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Abstract

Channels with three standard symmetrical sections and one asymmetric section are
mounted as cantilever beams with the web oriented vertically. A classical solution to
the analysis of stress in each thin-walled cantilever channel is provided using the principle
of wall shear flow superposition. The latter is coupled with a further superposition between
axial stress arising from bending and from the constraint placed on free warping imposed at
the fixed end. Closed solutions for design are tabulated for the net shear stress and the net
axial stress at points around any section within the length. Stress distributions thus derived
serve as a benchmark structure for alternative numerical solutions and for experimental
investigations. The conversion of the transverse free end-loading applied to a thin-walled
cantilever channel into the shear and axial stress that it must bear is outlined. It is shown
that the point at which this loading is applied within the cross-section is crucial to this stress
conversion. When a single force is applied to an arbitrary point at the free-end section, three
loading effects arise generally: bending, flexural shear and torsion. The analysis of each
effect requires that this force’s components are resolved to align with the section’s principal
axes. These forces are then considered in reference to its centroid and to its shear centre.
This shows that axial stress arises directly from bending and from the constraint imposed
on free warping at the fixed end. Shear stress arises from flexural shear and also from
torsion with a load offset from the shear centre. When the three actions are combined, the
net stresses of each action are considered within the ability of the structure to resist collapse
from plasticity and buckling. The novelty herein refers to the presentation of the shear flow
calculations within a thin wall as they arise from an end load offset from the shear centre.
It is shown how the principle of superposition can be applied to individual shear flow and
axial stress distributions arising from flexural bending, shear and torsion. Therein, the new
concept of a ‘trans-moment’ appears from the transfer in moments from their axes through
centroid G to parallel axes through shear centre E. The trans-moment complements the
static equilibrium condition, in which a shift in transverse force components from G to E is
accompanied by torsion and bending about the flexural axis through E.

Keywords: thin-wall cantilever; shear centre; centroid; warping restraint; flexural bending;
transverse shear; axial torsion; shear flow distribution; trans-moment; buckling; yielding

1. Introduction

This paper extends the thin-walled beam theory outlined and derived previously
using the geometry of three extruded aluminium alloy channels to US specification [1].
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Therein, the point was emphasised that each thin-walled beam structure requires individual
consideration depending upon the cross-section and the manner of its support under an
imposed loading. What might appear as a simple structure is deceiving from the complex
analyses required of its stress state and consequently the likely mode of its failure. It
is a testimony to classical elasticity theory that solutions are forthcoming from its linear
constitutive relation, coupled with a description of force and torque equilibrium, with strain
and displacement compatibility matched to the boundary conditions that prevail. This
theory has long been applied by the Engineering Science Data Unit (ESDU) in the UK to
develop a library of case studies of lightweight alloy beam structures used in applications
where the weight to strength ratio is an issue. Their data sheets have been produced on a
variety of related topics including plate buckling within thin I, Z and U sections [2]. The
present work has been undertaken to provide further useful design data in this arena. In
particular, given the prevalence of the FEM today for stress analysis, these design data can
be configured for the validation of an FE stress analysis. A theoretical approach can serve
to validate finite element predictions and also provide the benchmark for comparisons
with experimental data found from scaled model testing. The present approach adopts the
classical theory where it is able provide closed solutions for a specific structure. Fortunately,
here, there are many practical applications of thin structures to which the theory can be
applied, especially those where minimum weight restrictions are imposed. More recent
developments with thin structures include thin-film technology [3] and flexible devices [4].
It is expected that a thin-walled stress analysis would have relevance here in the presence
of mechanical loading involving twist, stretch and bend in static and dynamic applications.

Previously, in Ref. [1], the flexural shear, bending and torsion of a thin-walled can-
tilever beam of an open cross-section were derived and considered separately. For an
open channel section, with x-axis symmetry, the axes of loading were referred to shear
centre E, centroid G and another arbitrary position, O, at the centre of the web. In the
case of an axial torsion, it was shown how both the free-end and constrained-end warping
displacements depended upon the axis of torsion coincident with the stated positions. So
too does the axial stress depend upon the torsion axis as it is induced by the fixed-end
constraint. It was seen that beam flexure involving bending and shear act together only
when transverse point forces act upon the shear centre. In this paper, bending moments
accompanying transverse forces may be displaced from x and y axes at G to parallel axes
at E after applying bending theory. It is shown here that any the shift between said axes
also involves a trans-moment, but this moment does not arise when E and G lie upon a
common x-axis for an axially symmetric channel section. Stress analysis considers the
torsion, shear and bending that arise when transverse forces applied at G are displaced to
shear centre E. The common centre enables a superposition between similar stress from
different sources. A net shear flow is found as a sum of the flows from shear and torsion
arising from the applied transverse forces. Accompanying this, a net axial stress also arises
as a sum of the axial stress from bending and from the beam’s end constraint. The latter
induces axial stress by preventing the axial warping displacement that would otherwise
occur under torsion when the ends are free. The safety of the beam against plastic collapse
and buckling failure must consider both net shear and axial stresses, say, within criteria of
yielding, applied to where each stress is at its most severe. Other work has been reported
by Papangelis [5] on the stresses in thin-walled channel structures under torsion. With axial
torsion applied specifically, the local buckling of the channel walls is confined to the most
highly stressed constrained regions, say within the web at an end fixing. In unconstrained
torsion, global torsional buckling is most likely to happen by allowing warping to occur
freely. However, where any constraint to free warping arises from clamping ends and sides,
the clamping also introduces additional axial stress that is quantified herein. This stress
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arises despite no external axial force being applied in these studies. Vibratory axial loading
was applied in combination with torsion in the work of Yu et al. [6]. Again, when the
torsion is constrained, then axial stress is imposed upon cyclic applications of this stress to
introduce a further risk of fatigue failure. Complex modes of failure can arise where gross
yielding and buckling, both local and global, are coupled with fatigue. When an endurance
estimate proves intractable, then testing would be recommended. There follows an analysis
here of the torsion arising from transverse forces applied to the centroid at the free end of a
cantilever channel. The stress state is again complex but different from those cited in that
said forces also bend and shear the channel over its length.

Thin-Walled Elasticity Theory

In a minor departure from the original Vlasov theory [7,8], the co-ordinates z in this
paper refers to length and x and y to the section’s centroid as an origin. The general
equations to be applied in this work refer to the two thin-walled sections of a cantilever
beam shown in Figure 1a,b. In the x-symmetric section of Figure 1a transverse horizontal
and vertical forces, Fy and Fy, respectively, are applied at centroid G of a thin-walled
cantilever beam in which x and y are centroidal axes at G (see Figure 1a). When F, and Fy
are applied at shear centre E as shown, then the section is subjected to transverse shear and
bending without torsion. Loading at point E in free space may not be achieved easily in
practice. Usually the forces are referred to the section’s centroid at G. Then, with transverse
forces displaced from shear centre E to centroid G, the bending, shear and torsion of the
beam arises [9]. A corollary applies that when pure axial torsion applied at E twists and
does not bend the cross-section. Point E is then referred to as the centre of twist, i.e., the point
in the section that does not rotate. Therefore, pure axial torsion is applied to longitudinal
axis z through shear centre E [10,11]. Similar features apply to E and G for the thin-walled
non-symmetric section shown in Figure 1b, provided axes 1 and v replace x and y as the
section’s principal centroidal axes. Here, the axial stress due to bending is applied to the
thin section’s principal axes u and v. Axes u and v will coincide with x and y, with x as a
symmetry axis for standard channel sections mounted with a vertical web and equal flange
lengths. However, if the applied transverse forces are displaced from G to any arbitrary
point, O, in the cross-section, then a transformation is required between in-plane axes at
E, G and O for the bending, torsion and transverse shear stress calculations under each of
these three actions. In Ref. [1], it was shown how to calculate net axial stress and the net
shear stress for this condition when O lies at the centre of the vertical web for each of the
three symmetrical channel cantilever beams. In this paper, with all loading applied at G,
these transformations are restricted to apply between G and E.

y

q
v ;CE
u

(@) (b)

Figure 1. Principal axes (a) coincident and (b) not coincident with shear force directions.
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2. Non-Symmetric Cross-Section

In its most general form, the Vlasov theory [7,8] applies to any thin-walled, non-
symmetric, open cross-section (see Figure 1a,b). The theory is limited to small deformation
linear elasticity in which infinitesimal strain is compatible with the first derivative of
displacement. Forces applied are in static equilibrium with internal stress distributions, and
the boundary conditions are matched to each thin-walled structure. Here, a cantilever beam
with different thin-walled channel sections is examined. Stress analyses are presented for
three symmetrical sections of standard US dimensions and one non-symmetrical channel
with unequal flange lengths. Transverse forces Fy and F, are applied at the centroid of the
free-end section.

2.1. Bending

Bending moments should be referred to equivalent moments M,” and M, that are
applied to the section’s principal centroidal axes 1 and v [12-14]. These moments appear
with the centroid’s reference co-ordinates x and y to give the axial bending stress as follows:

0z =Myy/L + My /1 (1a)
My = [My — My (Ixy/Iy)]3[1 - Ixyz/(lx Iy)] (1b)
My = [My — My (Ly/I)]3[1 — Ixyz/(lx Iy)] (1)

in which Iy, I, and I,y are the second moments of area for the cross-section for its reference
axes x and y. Equations (la—c) are convenient forms that do not require the calculation of
the principal values I;, and I, and their orientations with respect to x and y.

2.2. Shear

Let both vertical F, and horizontal Fy shear forces be applied to shear centre E in
the negative x and y directions (see Figure 1a,b). For a non-symmetric section, flexural
shear under each transverse force must apply to shear centre axes aligned with principal
directions u and v.

The shear flow distribution, g = ¢, around the section’s mean wall perimeter dimen-
sion, s, can be derived from [1]

q= (Fx’/ly) Dy + (Fy’/lx) Dy (2a)

where Fy" and F,” are equivalent forces applied to principal axes u and v. Given
Fy =dMy/dz and F, = dM,/dz, each derivative is applied to Equation (1b,c) to provide the
following equivalent shear forces [15], appearing in Equation (2a):

Fy' =[Fy — Fy (Ly/I)] 3 [1 — Ly?/ (I L)] (2b)

Fy, = [Fy — Fy (Ixy/ly)] >5[1 - Ixyz/(lx Iy)] (20)

Dy and Dy in Equation (2a) are the running first moments of area integrals about
axes x and y for the wall area with an origin for s at a free surface. The two integrals
are D, = f AYydA and Dy = f A dA for dA =t ds. In the case of a symmetric channel
section about the x-axis (see Figure 1a), then I, = 0, thus giving Fy" = Fy and F’ = Fy in
Equation (2a).

2.3. Axial Stress Superposition

When both ends of the beam are free, the unconstrained warping displacements, w,,
can be found from St Venant’s torsion theory [9-11]. Therein, points in a plane cross-section
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are free to displace axially (warp) with the distortion of that plane arising from torsion, i.e.,
plane cross-sections do not remain plane. With one end encastre (fixed), a full constraint
applies to the fixing where no warping occurs. Elsewhere along the length of a cantilever,
the constraint to free warping extends to a lesser degree. Consequently, axial stress is
induced in all but the free end beam section, i.e., for 0 # z < L. This stress is proportional to
w, but is non-linear (hyperbolic) in z. Here, the net axial stress arising from constrained
warping is added to Equation (1a) [1]:

0z = pEw,{sinh [p(L — z)] 3 cosh (uL)} oz + My'y/I + My/x /1, (3a)

where w, is the unconstrained warping displacement, y = /(GJ/ET1) in which
I = fos (2AE) t ds is the primary warping constant. This gives

wo = —(2Ap)T 3 (G]) = —(w — @)T > (G]) (3b)

where Ar = (w—®)/2 is the ‘swept area’ of the section between E and each perimeter
point (see Figure 2). Equation (3a,b) enable the net axial stress to be evaluated separately
from the net shear stress, as will follow. Geometrically, it will be seen that axial stress
distributions within a thin-walled, open-section cantilever beam, arising from each source,
may be overlaid to provide a net axial stress distribution for the cross-section at any given
length position, z.

(a (b)
Figure 2. Channel section (a) with (b) swept area at shear centre E.

2.4. Net Shear Stress

The shear stress due to transverse shear and axial torsion is to be investigated here. A
torsional shear flow analysis requires that a longitudinal axis passing through E in Figure 1b
receives a net torque:

T=F,e.—Fxey (4)

where ey and ey are the perpendicular distances from F,, and Fy to E, as shown in Figure 1b.

Note (1): For the axially symmetric channels considered here, with a vertical web
and horizontal flanges, the line of action of Fy passes through E, and therefore, e, = 0 in
Equation (4).

Note (2): If forces F, and Fy do not lie at G, then ey and ey are replaced by their
respective perpendicular distances from E.

Note (3): If the applied transverse forces are inclined to x and y, the shear flow
Equation (2a) employs component forces Fy and Fy that are referred to the shear centre.
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Consider shear flow g arising from T applied at E for a thin-walled, cantilever beam
section with x-axis symmetry in Figure 1a [1]. The Wagner-Kappus contribution [10,11] to
the total torque T employs shear flow g as follows:

rS

Ty = leqR;ds = E (d3 9/dz3) L R; [/0 (2Af) tds} ds (5a)

where R; is the perpendicular distance from E to the mid wall position and c is the full length
of the mid-wall perimeter co-ordinate, s. Shear flow g in Equation (5a) for a uniformly thin
section is given as

q=E (d%0/dz% / s QAg) tds = Et (d°0/d2%) Q (5b)

where

Q:/s 2AF ds=/s (w— @) ds (5¢)

in which @ is twice the swept areas between E and each median point, 1,2, 3 ... 7, in the
cross-section. The total (applied) torque at length position z is the sum of the Wagner and
St Venant torque contributions to the total (applied) torque:

T =GJ(d6/dz) — ET; d30/dz® (6a)
for which the solution to the twist rate is [1]
d6/dz = [T/(GI{1 — cosh [(L — 2)]/cosh (uL)) (6b)
This gives the derivative d30/dz% in Equation (6a) as
-.d%0/dz% = —(T/G)) [yzcoshy(L — z)/cosh uL] (60)

where | = Ybt%/3 is the polar second moment of area for a thin-walled section composed of
rectangles, as are all channel, T and I sections.

It will be seen that the shear flow distribution arising from each source (shear and
torsion) may be overlaid graphically to provide a net shear stress distribution (7 = 4/t) for
each length position z in a beam of a given cross-section.

2.5. Symmetrical Channel

Firstly, the application of this theory will be simplified for a singly x-symmetric section
in Figure 1a where the three standard channels lie. In the case of a channel section with
x-symmetry, the principal axes remain at x and y. Therefore, My and My replace equivalent
moments M," and M,," and Fy and Fy replace equivalent forces Fy” and F,". These reductions
to Equations (1)—(7) are sufficient for providing the analyses and numerical calculations
that are to follow. In particular Equation (3a) provides the net axial stress, ¢, arising from
bending and constrained warping combining in an x-symmetric channel:

0z = pEw,{sinh [p(L — 2)] > cosh (uL)} oz + Myxy/I + Myx/1I, (7)

Combining g in Equation (5b) with Equation (2a), the net shear flow for this channel
arises from flexural shear forces and axial torsion as

q=(Fx/I,))Dy + (F,/1:)Dx + Et (°0/dz*)Q (8)
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It is noteworthy that Equations (7) and (8) provide closed solutions, which will serve
as a reliable basis for a comparison with numerical FE analyses and experimental testing.
The stress calculations that follow apply to seven points taken anticlockwise along the
mean wall perimeter of the symmetric channel in Figure 2a: points 1 and 7 are the flange
ends; points 3 and 5 lie at the corners; web point 4 is at the intersection with the x-axis; and
flange points 2 and 6 are at the intersection with the y-axis.

Note (1): For a cantilever, the bending moments at a given position, z, along the length are
given as My = Fy(L — z) and My = Fx(L — z). The moments show their maxima at the fixing
where z = 0.

Note (2): The shear flow terms are independent of length z when transverse shear forces
Fy and Fy are applied at the free end of a cantilever beam. Equilibrium requires that every
cross-section along the length is subjected to the same shear forces. However, the third
term in Equation (7) is dependent upon z from Equation (6c).

Note (3): The net shear stress (Equation (7)) has a linear distribution through the thickness.
The flexural shear flow, gr, provides the mean shear stress at mid thickness. With gr, the
shear flow due to axial torsion gt is superimposed to give a linear thickness variation in
Gnet between the free edges.

3. Torsional Shear Flow Calculations

This analysis begins with the application of Equation (5b) to an x axially symmetric
channel section of uniform thickness. At a given position z along the beam’s length, the
torsional shear flow in the cross-section is controlled by the integral Q, with torque T
applied to shear centre E (see Figure 2a). The swept area diagram (see Figure 2b) provides
Q at points 1, 2, 3 and 4 within each straight length 1-2, 2-3, etc., of the channel section.
To permit different channel geometries, each Q appears finally in a non-dimensional form
involving the ratios between channel dimensions 4, d, e and t as follows:

1-3:0<s<a;w=ds/2; Qi3 = [s(ds/2 — @)ds = ds2/4 — @s

Q1=0,Q3=da?/4 — @a; | Q3/a° = (1/4)(d/a) — @/a?

34a<s<a+d/2w=es+ad/2—ea); Q34 = [ [es+ (ad/2 — ea) — @] ds

Qu/a® = (1/2)(e/a)[1 + (1/2)([d/a)]? + (ko/a®> — @/a®)[1 + (1/2)(d/a)] + k; /a®

45.a+d/2<s<a+d;y=—se+(ad/2+ed +ea); Qu5= [s[—se+ (ad/2 +ed + ea) — @]ds
= [s (ks —se — @) ds

Qs/a® = —(1/2)e/a)(1 +d/a)? — (@/a% — ks /a®)(1 + d/a) + ky/a®

5-7:a+d<s<2a+d;w=—ds/2+da+d/2); Qsy = [s[—ds/2 +d(a+d/2) — @]ds
= [s (ks —sd/2 — @) ds

Qy/a®=—1/4)d/a)2 +d/a)?> — 2 +d/a)(@/a* — ks/a®) + k¢ /a®

where

ko/a* = (1/2)(d/a) — (e/a)
ki/a® = —(1/4)(@d/a) + (1/2)(e/a)
ks/a* = (e/a)(d/a) +e/a +(1/2)(d/a)
ky/a® = (e/a)[1 + (1/2)@/a)]* + [1 + (1/2)(d/a)](ko/a?> — k3 /a?) + ki /a®
ks/a* = (d/a)[1 + (1/2)(d/a)]
ke/a® = (1+d/a)*[(1/4)@/a) — (e/a)] + (1 + d/a)(ks/a* — ks/a?) + ky/a®
3/a% = (1/4)(d/a)[2(1 + d/a) +(e/a)(d/a)]/ (2 + d/a)
e/a=3(a/d)/[1+6(a/d)]
The Q coefficients listed in Table 1 above are proportional to the shear flow within

each channel section. Shear flow g (N/mm) at positions 1, 2, ... 7 in the channel wall are
found from multiplying Q (mm?) by Et (d30/dz%) (N/mm®*). Then, the shear stress at these
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positions follows from T =g/t =E (d36/dz3). Equation (6¢) shows that the third derivative
depends upon z and q = cQ within the proportionality referred to. Table 2 shows how
d30/dz? varies with z/L in each channel section for a unit torque, using constants ] and p.
From Equation (6¢),

d%0/dz® = —(T/G)) [],tzcosh],t(L — z)/cosh uL] (8a)

(G/T) d%0/dz® = —(u?/])cosh[uL(1 — z/L)]/cosh uL (8b)

A:]=67.74mm?*, u=/(G]/ET1) =6.562 x 107> mm~!, uL = 6.562 x 10~3 x 300 = 1.9685;
B: ] =1016.8 mm*, y = \/(GJ/ET1) =4.55 x 1073 mm ™!, uL = 4.55 x 1073 x 103 = 4.55;
C: ] =44.656 mm*, u = \/(GJ/ET1) =2.73 x 1073 mm~!, uL = 2.73 x 1073 x 340 = 0.936.

Table 1. Torsional Q distributions in three channel sections.

Section A:a=1/2",d=1",t=1/16",d/a=2,ex/a=3/8, @/a*> =27/32
ko/a*=1—-3/8=5/8

ki/a® =—(1/4) x 2+ (1/2)(3/8) = —5/16
k3/a*=3/4+3/8+1=17/8

ky/a®=(3/8) x 4+2(5/8 —17/8) —5/16 = —29/16
ks/a?=2(1+1)=4

ke/a® = (3)%(1/2 — 3/16) + 3(17/8 — 4) — 29/16 = —74/16
Q=0

Qs3/a®=(1/4) x 2 —27/32=—-11/32

Qu/a% = (3/16)(1 + 1)2 +(5/8 — 27/32) x 2 — 5/16 = 0 (check)
Qs/a® = —(3/16) x 3% — (27/32 —17/8) x 3 —29/16 =11/32
Qy/a® =—(1/2) x 16 — 4(27/32 — 4) — 74/16 = 0 (check)

SectionB:a=1",d=13/4",t=1/8",d/a=7/4,e./a=12/31, @/a? = 0.7207
ko/a?=7/8 —12/31 = 0.488

ki/a® = (1/4)(7/4 — 24/31) — 0.488 = —0.244

ky/a? = (12/31 x 7/4) +12/31 + (1/2)(7/4) = 1.9375

ky/a® = (12/31)(1 +7/8)% + (1 + 7/8)(0.488 — 1.9375) — 0.244 = —1.6047
ks/a% = (7/4)(1 +7/8) = 3.2813

ke/a® = (11/4)%(7/16 — 12/62) + (11/4)(1.9375 — 3.2813) — 1.6037 = —3.4498
Q1=0

Q3/a® = (1/4)(7/4) — 0.7207 = —0.2832

Qu/a® = (12/62)(1 + 7/8)% + (0.488 —0.7207)(1 + 7/8) — 0.244 = 0 (check)
Qs/a% = —(12/62)(11/4)? — (0.7207 — 1.9395)(11/4) —1.6047 = 0.2832
Qy/a® = —(7/16)(2 + 7/4)* — (2 + 7/4)(0.7207 —3.2813) — 3.4498 = 0 (check)

Section C:a=5/8",d=17/8",t=3/64",d/a=3,ex/a=1/3, @/a* =27/20
ko/a?>=3/2—-1/3=7/6

ki/a®=(1/4)3 —2/3) —7/6=-7/12
ks/a?>=3/2+1+1/3=17/6
ky/a®=(1/3)1+3/2)%*+(1+3/2)7/6 —17/6) —7/12=—8/3
ks/a?>=3(1+3/2)=15/2

ke/a® =16(3/4 —1/6) + 4(17/6 — 15/2) — 8/3 = —12

Q1=0

Q3/a®=3/4 —27/20= —3/5

Qu/a®=1/6(1+3/2)2+(7/6 —27/20)(1 +3/2) — 7/12 = 0 (check)
Qs/a3 = —(1/6)(16) — (27/20 —17/6)4 — 8/3 =3/5

Q7 /a® = —3/4(25) — 5(27/20 —15/2) — 12 = 0 (check)
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Table 2. Torsional shear flow dependence upon length within three channel sections A, B and C with
torsion applied at E.

Successive Normalised Length Ratios

z/L 0 1/4 1/2 3/4 1
1—2z/L 1 3/4 1/2 1.4 0
(A) uL(1 — z/L) 1.9685 1.4764 0.9843 0.4921 0
coshuL(1 — z/L) 3.65 2.303 1.5248 1.1236 1
coshuL(1 — z/L) 1 0.631 0.4178 0.3078 0.274
coshuL
(G/T) d%6/dz® x 100 —0.6357  —0.4011  —0.2656  —0.1957  —0.1742
(B) uL(1 — z/L) 455 3.4125 2.275 1.1375 0
coshuL(1 — z/L) 47.32 15.187 4.9154 1.7198 1
coshuL(1 — z/L) 1 0.3209 0.1039 0.03634 0.02113
coshuL
(G/T) d%0/dz% x 10° —20.4 —6.533 —2.1155 0.7399 —0.4302
(C) uL(1 — z/L) 0.936 0.702 0.468 0.234 0
coshuL(1 —z/L) 1.471 1.2567 1.1115 1.0275 1
coshuL(1 — z/L) 1 0.8543 0.7556 0.6985 0.6798
coshuL
(G/T) d36/dz® x 106 —0.167 0.1426 —0.1261  —0.1166  —0.1135

The hyperbolic dependence of a given section’s torsional shear flow upon length and
cross-section geometry appears in the penultimate row for A, B and C in Table 2. There is
sufficient variation in geometry between the three channels to reveal both the influence of
the cross-section and the length (through L and i) upon shear flow within Figure 3.

1.0

coshu(l - z/L)
coshu L

0.5

L A I —
0 0.25 0.50 0.75 1.0

Figure 3. Torsional shear flow dependence upon length and section.

The greatest beam length of 1 m for section B shows the widest variation in shear flow,
with this being near zero at the free end. Reducing this length to ~ 1/3 for A and C shows
how their channel section dimensions alter the fall in shear flow from the fixing by ~ 27%
and 68% at the free end, respectively.

The torsional shear flow at perimeter pointsi =1, 2 ... 7 for each cross-section at a
given length position is found from multiplying the entry in the final row in Table 2 for
each channel A, B and C by the appropriate Q; values (see Equation (5b,c)). Thus, for
channel section A at half length, the entry of —0.2656 applies to the section’s g distribution
under a unit torque (T = 1 Nm) with E/G =210/70 = 3, as follows:

g; = Et (d30/dz%)Q; = Et x (— 0.2656 x 107°)T/G x Q;
=3 x (1/16 x 25.4) x (— 0.2656 x 107%) x (1 x 10%) x Q;
= —(1.265 x 1073) Q;
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where, as calculated previously,
Q1=0,Q3=—(11/32)a>, Q4 =0, Qs = (11/32)a°, Q7 =0
giving

q1=94=4q7=0
5.q3=—q5 = —(1.265 x 1073) x (—11/32)(1/2 x 25.4)> = 0.891 N/mm

The torsional gr distribution has convex curvature within the channel reflecting at
the web centre (e.g., see Figure 6c¢). To this, there is to be added the flexural shear flow
from Fy and F;, re-applied together at E (in the negative x and y directions). Recall that this
summation of torsion and shear amounts to adopting a force system equivalent to that of
applying these forces to the centroid directly. That is, when, as here, Fy and F; are applied
to G in Figure 4a, they are equivalent to re-applying said forces at E with an accompanying
torque, T = Fy(ex + X'), as shown in Figure 4b. Torsion is absent only when the transverse
forces are applied directly to E. Thus, either equivalent force system in (b) and (c) provides
an alternative calculation for gy in (a).

E | R
' L T'Er‘t G
+ F Pt
E G . £
(a) (b)

Figure 4. (a) Transverse forces applied at G replaced by (b) equivalent force system at E.

Here, with section symmetry, bending moments arising from F,, which act about axis
x, pass through both G are E. This paper later questions in Section 9.8 whether bending
moments arising from F, and acting about axis y through G in Figure 4a are altered by
the parallel transfer of the y-axis to E. With section asymmetry, such a ‘trans-moment’
would appear possible with the transfer of each non-coincident axis between G and E.
Normally, the static equivalence that Figure 4a,b show does not account for any change
to the bending moments that a shift in their forces might produce, i.e., Figure 4a,b do not
include bending. The trans-moment is introduced here as a novel theoretical feature for
which stress calculations for each type of section are to follow (see Section 9.8).

4. Flexural Shear Flow

Here, Figure 4a,b apply to each uniformly thick, singly symmetric, channel A, B and
C, having x and y as its principal axes with aligned forces F, and F, applied at centroid
G. Working along the mean centre line of an x-symmetric channel, web d x t and flanges
a x t, centroid position X’ and the second moments of area for centroidal axes x and y in
Figure 5a,b appear in their ND forms X'/a, I/ d* and Iy/ as:

X'/a=(a/d)/[1+2(a/d)]

Iy = 2[at(d/2)? + at3/12] + td® /12 = atd? /2 + at3 /6 + td° /12

I/d* = (1/2)(a/t)(t/d) + (1/6)(a/d)(t/d)® + (1/12)(t/d)

Iy =dt3/12 + dtX"? + 2[ta® /12 + at (a/2 — X')?]

Iy/d* = (1/12)(t/d) + (t/d)(X' /d)* + 2{(1/12)(t/d)(a/d)* + (a/d)(t/d)[(1/2)(a/d) — (X' /d)]*}
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s I
o B (b)
Figure 5. Shear flow distributions in channel section: (a) under F, and (b) under Fy.

Each ND form employs the dimension ratios a/d, t/d and X’ /d for any x-symmetric
channel geometry. The first moment of area integrals Dy and D, in Equation (2a) follow
separately as

1-3: Dy =t [syds=tds/2+ Dy

at1,s =0, Dy; =0 (free edge)

at2, (y-axis), s =a —X’, Dyp =td (a —X') /2
at3.s=a,Dy3 =tda/2

3-5,Dy =t [ (d/2 —s)ds=t(ds/2 — s*/2) + Dy3
at3,5s=0,Dy3 =tda/2

at 4, (x-axis) s = d/2, Dyy = t(d*/4 —d?/8) + tda/2 = td*>/8 + tda/2 v (NA, web centre)
ath5,s=d, Dx5 = ng =tda/2

5-7 Dy = —t [s(d/2) ds + Dyxs = —tds/2 + Dys
at5,s=0,Dy =Dy5 =tda/2

at 6, (y-axis), s = X', Dyg = —tdX' /2 + tda/2 = Dyp
at7,s=a, Dy; = —tda/2 + tda/2 = 0 / (at the free edge)

Given that Dy is proportional to gy, Figure 5a shows that the g, distribution is linear
between flange points 1, 2 and 3 and between 5, 6 and 7. Web points, 3, 4 and 5 connect g
with a convex parabola, showing maximum shear flow upon the neutral axis (NA) at point
4 on the section’s centroidal axis.

To find the g, distribution (Figure 5b), take s counter-clockwise direction with the
origin initially at free end point 1 on the top flange, where D, = 0, and thereafter at median
points2,3...7:

1-3: Dy =t [sla— (s + X")]ds=(a —X')s — s?/2+ Dy
atl,s=0,Dy; =0

at2 (y-axis, NA), s =a — X', Dyp =t [(a — X')? — (a — X')*/2] = (t/2)(a — X')?
at3,s=a,Dyz=t[(a— X)a—a*/2] =at@a/2 — X')

3-5: Dy =—t [¢ X' ds+Dys=—t X' s+ Dy3

at3,s=0,Dy3 =at(a/2 — X')

at4 (x-axis), s =d/2, Dyg = a?t/2 — X' t (a + d/2)

at5,s=d,Dys=—t X' d+at (/2 — X')=a?t/2 — X't (a + d)
5-7:Dy=—t [s(s =X') ds + Dys = ts (s/2 — X') + Dys
at5:s=0,Dy5=a2t/2—X’t(a+d)

at 6 (y—axis, NA):s = X/, Dyg = X' t (X'/2 =X) + a?t/2 = X' t (a + d)
Dye = (@*/2) = X't (X' /2 +d +a)

at7,s=a,Dyy =ta(a/2 — X')+a?t/2 =Xt (a + d) =a’t — X't (2a + d)
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Substituting for X' leads to the D, first moment expressions for each point 1-6:

Dy =0
Dy, = @t?/2)[(a + d)/(2a + d)]? (y-axis, NA)

Dys = (at?/2)d/(2a + d)

Dys =a?t/2 — X't (a +d/2) =0 (x-axis)

Dys = (at?/2)[1 — 2(a + d)/(2a + d)] = Dy3

Dy = (@*t/2) =X' t (X' /2 +d +a) = (@®t/2)[1 — a*/Qa +d)* — 2(a +d)/(2a +d)] = Dyp
D,;= a’t — a*t(a +d)/Ra+d) =0V

Figure 5b shows that top flange points 1, 2 and 3 lie on a convex parabola that has its
zero origin at the free edge 1 and a maximum at point 2 on the NA (y-axis). Points 3, 4 and 5
connect with a straight line showing g, = 0 at point 4 on the x-axis. Points 5, 6 and 7 connect
with a convex parabola with a maximum at point 6 on the NA (y-axis) reducing to zero at
flange end point 7, as expected. This distribution has inverted symmetry, indicating that
the shear flow positive direction is reversed below point 4 compared to the direction taken
for the perimeter dimension s (here counter-clockwise). That is, symmetry in g, applies
when the direction of s beyond the NA at point 4 is reversed. Alternatively, for the bottom
half of the channel, s may start from point 7 taken clockwise as far as the NA. Note: the g,
distribution may be ‘added’ to g, only when the direction for s is the same in Figure 5a,b
as shown.

5. Net Flexural Shear Flow

The net flexural shear flow is the sum of the shear flows due to transverse forces Fy
and Fy taken separately. The following sum follows from Equation (2a):

qx + gy = (Fx/Iy)Dy + (Fy/1)Dx (9a)

When the forces and second moments of area are written as ratios, the two flexural
shear flows may be added to include the product of these ratios:

(9x + qy)Iy/Fx) = Dy + (Fy/Fx)(Iy /1) Dy (9b)

The I, and I, values for the three channels, A, B and C, are given in Table 3 with their
respective geometrical ratios.

Table 3. Geometric properties of three x-symmetric channel sections.

Section A:a=1/2",d=1",t=1/16", L = 300 mm (11.81")
a/d=1/2,a/t=8,t/d=1/16,X"/a=1/4,X'/d=1/8,e;/a=3/8
I = 0.020554%; I,, = 0.00328d*, I, /I, = 0.1571, @ /a* = 27/32

Section B:a=1",d=13/4",t=1/8",L =1m (39.37")
a/d=4/7,a/t=8,t/d=1/14, X" /a=4/15,X"/d =16/105, ex/a =12/31
= 0.0263754%; I, = 0.0053615d%, I, /I = 0.20315, @ /a* = 0.7207

Section C:a=5/8",d=17/¢",t=3/64", L = 340 mm (13.39")

a/d=1/3,a/t=40/3,t/d=1/40,X'/a=1/5X'/d=1/15ec/a=1/3
L = 0.006251d%; I,, = 0.0004334d*, I, /I, = 0.06934, @ /a* = 27/20

Here, in general, the following expressions for each section’s geometric properties apply:
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X'/a=(a/d)/[1+2(a/d)]

ex/a=3(a/d)/[1+6(a/d)]

@/a? = (1/4)d/a)[2(1 + d/a) + (e/a)(d/a)]/ (2 + d/a)

Iy = 2[at(d/2)? + at3/12] + td® /12 = atd? /2 + at3 /6 + td° /12

Iy/d* = (1/2)(a/d)(t/d) + (1/6)(a/d)(t/d)* + (1/12)(t/d)

Iy =dt3/12 + dtX"? + 2[ta® /12 + at(a/2 — X')?]

Iy/d* = (1/12)(t/d)* + (t/d)(X' /d)* + 2{(1/12)(t/d)(a/d)* + (a/d)(t/d)[(1/2)(a/d) — (X' /d)]*}

The individual shear flows, g, and gy, for each channel section A, B and C are as
shown in Figure 5a,b when, respectively, Fx and Fy are taken separately to act at the channel
section’s centroid G. As an example of applying Equation (9b), if the force ratio F, /Fy is
unity, the net flexural shear flow at the N.A. (x—axis) for section A follows from a weighted
addition of Dy and Dy between Figure 5a,b:

(Iy/Fx)Qnet = Dy + (Fy/Fx)(Iy/Ix)Dx
=[a?t/2 — X't (a+d/2)] + (1 x 0.1571)(td*/8 + tda/2)
=[(1/2)@a/d)*(t/d) — (X' /d)(t/d)(a/d + 1/2)1d° + 0.1571[(1/8)(t/d) + (1/2)(t/d)(a/d)]d®
=[(1/2)(1/2)*(1/16) —(1/8)(1/16)(1/2 + 1/2)]d® + 0.1571[(1/8)(1/16) + (1/2)(1/16)(1/2)]d®
=0+ (3.682 x 1073) #°

in which Dy, = 0. Hence, Dy only is responsible for the net flexural shear flow at NA:
et = (Fx/1y) (3.682 x 107%)d® = F(3.682 x 10°)d®/(3.28 x 10~ %)d* = 1.1226F,/d

which, for shear forces of F,, = Fx = 100 N (say) applied to G, with d = 25.4 mm, gives:

Gnet = 1.1226 x 100/25.4 = 4.42 N/mm
T =(Gnet/t =16 x 442 =70.7 MPa

6. Net Shear Flow

The net shear flow is the sum of the flexural and torsional shear flows. Applying this
sum to the example calculation considered above, force Fy corresponds to a torque applied

at E:
T=Fy(ex + X')=100 (3/8 + 1/4)12.7 =793.75 N mm

in which F, does not contribute to T (e, = 0). Figure 6¢c shows that there is no gr shear
flow at the NA due to torsion. Hence, the net shear stress of 70.7 MPa upon the NA arises
from gy = 4.42 N/mm only. By contrast, Figure 6c shows that the maximum shear flow due
to torsion occurs at the fixing for this section at corner points 3 and 5. To show this, the
magnitudes follow by proportion from Table 1 as

gr = (793.75/1000) x 0.6357/0.2656 x (£0.891) = +£1.692 N/mm

The flexural and torsional shear flow sum (N/mm) at all points 1,2 ... 7 around this
fixed-end section’s mean perimeter is given as ) g in Table 4, calculated as

Y g=ax+qy+aqr

Figure 6a—c shows separately the three shear flows that arise from applying the two
forces F, and Fy at G. These are the two flexural shear flows, g, and gy, (Figure 6a,b), and
one torsional shear flow, g1 (Figure 6¢c), due to force F, being offset from the shear centre.
Each diagram plots the shear flow magnitude, given in Table 4, vertically between 1 and
3,3 and 5 and 5 and 7 on the sections median line (bold). To find the net shear flow, a
weighted sum must apply to Dy and D, in Figure 6a,b (by using Equation (9b)) before
adding to g7. The separate ordinates gx, g, and gr (N/mm) are presented diagrammatically
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in Figure 6a—c for which their sum is shown in Figure 6d. The final row in Table 4 provides
the net shear stress T = ) g/t numerically. This reveals the net shear stress distribution, 7,
(MPa) for fixed-end channel section A when ) g is divided by ¢ = 1.5875 mm (1/16").

3B 3 3 | 3 !
=

©) 4, @ Iq

| @ q, ®) g, [ |
s> 7 5é7 577 : 7

Figure 6. Flexural and torsional shear flow components and sum (a—d) for channel section A with
Fy =Fy =100 N applied at G.

Table 4. Net shear flow ) g, (N/mm) and shear stress T, MPa for channel section A with transverse

force Fy = Fy applied to centroid G.

Point 1 2 3 4 5 6 7
Dy/ d® 0 1/227.55 1/256 0 —1/256 —1/227.55 0
D./d? 0 3/256 1/64 3/128 1/64 3/256 o
X Iy /I 0 1/543.18 1/407.38 1/271.59 1/407.38 1/543.18 0
YD/d® 0 1/160.37 1/157.21 1/271.59 —1/688.92 —1/391.6 0
gx + qy 0 7.485 7.636 4.420 —1.742 —3.065 0
qr 0 1.731 1.692 0 —1.692 —-1.731 o
Yq 0 9.216 9.328 4.420 —3.434 —4.796 0
T=)q/t 0 5.805 5.876 2.784 —2.163 —3.021
Tables 5 and 6 further reveal the net shear stress distribution, T, (MPa) for fixed-end
beams with sections B and C, calculated in a similar manner. These require ) g to be divided
by t =3.175 mm (1/8") and 1.1906 mm (3/64"), respectively.
Table 5. Net shear flow ) g, (N/mm) and shear stress T, MPa, for channel section B with transverse
forces Fy = Fy = 100 N applied to centroid G. (‘check’ means the result is expected)
Point 1 2 3 4 5 6 7
Dy, /d® 0 627 x 1073 542 x 1073 0 —542x 1073 —6.27 x 1073 0
Dy/d? 0 1497 x 1073 2041 x 1073 2934 x 1073 2041 x 1073 1497 x 1073 0 (check)
xIy /I 0 3337 x 1073 4146 x 107% 596 x 1073 4146 x 1073  3.337 x 1073 0
YD/ d3 0 9.607 x 1073 9566 x 1073 596 x 1072  —1.274 x 1073 2933 x 10~3 0
Ix +qy 0 4.0312 4.0139 2.5009 —0.5345 —1.2307 0
qr 0 1.550 1.497 0 —1.497 —1.550 0 (check)
Y4q 0 5.5812 5.5109 2.5009 —2.0315 —2.7807 0
T=Ygq/t 0 1.758 1.736 0.7877 —0.64 —0.8758 0
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Table 6. Net shear flow ) g, (N/mm) for channel section C with transverse forces Fy = Fy = 100 N

applied to centroid G.
Point 1 2 3 4 5 6 7
D, /d® 0 888 x107* 8333 x 1074 0 —-8333x107% —888x107* 0
D./d? 0 33.33 x 1074 41.7 x 1074 72.92 x 10~% 41.7 x 10~% 33.33 x 107 0 (check)
xIy /I 0 2311 x 107%  2.892x107* 5056 x 107%  2.892 x 104 2.311 x 104 0
yD/d® 0 11191 x 107%  11.225 x 107%  5.056 x 107%  —5441 x 107%*  —6.569 x 10~* 0
x + Gy 0 5.4218 5.4383 2.4495 —2.6361 —3.1826 0
qr 0 1.23 1.23 0 -1.23 -1.23 0 (check)
Yq 0 6.652 6.668 2.450 —3.866 —4.413 0
T=Yq/t 0 5.587 5.60 2.458 —3.247 ~2.707 0

Tables 4-6 show how the ) g distribution depends upon each channel section’s geome-
try and beam length under a similar transverse unit force ratio. These distributions apply
to the end fixing where ) g values are at their greatest. The conversion to net shear stress
T =) g/t in the final row of each table shows that these are of low magnitude given in MPa
(=N/mm?). Nonetheless, their contribution to the safety of the structure must be considered
along with the net axial stress (to follow) in a suitable criterion of buckling/yielding. For
example, the yield criteria of Tresca and von Mises apply to a ductile metal in which the
yield stresses for the aluminium alloy are 250 MPa in tension and 150 MPa in shear (see
Section 8).

7. Net Axial Stress

The net axial stress at a length position, z, is the sum of the bending stresses due to
moments My = Fy(L — z) and My, = Fy(L — z), taken from Equation (1a—c), added to the axial
stress at that position induced by constraining all warping displacement at the fixed end
(z = 0). Bending stresses under My and My in Figure 7a are aligned with the length direction
z. Figure 7b shows how o is distributed linearly over the section’s depth d, under M,.
Under My, a linear distribution in ¢, applies across the flange width, b. Both distributions
are zero, i.e., ‘neutral’ to stress at their intersections with centroidal co-ordinates x and y.

a

¥ : ’
7

% z
M, | b
(a) (b)

Figure 7. Channel (a) with linear distribution in (b) under bending stress under M, and M,

The signs of bending stresses ¢, in Equation (7) complies with a hogging moment
producing tension (y positive) and sagging moment compression (i negative). Signs of 7,
denoting tension (+) and compression (—), are referred to the section’s quadrants whose
centroidal axes x and y carry hogging moments My and M, as shown. Conveniently, here,
forces Fy and Fy applied to G in negative x and y directions each produce hogging moments
in the first quadrant, i.e., 1(+, +). In the remaining quadrants, their respective signs are:
2(+, =), 3(—, —) and 4(—, +).
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7.1. Net Bending Stress

When forces Fy and F,, are aligned with the section’s principal directions (x and y), the
combined axial stress arising from My and M, within each quadrant’s points in the channel
section is as follows:

0z =+ My y/ly £ My x/1, (10)

Quadrant 1: points 1 and 2: 0 = + Fy(L — z2)y/Iy + Fx(L — 2)x/I, (11a)
Quadrant 2: points 2, 3 and 4: ¢ = + Fy(L — 2)y/Ix — Fx(L — z)x/I, (11b)
Quadrant 3: points 4, 5 and 6: 0, = —Fy(L — 2)y/Iy — Fx(L — z)x/I, (11¢)
Quadrant 4: points 6 and 7: 0z = —Fy(L — z)y/I; + Fx(L — z)x/I, (11d)

in which the respective signs are simply those of the co-ordinates (x, y) across the four
quadrants in this convention. It can be seen from Equation (11a—d) that the net bending
stress distribution is 3D, for which Figure 7a,b are its 2D projection in the z—y plane. To show
the 3D distribution in an oblique view, median perimeter points 1, 2, 3 ... 7 lie along the
channel’s mid-thickness in which the following co-ordinates (with signs) in Table 7 apply.

Table 7. Perimeter point co-ordinates with quadrant signs for bending.

Point 1 2 3 4 5 6 7
X a—X 0 X' =X X' 0 a—X
y d/2 d/2 d/2 0 —d/2 —d/2 —d/2

Substituting from Table 7, Equation (11a—d) are re-written, for Fy = F, = F, in non-
dimensional form to provide for specific channel constants and length ratios as follows:

(d*/a)(oz1/FL) = (1/2ky)(@d/a) + (1 — X' /a) /K, (12a)
(d*/a)(o22/FL) = (1/2ky)(d/a) (12b)
(d*/a)(o23/FL) = (1/2ke)(d/a) — (X' /a) /K, (12¢)
(d*/a)(024/FL) = —(X' /a)/ky (12d)
(d*/a)(025/FL) = —(1/2k;)(d/a) — (X' /a) /K, (12e)
(d*/a) (026 /FL) = —(1/2ky)(d/a) (12f)
(d*/a)(027/FL) = —(1/2k)(d/a) + (1 — X' /a) /K, (12g)

Note: Constants k, and ky appear in the second moment of area expressions I = kyd*
and I,y = kyd4 (with units in mm?*) for each channel as follows.

Channel A: d/a =2, X'/a = 1/4, k, = 0.02085, ky = 0.003276, L = 300 mm and
d = 25.4 mm. Substituting into Equation (12a—g) leads to the net bending stress (in MPa) at
each mid-thickness perimeter position.

(d@*/a)(o21/FL) = 1/(2 x 0.02085)(2) + (1 — 1/4)/0.003276 = 276.9, | 7,1 = 2534.6 x 10~3F
(d*/a)(c2/FL) = 1/0.02085 = 47.96, 1 05, = 439 x 10~3F

(d*/a)(c,3/FL) = 1/0.02085 — 0.25/0.003276 = —28.35, | 07,3 = —259.5 x 1073F
(d*/a)(024/FL) = —0.25/0.003276 = —76.31, | 0,4 = —698.5 x 1073F

(d*/a)(oz5/FL) = —1/0.02085 — 0.25/0.003276 = —124.27, 7,5 = —1137.5 x 10~3F
(d*/a)(026/FL) = —1/0.02085 = —47.96, | 07,6 = —439 x 1073F

(d*/a)(oz7/FL) = —1/0.02085 + 0.75/0.003276 = 180.97, | 0,y = 1656.5 x 1073F
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where it can be seen that with F = 100 N, these stress levels are elastic, e.g., 0,, = 43.9 MP,
(but not so if F = 1000 N). Figure 8 displays the elastic axial stress levels calculated above as
a distribution connecting linear segments between perimeter points 1 and 2, 3 and 5 and 5
and 7. The arrows shown indicate the stress direction and the sense shows where the web
and flanges receive their greatest compression and tension with equal forces F applied at G.

Figure 8. Net bending stress distribution for channel section.

Channel B:

d/a=7/4, X"/a=4/15, ky = 0.026395, k, = 0.0053615, L = 1 m and d = 44.45 mm,
a = 25.4 mm. When Equation (12a-g) are applied to channel section B, the bending stresses
at each perimeter point are

(d*/a)(o21 /FL) = (1/0.026395 x 7/8) + (1/0.0053615 x 11/15) = 169.9, 171 = 1105.65 x 10~3F
(d*/a)(05/FL) = (1/0.026395 x 7/8) = 33.1502, |05, = 215.69 x 10~3F

(d*/a)(oz3/FL) = (1/0.026395 x 7/8) — (1/0.0053615 x 4/15) = 16.587, | 7,3 = —107.92 x 1073F
(d*/a)(oz4/FL) = —(1/0.0053615 x 4/15) = —49.74, 10,4 = —323.6 x 1073F

(d*/a)(025/FL) = —(1/0.026395 x 7/8) — (1/0.0053615 x 4/15) = —82.888 | 0,5 = —539.31 x 10~3F
(d*/a)(024/FL) = —(1/0.026395 x 7/8) = —33.105, | 754 = —215.69 x 10~3F

(@*/a)(o47/FL) = —(1/0.026395 x 7/8) + (1/0.0053615 x 11/15) = 103.63, | 0,y = 674.27 x 10~3F

where again it can be seen from a similar distribution to Figure 8 that with F = 100 N,
these stress levels are elastic. The increase in this section’s thickness dimension com-
pensates for the greater length in maintaining acceptable stress levels under these loads
(Fx =F, =100 N).

Channel C:

d/a=3,X/a=1/5, k. =0.006251, k, = 0.0004334, L = 340 mm and d = 47.625 mm,
a=15.875mm. When Equation (12a—-g) are applied to channel section C, the bending
stresses at each perimeter point become

(d*/a)(cz1/FL) = (1/0.006251 x 3/2) + (1/0.0004334 x 4/5) = 2085.83, | 0,1 =2188.4 x 1073F
(d*/a)(o22/FL) = (1/0.006251 x 3/2) = 239.96, | 025 = 251.76 x 1073F

(d*/a)(o53/FL) = (1/0.006251 x 3/2) — (1/0.0004343 x 1/5) = —221.51, | 7,3 = —232.4 x 10~3F
(d*/a)(024/FL) = —(1/0.0004343 x 1/5) = —461.47, | 0,4 = —484.16 x 10~°F

(d@*/a)(025/FL) = —(1/0.006251 x 3/2) — (1/0.0004343 x 1/5) = —701.43, | 0,5 = —735.92 x 10~3F
(d*/a)(o26/FL) = —(1/0.006251 x 3/2) = —239.96, | 0,6 = —251.76 x 1073F

(d*/a)(oy7/FL) = —(1/0.006251 x 3/2) + (1/0.0004334 x 4/5) = 1605.91, | 027 = 1684.9 x 1073F

Again, with F = 100 N, the stress levels in Figure 8 are linear elastic. However, it
should be noted here that these are not net axial stress values. The latter follow from the
addition of axial stress arising from the fixing constraint to be considered next. Only then
can the safe loading be assessed from the net shear and net axial stress combination.
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7.2. Constrained Axial Stress Distribution

The axial stress distribution induced within the length due to constraining the torsional
warping displacements fully at the fixed end has been described in [1]. There, it was shown
that the fixed end, where z = 0, provides the maximum contribution to the axial stress for

the full constraint
0= —[(w — @) T/(uI)] (1 — e ) /(1 + e (13a)

where each channel section’s properties have been given previously (see Section 5 and
Table 3 above). The specific properties required when applying Equation (13a) to channel
cross-section A (with torque applied to E) appear as follows:

Channel A:

d/a=2,ex/a=3/8,L=300mm,a=127 mm,t=1.5875mm, I';/a°t = 0.66275,
@/a?=0.8438, X' /a=1/4, u =0.8189t/a, uL = 0.8189(t /a)(L/a) = 2.418,
(1 —e 2Ly /(1 + e 2#L) = 0.9842

Substituting into Equation (13a) leads to a parametric form for o:

0, = —[(w — @)T/(0.8189t/a* x 0.66275a°t)] x 0.9842

(at?/T)o, = 1.8134 (0.8438 — w/a?) (13b)

Taking the ordinates w/a? from in the swept area plot in Figure 2a,b, Equation (13b) is
applied to points 1, 3 and 4 (NA) as follows:

at1wy =0, .. (af2/T)o; = 1.8135(0.8438 — 0) = 1.5303
at3, ws =ad/2, . (at?/T)o-3 = 1.8135[0.8438 — (1/2)(d/a)] = —0.2834
atd, wy=(a+e)d/2, . (at?/T)osq = 1.8135[0.8438 — (1/2)(d/a)(1 + e/a)] = —0.9633

With symmetry evident from Figure 2a, it follows that 0,1 = 0,7 and 0,3 = 0;5. Torque
T upon axis E, corresponding to transverse shear forces Fy = F;, = 100 N at G, follows from

T/a=Fylex/a+X'/a)=100(3/8 +1/4) =62.5N

Hence, the stresses at these positions within the channel fixing are as follows:

0,1 = 1.5303 (T/at?) = 1.5303 x 62.5/1.5875% = 37.95 MPa
0,3 =0.2834 (T/at?) = —0.2834 x 62.5/1.58752 = —7.04 MPa
024 = —0.9633 (T /at?) = —0.9633 x 62.5/1.5875% = —23.89 MPa

The swept area diagram shows that the stresses at points 1, 3 and 4 are connected with
linear segments and extended symmetrically to the section’s bottom half. Figure 9 shows
the full 3D constrained axial stress distribution at the fixing. Note: Figures 8 and 9 (revised)
contribute to the net axial stress within different distributions.

Figure 9. Constrained axial stress distribution at the channel fixing with torque applied to an axis
through the shear centre.
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A similar stress distribution to Figure 9 will apply to other positions within the length
0 < z < L but with reduced magnitude [1]. Maximum tension appears at the flange ends and
maximum compression at the web centre. The stress levels are all relatively low compared
to those from bending (see Figure 8) but are equally important to the safe design of this
structure (see Section 8). Further calculations follow below for the constrained axial stress
within the fixed ends of channels B and C:

Channel B:

d/a=7/4,e./a=12/31,L =1000 mm, a = 254 mm, t = 3.175 mm,
T1/a%t = 0.448, @ /a® = 0.7206, X' /a = 4/15, u = 0.924t/a?,
uL =0.924(t/a)(L/a) = 4.5474, (1 — e~ 2*) /(1 + e~21'L) = 0.99978.

Substituting into Equation (13a) leads to a non-dimensional form of o:
@at?/tyo, = 2.2172(0.7206 — w/a®) (13c¢)

Taking w/a? ordinates from Figure 5a, Equation (13c) applies to points 1,3 and 4 (NA)
as follows:
at1, w1 =0, .. (at?/T)oz = 2.2172(0.7206 — 0) = 1.5977
at3, w3 =ad/2, . (at?/T)o 3 = 2.2172[0.7206 — (1/2)(d/a)] = —0.3423
atd, wy = (a+e)d/2, .. (at?/T)oz4 = 2.2172[0.7206 — (1/2)(d/a)(1 + e/a)] = —1.0933

With symmetry evident in the swept area plot, it follows that ;1 = 0,7 and 7,3 = 035.
Torque T corresponding to transverse shear forces Fy = F, = 100 N applied to E follows as

T /a="Fy(ex/a+X'/a)=100 (12/31 + 4/15) = 6538 N

Hence, the constrained stresses at these positions within the channel fixing are
as follows:

0,1 = 1.5977 (T /at?) = 1.5977 x 65.38/3.175% = 10.36 MPa
0,3 =0.2834 (T /at?) = —0.3423 x 65.38/3.175% = —2.22 MPa
024 = —1.0933 (T /at?) = —1.0933 x 65.38/3.175% = —7.09 MPa

These three stress calculations are sufficient to establish the spread in stress that arises
over the section at the fixing where there is full constraint (see Figure 9).
Channel C:

d/a=3,e/a=1/3,L =340 mm, a = 15.875 mm, ¢ = 1.19063 mm,
I1/a’t =1.6375,@/a* =1.35,X'/a=1/5, u = 0.5825t/a?,
uL = 0.5825(t/a)(L/a) = 0.9356, (1 — e 2#L) /(1 + e~ 2#L) = 0.7332.

Substituting into Equation (13a) leads to a non-dimensional form of o:
@t?/t)o, = 0.7687(1.35 — w/a?) (13d)
Taking w/a? ordinates from Figure 2b, Equation (13d) applies to perimeter points 1, 3

and 4 (NA) as

at1lw; =0, .. (at?/T)oy = 0.7687 (1.35 — 0) = 1.0377
at3, w3 =ad/2, .. (at?/T)oz3 = 0.7687 [1.35 — (1/2)(d/a)] = —0.1153
at4, wy =@ +e)d/2,. . (at*/T)o»4 = 0.7687 [1.35 — (1/2)(d/a)(1 + e/a)] = —0.4996
With symmetry evident in the swept area plot, it follows that 7,1 = 7,7 and 7,3 = 735.
Here, torque T corresponding to transverse shear forces Fx = F,, = 100 N at E follows from

T /a=Fy(ex/a+X'/a)=100(1/3 +1/5) = 53.33 N
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Hence, the stresses at these positions within the channel C fixing are as follows:

021 = 1.5977 (T/at?) = 1.0377 x 53.33/1.190632 = 39.04 MPa
023 = 0.2834 (T/at?) = —0.1153 x 53.33/1.190632 = —4.34 MPa
02a = —1.0933 (T/at?) = —0.49966 x 53.33/1.190632 = —18.80 MPa

These three stresses appear in their respective positions 1, 3 and 4 in the distribution
shown in Figure 9.

Table 8 reveals the influence of channel section geometry and beam length within
which are the three essential calculations given above along with others required to provide
the constrained axial stress distribution for each fixed-end section.

Table 8. Fixed-end axial stress (MPa) due to constraint in three different channel section cantilevers.

Point 1 2 3 4 5 6 7
Channel A 37.95 412 —7.04 —23.89 —7.04 412 37.95
Channel B 10.36 1.14 —2.22 —7.09 —2.22 1.14 10.36
Channel C 39.04 4.34 —4.34 —18.80 —4.34 4.34 39.04

Note: Points 1 and 7 and points 3 and 5 are ‘mirrored” within Table 8. Stresses for
points 2 and 6, upon the y-axis, are found from linear interpolation. It appears from Table 8
that the maximum axial stresses that arise from constraining warping displacement within
the fixing are all well within the elastic range. However, the possibility of compressive
elastic buckling in the web (for points 3, 4 and 5) should not be overlooked. For this, the
net axial stress distribution is required as follows.

7.3. Net Axial Stress Distribution

The net axial stress, given as a three-part sum in Equation (3a), may be interpreted
most simply as the sum of three separate distributions within which the sign changes
across the four quadrants are accounted for. Referred to the fixed end (z = 0), this stress
summation becomes

0z = —[(w — @)T/uT1](1 — e ) /(1 + e ) + Myy/ I + Myx/1, (14)

where the counter-clockwise direction taken for s within the first (constraint) term must
start and finish at the flange ends. As with each analysis, when equal free end loads
Fy =Fy, =F =100 N are applied at G, the three distributions may be added. Taking the
corresponding stress levels from Figure 9 for the first term and from Figure 8 for the sum
of the second two terms (net bending stress), Table 9 is constructed for the net axial stress
summation ) ¢, in each channel section. Linear interpolation over points 1, 2, and 3 and 5,
6, and 7 is applied when required to make this sum.

Figure 10 shows each channel’s net axial stress distribution in which ) ¢, applies
as calculated for positions 1, 2, 3 ... 7 within Table 9. Table 9 applies in the absence
of any further contribution from the trans-moment (see Section 9.8). The latter raises
the bending stress under M, from M, = FyL to My, = Fx(L + ex + X", i.e., in the ratio
Myo/My =1+ (ex + X")/L equalling 1.027, 1.017 and 1.025 for channel sections A, B and
C, respectively. With each ratio being near unity and with no transfer value for moment
M,, since Fy passes through E, the trans-moment contribution may be ignored. Hence, the
analyses given above are judged to be sufficient to place a limit upon the loading giving
stress levels that remain elastic and non-crippling.
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Table 9. Net axial stress summations in sections (A), (B) and (C) from end constraint and bending.

Channel A 1 2 3 4 5 6 7
1st term, MPa 37.95 4.12 —7.04 —23.89 —7.04 4.12 37.95
2nd term, MPa 253.46 43.9 —25.93 —69.85 —113.75 —43.9 165.65

Y 0., MPa 291.4 48.02 —-32.97 —93.74 —120.79 —39.78 203.60
Y7, MPa 0 5.805 5.876 2.784 —2.163 —3.021 0
St 0.859 5.06 7.144 2.662 2.068 6.213 1.23
Sy 0.859 5.096 7.24 2.663 2.069 6.231 1.23
Channel B 1 2 3 4 5 6 7
1st term, MPa 10.36 1.14 —2.22 —7.09 —2.22 1.14 10.36
2nd term, MPa 110.4 21.57 —10.79 —32.36 —53.93 —21.57 67.43
Y o,, MPa 120.76 22.71 —13.0 —39.45 —56.15 —20.44 77.8
Y 1, MPa 0 1.758 1.736 0.7877 —0.64 —0.8758 0
St 2.07 10.88 18.58 6.332 4.451 12.165 3.213
Sy 2.07 10.91 18.736 6.329 4.452 12.197 3.213
Channel C 1 2 3 4 5 6 7
1st term, MPa 39.04 4.34 —4.34 —18.8 —4.34 4.34 39.04
2nd term, MPa 218.8 25.18 —23.24 —48.42 —73.59 —25.18 168.5
Y o,, MPa 257.8 29.52 —27.58 —67.22 —77.93 —20.84 207.54
Y7, MPa 0 5.587 5.60 2.058 —3.247 —3.767 0
St 0.97 7.92 8.40 3.712 3.196 11.30 1.205
Sy 0.97 8.05 8.55 3.714 3.20 11.46 1.205

Figure 10. Net axial stress distributions at the fixing from bending and warping constraint.

8. Yield Criteria
The yield stresses for the aluminium alloy are Y = 250 MPa in tension and k = 150 MPa

in shear. The former is employed here (Y = 250 MPa), given that the net axial stress ) o,

appears more dominant than the net shear stress } T in each channel cross section of

Table 9A-C above. The Tresca and von Mises yield criteria appear with their respective

safety factors St and Sy as follows:
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Tresca: () 02)* + 4()_1)* = (Y/Sr)?

St=Y/VI() 02)* +4()_1)°] (15a)
von Mises: (2@)2 + 3(21’)2 =(Y/Sy)?
Sv=Y/VI(} o)+ 3317 (15b)

The yield criteria in Equation (15a,b) when applied show that Tresca is more conserva-
tive. The safety factors attached to Table 9A—C indicate yielding when St and Sy are less
than unity by either criterion, i.e., at point 1 for channels A and C. Despite this, it appears
that all three structures are safe for remaining points 2, 3 ... 7. at the fixed end. Given
that large elastic safety factors apply to each of these points, the yielding that is seen to
occur at point 1 is likely to be localised, thus forming a partially plastic hinge that does not
result in tensile failure. Compressive and/or shear buckling failure may be local or global.
In the absence of an applied axial compression, Euler global buckling is unlikely. Local
buckling of the section’s thin rectangular web plate is possible where edge shear and axial
compression exist. For each mode to appear in the web, the critical elastic buckling stress
appears in terms of the plate geometry aspect ratio, d/L, the respective elastic constants E
and G and the buckling coefficient, K, [15-19].

oo = KE(t/d)?, (16a)

Ter = K G(t/d)? (16b)

in which the respective K, is read from a graph at the ratio d/L. The graph provides for
the edge conditions that apply. Taken over its full length, here, the plate has one end fixed
and the opposite end free with simple supports provided within the connection to the
top and bottom flanges. If either o, or 7., calculated from Equation (16a,b) is exceeded
by the section’s net stresses, one might expect elastic buckling from an integral number
of half wavelengths from Equation (16a) or from parallel wrinkling at a 45° orientation
to the z-axis from web shear failure in Equation (16b). The former is possible since only
compression appears in the net axial stress distribution in Figure 7.

9. Non-Symmetric Section

Finally, consider a non-symmetric channel section subjected to transverse forces Fy
and F, aligned with centroidal axes x and y in Figure 11a. The centroid position G(X’, Y’)
for these axes is found by equating first moments of area for the whole area to the sum of
the first moments of its rectangular parts.

a
,_BI‘#_"]%” B i
y
ux y o u
E P |
2 Y E+|[X]C |v
s - €. e

(a) (b)

Figure 11. Non-symmetric showing (a) centroid and (b) principal axes in open channel section.



Appl. Sci. 2025, 15, 8470 23 of 41

9.1. Centroid Position and Moments of Area

With base reference axes X and Y at the bottom left corner position shown, the moment
area theorem shows that the centroid co-ordinates (X', Y’) are

d?t/2 +adt = (a + b + d)tY’

Y =d@+d/2)/(a+b+d)t
a’t/2 + b%t/2 = (a + b + d)tX’
X' =@ +b?)/(a+b+d)t
The second moments of area for the centroidal axes x and y are provided by applying
the parallel axis theorem to the three constituent rectanglesa x t,b x tand d x t:
Le=at(d — Y +dt(d/2 — Y')? + btY"?

Substituting for Y’ leads to

L,/dt = (a/d)(b/d)(a/d +b/d) + (1/4)(a/d)(1 +a/d) + (1/4)(b/d)(1 + b/d)
+(3/2)(a/d)(b/d)]/ (1 +a/d+b/d)? (17a)
Iy =at(a/2 — X')* +dtX? + bt(b/2 — X)?

Substituting for X’ leads to

Iy/d3t = (a/d)[(a/d)(1+b/d) — (b/d)?)*> + [(a/d)* + (b/d)?)?
+(b/a)[(b/d)(1+a/d) — (a/d)?)/4(a/d +b/d + 1) (17b)
Ly = +at(d — Y')(a/2 — X') —dtX'(d/2 = Y') — btY'(b/2 — X')

Substituting for X’ and Y’ leads to

Lyt = (a/d)(1 — Y'/d)[(1/2)(a/d) — (X' /d)] — (X' /d)(1/2 —Y'/d) 170
—(b/d)(Y'/d)[(1/2)(b/d) — (X/d)]

where
Y'/d=[1+2a/d/2Q0 +b/d +a/d), X' /d = [(a/d)2 + (b/d)z]/Z(l +b/d+a/d) (17d)

9.2. Shear Flow Under F,’ and F,’

Equation (2b,c) showed that the second moments Iy, I, and I, provide equivalent
shear forces F,’ and F,’ that refer to this section’s principal axes u and v in Figure 11b.
Conveniently, the net flexural shear flow retains axes x and y with these equivalent forces
F," and F,/. This enables a further progression to g+ using general symbols for the section
geometry as

qnet = Fy/ Dy /I + Fx’ Dy/Iy (18)

where F,/ and F,’ are defined in Equation (2a,b). The first term in Equation (18) is shear
flow gy due to Fy’ within which Dy is the first moment of area about the x-axis, which is
established for median points 1, 2, 3. .. 7 (see Figure 12a) as follows:
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1-3: Dy =t f,yds = t[;(d—Y)ds =t(d—Y')s
at1l:5=0,Dx1 =0

at2 (y—axis)s=a — X'; Dyp =t(d — Y')(a — X)
at3:5=a,Dy3=td — Y')a

3-5:Dy=t [syds=t [s(d—Y —s)ds=t[(d — Y)s —s?/2] + Dy3
at3:5=0,Dy =Dy =td — Y')a

at4: (x-axis)s=d — Y; Dyg=t(d — Y')2/2 +td — Y')a
at5:s=d, Dys = f{(d — Y')d — d2/2] + t(d — Y')a

5-7: Dy =t [syds=—tY's + Dys

at5:5=0, Dy = Dys

at6: s = X/, (y-axis); Dyg = —tY'X' + Dy
at7IS=b,Dx7=—fY/b+Dx5=O/

.’."..."E !

(a) (b)

Figure 12. (a) Channel dimensions showing (b) shear flow due to Fy’.

The Dy shear flow distribution (Figure 12b) is linear for points within the flanges (1-3)
and (5-7) and is parabolic in the web (3-5), attaining its maximum at point 4 (the neutral
Xx-axis).

The second term in Equation (18) is the shear flow due to F,’, which is established
within the first moment of area D, for median points 1,2, 3 ... 7 in Figure 13a as follows:

1-3: Dy =t [sxds=t[o°(a— X' —s)ds=t[(a — X')s — s2/2]
atl:s=0,Dy1=0

at2 (y-axis) s =a — X’; Dyp = t(a — X')?/2

at3:s=a,Dys =t[(a — X')a — a?/2] = ta(a/2 — X')

3-5:Dy =t [sxds=—tX's + Dy3
at3:5=0,D, =Dy3 = ta(a/2 — X')

at4: (x-axis)s=d — Y'; Dyg = —tX'(d = Y') + ta(a/2 — X')
at5:s=d, Dy5 = —tX'd + Dyz = —tX'd + ta(a/2 — X')

5-7:Dy =t [sxds=t[s (s — X')ds + Dys = t(s*/2 — X's) — tX'd + ta(a/2 — X)
at5:5=0,D, = Dys = —tX'd + ta(a/2 — X')

at 6: (y—axis) s = X’; Dyg = —tX'?/2 — tX'd + ta(a/2 — X')
at7:s=0b,Dyy = t(b*/2 — X'b) — tX'd + ta(a/2 — X') =0/
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Figure 13. (a) Channel dimensions showing (b) shear flow due to Fy'.

The Dy, shear flow distribution (Figure 13b) is linear in the web (3-5) and parabolic
for points within the flanges (1-3) and (5-7), attaining therein their maxima at point 2
and 6 (the neutral y-axis). To establish the D, and D, distributions, the shear flows given
above q’s are written in normalised form D/d® within Tables 10 and 11 and evaluated
for a non-symmetric channel with dimension ratios a/d =1/3,b/d =2/3 and t/d = 1/40.
Equation (17¢,d) give the centroidal co-ordinates X' /d =5/36 and Y'/d =5/12.

Table 10. First moment integral D,;/ 43 and Dyi /d® values for transverse force Fy and F; applied at E.

Point D,;/d® (F, at E) Dyild® (Fy at E)
1 0 0
2 (t/d)A —Y'/d)(a/d — X'/d) (1/2)¢t/d)(a/d — X' /d)?
3 (t/d)1 —Y'/d)(a/d) (t/d)a/d(1/2)(a/d) — X' /d]
4 (1/2)(t/d)A = Y'/d)? + (t/d)1-Y'/d)(a/d) —(t/d)X/d)1 — Y'/d) + (t/d)(a/d)(1/2)(a/d — X' /d]
5 (t/d)(1/2 = Y'/d) + (t/d)1 — Y'/d)(a/d) —(t/d)(X'/d) + (t/d)(a/d)[(1/2)(a/d)— X'/d]
6 —(t/d)(Y'/d)(X'/d) + Dxs —(1/2)(t/d) (X' /d)* — (t/d)(X'/d) + (t/d)(a/d)[(1/2)(a/d) =X /d]
7 0 0

Note 1: The conversion from D, and Dy, given in Table 10, to net shear flow in Equation (18)
follows from the multiplication involving equivalent forces and second moments of area in
Equation (2a,b).

Note 2: The assumption is made in Table 10 that shear flow calculated from transverse
forces Fy and Fy, applied at G is the same as when those forces are transferred to E. It is the
torque accompanying that transfer, as required for static equivalence, that serves to modify
the flexural shear flow.

9.3. Shear Centre

With F, acting alone, we can calculate moments about point 5 for static equivalence
between the moments due to Fy, acting at shear centre E, distance e, from point 5 together
with the shear flow g;_3 along the top flange, distance d from point 5. Note: The remaining
shear flow distribution exerts no resultant moment about point 5:

[(Fy/Ix) foﬂ qi-3ds] x d = F; X ey
ex = (/1) [y t(d—Y')sds
= (tda®)(d — Y")/(2l)
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which is written in the following normalised form:
ex/d = (a/d*(1 — Y'/d)/2(I,/dt) (19a)

where Y'/d is pre-defined (see Equation (17c)). With Fy acting alone, moments may be
taken about point 5. This provides for static equivalence between the moment due to Fy,
acting at the shear centre E, distance e, from point 5, and shear flow g;_3 along the top
flange, distance 4 from point 5.

Note: The remaining shear flow distribution can exert no resultant moment about
point 5:

{(Px/ly) /0 ql_g,ds] xd=FxXxe,

ey = (td/1,) [y[s(a—X')—s?/2]ds
= (td/1,) | (a — X 1)s*/2 — s%/6 |8
= (tda®)(2a — 3X")/(61,)

which is written in the following normalised form:
ey/d = (a/dV12a/d) — 3(X'/d) 1/6(1,/dF) (19b)
where X' /d has been pre-defined in Equation (17d).

9.4. Shear Flow Under Combined Loading

When transverse forces F, and Fy act together at the centroid, the net shear flow is
given by Equation (18)). It is instructive to apply particular channel geometry A:a/d =1/3,
b/d=2/3 and t/d = 1/40. Correspondingly, Equation (17c,d) provide this section’s centroid
co-ordinates: X'/d =5/36, Y'/d = 5/12. Equation (17a—c) show the normalised second
moments of area as follows:

L = 17d%/72 = 0.2361d%t; I, = 87d° /1944 = 0.04475d%; I, = —39d°t /648 = —0.06024°t
giving their ratios required for the equivalent forces as follows:

Ly /L = —0.2549; Ly, /T, = —1.3448; L,/ (I, I,) = 0.3428

Fy' = [PX - (Ixy/lx)Fy]/(l — Ixyz/lx Iy)

(20a)
= 1.5216F; + 0.3927F,

Fy, = [Fy - (Ixy/ly)Fx]/(l - Ixyz/lx Iy)

(20b)
= 1.5216F, + 2.0458F,

The net shear flow (Equation (18)) appears in terms of the two equivalent forces in
Equation (20a,b):
q= (Fy//lx)Dx + (Fx//ly)Dy

where
(Fy’/Ix) = (1.5216F, + 2.0458Fx)/0.2361d3t

(Fy' /1) = (1.5216F, + 0.3927F)/0.04475d3¢
y

q = (6.445F, + 8.6646F ) D,/d%t + (34.0Fy + 8.775F, ) D, /d°t

20
= (6.445F, + 8.6646Fy) Dy/d>t 4 (34.0F, + 8.775F,) D, /d%t (20c)
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where the normalised forms D,/ 43 and Dy/ as, given in Table 11, are evaluated for the
seven median points in Table 11 for this section’s geometrical ratios stated above:

Table 11. Moments of area referred to median points for centroidal axes x and y.

Dy1/d® =0
Dyo/d® = (t/d)(1 — Y'/d)a/d —X'/d) = (1/40)(7/12)(1/3 — 5/36) = 0.002836
Dys/d® = (t/d)(1 — Y'/d)(a/d) = (1/40)(1 — 5/12)(1/3) = 0.004861
Daa/d® = (1/2)(t/d)A — Y'/d)? + (t/d)(1 — Y'/d)(a/d)

= (1/2)(1/40)(7/12)% + (1/40)(7/12)(1/3) = 0.009115
Dys/d® = (t/d)(1 — Y'/d — 1/2) + (t/d)1 — Y'/d)(a/d)

= (1/40)(7/12 — 1/2) + (1/40)(7/12)(1/3) = 0.006944
Dye/d® = —(t/d)(Y'/d) (X' /d) + Dy5/d° = —(1/40)(5/12)(5/36) + 0.006944 = 0.005498
Dyy/d® = —(t/d)(Y'/d)(b/d) + Dxs/d® = —(1/40)(5/12)(2/3) + 0.006944 = 0 (check)
Dy1/d® =0
Dy /d® = (1/2)(t/d)[(a/d) — X' /d]* = (1/2)(1/40)(1/3 — 5/36)* = 0.0004726
Dys/d® = (t/d)(a/d)[(1/2)(a/d) — X'/d] = (1/40)(1/3)(1/6 — 5/36) = 0.0002313

Dys/d® = —(t/d)(X'/d)1 — Y'/d) + (t/d)(a/d)[(1/2)(a/d) — X' /d]
=—(1/40)(5/36)(7/12) + (1/40)(1/3)(1/6 — 5/36) = —0.001794
Dys/d3 = —(t/d)(X'/d) + (t/d)(a/d)[(1/2)(a/d) — X' /d]

—(1/40)(5/36) + (1/40)(1/3)(1/6 — 5/36) = —0.003241

Dye/d® = —(1/2)(t/d)(X'/d)* — (¢/d)(X' /d) + (t/d)(a/d)[(1/2)(a/d) — X' /d]
=—(1/2)(1/40)(5/36)% — (1/40)(5/36) + (1/40)(1/3)(1/6 — 5/36) = —0.00348

Dy7/d® = (t/d)[(1/2)(t/d)*— (X'/d)(b/d)] — (t/d)(X'/d) + (t/d)(a/d)[(1/2)(a/d) — X' /d]
= (1/40)[(1/2)4/9) — (5/36)2/3)] — (1/40)(5/36) + (1/40)(1/3)(1/6 — 5/36) = 0 (check)

9.5. Centroid Forces Fy and F,

These forces may be substituted separately into Equation (20a,b) or taken as a ratio
Fy/Fy of zero, a positive or negative integer or a fraction, as follows:

(1) Fx/Fy =0, (Fx =0, F, =F)
qt/F = 6.444(Dy/d®) + 8.775(Dy / &°)

Taking Dy /d® and Dy /d® from Table 11 provides the shear flows at median points 1, 2,
3...7in the absence of Fy:

g2t/F=0

ot /F = (6.444 x 0.002836) + (8.775 x 0.0004726) = 0.02242
gat/F = (6.444 x 0.004861) + (8.775 x 0.0002315) = 0.03336
gat/F = (6.444 x 0.009115) — (8.775 x 0.001794) = 0.042995
gst/F = (6.444 x 0.006944) — (8.775 x 0.003241) = 0.01631
get/F = (6.444 x 0.005498) — (8.775 x 0.00348) = 0.004892
g7t/F=0

(2) Fx/Fy = oo, (Fx = F, F, = 0)

qt/F = 8.6646(Dx/d%) + 34.0(Dy / d°)

Taking Dy/d® and Dy/d® from Table 11 provides the shear flows at median points 1, 2,
3...7in the absence of F:
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Qot/F=0

ot/ F = (8.6646 x 0.002836) + (34.0 x 0.0004726) = 0.04064
gat/F = (8.6646 x 0.004861) + (34.0 x 0.0002315) = 0.12083
qat/F = (8.6646 x 0.009115) — (34.0 x 0.001794) = 0.01798
g5t/ F = (8.6646 x 0.006944) — (34.0 x 0.003241) = —0.05003
ot/ F = (8.6646 x 0.005498) — (34.0 x 0.00348) = —0.07068
qﬂ/F =0

(3a) Fy/F,=1,(Fx=F, =F)

qt/F =15.109(Dy/d%) + 42.775(Dy / d°)

Taking Dy /d® and D, /d® from Table 11 provides the shear flows at median points 1, 2,
3 ... 7 under a force ratio of unity:

qit/F=0

got/F = (15.109 x 0.002836) + (42.775 x 0.0004726) = 0.2450

gst/F = (15.109 x 0.004861) + (42.775 x 0.0002315) = 0.08335
gat/F = (15.109 x 0.009115) — (42.775 x 0.001794) = 0.06098
gst/F = (15.109 x 0.006944) — (42.775 x 0.003241) = —0.0337
get/F = (15.109 x 0.005498) — (42.775 x 0.00348) = —0.06578
(8b) Fx/Fy=+1,(Fx=Fy = —F)

All the calculations for 3a) above apply with a sign change.

(4a) Fy/F, = —1,(Fx=—F,F,=F)
qt/F = (6.494 — 8.6646)(Dx/d°) + (—34.0 + 8.775)(Dy /d°)
= —2.2206(Dy/d®) — (25.225(Dy /d°)

Taking Dy /d® and D, /d® from Table 11 provides the shear flows at median points 1, 2,
3...7,under a force ratio of minus unity:

qit/F=0

got/F = —(2.2206 x 0.002836) — (25.225 x 0.0004726) = —0.01822
gst/F = —(2.2206 x 0.004861) — (25.225 x 0.0002315) = —0.01663
gat/F = —(2.2206 x 0.009115) + (25.225 x 0.001794) = —0.0250
gst/F = —(2.2206 x 0.006944) + (25.225 x 0.003241) = 0.06633
get/F = —(2.2206 x 0.005498) + (25.225 x 0.00348) = 0.07557
(4b) Fy/Fy = —1,(Fx = F,F, = —F)

All the calculations for 4a) above apply with a sign change.

(5) Fx/Fy =2, (Fx =2F,F, =F)
qt/F = (6.444 + 2 x 8.6646)(D,/d®) + (34.0 x 2 + 8.775)(Dy / d°)
=23.7732(D,/d®) + 76.775(Dy / d%)

which gives the shear flow distribution under a force ratio of 2:

qlt/F =0
got/F = (23.7732 x 0.002836
gat/F = (23.7732 x 0.004861

+(76.775 x 0.0004726) = 0.1037
+(76.775 x 0.0002315) = 0.1333
qgat/F = (23.7732 x 0.009115) — (76.775 x 0.001794) = 0.07896
gst/F = (23.7732 x 0.006944) — (76.775 x 0.003241) = —0.08375
qget/F = (23.7732 x 0.005498) — (76.775 x 0.00348) = —0.13647
(6) Fx/Fy=1/2,(Fx=F, F, =2F)

qt/F = (2 x 6.444 + 8.6646)(Dy/d°) + (34.0 + 2 x 8.775)(Dy /d°)
=21.5526(Dy/d°) + 31.55(D, /d°)

~— — ~— —
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which gives the shear flow distribution under a force ratio of 1/2:

qlt/P =0
got/F = (21.5526 x 0.002836) + (51.55 x 0.0004726) = 0.08548

gat/F = (21.5526 x 0.004861

+ (51.55 x 0.0002315) = 0.11673

gst/F = (21,5526 x 0.009115) — (51.55 x 0.001794) = 0.10397
gst/F = (21.5526 x 0.006944) — (51.55 x 0.003241) = —0.01741
get/F = (21.5526 x 0.005498) — (51.55 x 0.00348) = —0.0609

Figure 14a—f show the normalised shear flow distributions, qt/F, at each of these force
ratios. The conversion to g, in N/mm units required a multiplication factor, F/¢t, which,
for a force of 100 N (say) and a section thickness of 3/64”, gives F/t = 84 N/mm.
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Figure 14. Normalised shear flow distributions gt/F at each of six different force ratios applied to
centroid. (Key: (a) Fx =0, Fy =F; (b) Fx=F, Fy =0; (c) Fx =F, = F;(d) Fx = —F, F, = F; (e) Fx = 2F,

F, =F; (f) Fx = F, F, = 2F).

The swept area diagram for this non-symmetrical section is constructed in Figure 15

The area swept (enclosed) between the top flange 1-2-3 and E is counter-clockwise. The

area swept between web 3-4-5 and E is clockwise and the area swept between the bottom

flange and E is counter-clockwise. Each area is marked twice on the ordinate to define

w = 2A,s corresponding to each median position s as the abscissa to Figure 15.
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2d

Figure 15. Swept area diagram for non-symmetrical channel (- - - mean ordinate).

Recall that true origin 3 for s should start from a point of zero warping (which is not
point 1). In applying the equality in areas theorem for @, the equations of the straight lines
w = w(s) for 1-2-3, 3-4-5 and 5-6-7, appearing within Figure 15 are employed as follows:

G)/sds:/sw(s)ds

2d@ = 08966d ;" sds + [f1°(0.34474% — 01373ds)ds + [o;5(0.02364 + 0.1035ds)ds
= 0.4483d(d/3)? + |0.3447d%s — 0.06865ds?| 4 /3%//3 + |0.0236d%s + 0.05175d52 |4 /3°
= 0.04981 + [(0.4596 — 0.1220) — (0.1149 — 0.00763)]
+[(0.0472 + 0.2070) — (0.03247 + 0.092)] = 0.04981 + 0.23033 + 0.12973 = 0.409874°
@ = 0.20494°

which can be checked, more conveniently, with an addition of the three areas concerned
using the trapezoidal rule.

The unconstrained warping displacements w under axial torsion T follow directly
from @ and St Venant’s theory [9-11] as follows:

w=—(w—@)T/GJ] (21a)

(GI/T)w=® — w =0.20494> — w (21b)

where w is read from Figure 15 for each point, 1, 2, 3 ... 7, where Equation (21b) gives their
axial displacements, w:

w1y =0, (G]/T)w; = 0.20494%

wy = 0.1743d2, (G] / T)w, = 0.20494% — 0.1743d? = 0.03064>
w3 = 0.298842, (G] / T)ws = 0.20494% — 0.29884% = —0.093942
wy = 0.21884d2, (GJ/T)ws = 0.20494% — 0.21884% = —0.01394>
ws = 0.161642, (GJ/ T)wz = 0.20494° — 0.16164> = 0.04334>
wg = 0.1760d2, (GJ/ T)wz = 0.20494> — 0.17604> = 0.02894>
wy = 0.230642, (GJ/ T)ws = 0.20494°> — 0.23064% = —0.02574>

The warping distribution, w;—wy, is shown in Figure 16. Both positive and negative
apply within the linear connections between each limb. The physical displacement, w, is
found by multiplying each normalised ordinate wi—wj4, as calculated above, by Td?/GJ.
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Figure 16. Unconstrained axial warping displacement w distribution.

Where one end is constrained these displacements are completely constrained to
induce axial stress ¢, proportionately. This stress, which diminishes with the length to
attain zero at the free end, depends upon the primary warping constant for the section,
which is found from

Flz/swztds—w2 /Stds (22)

With t constant, the first integral in Equation (22) is found from the square of each line
equation in Figure 15.

13: t [Lwids = t[/°(0.8966d5)2ds = 0.8039d2t | s3/3 |4/% = 000992545
3-5:1 [ wids = t[}1]°(0.3447d% - 0.1373ds)2ds

= t [;747(0.11824* — 0.094664% -+ 0.018854%5%)dis

t]0.1182d% — 0.04733d3s2 + 0.006284d2s> |44/3

d/3
= £(0.088354° — 0.034374°) = 0.053984°¢
57: t [Lwids = t[}5;(0.02364% +0.1035d5) ds

=t 42j/3 (0.000557d* + 0.004885d°s + 0.01071d%s?)ds
= t]0.000557d*s + 0.002443d% + 0.00357d%s> |3
= $(0.039454° — 0.01355d°) = 0.0259044°¢

Substituting these into Equation (22) with @ and f t ds = t(2d) within the second term:

I} = (0.0099254°t + 0.053984°t + 0.025904d°t) — (0.204942)+(2d)
= (0.089809 — 0.083968) d°t = 0.00584d°t

The length coefficient y follows:
p=/(GJ/ET1) = /(3] /8T1) = 6.5428t /d*

in which E = 2G(1 + v) = 8G/3 for v =1/3 and ] = 2dt3/3. Then, uL = 6.5428(t/d)(L/d) =
1.7172 and exp(—2 uL) = 0.03225. These constants provide the axial stress, from constrained
warping at the fixing, as

0, = —(w — @)T/uly x (1 —e 2Ly/(1 + 721 (23a)

Equation (23a) is applied in a convenient form to the end section’s median points 1, 2,
3...7 as follows:

(@2/T)o, = 24.536(0 — w)

23b
= 24.536(0.20494% — w) (23b)
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wy =0, (@ /T)oy; = 5.0274>

wy = 0174342, (d31?/ T)o 5y = 24.536(0.20494% — 0.1743d%) = 0.751d>
w3 = 0.298842, (d3t2 / T)o»3 = 24.536(0.20494% — 0.29884d%) = —2.3044>
wy = 0.218842, (d3t2 / T)o 14 = 24.536(0.20494% — 0.21884d%) = —0.3414>
ws = 0.161642, (312 / T)o5 = 24.536(0.20494% — 0.16164%) = 1.0624>
wg = 0.1760d2, (312 / T)o»3 = 24.536(0.20494% — 0.17604%) = 0.7094>
wy = 0.230642, (312 / T)o»y = 24.536(0.20494% — 0.2306d%) = —0.6314>

The corresponding constrained axial stress distribution, ¢, in Figure 17 is proportional
to the unconstrained warping displacement (see Figure 16). Linear variations between
tension and compression apply to each limb. A conversion of each ordinate (4*t?/T)c,
into stress requires a multiplication factor, T/ d3#2, so that for median point 3, for example,
Equation (23b) yields

023 = —2.304d% x T/d> = —2.304T /dt*

which, for a unit torque (T = 1 N m), a maximum elastic compressive stress is seen to occur
at point 3 in the fixed-end cross-section:

023 = —2.304 x 1000/[(25.4)° x 15/8 x (3/64)%] = —34.13 MPa

5

Figure 17. Axial stress o, from constrained warping at the fixed end.

The greatest tensile stress applies to point 1. This converts to 0,1 = 74.47 MPa, which
is also elastic under the stated torque.

The constrained axial stress, ¢, in the beam diminishes with the length according to
the first term in Equation (3a). This shows that a multiplication factor, K, applied to the
fixed-end stresses provides the reduced stresses at length position 0 <z < L:

K =sinh u(L — z)/sinh uL = (e "* — e ML =2) /(1 — e~ 2Ly (23¢)

For example, at half-length in this section, where z = L/2, Equation (23c) provides
K=0,0, as
K =(0.4338 — 0.07609) /(1 — 0.03225) = 0.527

where the central stress distribution is found by applying K to stress at the fixing,
listed above.



Appl. Sci. 2025, 15, 8470

33 of 41

9.6. Torsional Shear Flow

The corresponding torsional shear flow (see Section 2) is found from applying
Equation (5b) to the swept area diagram as follows:

q=Etd®0/dz® x Q (24a)

where

Q=/S (w — @) ds (24b)

The integration for Q in Equation (24b) gives the change in the shear flow between
points

1-3: w—@ = 0.8966ds — 0.204942
Qi3 = JI7(0.8966ds — 0.20494%) ds

= |0.4483ds? — 0.20494%s [4/% = 0.04984° — 0.06834°> = —0.01854°
3-5: w — @ = 0.3447d%> —0.1373ds — 0.20494> = 0.13984%> — 0.1373ds
Qa5 = [177°(0.13984% — 0.1373ds) ds = | 0.1398d% — 0.06865ds2[47,3

= (0.1864d%> — 0.122044%) — (0.04664° — 0.00763d%) = 0.025394°
5-7: w — @ = 0.0236d> + 0.1035ds — 0.20494> = —0.18134> + 0.1035ds
Qs7 = [of,(—0.18134% + 0.1035ds) ds = | —0.1813d% + 0051754572

4d/3
= (—0.36264% + 0.2070d%) — (—0.2417d% + 0.09204°) = —0.00594°

Intermediate positions are taken to find the shape of the shear flow distribution
between points 3 and 4 and 5 and 6 more accurately as follows:

1-2: Q1 = |0.4483ds? — 0.2049dzs|gd/ % — 0.016954° — 0.03984d3 = —0.02294°

3-4: Qs = |0.1398d% — 0.06865d5 7 -

= (0.1282d° — 0.05769d°) — (0.04664° — 0.007634%) = 0.03154d°
5-6: Q56 = | —0.1813d% + 0.05175d52 [ ;°

= (—0.26694°% +0.11224%) — (—0.2417d° + 0.092d%) = —0.0054°

Between 3 and 5, a maximum Q applies, when

d (0.13984%s — 0.06865ds) /ds = 0

0.13984%~ — 0.1373ds = 0

s = 1.018d

. Quar = |0.1398d% — 0.0686545 |} 5"

= (0.14244°% — 0.07124%) — (0.04664° — 0.007634°) = 0.031864°

The shear flow changes calculated above for each limb are connected along a horizontal
median line in Figure 18a. They reveal, correctly, that net shear flow for the median line 1,
2,3 ...7 has zero value for end points 1 and 7. Each net shear flow measure Q/d°> at these
points is plotted upon the channel section in Figure 18b.
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-0.025L | 5
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Figure 18. Shear flow measure (a) q/ d3 for channel median line in (b).
The conversion to g (N/mm) from Equation (24a) applies g = Et d°0/dz® x Q. For
example, at point 3 within the fixed-end cross-section, Figure 18b shows Q = —0.01854°,

which is converted to g for a unit torque of 1 Nm applied to section C, with d = 17/8",
as follows:

g=Etd®/dz® x Q
At the fixing where z = 0, the third derivative in Equation (6c) is reduced to

d’0/dz® = —(u*T/]JG) = —T/ET;
s.q=—Tt/T1 x Q= (—Tt/0.00584d%) x (—0.01854%) = 3.1678T /d>
= (3.1678 x 1000)/(1.875 x 25.4)% = 1.398 N/mm

Note the sign change that appears for 4. Here, a full conversion from Q to g reverses
the distribution given in Figure 18b. Equation (6c¢) is required in full when conversions are
applied to intermediate span positions z = L/4, L/2, etc. (see Table 1).

Variation in the torsional stiffness with the length follows from the twist rate [1]:

df/dz=(T/GJ)[1 — coshu(L — z)/coshuL]
Integrating for 0,
0 =(T/GJ) [z + sinhu(L — z)/pcoshuL] + C

where C = —(T/GJ)(sinhuL)/ (ucoshpL), is required to provide zero twist at the fixed end
(z=10). Hence,

0 = (T/GJ)[z + sinhyu(L — z)/ pcoshuL] — (T /GJ)(sinhuL) / (pcoshuL)

= (T/G]){z + [sinhp(L-z) — sinhuL]/pcoshuL} (25a)
Stiffness T/6 at position z is found from Equation (25a):
T/0 =GJ/{z + [sinhu(L — z) — sinhuL]/pcoshulL} (25b)

For example, at the first quarter position z = L/4, substituting yuL = 1.7172 for
L =500 mm, G =70 x 10° MPa and | = 53.588 mm*, found previously, into Equation (25b)
provides the following:

T/0 =GJ/{L/4 + [sinh(3 uL/4) — sinhuL]/pcoshulL}

= (70 x 10 x 53.588)/[125 + (1.675 — 2.695)/(0.003434 x 2.874]
=173.27 x 103 Nmm/€ = 17327 N m/¢
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Forz=L/2:

T/6=GJ/{L/2 + [sinh(uL/2) — sinhuL]/pucoshulL}
= (70 x 103 x 53.588)/[250 + (0.968 — 2.695)/(0.003434 x 2.874)]
=50 x 103 Nmm/¢ =50 N m/¢

Forz=3L/4:

T/0=GJ/{3L/4 + [sinh(uL/4) — sinhuL]/pcoshulL}
= (70 x 103 x 53.588)/[375 + (0.4426 — 2.695)/(0.003434 x 2.874)]
=2556 x 10° N mm/¢ =25.56 N m/¢

Forz=L

T/0 = GJ/{L + [sinh(0) — sinhuL]/pucoshuL}
= (70 x 10 x 53.588)/[500 + (0 — 2.695)/(0.003434 x 2.874)]
=2556 x 10° N mm/¢ =16.53 N m/¢

The variation in stiffness with length is shown in Figure 19. Stiffness is retained at all
positions including the free end. All are seen to exceed St Venant’s unconstrained torsional
stiffness [1]:

T/0=]G/L=53588 x 70 x 10°/500 = 7.5 x 10> N mm/¢ =75 N m/¢

200 |- .\
T Nm (e®)
6 rad
100 |—
z/L
1 1 i 1]
0 0.25 0.50 0.75 1.0

Figure 19. Variations in constrained torsional stiffness with length.

9.7. Bending Stress Distribution

Referred the section’s principal centroidal axes (1 and v), the axial stress in bending
becomes
0z =My/L + My/x/1I, (26a)

where M,’ and M,/ are equivalent moments expressed more conveniently in the centroidal
axes (x and y). We integrate the equivalent shear forces given in Equation (18b,c) as

My = [Fy'dz = [My — My(Lyy/T)1/[1 = (Iy? /I Iy)] (26b)
M, = /Fx’dz = [My — My(Ly /I)1/[1 — (Ly? /I I)] (26¢)

in which M, and M,, are the applied moments at position z within the length:
My =Fy(L — z), (27a)

My = Fy(L — 2) (27b)

Figure 20a shows the section of a cantilever of length L, free-end loaded with forces Fy
and Fy applied at its centroid.
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Figure 20. Unsymmetrical channel showing geometry for (a) shear centre and (b) centroid G.

9.8. Trans-Moments

The trans-moments, which arise in the transfer of My and My from centroid G to shear
centre E, are given as

By =M, ey (28b)
where e, and e, are the perpendicular distances between rectangular axes x and y at G and
E. Equation (28a,b) are taken to contribute, respectively, to the first and second terms in the

axial stress Equation (26a):
021 = Bx/Igx = Mx Eylgx (29a)

and

0z2 =By/IEy=My Ex/IEy (29b)

Combining Equation (26a) with Equation (29a,b) gives the total axial stress from the
two bending sources:

Oz = [(Mx/]//)/lx + My Ey)/Ig] + [(My/x/)/lx +(My Ex)/IEy] (30a)

in which the parallel axis theorem provides for the change in I; and I, accompanying a
separation between the respective parallel axes for G and E: (i) Ex = ex + X" between I, and
Igy and (ii) Ey = Y” — ¢, between Iy and I, (see Figure 20a,b)

Igx = I + AE,? (30b)

Ig, =1, + AE,? (30c)

in which A is the channel section area. To apply Equation (30a—c), recall that the following
section properties are required:

X' =5d/36,Y' =5d/12, e, =21d/153, e, = 9d/87, I, = 17d°t/72, I,, = 87d°t /1944 and
Ly, = —39d°t/648.

which provide the three ratios between second moments of area appearing in Equation (26b,c):

Ly /Iy = —0.2549, Iy, /I, = —1.3448, and L,,* /I, I, = 0.3428
Initial calculations are made in the absence of trans-moments, substituting into

Equation (26a,c):
0 = [F(500 — 2)1.522 4 F,(500 — z)2.046]y /0.2361d%t

31
+[Fy(500 — 2)1.522 + F, (500 — 2)0.3879]x/0.044754% (31a)

This shows that the greatest stress occurs at the fixing (z = 0) when Equation (31a)
simplifies to
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05 = (761F, + 1023F,) (y/d) /0.2361d%t + (761F + 193.95F, ) (x/d) /0.044754%

31b
0. d*t/10% = (3.223F, + 4.333F,) (y/d) + (17.005F, + 4.334F, ) (x/d) (31b)

with ¢, in MPa, d and t in mm. Equation (31b) is reduced for the following load combinations:
(1) Fx=F;F,=0, lo; d*/10° = 4.333(y/d) + 17.005(x/d);
(2) Fy=FFc=0, lo,d?*/10% =3.223(y/d) + 4.334(x/d);
() Fx=F,=F, lo;d*t/10° =7.556(y/d) + 21.339(x/d);
(4) Fx=-FFy=F, lo,d?t/10° = —1.11(y/d) — 12.671(x/d).

Table 12 is constructed for the axial stresses that apply to median points 1,2,3 ... 7.
The first two rows provide the co-ordinates of each point, which apply to each of (1)—(4)
above.

Table 12. Asymmetric bending stress calculations for median line points 1, 2, 3 . .. 7 by Equations (1)—(4).

Point 1 2 3 4 5 6 7
x/d 7/36 0 —5/36 —5/36 —5/36 0 19/36
y/d 7/12 7/12 7/12 0 —5/12 -5/12 —-5/12
Equation (1) 5.834 2.528 0.166 —2.362 —4.167 —1.805 7.169
0,/MPa 216.05 93.61 6.15 —87.47 —154. —66.84 265.5
Equation (2) 2.723 1.88 1.278 —0.6019 —1.95 —1.343 0.9445
o,/MPa 100.83 69.62 47.32 —22.29 —72.02 —49.73 34.97
Equation (3) 8.557 4.408 1.444 —2.964 —6.112 —3.148 8.114
0z/MPa 316.9 163.2 53.5 —109.8 —226.3 —116.6 300.5
Equation (4) -3.111 —2.464 1.112 1.76 2222 0.4625 —6.225
0,/MPa —115.2 —91.2 43.2 65.2 82.3 17.1 —230.5

Figure 21a—d shows the elastic bending stress distributions for the four load combina-
tions where F = 100 N. With equal forces applied to G in the negative x and y directions,
Figure 21c becomes the sum of the stresses with each of these forces applied separately (i.e.,
Figure 21a,b). When the direction of Fy is reversed, this has the effect of raising compression
in each flange while lowering tension in the web (see Figure 21d). Linear stress distributions
apply within each limb, but intersections giving zero stress do not correspond to ‘neutral
axis’ points 2, 4 and 6 in Figure 20a.

In this author’s interpretation of trans-moment stress distributions, the four force
combinations are treated separately and then superimposed in Figure 21a—d as required.
By the parallel axis theorems, Equation (30b,c), the separation (see Figure 20a,b) between (i)
the horizontal axes x (through G) and xr (through E) is

E,=Y —e,=5d/12 — 9d4/87 = 0.3132d (32a)
and (ii) the separation (see Figure 11b) between vertical axes y (through G) and yr (through
E)is

Ey =X +e,=5d/36 +21d/153 = 0.2761d (32b)
Applying Equation (30b,c),
Ipx = I + AE,? = 17d%t /72 + 2d+(0.3132d)? = 0.43234°t
Ip, = I, + AE* = 87d°/1944 + (2d1)(0.2761)* = 0.19724°¢

Separating the two trans-moment terms in Equation (30a), their summation at the
fixing (z =0) is
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0z = (Mx Ey)/IEx + (My Ex)/IEy

33a
= (Fy L)Ey/IEx + (Fx L)Ex/IEy ( :

We substitute for this section’s properties as given above
0 = FyL(0.3132d) / (0.4323d°¢) + F,L(0.2761d) / (0.1972d%%) (33b)

= (0.7245F, + 1.40F,)L/ (d°t)
which reveals that ¢, is uniform for a given force combination. For example, taking case (3)
above (Fx = F, = F), Equation (33a) leads to
0, = 2.1245FL/(d°t)

which, for F =100 N, o, = 20.98 MPa, which is to be distributed to each stress level calculated
under (3) in Table 12. This distribution is demonstrated for the simpler case of a symmetric
channel section that follows.

I
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Figure 21. Elastic bending stresses under four transverse load combinations under (a-1), (b-2) etc.

9.9. Axial Symmetry

Finally, take the case of axially symmetric channel sections A-C, considered earlier.
Because G and E both lie on the centroidal x-axis of symmetry, a single trans-moment refers
to the shift in My, from centroidal axis y to shear centre axis y, i.e., through a perpendicular
distance, Ex = ey + X'. There is no shift in M, along the centroidal axis. Therefore, from
Equation (30b,c),

02 =M, Ey/Ig, where Ig, = I, + AE,?

Applied to the symmetrical channel section in Figure 1a, for example, with Fy = 100 N,
the uniform axial stress that arises from the trans-moment is found:

Er=ey+X =3a/8+a/4=5a/8
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Iy = (3.28 x 103)d* + (2d1)(5a/8)
Igy/d* = (3.28 x 1073) + 2(t/d)(5/8)*(a/d)?
=(3.28 x 1073) + 2(1/16)(5/8)*(1/2)* = 0.01548
- Ig, = 0.01548d* = 6446.2 mm*
0z = (My Ex)/Igy = (F x 300)(5/8 x 12.7)/6446.2 = 36.9 MPa (34a)

which is distributed to each median point in proportion to its x-co-ordinate by two methods:
(i) From Equation (34a), the stress adjustments to be applied to Table 12 are as follows:

021 =027 = (@ — X')oz/(ex + X)
=@—a/4)0,/(Ba/8+a/4)=60,/5=6 x 36.9/5 =+ 44.28 MPa
020 =026=0

0:3=024=055=—X 0;/(ex +X)

= —(a/4)0./(3a/8 +a/4) = —20,/5 = —14.76 MPa

(ii) In another interpretation of the trans-moment’s conversion to bending stress, the
moment arm is increased from L to L + Ey, giving My, = Fx(L + Ey):

0z = (My Ex)/IEy =Fy(L + Ex)xi/IEy (34b)

Here, M, is referred to axis yr where the parallel axis theorem has been applied to give
Ig, and where x; represents the x-co-ordinates for median pointsi=1,2,3...7. Applying
Equation (34b) to symmetrical channel section A yields the following:

021 =077 =100 x (300 + 5a/8)(a — a/4)/6446.2
=100 x 307.94 x 9.525/6446.2 = +45.5 MPa

020 =026=0

023 =024 =055 =100 x (300 + 5a/8)(—a/4)/6446.2
=100 x 307.94 x (—3.175)/6446.2 = —15.17 MPa

Numerically, with these adjustments, method (ii) in reasonable agreement with the
method (i).

10. Conclusions

The stress analysis of a thin-walled, cantilever beam with open channel sections shows
that this is by no means a simple structure. With transverse end loading applied to a
symmetric channel’s centroid in alignment with its principal directions, the beam bending
theory is supplemented by the influence of torsion and flexural shear applied to the shear
centre. Thus, in beam design, the maximum net axial stress and maximum net shear stress
are found at the fixing. These apply to the application of yield criteria in the assessment
of the beam’s safe load bearing capacity. Given that torque Equation (4) depends linearly
upon Fy the latter may be reduced to lower the shear stress to acceptable levels where
necessary. However, a load factor should not be applied until the additive effect of bending
upon the net axial stress distribution has been established.

Further information provided by the sophisticated Wagner-Vlasov theory is illustrated
well for a thin-walled, non-symmetrical channel. Following all the necessary geometric
calculations that appear as the symbols X', Y’, I, I, Iy, @, I'1, ] and p for this particular
cross-section, the logical sequence of calculations when transverse forces are applied to the
centroid at the free-end of a cantilever beam is as follows:



Appl. Sci. 2025, 15, 8470 40 of 41

(1) Establish the flexural shear flow distribution with equivalent forces for the principal
axes transferred to the shear centre.

(2) Calculate the unconstrained warping displacements for the resultant St. Venant torque,
arising from the transfer in (1), applied to the shear centre.

(3) Calculate the axial stress produced by the Wagner torque arising from constraining
warping by fixing one end.

(4) Calculate the torsional shear flow arising from the Wagner torque in (3).

(5) Assess the increased torsional stiffness at length positions arising from (3).

(6) Find the net shear flow (stress) distribution from the addition of (1) and (4). Note
the stress gradient across the thickness with (1) providing the mean stress and (4) the
superimposed linear distribution due to torsion.

(7)  Find the bending stress distribution from equivalent moments referred to the principal
axes with end forces applied at the centroid.

(8) Find the net axial stress distribution from the addition of (3) and (7).

(9) Apply criteria of yielding/buckling [16-20] to fixed-end positions stressed most
severely under (6) and (8).

The possibility of a transfer in moments accompanying the shift in forces from G to
E has been quantified for both types channel. The conversion to bending stress shows
this how influence can augment the net bending stress in consideration of plastic collapse
arising at median perimeter points for each section.
Funding: This research received no external funding.
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