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Abstract

Global warming has made water resources more uneven in space and time, making water
management harder. This study used the HBV-XGBoost model to see how climate change
affects runoff in the Xiangxi River Basin. The HBV model simulated water processes, and
XGBoost improved predictions by handling complex relationships. This study used the
SDSM to create climate data for 2025–2100 and looked at runoff trends under different
emission scenarios. The HBV-XGBoost model performed better than the HBV model
in simulating runoff. Future predictions showed big differences in runoff trends under
various SSP scenarios in the 2040s and 2080s. For example, under SSP585, the ACCESS-
CM2 model projected a May runoff increase from 1527.52 m3/s to 2344.42 m3/s by the
2080s, and ACCESS-ESM1-5 projected an increase from 1462.11 m3/s to 2889.58 m3/s. All
GCMs predicted a large rise in annual runoff under SSP585 by the 2080s, with FGOALS-g3
showing the highest growth rate of 76.54%. The model accurately simulated runoff changes
and provided useful insights for adapting water management to climate change. However,
this study has limitations, including uncertainties in machine learning models, potential
input data biases, and varying applicability under different conditions. Future work should
explore more climate models and downscaling methods to improve accuracy and consider
local policies to better address climate impacts on water resources.
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1. Introduction
In recent years, global warming has become the dominant trend in climate change [1].

Climate change directly or indirectly affects various hydrological elements, such as pre-
cipitation, evaporation, runoff, and soil moisture, thereby inevitably causing changes in
the global hydrological cycle [2]. The IPCC’s Special Report on Climate Change and Land,
released in 2019, pointed out that the continuous development of climate change has am-
plified human impacts and pressures on land, leading to changes in the spatiotemporal
distribution of hydrological processes and water resources at different spatial scales of river
basins [3–7]. As an important component of water resources, the changing trend in runoff is
of great significance for water resource management, flood control, and disaster reduction,
as well as ecosystem protection. Since the mid-20th century, the World Meteorological Or-
ganization (WMO) has recognized the importance of hydrological forecasting in reducing
disaster risks and water resource management and has taken many measures to promote
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the development of runoff forecasting systems [8,9]. Runoff forecasting plays a crucial role
in water resource planning and management activities, such as water conservancy project
scheduling, flood control, dam planning, reservoir scheduling, drinking water allocation,
and navigation planning [10].

Runoff forecasting has attracted widespread attention in recent decades [11] and is an
important component of hydrological system prediction. Long-term runoff forecast results
are influenced by a variety of factors, including climate conditions, human inputs, soil prop-
erties, soil texture, vegetation cover, and topography [12]. Currently, commonly used runoff
forecasting methods include physical causality analysis, mathematical statistics, intelli-
gent algorithms, and integrated forecasting based on numerical weather prediction [13,14].
However, due to the impacts of climate change and human activities, runoff in river basins
has exhibited increased variability and inconsistency, which has introduced significant un-
certainty into runoff forecasting [15]. Different runoff forecasting methods are applicable to
different scenarios, and these methods are continuously evolving and improving [16]. Tra-
ditional hydrological forecasting methods rely on mathematical models and physical laws
to capture the objective patterns of hydrological phenomena. However, due to geograph-
ical constraints, traditional hydrological models often fail to ensure applicability across
different regions, resulting in larger forecasting errors. To address this issue, linear-based
models such as autoregressive models [17,18] and trend-based moving average models [19]
have been proposed. However, these models are unable to accurately capture the complex
nonlinear relationships involved in hydrological changes [20]. In contrast, many nonlinear
data-driven models, such as artificial neural networks (ANNs) [21–24], adaptive neuro-
fuzzy inference systems (ANFISs) [25,26], genetic programming (GP) [27–29], and support
vector machines (SVMs) [30,31], have demonstrated strong nonlinear mapping capabilities
in medium- and long-term runoff forecasting. However, these models also face challenges
such as slow learning speed, overfitting, and the curse of dimensionality [11].

In recent years, with the rapid development of computer technology, machine learning
(ML) methods have been widely used in many fields [32,33]. ML primarily identifies
patterns and relationships by iterating through large amounts of data and excels at handling
highly nonlinear and complex influencing factors [34,35]. For example, the Long Short-
Term Memory (LSTM) model can address the issues of gradient vanishing and explosion
that occur in recurrent neural networks during long-term training. Machine learning
models, such as Extreme Gradient Boosting (XGBoost) [36], provide feature importance
and nonlinear relationships. XGBoost is one of the most popular algorithms in machine
learning. Its fundamental idea is to aggregate weak learners to form a powerful model with
higher prediction accuracy, that is, to enhance the generalization ability and robustness of a
single model by integrating multiple learners [37]. However, the limitations of machine
learning methods lie in the requirement of a large amount of in situ training data and their
inability to describe the true physical processes [38]. Compared to process-driven models,
data-driven models typically do not consider the physical mechanisms involved in runoff
formation [39–41]. In recent years, artificial intelligence has made significant progress.
To improve the accuracy of runoff forecasting, Reichstein et al. [38] developed a coupled
model that integrates physical models and data-driven models. Data-driven models can be
pre-trained based on the simulation results of physical models and then used to construct a
coupled model. Wang and Peng [42] proposed a machine learning hydrological simulation
model combining K-means and XGBoost (KXGBoost) and developed an interpretable
machine learning-based hydrological model using SHAP (SHapley Additive exPlanations)
to enhance the prediction capability of machine learning models in hydrological simulation
and address the ambiguity in explaining runoff generation mechanisms. The results
showed that the K-means clustering method based on SHAP interpretation could effectively
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capture the spatiotemporal heterogeneity of runoff and accurately predict its spatiotemporal
variations. The Nash–Sutcliffe efficiency of the KXGBoost model during training and testing
was 0.803 and 0.596, respectively, which represents an improvement of 0.089 and 0.029 in
prediction accuracy compared with the XGBoost model. These results demonstrate the
effectiveness of the coupling method of machine learning and physical models in enhancing
the performance and interpretability of data-driven hydrological models, providing a new
perspective for understanding hydrological processes and improving runoff simulation
and highlighting the potential of machine learning-based hydrological models in water
resource management.

The Xiangxi River Basin, located in the western part of Hubei Province, China, is a vital
component of the Three Gorges Reservoir. Characterized by a subtropical monsoon climate,
the basin experiences a highly uneven spatiotemporal distribution of precipitation, leading
to frequent floods and droughts. These hydrological extremes pose significant challenges
for water resource management and ecological conservation within the basin. Runoff
variations in the Xiangxi River Basin not only affect agricultural irrigation and hydropower
station operations locally but also have critical implications for the regulation of the Three
Gorges Reservoir and water supply to the middle and lower reaches. Therefore, the
accurate prediction of runoff changes in the Xiangxi River Basin is of paramount importance
for ensuring water resource security and maintaining ecological balance in the region.
Previous studies have extensively examined the hydrological characteristics and runoff
predictions of the Xiangxi River Basin. For instance, Wang et al. [43] used the Soil and Water
Assessment Tool (SWAT) model to simulate runoff in the Xiangxi River Basin, emphasizing
the importance of accurate meteorological data in enhancing model performance. They
found that the SWAT model could effectively simulate runoff dynamics under historical
conditions but suggested further improvements for future climate scenarios. Another
study conducted by Dams et al. [44] applied a multi-model approach to assess the impact
of climate change on runoff, highlighting the necessity of high-resolution climate data
for improving prediction accuracy. These studies collectively underscore the complexity
of runoff prediction due to the unique climatic and topographic features of the Xiangxi
River Basin. Future climate change poses significant risks to hydrological conditions in
the Xiangxi River Basin. The Sixth Assessment Report (AR6) of the Intergovernmental
Panel on Climate Change (IPCC) indicates that global surface temperatures are rising, and
precipitation patterns are becoming more uncertain [45]. These changes are expected to
intensify the frequency and severity of hydrological extremes such as floods and droughts
in the region. For example, under a high-emission scenario (SSP585), predictions show
significant temperature increases and marked variability in precipitation patterns [46]. This
could lead to more frequent and severe flood events during the wet season and prolonged
droughts during the dry season, further complicating water resource management efforts.
Moreover, increased evaporation rates due to higher temperatures may reduce overall
water availability, affecting agricultural productivity and hydropower generation.

The objective of this study is to develop a hybrid streamflow forecasting system
though integrating XGBoost into the HBV model. The HBV model is employed in this
study. The HBV model is one popular hydrological model, praised for its availability,
speed, and accuracy in simulating hydrological processes [47,48]. This model has a simple
structure and a limited number of parameters, making it easy to understand and calibrate.
Moreover, the HBV model can effectively prevent overparameterization issues. In many
comparative tests of models, the HBV model has shown excellent performance, especially
in simulating streamflow aggregation. Although there are more complex models on the
market, the HBV model often performs better in practical applications due to its simplicity
and efficiency [49]. The HBV model has also proven its excellent adaptability in studying
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the impact of climate change and land use changes on runoff [50]. In addition, the XGBoost
method is integrated into the HBV model system. Because XGBoost is a widely used
supervised learning algorithm, it has excellent performance, robustness, and efficient
operation, especially in the field of hydrology [51–53]. As an excellent ensemble learning
algorithm, XGBoost optimizes the algorithm structure and uses CPU multithreading for
parallel calculations, significantly improving the model’s training speed and prediction
accuracy. It can effectively overcome limitations in computational speed and accuracy,
reduce training and prediction time, and support various objective functions, including
classification and regression. XGBoost is good at handling complex relationships and
can clearly identify important features, making it significantly advantageous in feature
selection and model interpretation [54]. These features collectively make the model more
accurate and better at dealing with climate change. This combination also makes the model
more reliable and gives us a better way to manage water and protect the environment in
the Xiangxi River Basin. In this study, a coupled HBV-HGBoost model based on the HBV
model was developed to predict future runoff. The objective was to construct and compare
the performance of the HBV and HBV-XGBoost coupled models in order to enhance the
runoff prediction accuracy of the Xiangxi River Basin under climate change. This study
utilized high-resolution climate data from the Statistical Downscaling Model (SDSM) and
leveraged the strengths of both the HBV and XGBoost models to evaluate runoff variation
trends under different emission scenarios. The HBV-XGBoost model outperformed the HBV
model in predicting runoff. This validation provides a scientific basis for water resource
management and flood control in the Xiangxi River Basin.

2. Materials and Methods
2.1. Study Area

The Xiangxi River (110◦47′–111◦13′ E, 30◦59′–31◦07′ N) is located in the western part
of Hubei Province and is the largest tributary of the Chuanjiang River on the north bank of
the Xiling Gorge section of the Three Gorges. It originates from Xinhua in the Shennongjia
Forestry District, with a drainage area of about 3100 square kilometers and a main stream
length of approximately 97.3 km, as shown in Figure 1. The average annual runoff of the
basin is 1.159 billion cubic meters per year. The basin’s terrain is primarily composed of
high mountains and sub-high mountains. Forests are the predominant land use type in
the basin, covering 87.36% of its total area. The climate of the basin is characterized by
significant spatiotemporal variations in precipitation. The annual precipitation decreases
from the northwest to the southeast, ranging from 900 to 1200 mm [55]. Meteorological data
for the basin come from the Xingshan meteorological station, including daily precipitation,
temperature, and evaporation. According to research, both the maximum temperature
(Tmax) and minimum temperature (Tmin) in the basin are projected to increase under
future climate change scenarios, especially under the high-emission scenario (SSP585),
where the temperature rise is more significant. The changes in precipitation are more
complex, with significant differences in precipitation changes under different General
Circulation Models (GCMs) and Shared Socioeconomic Pathway (SSP) scenarios, showing
both increases and decreases. The Shared Socioeconomic Pathways (SSPs) include three
representative scenarios, SSP126, SSP245, and SSP585, corresponding to low-, medium-,
and high-emission trajectories, respectively. The SSP126 scenario envisions a future where
global efforts are focused on sustainable development, leading to effectively controlled
and low levels of greenhouse gas emissions. In contrast, the SSP245 scenario represents a
medium-emission future, where greenhouse gas emissions remain at a stable, moderate
level. The SSP585 scenario, however, depicts a high-emission future that is heavily reliant
on fossil fuels, with a significant increase in greenhouse gas emissions anticipated. This
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study employs the SSP scenarios to assess the combined impacts of climate change and
human activities. This approach is chosen because the SSPs integrate both physical climate
factors and socioeconomic dimensions, making them suitable for complex climate regions
like the Xiangxi River Basin [56]. The SSP scenarios provide a more accurate prediction
of runoff changes, which is crucial for water resource and ecological management. When
combined with high-resolution climate data, the SSPs are particularly well-suited for basin-
scale simulations. Compared to the Representative Concentration Pathways (RCPs), which
lack socioeconomic considerations, and Integrated Assessment Models (IAMs), which focus
on macro-scale interactions between climate and human systems, the SSPs offer detailed
insights at the basin level. This makes them more appropriate for predicting future runoff
in the Xiangxi River Basin.

Figure 1. Research area and locations of hydrological and meteorological stations.

The geographical spatial data involved in this study mainly include the Digital Eleva-
tion Model (DEM), land use types, and soil types. The DEM data were obtained from the
Geospatial Data Cloud Platform of the Computer Network Information Center, Chinese
Academy of Sciences (www.gscloud.cn). The resolution of the data is 30 m × 30 m. The
land use data are based on the 2000 land use remote sensing monitoring data released by
the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences (www.resdc.cn), with a resolution of 30 m. The secondary land use types were
reclassified into primary land use types using ArcGIS 10.4 software. Meteorological data
were collected from the Xingshan Meteorological Station in Hubei Province. The data
include daily precipitation, temperature, evaporation, and humidity from 1991 to 2008. The
hydrological model was calibrated and validated using daily runoff data from the Xingshan
Hydrological Station for the same period [55]. During the data preprocessing stage, the
various data were sorted. The data were also analyzed in detail. The specific steps are
shown in Table 1. In the process of constructing the hydrological model, the period from
1993 to 2004 (12 years) was used as the calibration period. The period from 2005 to 2008
(4 years) was used as the validation period. Moreover, a 2-year pre-run period (1991–1992)
was employed for model initialization [55].

www.gscloud.cn
www.resdc.cn
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Table 1. Sources of data and associated processing [44].

Data Type Sources Processing Method

2000 National Land Use/Cover Change
Data (LUCC)

Chinese Academy of Sciences, Institute of Geographic
Sciences and Natural Resources Research

(http://www.resdc.cn, accessed on 27 June 2025)
Reclassification

30m x 30m Resolution DEM Data CAS Geographical Spatial Data Cloud Website
(http://www.gscloud.cn, accessed on 27 June 2025)

Hydrological Model
Analysis

Daily Meteorological Data
(1991–2008) Xingshan Meteorological Station -

Daily Runoff Data
(1993–2008) Xingshan Hydrological Station -

Note: CAS represents Chinese Academy of Sciences; ‘-’ indicates that no processing is required.

2.2. HBV

The (Hydrologiska Byråns Vattenbalansavdelning) HBV model is a process-driven,
semi-distributed conceptual hydrological model that was initially developed by the
Swedish Meteorological and Hydrological Institute (SMHI) in the 1970s. It is primar-
ily used to simulate hydrological processes in a basin, especially the formation of and
variation in runoff. The model integrates physical processes and empirical formulas to
predict the hydrological response of a basin by simulating processes such as precipitation,
evapotranspiration, and runoff. The rapid response capability of the HBV model gives it a
significant advantage in flood forecasting and water resource management [55].

In this study, we used HBV-light 4.0.24 software to construct the model framework
and optimize the parameters. The input data for the software included key meteorological
variables such as daily precipitation, temperature, and evaporation recorded at meteorolog-
ical observation stations in the Xingshan Basin. To fulfill the operational requirements of
the HBV model, the Xiangxi Jiang River Basin was classified into five altitude zones and
three vegetation belts using land use and DEM data. For parameter calibration, the Monte
Carlo method was utilized to generate a suite of parameter values within the predefined
range. Following 5000 iterations, the optimal set of model parameters was identified under
the specified conditions. The underlying principle of the HBV model is based on the water
balance concept, which is described as follows [57]:

Z =
n

∑
i=1

(Prei − Evai − R1i − R2i) + U (1)

where Z represents the total runoff; n represents the number of time steps; and Prei repre-
sents the precipitation amount at the i-th time step, including both rainfall and snowfall.
Evai represents evaporation, R1i and R2i represent the water in the runoff storage reservoirs,
and U represents the baseflow.

2.3. XGBoost

XGBoost is a machine learning algorithm based on gradient boosting, specifically
designed to efficiently handle large-scale datasets and deliver superior predictive perfor-
mance [58]. XGBoost optimizes the prediction results step by step by constructing a series
of decision trees, and this is an ensemble learning method. The model has many significant
advantages, among which its ability to accurately capture complex nonlinear relationships
is particularly prominent [59]. During the optimization process, XGBoost aims to minimize
a regularized objective function that includes both a loss term and a regularization term:

Γ(Φ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
K=1

Ω( fK) (2)

http://www.resdc.cn
http://www.gscloud.cn
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Ω( fK) = γT +
1
2

λ∥ω∥2 (3)

In the model, Γ(Φ) represents the objective function of the model and is the sum of
the loss function and the regularization term, n represents the number of samples and
refers to the number of observations in the dataset, and K refers to the number of decision
trees utilized in the model. l(yi, ŷi) quantifies the error between the prediction and the
observation, while the regularization term Ω( fK) penalizes the complexity of each tree fK.
γ represents the minimum weight for the leaves of the tree, which is used to control the
minimum reduction in loss for the leaf nodes; T represents the number of leaf nodes in the
tree; λ represents the L2 regularization term coefficient for the weights, which is used to
control the model’s complexity and prevent overfitting; and ∥ω∥2 represents the square of
the L2 norm of the weights in the tree, which is the sum of the squares of the weights.

The model optimizes the prediction by iteratively constructing trees using gradi-
ent descent. Hyperparameter tuning is performed through grid search to optimize key
parameters such as the learning rate, maximum tree depth, and the number of trees.

2.4. HBV-XGBoost Framework

The development and application of the HBV-XGBoost model mainly involve four
essential steps: (1) Data Collection and Preprocessing. (2) The HBV-XGBoost Model: We
integrated the strengths of both the HBV hydrological model and the XGBoost machine
learning algorithm to enhance simulation accuracy. (III) Climate Variable Prediction Using
the SDSM: Precipitation and temperature data were generated using the SDSM to produce
high-resolution climate variable outputs. (IV) Future Runoff Prediction with the HBV-
XGBoost Model. This coupling of models allows for more accurate and reliable runoff
forecasts by combining the physical basis of the HBV model with the predictive power
of XGBoost.

In the HBV-XGBoost coupled model, the output results of the HBV model are used as
input features. Specifically, the model selects actual evapotranspiration (AET), upper zone
storage (SUZ), and the fast and slow runoff components (Q1 and Q2) as input variables [55].
These variables are key indicators of hydrological processes and ensure that the model can
accurately capture both large-scale and local hydrological dynamic changes. In addition to
these hydrological model output variables, meteorological variables such as precipitation
and temperature are also included. This helps to further enhance the model’s predictive
accuracy. Finally, the measured runoff data from the Xingshan Hydrological Station are
used as the target variable for the systematic training and validation of the model.

2.5. SDSM and Future Meteorological Data

In the field of climate simulation, the Statistical Downscaling Model (SDSM) is an
important tool. It can downscale the large-scale output data from Global Climate Models
(GCMs) or Regional Climate Models (RCMs) to local or regional levels. This process
provides more detailed predictions for local climate variables such as precipitation and
temperature. The SDSM establishes the relationship between large-scale and local climate
variables through statistical methods. It converts large-scale data into small-scale data [60].
This downscaling process is crucial for understanding the potential impacts of climate
change on fields such as water resources, agriculture, and ecosystems. These fields typically
require high-resolution climate data to develop effective response strategies [55]. In this
study, we used version 6.2.9 of the SDSM to generate high-resolution climate data for the
period from 2025 to 2100. To assess the model’s performance, three statistical indicators,
namely R2, NSE, and RMSE, were employed for quantitative analysis. The specific statistical
results and related data can be found in Table 2.
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Table 2. The optimal values of sensitive parameters for the HBV model in the Xiangxi River Basin [44].

Parameters Definition Range Best Value

BETA Parameter that determines the relative
contribution to runoff from rain or snowmelt [0, 5] 0.61

CFMAX Degree¯∆t factor (mm/∆t ) [0, 50] 24.55
CFR Refreezing coefficient [0, 50] 39.21
FC Maximum soil moisture storage (mm) [100, 300] 215.28
K0 Storage (or recession) coefficient [0, 0.8] 0.19
LP Soil moisture value above which AET reaches PET [0, 1] 0.43

MAXBAS Length of triangular weighting function [1, 50] 1.28
SFCF Snowfall correction factor [0, 50] 15.11

SP Seasonal variability in degree¯∆t factor [0, 1] 0.29
TT Threshold temperature [0, 50] 13.01

UZL Threshold parameter (mm) [0, 100] 27.02

3. Results
3.1. Assessment of Hydrological Model Efficiency

Figure 2 illustrates a comparison of the runoff simulation accuracy between the stan-
dard HBV model and the enhanced HBV-XGBoost model. During the model calibration
phase, the runoff simulation results of the HBV model showed an R2 value of 0.79, an NSE
value of 0.77, and an RMSE value of 19.31 m3/s. In contrast, the corresponding indicators
for the HBV-XGBoost model were an R2 of 0.854, an NSE of 0.85, and an RMSE of 14.24 m3/s.
These results indicate that the HBV-XGBoost model has a slight edge in simulation accuracy,
being able to more accurately reflect the actual trends in runoff changes, with better data
fitting and smaller errors. During the model validation phase, the performance indicators
of the HBV model were an R2 of 0.74, an NSE of 0.71, and an RMSE of 23.21 m3/s. The
performance indicators of the HBV-XGBoost model were an R2 of 0.79, an NSE of 0.79,
and an RMSE of 19.81 m3/s, once again showing superior performance. These results
demonstrate that during the calibration and validation stages, the HBV-XGBoost model
maintains high fitting accuracy, can more accurately predict future runoff data, and better
adapts to the complexity of hydrological processes, thereby improving the accuracy and
reliability of runoff simulation.

Figure 2. Daily runoff: simulated vs. observed data in calibration and validation phases.

3.2. Projections of Future Climate Change via SDSM

Figure 3 shows the trends in temperature and precipitation changes in the 2040s and
2080s of the 21st century under different Shared Socioeconomic Pathway (SSP) scenarios.
The figure involves three SSP scenarios: SSP126, SSP245, and SSP585. First, as seen from
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Figure 3a, the daily maximum temperature (Tmax) is on the rise under all SSP scenarios. In
the 2040s, the change in maximum temperature (Tmax) is the highest under the SSP585
scenario, with an average increase of 4.5 ◦C. Under the SSP126 and SSP245 scenarios,
the increases are 2.5 ◦C and 3.5 ◦C, respectively. By the 2080s, Tmax increases by 6.5 ◦C
under the SSP585 scenario, 3.5 ◦C under the SSP126 scenario, and 5.5 ◦C under the SSP245
scenario. This indicates that under the high-emission scenario (SSP585), the rise in Tmax is
more pronounced. Figure 3b shows the trend in the daily minimum temperature (Tmin),
which is similar to that of Tmax. In the 2040s, Tmin increases by 3.5 ◦C under the SSP585
scenario, 2.0 ◦C under the SSP126 scenario, and 3.0 ◦C under the SSP245 scenario. By the
2080s, Tmin rises by 5.5 ◦C under the SSP585 scenario, 3.0 ◦C under the SSP126 scenario,
and 4.5 ◦C under the SSP245 scenario. This further confirms that under the high-emission
scenario, the rise in Tmin is also more significant. Figure 3c reflects the rate of change
in precipitation. In the 2040s, the changes in precipitation under different SSP scenarios
are more complex, with both increases and decreases. For example, the rate of change in
precipitation under the SSP585 scenario is approximately −10%, while the changes under
the SSP126 and SSP245 scenarios are about −5% and 0%, respectively. By the 2080s, the rate
of change in precipitation under the SSP585 scenario improves, with an average of about
5%, while the changes under the SSP126 and SSP245 scenarios are approximately 0% and
−5%, respectively. Under the high-emission scenario (SSP585), precipitation might decrease
in the short term but improve in the long term. In all scenarios, both the maximum and
minimum temperatures are on the rise, with the most significant increases observed under
the SSP585 scenario. Precipitation changes are more complex, with a potential decline in
the short term, though this trend is anticipated to be offset by the 2080s.

Figure 3. Changes in (a) Tmax, (b) Tmin, and (c) precipitation in comparison to the baseline period
(1991-2008) across various climate projections.

3.3. Utilizing SDSM for Simulated Future Climate Downscaling

Figure 4 shows the monthly runoff predictions of the Xiangxi River under different
GCMs and SSP scenarios. With the analysis using the HBV-XGBoost model, the trends
in runoff changes under different scenarios can be clearly seen. On a seasonal scale, all
models consistently show a significant increase in runoff from May to August, with the
lowest runoff occurring from December to February. In contrast to the historical period,
future projections for the 2040s and 2080s indicate a shift in peak runoff from June to
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May. This change may be attributed to increased spring precipitation leading to earlier soil
saturation, as well as rising temperatures accelerating the hydrological cycle and increasing
evaporation rates, especially under the high-emission scenario (SSP585) in the 2080s, where
runoff increases from about 1527.52 cubic meters per second to 2344.42 cubic meters per
second and from 1462.11 cubic meters per second to 2889.58 cubic meters per second,
respectively. This may be due to the significant increase in temperature and precipitation
under the SSP585 scenario, leading to increased runoff during high-precipitation months,
while high temperatures in low-precipitation months reduce soil moisture by increasing
evaporation and transpiration rates, potentially worsening drought conditions. In contrast,
the EC-Earth3-Veg-LR model and the FGOALS-g3 model predict more moderate fluctua-
tions in runoff in the future periods under the SSP585 scenario. Both the ACCESS-CM2 and
ACCESS-ESM1-5 models anticipate an escalation in runoff during May under the SSP126
and SSP245 scenarios. In summary, different emission pathways show different results, but
there is a clear enhancement in peak summer runoff. These results highlight the urgency
of developing robust and highly adaptive water resource management strategies. To ef-
fectively manage anticipated seasonal extreme events and address uncertainties in future
runoff patterns due to climate change, it is crucial to implement strategies. Additionally,
establishing a comprehensive monitoring and early warning system for extreme weather
events is of great significance. This system aids in reducing the impacts of floods and
droughts, safeguarding water resources, and ensuring the safety of local communities.

Figure 4. A comparative analysis of monthly runoff patterns across climate scenarios for the 2040s
and 2080s relative to the baseline period (1993–2008).
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Table 3 highlights notable variances in how various Global Climate Models (GCMs)
and climate scenarios influence the projected runoff for the decades of the 2040s and
2080s. The Sen slope measures the extent of the trend, and the M-K test determines
whether the trend is statistically significant [61,62]. A positive Sen’s slope signifies an
upward trend in runoff, whereas a negative slope implies a downward trend. The Z-value
determines the significance of the trend, with a larger absolute value indicating a more
pronounced significance. In the 2040s, the ACCESS-CM2 model under the SSP585 scenario
shows a significant increasing trend with a Sen’s slope of 0.0025 m3/s and a Z-value of
1.33. In contrast, during the same period, the EC-Earth3-Vcg-LR model under the SSP245
scenario exhibits a non-significant decrease with a Sen’s slope of −0.0030 m3/s and a
Z-value of −0.65. In the 2080s, the increase in runoff under the SSP585 scenario for the
ACCESS-CM2 model is even more pronounced, with a Sen’s slope of 0.0047 m3/s and a
Z-value of 2.15, indicating a trend towards increased runoff under high-emission scenarios.
Conversely, under the low-emission scenario SSP126, the FGOALS-g3 model in the 2080s
shows a significant decreasing trend, with a Sen’s slope of −0.0050 m3/s and a Z-value of
−2.19. These results suggest that the impact of climate change on runoff is complex and
variable, with considerable differences in predictions under different models and scenarios,
highlighting the need to consider this uncertainty and complexity when formulating
water resource management strategies. Moreover, these findings underscore the necessity
for adjustments in runoff prediction and management strategies under different climate
scenarios, particularly under high-emission scenarios.

Table 3. Analysis of Sen slope and M-K trend tests for future runoff projections.

Time Frame Climate Model Scenario Sen Slope (m3/s) Z-Value Trend Characteristics

2040s

ACCESS-CM2
SSP126 −0.0005 −0.17 Not significant decrease
SSP245 0.0041 0.91 Not significant increase
SSP585 0.0025 1.33 Significant increase

ACCESS-
ESM1-5

SSP126 0.0082 2.64 Significant increase
SSP245 0.0078 1.70 Not significant increase
SSP585 0.0036 1.11 Not significant increase

EC-Earth3-Veg-
LR

SSP126 0.0012 0.31 Not significant increase
SSP245 −0.0030 −0.65 Not significant decrease
SSP585 0.0014 0.40 Not significant increase

FGOALS-g3
SSP126 0.0046 0.97 Not significant increase
SSP245 0.0048 1.45 Not significant increase
SSP585 0.0035 1.05 Not significant increase

2080s

ACCESS-CM2
SSP126 −0.0017 −0.64 Not significant decrease
SSP245 0.0048 1.56 Not significant increase
SSP585 0.0098 2.35 Significant increase

ACCESS-
ESM1-5

SSP126 −0.0023 −1.04 Not significant decrease
SSP245 −0.0010 −0.62 Not significant decrease
SSP585 0.0047 2.15 Significant increase

EC-Earth3-Veg-
LR

SSP126 −0.0021 −0.44 Not significant decrease
SSP245 0.0022 0.55 Not significant increase
SSP585 0.0049 1.65 Not significant increase

FGOALS-g3
SSP126 −0.0050 −2.19 Significant decrease
SSP245 −0.0014 −0.26 Not significant decrease
SSP585 0.0048 1.85 Not significant increase

Figure 5 illustrates the predicted annual runoff using violin and radar plots. The
violin plot on the left depicts the distribution of annual runoff across four GCMs under
three scenarios, while the radar plot on the right offers a visual comparison of percentage
changes relative to the historical period (1993–2008). The findings reveal substantial
changes in the projected annual runoff under different scenarios. It is evident that all
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Global Climate Models (GCMs) forecast a notable increase in annual runoff under the high-
emission scenario SSP585, particularly in the 2080s, suggesting a more severe impact of
high-emission scenarios on water resources. For instance, the FGOALS-g3 model predicts
the highest growth rate in runoff for the 2080s compared to historical data, at 76.54%,
under the SSP585 scenario. The ACCESS-ESM1-5 model exhibits greater variability under
the SSP585 scenario, with a more dispersed distribution of predicted runoff values, and a
growth rate of 53% for the 2080s compared to historical data, indicating higher sensitivity to
emission scenarios. The ACCESS-CM2 model and the EC-Earth3-Veg-LR model also show
increases under the SSP585 scenario, but the magnitude of growth is relatively small. In
contrast, apart from the FGOALS-g3 model, the other three models show smaller increases
under the lower-emission scenarios (SSP126 and SSP245), indicating a lower impact of
climate change. The FGOALS-g3 model predicts the highest growth rate in runoff for the
2080s under the SSP126 scenario, at 77.38%, compared to historical data. The ACCESS-
CM2 model and the ACCESS-ESM1-5 model predict growth rates of 47.92% and 40.07%,
respectively, for the 2080s under the SSP126 scenario. Under all scenarios, the runoff is
anticipated to rise progressively from the historical period to the 2040s and then to the
2080s, suggesting that the influence of climate change on water resources will become more
severe over time.

 

Figure 5. The projected annual runoff in the 2040s and 2080s under different climate scenarios
compared to the historical period (1993–2008).

Figure 6 depicts the monthly mean runoff for the years 2040 and 2080, considering
various Global Climate Models (GCMs) and three distinct climate scenarios: SSP126,
SSP245, and SSP585. It is evident that the monthly runoff increases for all GCMs from
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2040 to 2080, with the largest increase occurring under the high-emission scenario (SSP585).
The ACCESS-CM2 and FGOALS-g3 models show the greatest changes in monthly average
runoff. For example, under the SSP585 scenario, the ACCESS-CM2 model predicts that the
average runoff in May will increase dramatically from 12.81 and 39.72 in 2040 to 88.05 and
84.34 in 2080. The FGOALS-g3 model predicts that the average runoff in May will increase
from 21.93 in 2040 to 50.9 in 2080 under the SSP585 scenario. In contrast, the ACCESS-ESM1-
5 and EC-Earth3-Veg-LR models show more significant changes in the monthly average
runoff predictions for 2080. The ACCESS-ESM1-5 model forecasts that in 2080, there will
be an increase in the number of months experiencing a substantial rise in monthly average
runoff under both the SSP245 and SSP585 scenarios. Meanwhile, the EC-Earth3-Veg-LR
model projects a notable increase in monthly average runoff in 2080 under the SSP126
and SSP245 scenarios. In terms of seasonal variation, the peak monthly average runoff
typically occurs from April to July, which may be related to the seasonal precipitation
pattern. This reflects the profound impact of climate change on the water cycle, which may
lead to significant changes in the spatial and temporal distribution of water resources and
thus exacerbate the challenges of water resource management.

Figure 6. Monthly runoff averages in 2040 and 2080 across different climate scenarios.
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4. Conclusions
In this study, we employed the HBV-XGBoost hybrid model to predict the impact of

climate change on runoff in the Xiangxi River Basin. We integrated high-resolution climate
data provided by the SDSM with the physical basis of the HBV model. This allowed us to
assess future runoff changes under different emission scenarios. Additionally, we leveraged
the strong predictive capabilities of the XGBoost model. By comparing the prediction
results of the HBV model and the HBV-XGBoost model, we verified the superiority of
the coupled model in runoff prediction. Our model evaluation utilized statistical metrics
such as R2, NSE, and RMSE to ensure the accuracy and reliability of the prediction results.
Compared with previous studies in similar arid regions, such as the study by Su et al. [7]
in the Weigan River Basin, which used the SWAT model to predict future runoff changes
under climate change scenarios, our HBV-XGBoost model demonstrated higher prediction
accuracy and better adaptability to different emission scenarios. This suggests that the
hybrid model approach can provide more robust and reliable runoff predictions in the
context of climate change, especially in regions with complex hydrological processes and
significant climate variability.

The research findings indicate that the HBV-XGBoost model has a relatively high level
of accuracy in simulating runoff changes. It can accurately reflect the actual dynamics
of runoff. Under different Shared Socioeconomic Pathway (SSP) scenarios, we forecast
that the peak runoff could shift from June to May in the future periods of the 2040s and
2080s. For instance, both the ACCESS-CM2 and ACCESS-ESM1-5 models predict a surge
in May runoff under various emission scenarios, particularly under the high-emission
scenario (SSP585) in the 2080s, where runoff increases from approximately 1527.52 cubic
meters per second to 2344.42 cubic meters per second and from 1462.11 cubic meters
per second to 2889.58 cubic meters per second, respectively. This may be due to the
significant rise in temperature and precipitation under the SSP585 scenario, leading to
increased runoff in months with high precipitation, while high temperatures in months with
low precipitation reduce soil moisture by enhancing evaporation and transpiration rates,
potentially exacerbating drought conditions. Predicted annual runoff also shows significant
changes under different scenarios. All four Global Climate Models (GCMs) forecast a
notable increase in annual runoff under the high-emission scenario SSP585, mainly in the
2080s, indicating a more severe impact on water resources under high-emission scenarios.
For example, the FGOALS-g3 model predicts the highest growth rate in runoff for the 2080s
under the SSP585 scenario compared to historical data, at 76.54%. The ACCESS-ESM1-5
model exhibits considerable variability under the SSP585 scenario, with a more dispersed
distribution of predicted annual runoff, and a growth rate of 53% compared to historical
data for the 2080s, indicating higher sensitivity to emission scenarios. These findings
highlight the necessity for developing robust and adaptive water resource management
strategies. These strategies are crucial for addressing potential seasonal extreme events and
are essential for effectively managing the uncertainties brought by climate change.

This study provides valuable insights and predictions. However, there are some
limitations. The uncertainty of model predictions may be influenced by the selected climate
models and downscaling methods. The model’s generalizability under different climate
scenarios and basin conditions may vary. Future research could explore combinations
of more climate models and downscaling methods. This could improve the accuracy
and robustness of predictions. Further investigation into the effectiveness of different
management strategies and technologies is also needed. This would help in adapting to
climate change and water resource management. It will also help in developing more
effective water resource management measures. These measures are necessary to address
the challenges posed by climate change.
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