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Abstract— Critical infrastructure, such as transport networks, underpins economic growth by enabling mobility 

and trade. However, ageing assets, climate change impacts (e.g., extreme weather, rising sea levels), and hybrid 

threats—ranging from natural disasters to cyber-attacks and conflicts —pose growing risks to their resilience and 

functionality. This review paper explores how emerging digital technologies, specifically Artificial Intelligence (AI), 

can enhance damage assessment and monitoring of transport infrastructure. A systematic literature review examines 

existing AI models and datasets for assessing damage in roads, bridges, and other critical infrastructure impacted by 

natural disasters. Special focus is given to the unique challenges and opportunities associated with bridge damage 

detection due to their structural complexity and critical role in connectivity. The integration of SAR (Synthetic 

Aperture Radar) data with AI models is also discussed, with the review revealing a critical research gap: a scarcity of 

studies applying AI models to SAR data for comprehensive bridge damage assessment. Therefore, this review aims to 

identify the research gaps and provide foundations for AI-driven solutions for assessing and monitoring critical 

transport infrastructures.   
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1. Introduction 

Transport networks are crucial for the integrity of the economy and social health of any region in 
the world, thus maintaining them in good condition is of high importance. Climate change is 
having a big impact on transport networks as well, as common climate threats include large 
precipitations, high temperatures and rising sea levels, which lead then to biophysical impacts 
such as floodings, erosion, and urban heat islands, which reduces road safety and durability (de 
Abreu et al., 2022). There are also direct impacts that refers to the actual damage to the 
infrastructures and indirect damages due to the cascading events (Rebally et al., 2021). 
Consequently, fostering climate-resilient infrastructure is becoming essential for the economic 
prosperity and social coherence of any country (Argyroudis et al., 2022), aligning with the United 
Nations Sustainable Development Goals (SDGs) (United Nations, 2015). 

Given these threats, critical infrastructures require quick damage assessment to enable 
informed decision making and on time restoration avoiding cascading impacts. This need is 
especially highlighted in challenging zones, such as areas under war or other disruptive events. 
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The use of remote sensing technologies and satellites is crucial here, as data collection in these 
areas is often defined by security risks and restricted access making on-ground data hard to 
obtain (Zhao & Morikawa, 2024). 

Critical infrastructures require quick damage assessment to enable informed decision making 
and on time restoration, avoiding cascading impacts. Furthermore, there is a need for damage 
assessment especially in challenging zones and areas, such as under war or other challenging 
environments, using remote sensing technologies and satellites, as data collection in this area 
are often hindered by security risks and restricted access, making this data less available and 
hard to obtain (Zhao & Morikawa, 2024).  

Key methods to address this challenge involve damage assessment using satellite images, which 
can be sourced from open-access platforms or commercial providers. A prominent example is 
the ESA (European Space Agency) Sentinel mission, which provides valuable data through radar 
imaging (Sentinel-1) and multispectral high-resolution imaging (Sentinel-2) (European Space 
Agency, n.d.). For instance, researchers have developed multi-scale approaches that integrate 
Sentinel-1 SAR images with high-resolution imagery and deep learning for rapid post-disaster 
infrastructure damage detection (Kopiika et al., 2025). 

While there have been previous studies on damage detection, they have often focused on single 
transport infrastructures such as roads, bridges (Santaniello & Russo, 2023) or buildings in 
isolation. Existing literature reviews have also covered related topics, for example, (Abedi et al., 
2023) provided a systematic review of Machine Learning for general civil infrastructure damage 
using methods like vibration and image analysis, while (Abduljabbar et al., 2019) presented a 
broader overview of AI applications across the transport sector without a specific focus on 
structural damage. 

However, there remains a distinct need for a review that comprehensively examines and 
compares current AI models and datasets specifically tailored for assessing damage to both 
roads and bridges. Crucially, this review is motivated by another identified gap in the literature: 
while satellite technology like Synthetic Aperture Radar (SAR) is used for monitoring, its 
integration with advanced AI models for holistic bridge damage assessment remains largely 
unexplored. This review aims to address this gap. It will synthesize the latest emerging 
technologies and AI models, from the detection of localized road potholes to wider regional 
damage assessments, providing a foundation for developing AI-driven solutions that enhance the 
monitoring and resilience of critical transport infrastructures. 

The rapid adoption of these technologies necessitates a careful consideration of ethical AI 
principles (Díaz-Rodríguez et al., 2023) (Radanliev, 2025). These concerns include fairness, 
transparency, privacy, and accountability. AI models for damage assessment could cause 
societal inequalities if trained on biased dataset. An AI system trained predominantly on urban or 
affluent area imagery might underperform in rural regions, leading to inequitable allocation of 
repair resources and marginalization of vulnerable groups. This raises the question for 
accountability, which demands mechanism to ensure responsibility for an AI system’s outcome 
and provide compensation when its decision cause harm. Furthermore, the system must be 
transparent and explainable, making their functionality clear and understandable to build and 
maintain user trust. The use of high-resolution satellite imagery also introduces significant 
privacy and data governance concerns that must be addressed to protect individuals and ensure 
data is used responsibly. 



The increasing use of AI in managing critical infrastructure demands significant policy and risk 
management reform, as some current regulations are inadequate for the technology’s 
complexity. There is need for new policies that standardize data quality, model validation and 
operational transparency. It is also crucial to address the emerging landscape of AI-generated 
threats. The same technology can be used for malicious ends. Therefore, the successful 
application of these technologies for infrastructure assessment requires navigating the 
challenges of ensuring ethical performance, establishing robust governance and policy, and 
safeguarding the assessment process from digital interference.  

2. Methodology 

This review paper employs a systematic approach to evaluate existing research and compare the 
different findings and applications of AI models and datasets availability. While the literature 
demonstrates significant, particularly in road damage detection, our initial analysis confirmed a 
scarcity of research combining AI, SAR, and bridge damage assessment. Therefore, this review 
aims to provide a comprehensive evaluation of current findings and highlight directions for future 
research. 

Articles were included based on a series of criteria which includes the relevance of AI models and 
their application for damage assessment on transport infrastructures (roads, bridges, etc.), 
availability of the datasets that correspond to the tables’ columns (i.e. for AI models, the 
accuracy). As for the eligibility criteria for article searching, we considered the most recent 
articles, including up to 10 years old articles, except for same cases where articles were scarce. 
The language of these article is English, for ease of comparison and readability. The database we 
searched the articles from are Scopus and Google Scholar. The search terms are the titles 
identified for each table, which corresponds to a research question. We excluded articles that 
are older than 2010, and which are not relevant to the research question identified for each table.  

 

Figure 1, Review process diagram methodology 

For wider damage assessment, we looked into technologies that use satellite imagery as well, 
and more specifically SAR (Synthetic Aperture Radar) (Kopiika et al., 2025) (Nettis et al., 2023) 
(Markogiannaki et al., 2022). This technology has been used in some variations depending on 
applications, such as MTInSAR (Multi-Temporal Interferometric SAR), InSAR (Interferometric SAR) 
and D-TomoSAR (Differential Tomographic SAR). MTInSAR, for instance, has been used for 
monitoring of structural deformation in bridge portfolios, like in (Nettis et al., 2023), while InSAR 



has also been used for similar application, such as Long-term deflection and thermal dilation of 
bridges (Jung et al., 2019). D-TomoSAR is similar to the other, but it uses multiple radar images 
acquired from different viewing angles to create 3D model of the deformed infrastructure. In 
(Markogiannaki et al., 2022), the authors have used D-TomoSAR for monitoring of landmark bridge 
suing displacement products deformation trends. Another application of SAR includes using 
coherence products for assessing the damage on infrastructures, as in (Kopiika et al., 2025) and 
(Sun et al., 2020), more specifically using Coherence Change Detection, or CCD, in which two 
time-lapsed high-res SAR images are compared to detect and measure changes to a specific 
geographic area, as described in Figure 2. 

Table 1, SAR RGB decomposition (Schultz, 2021)  

Colour Band Polarization 
At small scale pixel 

indicates 
At large scale pixel 

indicates 

Red Co-Pol (VV) 
Surface scattering 
(polarized/simple) 

Smooth surface Rough surface 

Green 
Cross-Pol 

(VH) 
Volume scattering 

(depolarized/random) 

Low volume (water, 
roads, plowed or newly 

planted fields) 

High volume (trees, 
buildings, mature crops, 

built up areas) 

Blue 
C-Pol when 
Cross-Pol 
near 0dB 

Surface scattering when 
volume scattering is very low 

Scattering measurable 
in red channel, no value 

Co-Pol backscatter 
values near -24dB 

(smooth water, roads) 

  

 

Figure 2, SAR acquisition for CCD (Lu et al., 2018) 

 

Some applications of SAR for have used RGB composite images using various SAR data 
parameters, where different polarizations and frequencies of radar signals are combined into a 
multi-band visualization (Heiselberg, 2020). These RGB composite images can be used in AI 
models using computer vision to enhance damage assessment on transport infrastructures. In 
Table 1, the difference between colours is shown, with what object indicates.  



3. Results and Discussion 

In this section, an analysis of current available AI models and datasets in this field are carried out 
along with an investigation on robust solutions for data collection. Through the literature review, 
the emerging digital technologies and system resilience will be also explored. The findings are 
presented in table style, along with a discussion regarding the damages on civil infrastructures 
that have been studied, along with available datasets and AI models employed. Consequently, 
an analysis on the use of SAR for damage detection is presented, and lastly a discussion on 
natural hazards related to damaged civil infrastructures. 

3.1 Damages in critical civil infrastructure used for analysis in AI approaches 

Table 2 summarises the most common civil infrastructure damages that have been identified, 
which allows us to have a clear view of what are the most common ones. Although some have 
used different criteria, such as good, fair and poor (referring to the state of the road) like in (Ma et 
al., 2017). When searching for publications, we found that most of the damage detection models 
were applied on road infrastructure instead of buildings. When searching on Google Scholar 
“Road Damage Detection” since 2012 to 2025 the search gives us 26,400 results, whereas when 
searching “Building Damage Detection”, we get 17,900 results. This explains that there has been 
more research and applications on road infrastructures, detecting cracks and potholes. The 
above table tells us that most of the cracks identified are classified into lateral, longitudinal, 
alligator, and other general cracks.  

 

Table 2, Damages in critical civil infrastructure used for analysis in AI approaches 

Author / Year Roads 

 
Longitudinal 

cracks 
Lateral cracks 

Alligator 
cracks 

Cracks 
Other road 

components 

(Paramasivam 
et al., 2024) 

   x Potholes 

(Zeng & 
Zhong, 2024) x x  x Potholes, mesh cracks 

(Guo & Zhang, 
2022) x x  x 

Mesh cracks, pothole, 
longitudinal and lateral 

construction joint, 
crosswalk blur, white line 

blur. 

(Stricker et al., 
2021) x x x x 

Patches, scratches, 
bleeding, manholes, 

curb, cobblestone, drill 
holes, vegetation, joints, 

water drains. 
(Du et al., 

2021) 
 

x x x x Patches, nets, 
manholes 

(Mei & Gül, 
2020)    x  

(Majidifard et 
al., 2020) x x x x 

Reflective crack, block 
crack, sealed 

reflective crack, lane 



long. crack, sealed 
long. crack 

(Hegde et al., 
2020) x x x   

(Stricker et al., 
2019)   x x  

(Angulo et al., 
2019) x  x x  

(Weng et al., 
2019) x x x x  

(Maeda et al., 
2018) x x x   

(Dorafshan et 
al., 2018)    x  

(Ma et al., 
2017)     Good, Fair, Poor 

(Ouma & 
Hahn, 2017)   x   

(L. Zhang et 
al., 2016)    x  

(Shi et al., 
2016)    x  

(L. Li et al., 
2014) x x x   

(Oliveira & 
Correia, 2014) x x  x  

(Zou et al., 
2012)    x  

Buildings 

 Minor Major Destroyed Ruin Other 

(Y. Zhang et 
al., 2023)   x x  

(Wang et al., 
2022) x x x   

(C. Liu et al., 
2022)   x  

Debris, Spalling, 
Cracking 

(C. Wu et al., 
2021) x x x   

(Weber & 
Kané, 2020) x x x   

(Gupta et al., 
2019) x x x   

(J. Z. Xu et al., 
2019)     

UNOSAT 5-level 
scale 

 

Regarding damage criteria for buildings, we can observe from Table 2 that, like for the roads, there 
is a common pattern. Most of these publications used criteria such as “Minor”, “Major” and 
“Destroyed”. When we analyse these papers, we found out that they used this classification 
because they used the same dataset, named “xBD”, which is a large-scale dataset of building 
damage assessment used for humanitarian relief and disaster rescue. We will analyse other 
datasets in the tables below. 

 

3.2 AI approaches used for damage detection on infrastructures 

A wide range of AI models have been applied in damage detection algorithms on civil and transport 
infrastructures. These models include both traditional machine learning methods such as Random Forest 



(Shi et al., 2016), as well as more advanced deep learning models, for instance CNNs (Waseem Khan et al., 
2025), (Paramasivam et al., 2024), (Majidifard et al., 2020) citing few examples. 

In Table 3, Overview of AI approaches for damage detection in buildings, bridges and roads, 
including algorithms, datasets, and data sources. Abbreviations, a series of these AI model are 
presented and compared. The references are presented in the first column, the name of the model in the 
second column, and lastly, the performance in the last column. Here the infrastructures are roads, 
buildings, bridges, and other (which is only a steel structural model, to show an example of simulation of 
damage detection).  

Table 3, Overview of AI approaches for damage detection in buildings, bridges and roads, 
including algorithms, datasets, and data sources. Abbreviations1 

Author / Year Algorithm Dataset Source 

Roads 

(Waseem Khan et al., 2025) YOLOv9s-Fusion RDD2022 Terrestrial 

(Shakhovska et al., 2024) YOLO_tinyv4 
Potholes or Cracks on Road Image 

Dataset Terrestrial 

(Zanevych et al., 2024) YOLOv11+FPN+Crad-CAM Multiple publicly available Terrestrial 

(Khan et al., 2024) Faster R-CNN, YOLOv5, SSD 
MobileNet V1, EfficientDet D1 

RDD2022 Terrestrial 

(Ji et al., 2024) LRDD-YOLO Pothole dataset, Road Damage 
Dataset 

Terrestrial 

(Paramasivam et al., 2024) Faster R-CNN Custom Terrestrial 

(Y. ; Li et al., 2024) RDD-YOLO RDD2022 Terrestrial 

(Zeng & Zhong, 2024) YOLOv8-PD RDD2022 Terrestrial 

(Chen et al., 2024) LAG-YOLO RDD2020 Terrestrial 

(Ni et al., 2023) YOLOv7 RDD2022 Terrestrial 

(Guo & Zhang, 2022) YOLOv5s RDD2020 Terrestrial 

(Arya, Maeda, Ghosh, 
Toshniwal, Mraz, et al., 2021) 

YOLOv5 RDD2020 Terrestrial 

(Du et al., 2021) YOLOv3 LIST dataset Terrestrial 

(Hegde et al., 2020) u-YOLO with EM&EP GRDDC Terrestrial 

(Yang et al., 2020) FPHBN 
CRACK500, GAPs384, Cracktree200, 

CFD, (Aigle-RN & ESAR & LCMS) 
Terrestrial 

(Mei & Gül, 2020) ConnCrack (GANs) EdmCrack600 Terrestrial 

(Majidifard et al., 2020) YOLOv2, Faster RCNN PID (pavement image dataset) Terrestrial 

(Angulo et al., 2019) RetinaNet Custom Terrestrial 

(Weng et al., 2019) Edge detector and 
segmentation 

Custom Terrestrial 

(Stricker et al., 2019) ResNet34 160x160 GAPs V2 Terrestrial 

(Dorafshan et al., 2018) AlexNet DCNN SDNET2018 Terrestrial 

(Maeda et al., 2018) SSD-Inception v2 RoadDamageDetector Terrestrial 

(Ouma & Hahn, 2017) Fuzzy c-means Custom Terrestrial 

 
1 EM: Ensemble Model, EP: Ensemble Prediction, ASPP: Atrous Spatial Pyramid Pooling, U-BDD++: Improved 
unsupervised building damage detection, FV: Fisher vector, FPN: Feature Pyramid Network, RSF: Random Structured 
Forests, RDF: Random Decision Forests, BPNN: Back-Propagation NN, FPHBN: feature pyramid and hierarchical 
boosting network, SCWT: Synchrosqueezing Continuous Wavelet Transform, YOLO: You Only Look Once, CNN: 
Convolutional Neural Network, GAN: Generative Adversarial Network, SSD: Single Shot Detector 



(Ma et al., 2017) FV-CNN Cusatom – Google street view Terrestrial 

(Shi et al., 2016) CrackForest (RSF+RDF) CFD, AigleRN Terrestrial 

(L. Zhang et al., 2016) Convnets Custom Terrestrial 

(L. Li et al., 2014) BPNN ARAN dataset Terrestrial 

Buildings 

(Y. Zhang et al., 2023) U-BDD++ xBD Satellite 

(C. Liu et al., 2022) LA-YOLOv5 GDBDA Terrestrial 

(Weber & Kané, 2020) Mask R-CNN with FPN xBD Satellite 

(Gupta et al., 2019) ResNet50, CNN xBD Satellite 

Bridges 

(Abubakr et al., 2024) Xception 
Vanilla 

CODEBRIM Terrestrial 

(Santaniello & Russo, 2023) SCWT & ResNet with signal 
splitting 

Z24 bridge Terrestrial 

(Gao et al., 2023) GoogleNet Crack-detection Terrestrial 

(Ni et al., 2023) YOLOv7 RDD2022  

(Tazarv et al., 2022) Mask R-CNN RC-bridge Terrestrial 

(Mundt et al., 2019) MetaQNN and ENAS CODEBRIM Terrestrial 

(H. Xu et al., 2019) CNN with ASPP Crack-detection Terrestrial 

In the case of buildings, (Y. Zhang et al., 2023) have presented an innovative model, where the authors have 
achieved an F1 score of 0.582 for the tasks of localization and segmentation, and an F1 score of 0.638 for 
the tasks of damage classification. Here the data used consisted of unlabelled pre and post disaster 
satellite images pairs. Using satellite images sometimes is not the ideal solution due to its complexity, so 
the authors have implemented a novel self-supervised framework, named U-BDD++. Other findings, (C. Liu 
et al., 2022), show higher accuracy on a different dataset, such as the GDBDA(Ground-level Detection in 
Building Damage Assessment), where an average (between different classes) F1 score of 0.911 was 
achieved, using a improved version of YOLOv5 object detection model. A term has been found for the 
application of Artificial Intelligence to geospataial data from remote sensors such as satellites, aerial 
drones, and this is GeoAI (Agbaje et al., 2024). GeoAI brings a big potential for Rapid and scaled-up building 
damage assessment. This GeoAI concepts includes methods that use Artificial Intelligence, Machine 
Learning and Computer Vision. 

As for bridges, we observe that most of the publications used CNNs, deep learning models, for damage 
identification. Some authors have used an improved version of Convolutional Neural Networks, such as 
Xception, a deep learning model based on extreme version of the Inception architecture (Abubakr et al., 
2024). The authors have utilized Xception model and Vanilla model, achieving respectively an accuracy of 
0.9495 and 0.8571 for defect classification of concrete bridges. Other authors have experimented with 
different models, such as Meta-QNN (Mundt et al., 2019), a meta-modelling algorithm based on 
reinforcement learning that generated higher performance CNNs architectures automatically, and 
Synchrosqueezing Continuous Wavelet Transform with deep learning (Santaniello & Russo, 2023), using 
acceleration responses for multi-class damage detection. 

When it comes to roads, there has been a lot of competitions, such as the Global Road Damage Detection, 
which happened on multiple occasions, like in 2020 and 2022. In fact, we have presented the relative 
datasets in the below tables, under RDD2020 and RDD2022. There has been some variation to these 
datasets and competitions, such as the Optimized Road Damage Detection Challenge (ORDDC’2024) or 
the Crowdsensing-based Road Damage Detection Challenge (CRDDC) (Arya, Maeda, Ghosh, Toshniwal, 
Omata, et al., 2022). From the table we understand that most of the models used are based on YOLO (You 

https://orddc2024.sekilab.global/


Only Look Once) models, which are two stage detectors: in the first pass it generates the potential object 
locations, and in the second pass it refines these proposals. A recent study presents a model specifically 
developed for road damage detection, where the authors based on a previous object detection model 
YOLOv8n, have proposed an improved version, YOLOv8-PD for Pavement Distress, demonstrating lower 
computational load and higher detection accuracy (Zeng & Zhong, 2024). Most recent versions have also 
been used such as YOLOv11 (Zanevych et al., 2024) and YOLOv9 (Waseem Khan et al., 2025), and recently, 
as the weight of the models are being considered more and more, particularly for edge applications, lighter 
versions are also being considered, such as YOLO_tinyv4 (Shakhovska et al., 2024). 

An experiment have been conducted on simulated structures, such as an eight-level steel frame structure, 
where in (Jiang et al., 2022), a two-stage structural damage detection method is used (a 1D-CNN model in 
the first stage to extract the damage features, and a SVM model to quantify the damage), and achieved a 
high accuracy of 0.9988. However, it has not yet been applied to real world infrastructure, where additional 
factors influence the performance. Lastly, the majority of these papers have relied on terrestrial data, with 
limited use of satellite imagery, despite its value in scenarios where access to transport infrastructure is 
restricted. 

 

3.3 Datasets used for infrastructure damage detection 

In the previous sections, the AI models have been presented, along with what datasets have 
been used. In this part, these datasets are more deeply analysed. In Table 4 the datasets for the 
different infrastructures are presented. We can observe how the section for roads is bigger 
compared to buildings and bridges. This is because the datasets for roads are easier to create 
compared to buildings and bridges, which requires more sophisticated and advanced 
acquisition techniques, as we will see later in the table about technologies used for data 
collection. Therefore, we can observe that to create a road dataset, a smartphone with a 
camera is sufficient. Furthermore, there has been a lot of competitions for road damage 
detection like the RDD2020 and RDD2022, which had a huge success and motivated for more 
advanced datasets, i.e. including other countries’ roads to improve the model. For instance, in 
RDD2020 dataset (Arya, Maeda, Ghosh, Toshniwal, & Sekimoto, 2021), the data was collected 
from three different countries: India, Japan and Czech Republic. However, in RDD2022 dataset 
(Arya, Maeda, Ghosh, Toshniwal, & Sekimoto, 2022), the data was collected from six countries: 
India, Japan, Czech Republic, Norway, the United States and China, with more than 55,000 
instances of road damage. 

Table 4, Datasets of damaged infrastructures used for detection. 

Authors/Year Dataset Classes 
No. of 

Images 
Images resolution 

ROADS 

(Shakhovska et al., 
2024) 

Potholes or Cracks 
on Road Image 

Dataset 

Longitudinal, transverse, alligator crack, 
potholes, rutting, surface distress. 

1,000+ 1920x1080 

(Arya, Maeda, 
Ghosh, Toshniwal, & 

Sekimoto, 2022) 

RDD2022 
CRDDC2022 

Longitudinal, Transverse, Alligator cracks, 
Potholes. 

47,420 
512x512, 600x600, 

720x720, 
3,650x2044 

(Du et al., 2021) LIST 
Crack, Pothole, Net, Patch-Crack, Patch-

Pothole, Patch-Net, Manhole. 45,788 1,920x1080 

(Arya, Maeda, 
Ghosh, Toshniwal, & 

Sekimoto, 2021) 
RDD2020 

Longitudinal cracks, Transverse cracks, Alligator 
cracks, and Potholes. 

26,336 600x600, 720x720 

(Stricker et al., 2021) GAPs 10m 22 classes2. 394 5,030x11,505 

 
2 Void, Inlaid patch, Applied patch, Scaled crack, Crack, Open joint, Pothole, Raveling, Scratch, Bleeding, Road marking, Surface 
water drain, Manhole, Expansion joint, Curb, Cobblestone, Drill hole, Object mobile, Object fixed, Joint, Road verge, Vegetation, 
Induction loop, Normal. 



(Yang et al., 2020) Crack500 Crack. 500 2,000x1500 

(Mei & Gül, 2020) EdmCrack600 Crack. 600 1,920x1080 

(Majidifard et al., 
2020) 

PID 
Block, Lane longitudinal, Longitudinal, Sealed 

Longitudinal, Pothole, Alligator, Sealed reflective, 
Reflective, Transverse. 

7,237 640x640 

(Stricker et al., 2019) GAPs v2 Intact, Cracks, Applied patches, Inlaid patches, 
Potholes, Open joints. 

2,468 1,920x1080 

(Angulo et al., 2019) Modified RDD2018 

Wheel mark, Construction joint long. , Equal 
interval, Construction joint lat., Partial/Overall 

pavement, Bump/Rutting, Crosswalk blur, White 
line blur. 

18,034 600x600 

(Weng et al., 2019) G45 Transverse, Longitudinal, Block, Alligator 217 2,048x1,536 

(Dorafshan et al., 
2018) SDNET2018 Cracked, Non-cracked 56,000 256x256 

(Ma et al., 2017) NYCDT Poor, Fair, Good. 711,520 640x640 

(Ouma & Hahn, 
2017) 

Own 
Illumination and light intensity variations, 

Background asphalt variations, Cracks, Oil 
stains, Patches, Pebbles, Shadows, other. 

75 1,080x1,920 

(Shi et al., 2016) CFD Crack, Non-crack. 118 480x320 

(L. Zhang et al., 2016) Own Crack, Non-crack. 500 3,264x2,448 

(L. Li et al., 2014) Own 
Alligator crack, Linear crack:(Longitudinal, 

Transversal crack). 400 n/a 

(Oliveira & Correia, 
2014) 

CrackIT Crack, Non-crack. 84 1,536x2,048 

BUILDINGS 

(C. Liu et al., 2022) GDBDA Debris, Collapse, Spalling, Crack. 8,340 800x800 

(Gupta et al., 2019) xBD 
No damage, Minor damage, Major damage, 

Destroyed, Unclassified. 
22,068 1,024x1,024 

BRIDGES 

(Flotzinger et al., 
2023) Dacl10k 12 classes3. 9,920 

Min: 336x245 
Max: 6,000x5,152 

(Santaniello & Russo, 
2023) Z24 

Undamaged, 20mm, 40mm, 80mm, 95mm 
displacement. 1,422 Time-series 

(H. Xu et al., 2019) Crack-detection Crack, Non-crack. 6,069 224x224 

(Mundt et al., 2019) CODEBRIM Crack, Spallation. Efflorescence, Exposed Bars, 
Corrosion. 

1,590 2,592x1,944 to 
6,000x4,000 

(Dorafshan et al., 
2018) 

SDNET2018 Cracked, Non-cracked. 56,000 256x256 

 

From the table we can observe how there are many images with different sizes. Some images 
were collected using specific advanced systems with very high images resolution, such as 
“Mobile mapping system” named S.T.I.E.R. and RoadSTAR (Stricker et al., 2021), which have been 
used in Austria, Switzerland and Germany. 

For buildings there aren’t many datasets, but there is one that used satellite that is very extensive, 
including around 22 thousand images over 45 kilometres squared of polygon labelled pre and 
post disaster imagery, the xBD dataset (Gupta et al., 2019).  

In the context of bridges, there is a noticeable scarcity of publicly available image datasets 
specifically capturing overall structural damage. This scarcity is particularly acute for datasets 
suitable for advanced remote sensing techniques like SAR, which directly hinders the 
development and validation of corresponding AI models. However, several datasets focused on 
localised defects, particularly concrete cracks in bridge components, are available, such as the 
widely used CODEBRIM dataset (Mundt et al., 2019). Vibration based approaches have also been 

 
3 Crack, Alligator crack, Efflorescence, Rockpocket, Washouts concrete corrosion, Hollowareas, Spalling, Restformwork., 
Wetspot, Rust, Graffity, Weathering, ExposedRebars, Bearing, Expansion joint, Drainage, Protective equipment, Joint tape. 



investigated for bridge damage assessment. For example, (Santaniello & Russo, 2023) applied 
deep neural networks to time-frequency representations of vibration signals to detect structural 
damage. Their study utilized the Z24 dataset, a well-known benchmark in the field; however, this 
dataset is not publicly accessible, limiting its broader use in comparative studies. Another 
notable dataset for bridge damage detection is DACL10 (Flotzinger et al., 2023), a comprehensive 
dataset comprising 9,920 images collected from real-world bridge inspections. It supports multi-
label semantic segmentation and includes annotations for 12 damage types across 6 distinct 
bridge components, making it a valuable resource for developing and evaluating deep learning 
models in realistic inspection scenarios. 

We iterate here again, the importance of monitoring these structures, like bridges and roads, and 
identifying the right dataset and model is crucial for efficient restoration works, traffic load 
management and avoiding disruptions on major routes. 

Table 5  shows some samples of the data/images in the different roads datasets here showed in 
Table 4. The images showed are taken randomly from different classes. In the GAPs 10m dataset 
by (Stricker et al., 2021), a system of high-resolution imaging was used, and we can see the 
sample images in Table 5. Another example is the building dataset xBD (Gupta et al., 2019), which 
by looking at the table of images, we can understand that the authors have used some sort of 
aerial imaging system or a satellite system, and in fact they used multi-band satellite imagery. In 
summary, this table shows some samples of how the data looks like, without the need of 
searching the dataset and looking at the images. In Table 6, samples of the bridge datasets used 
for damage detection are presented as well. 

 

Table 5, Samples images from road datasets and aerial/satellite 

Author/Year Open-source Dataset Name Samples 

(Arya, Maeda, 
Ghosh, 

Toshniwal, & 
Sekimoto, 2022) 

RDD2022 

 

(Du et al., 2021) LIST 

 

(Arya, Maeda, 
Ghosh, 

Toshniwal, & 
Sekimoto, 2021) 

 

RDD2020 

 

(Stricker et al., 
2021) GAPs 10m 

 

(Yang et al., 2020) Crack500 

 



(Mei & Gül, 2020) EdmCrack600 

 

(Gupta et al., 
2019) xBD 

 

(Stricker et al., 
2019) 

GAPs v2 

 

(Angulo et al., 
2019) 

Modified RDD2018 

 

(Dorafshan et al., 
2018) 

SDNET2018 

 

(Shi et al., 2016) CFD 

 
 

Table 6, Samples of images from bridge datasets 

Author/Year Classes No. of images Samples 

(IADF TC & GRSS IEEE, 2025) 
DOTA 

Multiple classes, including 
Bridge 11,268 

 

(IADF TC & GRSS IEEE, 2025) 
Bridge Dataset 

Bridges 500 

 

(IADF TC & GRSS IEEE, 2025) 
AID 

Multiple classes, including 
Bridge 

10,000 

 

(Flotzinger et al., 2023) 
Dacl10k 

12 classes (see footnote 2 
above) 9,920 

 



(H. Xu et al., 2019) Crack-
detection 

 
Crack, Non-crack 6,069 

 

(Mundt et al., 2019) 
CODEBRIM 

Crack, Spallation, 
Efflorescence, Exposed Bars, 

Corrosion 
1,590 

 

(Dorafshan et al., 2018) 
SDNET2018 Cracked, Non-cracked 230 

 

 

We looked at what datasets about general transport infrastructures are available previously in 
Table 4 however here in Table 6 we are visualizing sample images of the damaged bridges 
datasets we previously saw. As shown in the table, most of these datasets concern concrete 
cracks on bridges, but not analysing the bridge as a whole or from a wide perspective. The “Image 
Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote 
Sensing Society (GRSS)” created a centralized platform where researchers can find and explore 
datasets collected using remote sensing imagery for various applications, such as agriculture, 
disaster monitoring and climate change analysis (IADF TC & GRSS IEEE, 2025), and the three 
datasets at the top (DOTA, Bridge Dataset, AID) are taken from this platform, but they don’t have 
damage information. This is therefore useful for an analysis of transport infrastructures too, as 
these are open source labelled aerial dataset (satellite view). 

As these datasets have been analysed, we need to look at what technologies have been used to 
collect these data, understanding what is the most used one and which one is more restricted.  

 

3.4 Data collection technologies used for infrastructure damage detection 

The data collection technologies are presented in Table 7, where we can see that for roads, most 
of the datasets have been collected using normal smartphones camera, which means collecting 
data about roads is generally easier compared to collecting data about bridges and other 
transport infrastructures, and that is because any person could use their devices with camera to 
capture the status of the roads. In fact, the RDD dataset as we saw in Table 4, it increased from 
26,336 images in the 2020 version, to 47,420 in the 2022 version, which also included more 
countries. 

Table 7, Data collection technologies used for damage datasets 

Author/Year Smartphones 
Mobile mapping 

system 
High-res 
cameras 

Optical Device Camera 
Google 

Street view 
API 

Roads 

(Arya, Maeda, Ghosh, 
Toshniwal, & Sekimoto, 

2022) 
x  x   x 

(Arya, Maeda, Ghosh, 
Toshniwal, & Sekimoto, 

2021) 
x      

(Majidifard et al., 2020)      x 



(Mei & Gül, 2020)     x  

(Yang et al., 2020) x      

(Stricker et al., 2019)  x     

(Dorafshan et al., 2018)     x  

(Ouma & Hahn, 2017) x      

(Shi et al., 2016) x      

(L. Zhang et al., 2016) x      

(Oliveira & Correia, 
2014) 

   x   

Buildings 

 Smartphones Satellite 

(C. Liu et al., 2022) x  

(Gupta et al., 2019)  x 

Bridges 

 Vibration sensors Camera Satellite 

(IADF TC & GRSS IEEE, 
2025) DOTA 

  x 

(IADF TC & GRSS IEEE, 
2025) Bridge Dataset 

  x 

(IADF TC & GRSS IEEE, 
2025) AID 

  x 

(Flotzinger et al., 2023)  x  

(Santaniello & Russo, 
2023) 

x   

(H. Xu et al., 2019)  x  

(Mundt et al., 2019)  x  

Natural Disasters 

 Social media News portals Google API 

(Weber et al., 2022) x  x 

(Niloy et al., 2021) x x x 

(Giannakeris et al., 
2018) 

x   

(Mouzannar et al., 
2018) 

x   

 

We can observe from Table 7 that for buildings and bridges there aren’t many methods for data 
collection, as satellites are usually the easier way to get imagery data for these infrastructures. 
Therefore, for buildings the data collection primarily relies on aerial images and satellite imagery, 
where the last one is noted for the high efficiency of capturing building damage, especially where 
access is restricted like in warzones. As for bridges, data collection is also limited, where 
technologies used are images or vibration sensor, which suggests the reliance on more 
specialized equipment to capture structural data and suggests the critical importance of bridge 
structural health as it is a more fragile infrastructure compared to roads. Here there is also data 
collected from satellite, but it hasn’t been used for damage detection yet. In the case of Natural 



Disasters, data collection in this context includes the use of social media (crowdsourcing), news 
portals and google API. These sources are particularly useful for rapid data gathering, where for a 
specific study case, the data collector will most likely not be near the disaster, compared to 
people posting on social media and news journalists. 

In summary, while buildings and bridges require more sophisticated equipment for data 
collection, for roads damages even smartphones are enough to gather data, and in the case of 
natural disasters, unconventional sources like social media and crowdsourcing plays an 
important role. 

 

3.5 Types of bridge damages 

In the analysis of bridge damages, we wanted to search for what terms are usually used for 
these damages on bridges, and for the recent studies, we found some types, which are shown in 
the below table. These include deflection, deformation and displacement. 

Table 8, types of bridge damage and location 

Author/Year Damage type Bridge studied Country 

(Nettis et al., 2023) Structural deformation Albiano Magra, Fossano Italy 

(Yunmei et al., 2023) Deflection Custom / 

(Markogiannaki et al., 2022) Displacement, deformation Polyfytos Greece 

(Schlögl et al., 2021) Deformation Seitenhafenbrücke Austria 

(Tian et al., 2021) Deflection Southside of Jingtai Bridge China 

(Y. Wu et al., 2021) Deflection Custom / 

(Jung et al., 2019) Deflection Kimdaejung and Muyoung bridges S. Korea 

(W. Zhang et al., 2017) Deflection Custom / 

(Pan et al., 2016) Deflection Shuohuang railroad China 

(Sousa et al., 2013) Deflection Sorraia Bridge, Leziria Bridge Portugal 

 

From Table 8, deflection is the dominant damage type, appearing in many entries of the table. 
This indicates that bending under load is a critical concern in bridge engineering, possibly due to 
heavy traffic, aging infrastructure or inadequate design. These bridges’ locations indicate that 
damage types are not limited to specific areas and to specific bridge function, such as railroad or 
highway. The prevalence of deflection suggests that AI models trained on deflection-specific 
datasets can be effective for bridge monitoring. This can be enhanced also with InSAR, MTInSAR 
or D-TomoSAR, which will be mentioned in the next chapters, where they can measure minute 
displacements. In summary, from this table we can understand what the most common damage 
type is related to bridges and, more recently we see also damages labelled as displacement and 
deformation. 

 

3.6 Methods used to detect bridge damages 

In regards of the methodologies used for detecting bridge damage, we show these in the below 
Table 9, along with the scope and key finding from each entry. There are three methods: satellite-
based methods (MTInSAR, InSAR, D-TomoSAR), image-based methods (Digital Image 



Correlation), and sensor-based methods (Laser, inclinometer). These are also better summarized 
in the below Table 10.  

Table 9, Methodologies used to detect bridge damages 

Author/Year Method Scope Findings 

(Nettis et al., 2023) 

MTInSAR: Multi-Temporal 
satellite-based 

differential 
interferometry 

Monitoring of 
structural 

deformations in 
bridge portfolios 

Bridge with ongoing deformations have been 
identified and prioritized for inspection 

Yunmei et al., 2023 
(Yunmei et al., 2023) 

Multi-point Chain Laser 
Reference 

Real-time dynamic 
deflection detection 

Measuring accuracy can reach 1 mm, and the 
dynamic response is good 

Markogiannaki et al., 
2022 (Markogiannaki 

et al., 2022) 

D-TomoSAR with 
engineering data and 

forensics 

Monitoring of 
landmark bridge 

Different measurements have been taken, such 
as displacement products deformation trends. 

(W. Liu et al., 2021) 

Using two temporal SAR 
images and verifying 

using satellite optical 
image. 

Damage Assessment 
of Bridge after flood 

Four washed-away bridges were identified 
successfully. Three were missed due to location 

in radar shadow. 

(Schlögl et al., 2021) 
Time-series analysis 
(Persistent Scatter 

Interferometry) 

Analysis of bridge 
deformation using 

SAR 

Promising results when post-processing is 
correctly applied, extraction of horizontal & 
vertical deformations, results aggregated. 

Further research is needed to test transferability 
to other infrastructures. 

(Tian et al., 2021) 
Off axis Digital Image 

Correlation 

Deflection 
measurement with 

Digital Image 
Correlation 

The full-field image displacement maps can be 
efficiently and accurately calculated 

(Y. Wu et al., 2021) Secant inclination 

New measurement 
method based on 
inclination of two 

points 

Error of proposed methos is less than 1% 

(Jung et al., 2019) 
InSAR with Sentinel-1 

SAR and COSMO-
SkyMed data 

Long-term deflection 
and thermal dilation 

of bridges 

Downward movements at mid-spans, implying 
need for periodic monitoring 

(W. Zhang et al., 
2017) 

Finite-element model 
with partial least-square 

regression 

Bridge deflection 
estimation 

The method is accurate with deflection 
estimation, also provides rough damage 

localization 

(Pan et al., 2016) Off-axis digital image 
correlation 

Real-Time 
measurement of 

vertical deflection 

Advanced video deflectometer is developed and 
can be used for field measurement of bridge 

deflection 

(Sousa et al., 2013) 
Strain and rotation 

measuements, 
inclinometer 

Analysis of deflection 
of bridge 

On bridges, using 6th deg. Polynomial function, 
can predict vertical displacement 

 

MTInSAR leverages multi-temporal satellite data to detect changes over time, and similarly InSAR 
is applied for long term deflection and thermal dilation analysis, focusing on continuous 
monitoring. D-TomoSAR is the Differential Tomographic Synthetic Aperture Radar, and it’s used 
to monitor ground deformation by analysing the differences in radar images taken at different 
times (M. Liu et al., 2018). A study has used two temporal SAR images to assess bridge damage 
due to a flood and verified the result using satellite optical imagery (W. Liu et al., 2021). 

In the case of image-based methods, Digital Image Correlation and Off-axis DIC have been 
utilized (Tian et al., 2021) (Pan et al., 2016). This is used for deflection measurement by analyzing 
image displacement maps. The Off-axis DIC uses a video deflectometer to measure this.  

As for sensor-based methods, an inclinometer has been used to analyze deflection using 
polynomial functions to predict vertical displacement (W. Zhang et al., 2017). Also, secant-
inclination is also used, which measures inclination between two points to estimate deflection, 
with an error less than 1%. 



Satellite-based methods like InSAR and D-TomoSAR are valuable for inaccessible or large-scale 
infrastructures, which aligns with remote sensor for challenging environments such as warzones, 
whereas image-based offer also high-precision for specific damage types such as deflection. The 
data generated from these satellite-based methods can be further analysed using AI model to 
classify and quantify damage, which is mentioned in the next tables. The main difference 
between satellite-based and image-based is the time of monitoring, since  methods like Multi-
chain laser reference and DIC can get immediate response to structural issues, which makes 
them near real-time, whereas for satellite-based, some processing steps are required to be able 
to analyze and visualize the results, making them far from real-time, therefore more for long-term 
monitoring. 

Table 10, technologies used for detection of bridge damage 

Author/Year Type of data used 

 Media Sensor SAR Laser 
(Nettis et al., 2023)   MTInSAR  

(Yunmei et al., 2023)    Chain Laser beam 

(Markogiannaki et al., 2022)   D-TomoSAR  
(W. Liu et al., 2021)   SAR  

(Schlögl et al., 2021)   SAR  

(Tian et al., 2021) Video deflectometer side of bridge   Rangefinder 

(Jung et al., 2019)   InSAR  

(W. Zhang et al., 2017)  Inclinometer   

(Pan et al., 2016) Video deflectometer side of bridge   Rangefinder 

(Sousa et al., 2013)  Inclinometer   

 

 

3.7 Applications of satellite data methods and Synthetic Aperture Radar (SAR) 

Satellite imagery and Synthetic Aperture Radar (SAR) have been analysed and seen in the 
previous tables, however this Table 11 summarises some applications of SAR and the integration 
with AI where possible. The table is divided into three sections, including General SAR 
applications, SAR with Coherence and long-term monitoring. 

Table 11, applications of satellite SAR methods and uses of AI models 

Author/Year Application AI Satellite 

(Markogiannaki et al., 
2022) Monitoring of a landmark bridge No Sentinel-1A/B 

(Huang et al., 2022) Marine oil spill detection Faster R-CNN 
Sentinel-1 
Radarsat-2 

(Heiselberg, 2020) Ship-Iceberg classification 
(multispectral images) 

SVM & CNN Sentinel-1 
Sentinel-2 

(R. Wu et al., 2020) 
Mapping glacial lakes 
(with optical satellite) 

CNN 
Landsat 8 (opt) 

Sentinel-1A 

(Nemni et al., 2020) Rapid flood segmentation FCNN Sentinel-1 

(Winsvold et al., 
2018) 

Regional glacier mapping No Sentinel-1A 
Radarsat-2 

(Henry et al., 2018) Road segmentation in satellite images FCNN TerraSAR-X 

(Rahman & Thakur, 
2018) 

Detection, mapping and analysis of flood propagation with 
GIS 

No Radarsat 

(Markert et al., 2018) Surface water mapping 
(with optical satellite) 

No Sentinel-1 
Landsat (opt) 

(Chang et al., 2017) Nationwide Railway monitoring No Radarsat-2 



With Coherence product 

(Kopiika et al., 2025) 
Rapid post-disaster infrastructure damage characterization 
enabled by remote sensing and deep learning technologies 

SAM (Segment 
Anything Model) 

Maxar 
Sentinel-1 

(Lopez-Sanchez et 
al., 2023) 

Multi-Annual Evaluation of Time Series of Sentinel-1 Inter. 
Coherence as a tool for Crop Monitoring 

No Sentinel-1 

(ElGharbawi & 
Zarzoura, 2021) 

Damage detection using SAR coherence statistical analysis, 
application to Beirut, Lebanon 

No Sentinel-1 

(Sun et al., 2020) 
Deep Learning Framework for SAR Interferometric Phase 

Restoration and Coherence Estimation 
CNN TerraSAR-X 

(Sharma et al., 2017) 
Earthquake Damage Visualization for Rapid Detection of 

Earthquake-Induced damage No JAXA ALOS-2 

(Yun et al., 2015) Rapid Damage Mapping for 2015 Gorkha Earthquake No 
COSMO-
SkyMed, 

JAXA ALOS-2 
(Bouaraba et al., 

2012) 
Detection of surface changes using Coherence Change 

Detection No 
COSMO-
SkyMed 

(Preiss et al., 2006) Detection of scene changes with Change in Coherence No DSTO Ingara X-
Band SAR 

Long Term Monitoring 

(Tonelli et al., 2023) Interpretation of Bridge Health Monitoring Data from Satellite 
InSAR 

No COSMO-
SkyMed 

(Nettis et al., 2023) 
Multi-Temporal satellite-based differential interferometry for 

monitoring structural deformations of bridge portfolios 
No 

Sentinel-1 
COSMO-
SkyMed 

(Jung et al., 2019) Long-Term Deflection Monitoring for Bridges Using X and C-
Band Time-Series SAR Interferometry 

No COSMO-
SkyMed 

 

In the first section it’s presented how SAR is useful when it comes to detecting marine oil spills, 
ship-iceberg detection, glacial lake mappings, road segmented and water/flood mapping. Here 
the satellites that have been used include two missions from ESA (European Space Agency), 
Sentinel-1 and Sentinel-2, TerraSAR-X, Landsat and Radarsat. Some of these cases have utilised 
AI models, such as Faster R-CNN, Support Vector Machine (SVM) and Convolutional Networks 
for automated detection and classification (Huang et al., 2022) (Heiselberg, 2020) (R. Wu et al., 
2020) (Nemni et al., 2020) (Henry et al., 2018). 

In SAR interferometry, coherence indicates a measure of correlation between two SAR images at 
different times, where high coherence indicates better interferences and therefore more accurate 
phase measurements (Y. Zhang & Prinet, 2004). This is here used for rapid-post disaster 
infrastructure damage characterization (Kopiika et al., 2025), crop monitoring (Lopez-Sanchez et 
al., 2023), earthquake damage visualization (Sharma et al., 2017) (Yun et al., 2015) and scene 
change (ElGharbawi & Zarzoura, 2021) (Bouaraba et al., 2012) (Preiss et al., 2006). The coherence 
product is mainly taken from Sentinel-1 mission, but also from the German TerraSAR-X, the 
Japanese JAXA ALOS-2 and the Italian COSMO-SkyMed mission (see Table 12 for available 
satellites used for monitoring infrastructures along with more specifics). Some AI models have 
been used here as well, but less frequent compared to general SAR application. In this case, SAM 
(Segment Anything Model) and CNN are used for tasks like phase restoration and coherence 
estimation. Therefore, coherence product can be highly useful when comparing pre- and post- 
event SAR images. 

Lastly, for Long-term monitoring, there are two cases of bridge health monitoring and multi-
temporal monitoring of structural deformations, using mainly Sentinel-1 and COSMO-SkyMed, 
without any case of using AI models. 

The table shows the versatility of SAR and its usage across different domains. Also, AI integration 
shows the potential of machine learning to automate and scale SAR data analysis. The frequent 
use of Sentinel-1 mission from ESA shows the accessibility of high-quality radar imagery which is 



crucial for researchers. We also saw how the coherence product can be invaluable for post 
disaster assessment in challenging environments (Kopiika et al., 2025).  

The absence AI usage for Long-Term monitoring suggests a gap in utilising Machine Learning for 
continuous infrastructure monitoring, possibly due to the fact that SAR requires long processing 
times and expertise. 

Therefore, while SAR offers unique advantages for infrastructure monitoring, it has some 
challenges, as mentioned above. The complexity of SAR data that arises from the multiple 
dimensions, polarizations and frequency, impacts image resolution, sensitivity to surface 
features and penetration depth. Atmospheric conditions also further complicate it, with effects 
such as attenuation, ionospheric disturbances, and tropospheric distortions leading to signal 
loss and reducing image quality. It is also hard to interpret, due to its signal noise, speckle, 
distortion and scattering effects, presented in grayscale which requires advanced training (Deep 
Block, 2023). 

Table 12, Available satellite data for monitoring infrastructures. GSD: Ground Sample Distance 

Author Satellite data source Data resolution in GSD Features 

Gupta et al., 
2019) 

Maxar 0.3m 
Assessing building damages after natural disasters. 

MDA. 
(Mari et al., 2018) COSMO-SkyMed 1m - 100m High resolution imagery, multi-mode operation and 

dual polarization capability. Italian Space Agency. 
(Motohka et al., 

2017) 
JAXA ALOS-2 1m x 3m (spotlight), 

3m,6m,10m (strimap) 
High resolution imagery, L-band SAR, Compact 
InfraRed Camera, Automatic Ship Identification 

System. Japanese Aerospace Exploration Agency. 
(Chabot et al., 

2014) 
RADARSAT-2 3m – 100m High resolution imaging, flexible polarization and 

left/right looking imaging capabilities. C-Band SAR. 
Canadian Space Agency. 

(Roy et al., 2014) Landsat 7/8 15/30m Landsat 8 has narrower spectral bands, improved 
calibration and signal-to-noise characteristics, high 
radiometric resolution and more precise geometry 

compared to Landsat 7. NASA and US. 
(Space Agency, 

2012a) 
Sentinel-1, ESA 5m - 40m Radar imagery, dual polarization, short revisit 

times, fast product delivery. ESA. 
(Space Agency, 

2012b) 
Sentinel-2, ESA 10m 

Wide-swath, high resolution and multi spectral 
imager for earth surface monitoring. ESA. 

(Werninghaus & 
Buckreuss, 2010) 

TerraSAR-X 1m - 40m 

Radar imagery, various imaging modes, high 
resolution, rapid switching between modes and 

polarizations. German Aerospace Centre and 
Airbus. 

 

Some of the studies above have used damage quantification methods, which have been listed 
here in Table 13, highlighting their application in real-world scenarios for assessing infrastructure 
damage, especially in the context of natural disasters. We can see there are 3 methods used for 
roads infrastructures, such as PASER, PCI and SDI which are standardized visual survey methods 
that are crucial for systematic infrastructure maintenance planning. Methods like Hazus and 
UNOST are relevant for post disaster assessment. 

Table 13, Damage quantification methodologies 

Author/Year 
Damage quantification 

methods 
Data source used Infrastructure Case study applications 

(Teopilus & Amrozi, 
2023) 

PASER Visual survey, Bina 
Marga 

Roads Dandels road, Java island 

(Teopilus & Amrozi, 
2023) 

PCI 
Visual survey, Bina 

Marga 
Roads Dandels road, Java island 



(Teopilus & Amrozi, 
2023) 

SDI Visual survey, Bina 
Marga 

Roads Dandels road, Java island 

(Gupta et al., 2019) Hazus Fema Maxar 
Natural 

disasters 
xView2 competition 

(J. Z. XU ET AL., 
2019) UNOSAT UNITAR Buildings 

Indonesia 2018, Mexico City 
2017, Haiti 2010 

 

 

3.8 Natural hazards in studies using AI models 

Having detailed the specific damages, AI models, and data technologies, the focus now shifts to 
the broader context of the causal events. The type of natural hazards, such as flood, earthquake, 
or wildfire, directly influences the natura and scale of damage to transport infrastructure. This link 
is critical, as the hazard determines the most suitable remote sensing data and consequently, 
the design and application of AI models for assessment. To understand the current state of 
research from this perspective, the following sections analyse the specific natural hazards that 
have been the focus of using AI models. 

The following table summarizes a selection of studies that identify the specific natural hazard 
stressors investigated. This illustrates the area of focus within the scientific community regarding 
use of AI for disaster management and risk assessment. 

Table 14, Natural hazards stressors analysed 

Au
th

or
/Y

ea
r 

W
ild

-F
ire

 

Fl
oo

d 

La
nd

 d
is

as
te

r 

N
at

ur
e 

di
sa

st
er

 

Ea
rt

hq
ua

ke
 

H
ur

ric
an

e 

Vo
lc

an
o 

H
um

an
-

in
du

ce
d 

Ts
un

am
i 

Weber et al., 
2022 (Weber 
et al., 2022) 

x x x  x x x x  

(Niloy et al., 
2021) 

x x x     x x 

Arif et al., 
2020 (Arif et 

al., 2020) 
x x  x    x  

(Gupta et al., 
2019) x x   x x x  x 

(Rizk et al., 
2019) 

   x      

(Barz et al., 
2019) 

 x        

Giannakeris 
et al., 2018 

(Giannakeris 
et al., 2018) 

x x        

(Mouzannar 
et al., 2018) x x  x    x  

Muhammad 
et al., 2017 

(Muhammad 
et al., 2017) 

x         



(Alam et al., 
2017) 

   x x x    

 

The hazards listed in Table 14 directly threaten the integrity of transport infrastructures, which are 
vital for economic and social connectivity. The table suggests that most of these natural hazards 
are floods and hurricanes, which can cause direct damage to roads and bridges, and as well as 
indirect impacts through cascading events like traffic disruptions. As presented in Table 13 a 
range of methods have been employed for damage quantification. In the context of natural 
disasters, methodologies such as HAZUS (developed by FEMA) and UNOSAT are frequently 
adopted. Specifically, HAZUS-FEMA has been applied for multi-hazard damage classification, 
encompassing events such as floods, hurricanes, and earthquakes (Gupta et al., 2019). These 
tools leverage geospatial data and standardized assessment protocols to support large-scale 
disaster impact evaluation. 

In the table there are entries also for human-induced hazards, which connects to the discussion 
of using remote sensing in challenging situations such as warzones. Technologies such as SAR 
can operate in these areas and are valuable for assessing infrastructure damage in these 
contexts, as in (Kopiika et al., 2025). The constraint here is the suitability of methodologies and 
data in these contexts, i.e. the suitability of AI model for SAR based monitoring is limited by the 
slow acquisition and processing of SAR data, and therefore in the case of rapid-onset hazards like 
the ones above, timely damage assessment is critical. In Table 15 and Table 16 the datasets and 
AI models used are presented.  

A further constraint is the resolution of the satellite technologies, where open-source satellite 
missions have worse resolution compared to commercial satellites, such as MAXAR, which can 
achieve a resolution of 0.3m GSD (Ground Sample Distance), as presented in Table 12. This has 
an impact on the accessibility of resources, especially in the field of research where these are 
limited. 

The suitability of the technologies shown so far are constrained by practical challenged 
mentioned before, like data unreadiness, need for faster processing, and better access to high-
quality resources. Addressing these gaps through extended datasets and innovative processing 
techniques will be crucial for advancing infrastructure resilience, in line with supporting 
sustainable and climate-aware transport networks. 

Table 15, Available natural disaster datasets 

Author/Year Dataset Name Classes Size Geo area 

(Weber et al., 2022) Incidents1M 43 977,088 Worldwide 

(Niloy et al., 2021) Disaster-Dataset 

Fire, Water, 
Infrastructure, 

human 
damage, land 
disaster, non-

damage. 

13,720 India, Japan, Australia, California, 
Brazil 

(Arif et al., 2020) SAD 

Fire, Flood, 
Infrastructure, 

Nature, Human 
damage, non-

damage. 

493 South Asia 



(Barz et al., 2019) EU-Flood 

Flooding, 
Inundation 

depth, water 
pollution. 

3,435 Europe 

(Rizk et al., 2019) Home-grown + Sun dataset 
Infrastructure, 

Natural 
disaster. 

2,344 Nepal, Chile, Japan, Kenya 

(Giannakeris et al., 2018) 3F-emergency dataset Fire, Flood. 12,000 N/a 

(Mouzannar et al., 
2018) UCI 

Fire, Flood, 
Infrastructure, 

Nature, Human 
damage, non-

damage. 

5,880 Worldwide 

(Muhammad et al., 2017) 

(Chino et al., 2015) 

Fire, non-
damage. 

68,457 N/a 
(Foggia et al., 2015) 

(Verstockt et al., 2013) 

(Ko et al., 2011) 

(Alam et al., 2017) Image4act 
Earthquakes, 

Typhoon, 
Hurricane. 

34,562 Nepal, Ecuador, Philippines, Haiti 

 

Table 15 presents datasets regarding natural hazards that included use of AI model for detection, 
and it varies significantly in scale and scope, reflecting the diversity of natural hazards impacting 
infrastructures. Incidents1M stands out as the largest one, however it included many classes not 
related to natural disasters such as “bus accident” “motorcycle accident” and other similar 
accidents, but apart from this it contains a large number of natural disaster classes, such as “dust 
devil”, “heavy rainfall”, “storm surge” and so on (Weber et al., 2022). The scale of this datasets 
makes it ideal for AI training. In contrast, other datasets such as SAD (Arif et al., 2020) and Home-
grown + Sun dataset (Rizk et al., 2019) are more regionally focused, limiting applicability. These 
datasets complement the remote sensing technologies, such as SAR and Sentinel-1 previously 
discussed, i.e. the EU-flood dataset (Barz et al., 2019) aligns with the possibility of using SAR for 
flood detection (segmentation).  

Table 16, Previously used AI models for damage detection after natural disaster 

Author/Year Dataset Satellite Model 

(Weber et al., 2022) Incidents1M No ResNet50 

(C. Wu et al., 2021) xBD + Maxar Yes Attention U-Net 

(Gupta & Shah, 2020) xBD Yes RescueNet 

(Arif et al., 2020) SAD No VGG16 

(Weber & Kané, 2020) xBD Yes Mask R-CNN 

(Bai et al., 2020) xBD Yes PPM-SSNet 

(Potnis et al., 2019) WorldView-2 Yes ERFNet 

(Mouzannar et al., 2018) Home-grown No DFMC with SVM 

(Alam et al., 2017) Image4act No VGG16 

 

After discussing the datasets, we analyse also the AI model that have been used to achieve the 
scope, and in Table 16 these are displayed, with information about whether satellite technology 
have been used and the specific AI model. These range from traditional deep learning 
architectures such as ResNEt50, VGG16, to more specialized for specific scenarios, like 
RescueNet and Attention U-Net. Notice the frequent use of xBD dataset (Gupta et al., 2019), 



which underscore its importance in building damage assessment, due to its extensive satellite 
imagery (22,068) and standardized damage classification using Hazus FEMA.  

The choice of models reflects their suitability for specific tasks. In the case of Attention U-Net (C. 
Wu et al., 2021) and Mask R-CNN (Weber & Kané, 2020), used xBD for segmentation tasks, 
identifying damaged areas in satellite imagery. On the other hand, VGG16 (Arif et al., 2020) and 
ResNet50 (Weber et al., 2022) are more general purpose as they haven’t used satellite data and 
focused on simpler classification task rather than fine-grained damage mapping. 

The reliance on satellite data in AI applications highlights the practical challenged discussed 
earlier, such as slow processing of SAR data as mentioned in section 3.6. While optical satellite 
imagery offers high resolution, see Table 12, is it weather dependent, limiting the effectiveness 
during events such as hurricanes and floods. Therefore, SAR overcomes this issue but requires 
post-processing, which delays the damage assessment for these natural hazards.  

 

4. Conclusion 

Transport infrastructures are essential to the vitality of modern economies and societies, yet they 
are still vulnerable to impacts of climate change and natural disasters. Therefore, the demand for 
rapid damage assessment and monitoring systems is more needed. In this paper, we examined 
the transformative role of emerging digital technologies, focusing on AI models and on remote 
sensing (satellite technology) in strengthening the resilience of transport infrastructures, such as 
roads and bridges, and with focus also on buildings. The potential of these technologies, although 
remains constrained by practical and data-related challenges. 

In this review, we highlighted the AI models and datasets used for different infrastructures. A key 
finding is the significant disparity in research focus: while data and models for road damage 
detection are abundant, reflecting the ease of data acquisition, there is a distinct scarcity of 
studies integrating AI with SAR data for comprehensive bridge damage assessment. Although 
models such as ResNet50, Attention U-Net and Mask R-CNN show promise, there is still lack of 
comparative studies especially for satellite imagery-based approaches, and therefore their 
effectiveness across varied contexts is not yet fully understood.  

SAR technology with its capabilities and variants (i.e. MTInSAR and D-TomoSAR), it excels in 
monitoring structural deformation with high precision, however it is still limited by complex data 
structures, atmospheric distortions, interpretive challenges and big computational demand. 
Some initiatives, such as AI4SAR (ICEYE OY (FI), n.d.), are designing solutions by leveraging AI to 
streamline SAR data processing, hoping to offer more accessible and efficient monitoring.  

Some key direction to advance the field includes: 

• Comparative research of newer AI models to determine the most effective solutions for 
different infrastructure types and hazards, with emphasis on remote technologies such 
as satellite imagery 

• Expand datasets to include underrepresented classes (hazards, infrastructure 
categories) 

• Multi-sensor integration that merges SAR, optical-imagery and ground-based sensors for 
a complete assessment of infrastructure health 



• Use of AI to optimize SAR data analysis and reducing computational barriers, moving 
towards near-real-time monitoring 

• Explore AI-driven approaches for continuous infrastructure monitoring, especially for 
critical ones such as bridges.  

In conclusion, this review covered the latest technologies, including latest AI models and 
datasets used for damage assessment for various transport infrastructures. Furthermore, we 
analysed the use of remote technologies, such as satellites, for data acquisition. However, these 
technologies are constrained by some limitations, as we saw above. As noted in a comprehensive 
review on data readiness for AI, poor quality data can compromise AI model accuracy, a 
challenge relevant to the complicated and unstructured nature of SAR data for example and 
mentioned that while metrics for assessing data readiness for AI are advancing, standardized 
approaches remain underdeveloped (Hiniduma et al., 2025). Initiative like AI4SAR demonstrate 
progress in leveraging SAR effectively, yet future research must prioritize not only technological 
advancement, but also robust and standardized metrics for evaluating data readiness specific to 
transport infrastructures. This will ensure AI driven solutions deliver efficient, reliable and 
sustainable outcomes. 
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