 delineates the comparative results of the manual technique and the feature learning
approach. The proposed model employing a feature learning approach has exhibited an
enhanced performance. Nonetheless, the proposed model demonstrates low accuracy in
comparison to the manual method. The proposed model, which amalgamates graph theory
and deep convolutional networks, autonomously and end-to-end learns salient features
from recorded signals, differentiating between two and three classes. Manual methods,
while simple, require prior understanding of the problem and may be impractical for
online applications.

Table 4. The suggested model is compared to other recent investigations.

Research The Method Used ACC (%)
Jochumsen et al. [24] CSP + SVM 80
Xu et al. [25] MRCP Component + KNN 75
Jiang et al. [26] MRCP Component 76
Wairagkar et al. [27] ERD Component + KNN 78
Shahini et al. [28] CNN 89
Jochumsen et al. [29] Hand Crafted Features + KNN 89
Lutes et al. [30] CNN 98.50 (two class)
Choi et al. [31] Hand Crafted Features + SVM 86
Dong et al. [32] Transfer Learning 85

Our Model

GAN + Graph Theory + CNN 98.2 (two class) 92 (three class)
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Figure 10. Evaluating the efficacy of the constructed network against pre-trained networks.

Table 5. Comparison of the proposed model with manual methods.

Method Feature Learning (ACC)  Handcrafted Features (ACC)
KNN 76% 82%
SVM 80% 85%
CNN 84% 60%
MLP 75% 79%
P-M 92% 69%

EEG signals exhibit a very low SNR. This problem can obstruct classification in online
applications. Minimal motion and ambient noise can hinder the accurate discernment
of movement intention. The employed classification algorithm must exhibit significant
resilience to environmental noise. Thus, we have synthetically introduced Gaussian white
noise with random dispersion into the signals recorded at various dB levels to assess the
efficacy of our proposed deep model under noisy conditions. The results obtained are
illustrated in Figure 11. The figure clearly illustrates that the proposed network exhibits a
significantly lower slope of decreasing classification accuracy in response to increasing noise
compared to the other networks analyzed. This illustrates the significance of integrating
graph theory with deep convolutional networks.

As we know, the use of artificial intelligence [42—-45], which is a subset of machine
learning [46,47], has been very useful in various applications, including vibration [48],
deep learning [49-54], fuzzy networks [55,56], financial markets [57-61], leadership [62],
education [63-65], mathematics [66,67], architecture [68-70], history [71], civil engineer-
ing [72,73], optimization [74], economics [75-77], chemistry [78], law [79], aerospace [80],
image processing [81], transportation [82-85], intelligent systems [86-89], supply chain [90],
computers [91], business [92], etc.

Notwithstanding the exceptional performance, the proposed model exhibits certain
deficiencies. The implementation of the proposed deep model in this research necessitates
an expansion of the database dimensions. Furthermore, it is essential to employ classical
overlay for data augmentation and evaluate its efficacy against GANs. Furthermore, to
assess the proposed model in real-time settings, it is essential to utilize dry electrodes for
signal acquisition to eliminate issues related to gel desiccation during recording.
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5. Conclusions

This study introduces a novel method for the automatic detection of movement inten-
tion across two categories: left finger tap and right finger tap, as well as three categories:
left finger tap, resting state, and right finger tap. To achieve this objective, EEG signals from
20 participants were collected during the movement intention test. Following essential
pre-processing, feature selection/extraction and automatic classification were conducted
utilizing a combination of graph theory and deep convolutional networks. The proposed
network included six convolutional graph layers that could perform end-to-end classifica-
tion operations. The classification outcomes of movement intention in this study are highly
promising, even amidst environmental noise, and can rival the results of recent research.
The suggested method is applicable in numerous domains within the field of BCL.
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