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Coastal hazards andclimate change significantly threaten the resilienceof railway systems, increasing
stresses on global freight transportation, supply chains and economic stability. When it comes to
system resilience, resource availability and allocation have been proven to be leading contributors to
downtime and losses, alongside the physical vulnerability to extreme loads. To support the
quantification and pursuit of system resilience, here we present a probabilistic framework that
addresses gaps in resilience modeling of railway systems. Specifically, it systematically integrates
tailored structural damage and restoration models across an infrastructure portfolio, while
comparatively assessing network-level functionality over timewith alternative approaches to recovery
resource allocation. Applied to the railway network in Mobile and Baldwin Counties, Alabama, the
framework estimates damage states, restoration costs and times, modeling drop and recovery of
network functionality. Findings indicate that sea-level rise considerably affects service reinstatement,
reducing resilience index up to 80% when combined with hurricanes. Resource allocation strategies
also impact resilience, with variations resulting in up to 75%differences in resilience estimates. These
results underscore the need to consider resource constraints and sea-level rise in resilience planning,
offering nuanced resilience quantification to support decision-making for mitigation and response
strategies, benefiting policymakers, infrastructure managers, insurers, and agencies.

Railway infrastructure forms the backbone of freight transportation systems
around the globe, supporting sustainable economic growth and community
resilience1,2. Their failure can lead to substantial cascading events and dis-
ruptions across socio-economic systems and communities3,4. Globally,
railway infrastructure has, in many cases, reached or exceeded its intended
lifespan,while climate change is aggravating its conditionby accelerating the
ageing of these assets5,6. Additionally, the current traffic loads are much
higher than what the infrastructure was originally designed for, causing
further damage and increasing vulnerability7. Climate-induced compound
hazards such as floods, storms, and extreme temperatures are projected to
have an increasing impact on railways, further exacerbating their
vulnerability6,8,9. For instance, based on ensemble means of seven climate
scenarios, Alfieri et al. (2015)10 estimated that the expected annual damage
(EAD) to European railways is projected to increase by 255, 281, and 310%,
under 1.5 °C, 2 °C, and 3 °Cwarming scenarios, respectively. This challenge
is particularly acute in coastal regions, where the interplay of extreme events
superimposed on long-term trends, such as higher sea levels, heavier pre-
cipitation, and changing storm seasonality, causesmore frequent and severe
coastal flooding. These compound events and concurrent extremes increase

the probability of low-likelihood, high-impact outcomes11,12. This poses a
formidable threat to railway networks, which are often connected to ports,
oil refineries, and other industrial infrastructure along coastlines. The
interdependencies among these systems mean that disruptions in the rail-
way network can cascade, leading to profound operational and economic
impacts across multiple sectors13,14, exacerbating the overall vulnerability of
the region, sometimes with impacts on the global supply chain and
economy2,15. Given the increasing frequency and intensity of climate-related
events along with the scarcity of resources, practical strategies are needed to
predict and mitigate the impacts on railway networks as well as support
efforts to rapidly restore services and minimize disruptions9,16. Effective
probabilistic methods are essential to project uncertain post-disaster
recovery trajectories and probe alternative interventions, thus minimizing
resource misallocation17,18.

In recent years, railway resilience has been analyzed from various
perspectives, with variations in stressors, recovery assumptions, perfor-
mance measures, spatial scale and uncertainty treatment9,19. For instance,
Woodburn (2019)2 leverages empirical data frompast railwaydisruptions to
assess the economic consequences of extreme weather events on rail freight
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traffic levels. Similarly, Lamb et al. (2019)20 conduct an economic risk
analysis of Britain’s railway network, focusing on flood-induced bridge
scour and leveraging historical damage data. Bi et al. (2024)21 examines the
resilience of London’s urban rail transit systemusingnetworkmodeling and
dynamic recovery processes to estimate economic losses. Besinović et al.
(2022)22 conducts a passenger-centered railway network resilience assess-
ment under deterministic, non-extreme disruption scenarios, utilizing
optimization techniques. Likewise, Tang et al. (2023)23 focus on the optimal
recovery of passenger railway networks, focusing on earthquake-induced
disruptions and passenger rerouting. More recently, Ilalokhoin et al. (2025)24

conducted a nationwide railway flood risk assessment in Great Britain,
evaluating direct asset damages, train and passenger disruptions, and eco-
nomic losses without explicitly simulating post-disaster recovery. Despite
these advancements, a critical gap remains: the absence of a resource-aware
probabilistic framework to assess the resilience of railway infrastructure
systems against climate-driven extreme hydraulic hazards. In particular,
there is a need to integrate tailored damage and restoration functions for
railway components affected by coastal hazards while capturing the diverse
network-level functionality recovery trajectories under varying resource
availability and allocation scenarios. Furthermore, such a framework should
systematically account for the multiple sources of uncertainty inherent in
resilience modeling25,26.

Moreover, modeling functionality recovery—a key aspect of resilience
assessment—can be approached from various perspectives, each with
inherent challenges. A realistic approach considers what is likely to occur in a
post-disaster situation, where decisions regarding resource allocation are
typically decentralized, ineffectively informed, and executed suboptimally27,28.
An optimistic perspective examines what should or could be achieved with
the most optimal allocation of available funds and resources23,29. An inqui-
sitive approach explores how changes in resource availability or assumptions
about their allocation affect recovery outcomes. Existing methods that
otherwise attempt to rigorously account for the damaging effects of hazards
on railway infrastructure make overarching assumptions regarding such
features. For example, some assume fully available restoration resources or
optimal allocation, thus falling short in reflecting real-world conditions30,31.
Others that broadly emphasize the notion of resource-constrained recovery
of infrastructure assets32,33 often fail to contextualize the framework with
physics-informed damage and restoration models, or are not adept at
handling the complexity of real-world railway networks. This complexity
arises from both the high number of components and the extended recovery
time horizon, requiring computationally intensive modeling methods that
often hinder efficient resource allocation for building resilience into these
systems34. Furthermore, in a coastal setting with a changing climate, some
studies have highlighted the vulnerability and exposure of railway infra-
structure to the effects of sea-level rise (SLR)18,35. However, the impact of
different SLR projections on hazard stressors (e.g., surge) and consequently
on resilience estimates for railway systems remains insufficiently explored,
representing a gap in the literature that this work aims to bridge.

We introduce, for the first time, a probabilistic framework to evaluate
the resilience of railway infrastructure systems subjected to compound cli-
mate hazards that manifest themselves by SLR and extreme hydraulic
hazards as a result of hurricanes. This framework goes well beyond the
current state of the art of traditional resilience assessments that comprise the
synthesis of fragility and recoverymodeling.With a distinct contribution to
resilience, we explicitly account for variations in resource availability and
allocation. We incorporate uncertainty in hazard, fragility, and restoration
inputs. Thus, this paper enables a risk-informed, nuanced, and practical
evaluation of resilience that empowers a decision-maker to probe a range of
outcomes. The proposed framework introduced in the “Methods” section
models the impact and subsequent functionality recovery through a five-
stage approach that entails: (i) defining the infrastructure inventory and
typology of railway corridors, bridges and embankments, and compound
hazard intensity measures for variable scenarios of SLR, (ii) estimating
damage states and initial functionality loss for railway assets, (iii) estimating

link restoration costs and times, (iv) modeling resource allocation and
recovery trajectories, and (v) obtaining resilience indicators. Next we utilize
a case study to illustrate the applicability and value of the probabilistic
resilience framework. The case study concerns the railway freight network
inMobile and Baldwin Counties, Alabama, subjected to five adopted storm
scenarios that couple Hurricane Katrina’s hindcast with four SLR projec-
tions. Along the way, this work contributes by adapting fragility and
restorationmodels for a diverse portfolio ofmulti-span railway bridgeswith
varying characteristics, demonstrating the data needs and practical applic-
ability of the proposed methods, and shedding light on resilience outcomes
for alternative SLR scenarios and resource allocation strategies.

Methods
This section outlines the proposed framework for evaluating the resource-
constrained resilience of railway networks subjected to extreme compound
hydraulic hazards, as illustrated in Fig. 1. The framework stands out in two
key ways. First, it follows a systematic approach, utilizing rigorous
component-level probabilistic models, including physics-based damage
models and expert-informed restoration models, to predict network-level
damage and functionality recovery. Second, it explicitly incorporates the
complexities of post-disaster recovery by integrating constraints and
uncertainties related to resource availability, aiming to more accurately
reflect real-world recovery efforts. Uncertainties are propagated via Monte
Carlo simulation as the impact of compound coastal hazards is assessed
across component, link and network levels, with network functionality FðtÞ
measured in terms of the ability to transfer goods between origin-
destination (OD) node pairs. The analytical stages of the proposed frame-
work are described in the following subsections.

Asset inventory and hazards
In defining the inventory input (see step I in Fig. 1) for the resilience
modeling framework, four primary assets, herebynamed “components”, are
identified: bridges, embankments, cut-slopes and rail tracks. Components
are defined as discrete infrastructure elements susceptible to damage from
the considered hazard event. For each component, key details that are
compiled and defined include their location, structural or site parameters,
aligned with fragility and restoration model requirements, and operational
parameters, e.g., cargo-transfer capacity. Let N denote an infrastructure
system of interconnected components, which in this study is the railway
network. LetC be the set of infrastructure componentswithin this system.N
is abstracted using the graph G ¼ ðL;NÞ, whereL is the set of network
links andN is the set of network nodes. Links represent railway corridors
and nodes represent intersections. Furthermore, each component is asso-
ciatedwith a specific link, thus, the set of components associatedwith link l is
represented by Cl , which is a subset of C. The network topology is repre-
sented by the adjacency matrix A, which indicates whether there is a link
connecting the corresponding nodes in graph G.

Regarding the hazard input, within the scope of this study, two
hazard effects are considered: (i) scour causing damage to bridge foun-
dations and embankments; and (ii) deck unseating in bridge spans due to
hydraulic forces. While these effects can be triggered by diverse hydraulic
hazards, such as heavy rainfall, tropical cyclones, or tsunamis, the critical
hazard information for resilience modeling lies in the parameters
describing hazard intensity at each component’s location, herein denoted
as intensity measures (IM). For the case study in this work, SLR is
identified as the primary stressor impacting the system, while hurricane
hazards act as secondary stressors. These hazards are compound, or
multi-hazard, events involving various concurrent effects, such as surge,
wind, and wave phenomena. Specifically for railway assets, two IM are
identified as critical: surge-induced flood elevation (S) and wave char-
acteristic height (Hw). For bridge fragility analysis due to deck unseating,
both of these parameters are involved. For scour-induced fragility to
embankments and bridge foundations, only the flood inundation depth S
is utilized.
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Damage states and functionality loss influencing railway
resilience
The initial disaster impact on the system is measured in terms of func-
tionality loss L, including impact at the component level (Lc), link level (Ll),
and network level (LN ). To this end, for each iteration and each component,
the first step consists of assessing component vulnerability by retrieving the
relevant hazard intensity measure (IM) and component fragility model, to
obtain the probability of exceedance for each damage state PðDS≥ dsnÞ (see
Step II in Fig. 1). We adopt fragility models from the literature and
appropriate adaptations for application in the case study were conducted
where needed. For embankments, the fragility model introduced by
McKenna et al. (2021)36 is utilized,which considers as IM thewater intensity
measure (WIM), defined based on embankment height and groundwater
table depth. Themodel considers three damage states (minor,moderate and
complete). The failure mode associated with theseDS is exceedance of limit
vertical displacements at the road surface. For bridges, damage likelihood
due to scour effects andhydraulic forces on foundations is assessedusing the
fragilitymodels introduced inArgyroudis andMitoulis (2021)37,whichwere
developed considering foundations for a three-span bridge archetype, along
with four damage states (minor, moderate, extensive and complete). Since
the case study includes multi-span bridges, the original models are here
adaptedby considering a fragility factornk to scale the vulnerabilitybasedon
thenumberof spans that are prone to scourdamage, i.e., theonesoverwater.

The hazard IM is the scour depth, which is calculated using the guidelines
provided in the HEC-18 manual38. The probability of deck unseating is
evaluated for each bridge span, utilizing the parameterized fragility model
presented by Balomenos et al. (2020)39. This parameterized approach
enables damage analysis across a diverse portfolio of bridges with varying
characteristics, aligning with the diversity observed in the case study ana-
lyzed in this work. Details about these calculations and adaptations are
presented in Supplementary Method 1.

Once the probabilities associated with each damage state P½DS≥ dsn�
are obtained for all components, the damage statesDS are realized for each
iteration. Then, the initial functionality of each component after the event
(at time step t ¼ t0) is given by:

Fc t0
� � ¼ 1 if DS ¼ no damage

0 otherwise

�
ð1Þ

For bridges, Fc t0
� � ¼ 1 if no damage is observed as a result of scour or

unseating effects. This binary definition arises from the stringent safety
measures in railway networks, where even minimal damage most often
results in the complete closure of bridges or embankments until the com-
pletion of restoration. Consequently, at the link level, the initial post-event
functionality Fl t0

� �
is estimated by considering bridges and embankments

Fig. 1 | Flowchart depicting the five analytical stages of the proposed resilience framework.
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in a series system, yielding:

Fl t0
� � ¼ Y

c2Cl
Fcðt0Þ: ð2Þ

Lastly, the initial post-event network functionality FN t0
� �

is measured
in terms of network flow capacity, obtained considering the link initial post-
event functionalities Flðt0Þ, as follows:

FN t0
� � ¼ fmaxðt0Þ

fmaxðtuÞ
; ð3Þ

where fmaxðt0Þ indicates the maximum flow between the OD nodes
after the disaster ocurrence, which is normalized by the maximum flow in
pre-event conditions fmaxðtuÞ. fmaxðtÞ captures the influence of deteriorated
links on the overall network ability to accommodate flows, and is measured
for a single shipment in this case study. A shipment is specified as a flow
demand between a pair of ODnodes. The subsequent functionality loss L is
derived by subtracting the initial post-event functionality F t0

� �
from the

pre-event functionality F tu
� �

. Assuming complete functionality in pre-
event conditions, that is Fc tu

� � ¼ 1, the subtraction yields:

L ¼ 1� F t0
� � ð4Þ

Depending on whether we analyze a component, link or the network,
we can use Fc t0

� �
, Fl t0

� �
or FN t0

� �
in Eq. 4 to yield Lc, Ll or LN , respec-

tively. Sincepartial component and link functionality is not deemedpossible
under the aforementioned assumptions, functionality loss L implies com-
plete functionality loss for components and links. The assumptions estab-
lished thus far within this proposed framework are adaptable to suit more
intricate applications. For example, functionality could be represented as a
continuous variable when needed, or distinctions could be made regarding
pre-event functionality, diverging from the assumed original functionality
of the undisturbed system.

Link restoration costs and times
The impact modeling process (Step I in Fig. 1) yields two key outputs: the
component’s damage state DS and functionality loss Lc. Based on these,
restoration costs and times for each damaged component are estimated
using restoration models, which provide probabilistic descriptors (mean
and dispersion for the adopted normally-distributed model) for these
parameters (Step III in Fig. 1). This stage introduces an additional layer of
uncertainty into the resilience modeling process. For embankments, the

restoration model proposed by Zormpas (2022)40 is leveraged, and its sta-
tistical parameters are presented in Table 1. For bridges, the restoration
models presented byMitoulis et al. (2021)41 are adopted, for both scour and
unseating effects. Similar to fragility models, this restoration model is
adapted for application in the case studyby factoring the restoration times to
translate the statistical parameters derived for three-span bridge archetypes
to the multispan bridges of the case study. This restoration model provides
parameters for various restoration tasks, which are selectively adopted for
scour and unseating effects. Further details about these models and the
adaptation process are presented in Supplementary Method 2.

The restoration models provide repair costs in terms of cost ratios dc,
which are then translated into absolute terms (monetary values) by multi-
plying them by the component replacement cost Qc, yielding the compo-
nent restoration cost asDc ¼ dcQc. The restoration duration of a damaged
component ismodeled by two stages: (i) the idle timeTi

c, which accounts for
the time required for preparatory tasks, before commencing repairs; and (ii)
the repair time Tr

c , which represents the time required for the execution of
the repair tasks. The restorationmodels provide parameters to estimate each
of these times, and in the case of bridges, for each failure mode. Since for
bridges, scour damage and deck unseating are possible to occur simulta-
neously, guidelines to account for the interaction of these effects, while
avoiding overestimation of repair times, are introduced in this work (see
Supplementary Method 2).

Partial functionality is not deemed possible for the railway network
links defined in this study, as it is assumed that operators will refrain from
allocating resources to only a portion of damaged componentswithin a link.
This approach allows for the estimation of restoration costs and times at the
link level by integrating heuristics. These simplifications can be construed as
a preliminary resource allocation within each link, aiming to streamline the
subsequent decision-making process. By leveraging the correlation between
component interventions within a link, this method considerably reduces
the number of decision variables during resource allocation. Once Dc is
realized at each iteration for each componentwithin a link l, and considering
the above-mentioned assumption, the restoration cost Dl for each non-
functional link l is estimated as:

Dl ¼
X
c2Cl

Dc ð5Þ

Furthermore, once Ti
c and Tr

c are realized at each iteration, two
heuristic-based assumptions are incorporated for translation to the link
level. First, the idle time for each non-functional link is considered as the
maximum idle time of its components, assuming that preparatory tasks can

Table 1 | Restoration model parameters for three-span bridges and embankments

Failure mode Damage State (DS) Idle time Ti
c (days) Repair time Tr

c (days) Cost ratio dc

Mean SD Mean SD Mean SD

Bridge scour with shallow foundation41 Minor 8.5 4.3 27.0 5.4 0.046 0.039

Moderate 10.5 4.7 115.0 23.0 0.124 0.067

Extensive 13.6 5.7 133.0 26.6 0.250 0.085

Complete 22.2 14.7 197.0 39.4 0.520 0.100

Bridge scour with deep foundation41 Minor 9.8 5.5 27.0 5.4 0.060 0.025

Moderate 12.8 5.8 138.0 27.6 0.154 0.067

Extensive 18.0 11.1 152.0 30.4 0.304 0.117

Complete 28.0 22.4 197.0 39.4 0.580 0.171

Bridge deck unseating41 Failed (span) 84.0 67.2 109.8 69.6 nf=ns
[*] -

Embankment scour failure40 Minor 1.0 0.5 6.7 3.4 0.09 0.07

Moderate 1.2 0.6 8.4 4.2 0.19 0.13

Extensive 2.8 2.4 13.3 6.6 0.49 0.25

Complete 5.9 6.1 25.1 12.5 0.83 0.22

[*] nf=number of failed spans, ns=number of spans.
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take place in parallel. Therefore, the link idle time Ti
l is given by:

Ti
l ¼ maxðTi

cÞ; for 8 c 2 Cl ð6Þ

Second, the repair time for each non-functional link is considered as
the sum of the repair times of its components, assuming that components
within a link are repaired in sequence. Therefore, the link repair time is given
by:

Tr
l ¼

X
c2Cl

Tr
c ð7Þ

Ultimately, the restoration time for each non-functional link TR
l is

given by:

TR
l ¼ Ti

l þ Tr
l ð8Þ

These assessed link restoration costs and times (Dl and TR
l , respec-

tively) are then input to the resource allocation modeling process to
determinewhich links are intervened in each iteration, considering resource
constraints and allocation optimality.

Resource allocation modeling shapes recovery trajectories
Herewemodel howdecision-makers in conjunctionwith operators allocate
their limited resources for infrastructure restoration tasks amidst uncertain
and strained post-disaster situations (Step IV in Fig. 1).We investigate three
allocations scenarios: optimal, sub-optimal and random, to cover a range of
possible scenarios. The optimal and random allocation scenarios are
intended to serve as lower and upper bounds of a more nuanced sub-
optimal allocation, respectively.

(i) Optimal allocation: First, we obtain an optimistic resilience esti-
mate (upper bound). Resources are allocated by solving a linear mixed-
integer programming (LMIP) problem, whichmaximizes the flow between
the OD nodes across the time horizon, subject to resource availability B,
expressed in terms of budget available for restoration tasks. The optimiza-
tion parameters are the set of damaged links LD for each iteration, the
restoration cost and times for eachof these links (Dl andT

R
l , respectively), as

well as the pre-event link capacity ClðtuÞ. The decision variables are which
damaged links to intervene, represented by the binary variable δl (δl ¼ 1 if
intervened, δl ¼ 0 otherwise), and theflow along each link at each time step
f lðtÞ. The constraints are classed into three groups: capacity constrains,
budget constraints and functionality constraints, which are all linear (see
further in Supplementary Method 3). While, in principle, the optimization
problem could be formulated as a nonlinear program, given the emphasis of
thiswork on real-world applicability, a linear formulation is preferred due to
its computational efficiency, ease of implementation with free and open-
source solvers, and scalability with network size. Once solved, the optimal
values of δl and f lðtÞ are obtained, as well as the optimal maximum flow
betweenODnodes at each time step, denoted as f optmaxðtÞ, which is then used
to derive the optimal functionality recovery trajectory Fopt

N ðtÞ by adapt-
ing Eq. 3.

(ii) Sub-optimal allocation: Second, considering that the network
functionality is defined in terms of ability to satisfy flow demands, a flow-
based betweenness centrality approach is taken in this study to model how
decision-makers perceive the importance of each damaged link in a
partially-informed sub-optimal manner. Specifically, the flow betweenness
centralitymeasure BCl introduced inNewman (2005)42 is here adopted and
defined as:

BCl ¼
P

στ2ST I
ðστÞ
l

1=2
� �

nnðnn � 1Þ ð9Þ

where IðστÞl is the flow traveling along link l, when considering a unit of
flow at source node σ and removing it at target node τ, nn is the number of
nodes in the network andST is the set of source-target pairs. Therefore,BCl

is the average of the flow over all source-target pairs σt. This approach is
chosen based on a comparisonwith other heuristics-basedmethods, such as
shortest path betweenness centrality, eigenvector centrality, closeness cen-
trality, and DomiRank43. The comparative analysis, presented in Supple-
mentary Note 2, shows that flow-based betweenness centrality outperforms
other strategies in the majority of scenarios. This method was originally
derived using an electric circuit analogy, assuming that a current flow
entering a node will be distributed among its connected links (resistors)
inversely proportional to their resistance42. Translated to the context of flow
of goods for railwaynetworks in this study, this implies that shorter linkswill
offer less “resistance”, and will thus tend to “absorb”more flow than longer
links. Considering that in absence of more complete information, shippers
tend to choose shorter paths when routing flow, BCl is taken here as a
ranking criteria for sub-optimal allocation. Several algorithmscanbeused to
solve for IðστÞl , both exact and approximate depending on network com-
plexity. In this work the approach relies on a recursive removal of row-
column pairs of the matrix resulting from substracting the weighted adja-
cency matrix from the degree matrix, followed by the inversion of said
matrix. Complete details can be found in Newman (2005)42. At each itera-
tion, for the set of damaged links LD, the available budget B is assigned
sequentially to these links, from highest to lowest BCl measure, until the
budget limit is reached, producing the binary decision variable δl for each
damaged link. Once resources are allocated, the sub-optimal values of δl are
used to derive the sub-optimal network functionality recovery trajectory
Fsub
N ðtÞ, by determing themaximum network flow fmaxðtÞ at each time step,

considering the temporal availability of eachdamaged link (dependingupon
decision δl and restoration time TR

l ). fmaxðtÞ is obtained using the network
flow model implemented in the “NetworkX” Python package, which
leverages the max-flow min-cut theorem44. Fsub

N ðtÞ is then used to calculate
the associated resilience indicators defined in Step V.

(iii) Random allocation: Lastly, to consider pessimistic resilience
estimates (lower bound), a random allocation approach is taken by
assigning resources to damaged links randomly until the available budget B
is depleted. The decision variables δl are realized for each iteration, and the
network functionality Fran

N ðtÞ is obtained for each time step using the same
network flow approach as for sub-optimal allocation. Theoretically, a lower
bound would be obtained by solving the LMIP problem defined for the
optimal allocation, but minimizing the objective function. However, this
situation is unlikely to be observed in real-world situations, thus a random
allocation is deemedmore representative as a lower bound for the purposes
of this work, representing an “uniform” or “oblivious” decision-making.

Quantifying resilience by indicators
In theprevious step,network functionality recoveryFN ðtÞ is derived for each
iteration, considering three allocation methods. Next, these recovery pro-
cesses are characterized using resilience indicators aimed at capturing key
features in the non-linear temporal evolution of system-level functionality.
The ultimate goal is to enable well-informed decision-making. In this work,
we utilize two resilience indicators (Step V in Fig. 1). First, the resilience
index RN proposed by Frangopol and Bocchini (2011)45 is used to char-
acterize the evolution of the functionality recovery across the complete time
horizon, and is defined as:

RN ¼ 1
th

� �Z t0þth

t0

FN tð Þdt; ð10Þ

where t0 is the time at which disruption occurs, th is the time horizon
for the analysis, and FN tð Þ is the network functionality at time t after dis-
ruption. Second, time to recoveryRϕ is defined as the time required to reach
at least functionality ϕ, and is mathematically defined as:

Rϕ ¼ min tjFN tð Þ≥ ϕ� �� �
: ð11Þ

For instance, R0:50 is the minimum time required to reach at least 50%
of system functionality FN ðtÞ, which can inform resilience in terms of
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meeting flow demands. Scenarios with different network capacity recovery
trajectories FN tð Þ may exhibit similar recovery times Rϕ for demand levels
lower than the full network capacity. The choice of resilience indicators
depends on several factors, for example, stakeholder perspectives and
minimum recovery requirements46, and the proposed resilience modeling
framework allows for other functionality-based indicators to be readily
implemented if necessary.

Results
This section presents a case study analysis of railway network resilience,
applying the proposed framework fromFig. 1 to the railway networkwithin
the Mobile-Baldwin counties, in Alabama, USA. The same methodology
withfit-for-purpose adjustments can be applied in other locations or even to
other infrastructure systems. Regarding uncertainty propagation, a Monte
Carlo analysis for the series of chained models described in the “Methods”
section is conducted with 1,000 iterations, considering as convergence cri-
terion a 2% error threshold for the mean network resilience index at a 95%
confidence interval.

Case study
An overview of the case study scenarios, highlighting their key features, is
provided herein. The railway system components considered in this study
are bridges and embankments, with data compiled from public sources and
available in Tafur et al. (2025)47. Cut slopes were excluded due to Alabama’s
flat terrain. Railway tracks were excluded, given their lack of detailed
physics-based fragility models and their lower exposure to wave-induced
damage, which primarily affects shoreline tracks—a small portion of the
network. Flooding impacts on inland tracks are expected to be less severe,
with faster restoration than embankments and bridges. Given the severity of
the most extreme hazard scenario, 19 railway bridges within Mobile-
Baldwin counties are identified as prone toflood-induced damage as a result
of SLR and hurricane effects. Their main characteristics are presented in
Table 2. For fragility assessment purposes, two bridge structural typologies
are defined, isolated bridges with bearings (Type I) and integral bridges
(Type II). Type I represents bridges where the superstructure rests on
bearings, whereas Type II represents integral structures, where super- and

sub-structure are connected monolithically. Each bridge is assigned a spe-
cific structural typology through visual recognition, utilizing both aerial and
ground-level imagery from Google Earth48. The bridge replacement costs
were obtained considering a 3000 $/m2 unit cost, based on 2023 unit
replacement costs for Alabama highway bridges provided by the U.S.
Federal Highway Administration49, with adjustments to account for higher
construction costs in railway infrastructure. Since information about bridge
foundations is not available from public sources, we simulated two cases for
all bridges: weak and robust foundations. In this study, “weak foundations”
refer to shallow foundations, while “‘robust foundations” refer to deep
foundations. This approach allows us to assess the lower and upper bounds
of their vulnerability as the foundation type is a critical vulnerability factor
for bridges exposed to floods, in addition to the type of superstructure and
substructure connection. Additional details are available in Supplemen-
tary Note 1.

Each bridge is assumed to have two embankments, one located at each
approach, with each embankment being 50meters long. The case study
includes 100 links and 85 nodes, defined as described in the “Methods”
section. Figure S4 in Supplementary Note 1 presents the network topology.
The origin of the flow of goods is set to the Port of Mobile location, and the
destination nodes are designated as five key locationsmarking the junctions
with the national railway network. Each component (bridges and
embankments) is assigned to the appropriate link based on their location.
For the purposes of this study, it is assumed that the restoration of rail tracks
will not control the restoration time (i.e., bridge and embankment
restoration times and costswill largely exceed those of rail tracks as the latter
can be supplied at short notice). Furthermore, five hazard scenarios are
defined based on Bilskie et al. (2016)50, who simulated hurricane-driven
storm surge inundation for current and future sea-level conditions. These
scenarios include oneHurricaneKatrina hindcast (the severe event of 2005)
under base sea level conditions (of year 2015), denoted as SLR-0, as well as
Hurricane Katrina coupled with four sea level rise projections (SLR−1 to
SLR-4). The intensity of these SLR projections is described in Table 3.

One key feature of these simulations is that they incorporate projected
topographic changes in the environment. The dataset provides water ele-
vation estimates of the surge-driven inundation. The inundation heights for

Table 2 | The railway bridges of the case study

ID Length (m) Number of
spans ns

Channel
width (m)

Plan
area (m2)

Replacement
cost (USD)

Structural
typology

Scour-prone
spans nk

Scour fragility
factor fk

[*]

1 893.83 26 891.50 4469.14 13,407,420 I 17 0.654

2 50.02 5 39.72 250.08 750,240 II 3 0.600

3 163.48 16 127.36 817.39 2,452,170 I 16 1.000

4 118.72 13 16.05 593.61 1,780,830 I 4 0.308

5 320.47 5 288.30 1602.36 4,807,080 I 3 0.600

6 153.90 11 144.68 769.52 2,308,560 I 9 0.818

7 97.53 13 45.44 487.63 1,462,890 I 9 0.692

8 120.95 10 97.65 604.76 1,814,280 I 9 0.900

9 159.76 32 82.06 798.79 2,396,370 I 14 0.438

10 151.57 18 73.73 757.83 2,273,490 I 8 0.444

11 112.53 15 25.39 562.65 1,687,950 I 15 1.000

12 525.34 56 413.12 2626.71 7,880,130 I 44 0.786

13 85.03 3 63.81 425.13 1,275,390 I 3 1.000

14 75.16 2 68.44 375.80 1,127,400 I 0 0.000

15 84.67 12 72.71 423.37 1,270,110 I 12 1.000

16 67.92 11 34.12 339.61 1,018,830 I 10 0.909

17 82.52 11 60.81 412.61 1,237,830 II 9 0.818

18 43.21 9 31.67 216.06 648,180 I 7 0.778

19 97.53 13 83.32 487.63 1,462,890 I 13 1.000

[*] fk ¼ nk=ns . See Supplementary Note 1 for more details on fk .
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each component are obtained by subtracting the ground elevation from the
surge elevation. Ground elevation data is obtained from USGS Lidar DEM
(digital elevation models)51, for years 2016–2019. For the bridge deck uplift
analysis, due to the lack of wave data, the representative wave height (Hw) is
modelled probabilistically using a uniform distribution. The lower bound is
set to 0, and the upper bound is defined as the surge height Smultiplied by a
factor of 0.51. This approach is basedon theprovisions in Section5.4.4of the
ASCE-7 guidelines for calculating wave loads during flooding52. Further
details about the case study definition and the complete dataset used for the
analyzes are available in Supplementary Note 1.

SLR impacts hazard impact severity
This section presents themain results of the hazard initial impact modeling
on the network assets under the five hazard scenarios defined (SLR-0 to

SLR-4) and two bridge foundation cases (weak and robust). Initial impact is
herein defined as the short-term detrimental hazard effects on system
functionality, before recovery begins, also denoted in the literature as
“functionality drop”. The results are categorized into two key areas: func-
tionality losses and direct economic losses. The probability of functionality
loss P F t0

� � ¼ 0
	 


for each component is quantified using the framework
introduced in the “Methods” section, basedon the simulateddamage state of
the component. Figure 2 shows the probability of functionality loss for the
19 bridges along with the hurricane-driven flood intensity for the five SLR
scenarios, considering robust foundations. The spatial distribution of bridge
vulnerability reveals that five bridges exhibit a high probability of func-
tionality loss, even for the least severe hazard scenario (SLR-0).

Direct losses were estimated using component damage states and
restoration models, based on the proposed framework. For the purpose of
this study, these direct losses are considered to stem solely from repair costs.
The total replacement cost for all exposed assets is estimated at $75.38
million. Figure 2.f shows the distributionof the obtaineddirect loss ratios for
all assets (19 bridges and 38 embankments) using boxplots. The effects of
SLR are evident, with the expected direct losses increasing as SLR intensity
rises. For instance, in the robust foundation case, the median loss ratio
increases from 0.08 without considering SLR to 0.41 with 2.0meters of SLR,
reflecting the exacerbation of storm impacts due to climate-related effects.
For bridges with shallow foundations, the median direct losses range from
0.27 to 0.55, indicating a twofold increase from SLR-0 to SLR-4. Overall,
these results provide insight into the physical and economic exposure faced

Table 3 | Hazard scenarios considered for the case study

Scenario Description SLR (m)

SLR-0 Katrina Hindcast (2005) 0.0

SLR-1 Katrina+ Low SLR 0.2

SLR-2 Katrina+ Intermediate-low SLR 0.5

SLR-3 Katrina+ Intermediate-high SLR 1.2

SLR-4 Katrina+High SLR 2.0

Fig. 2 | Initial hazard impact results for the case study. a–e Probability of bridge
functionality loss P F t0

� � ¼ 0
	 


represented by colored dots, for the five hazard
scenarios. f Boxplots showing the direct losses considering weak and deep bridge
foundations, in terms of loss ratios. Loss ratio is defined as the direct loss divided by
the replacement cost. In the boxplots, the central box represents the interquartile

range, with the median marked by an inner horizontal line. The whiskers extend to
the smallest and largest valueswithin 1.5 times the interquartile range from the lower
and upper quartiles, respectively. Basemap fromOpenStreetMap©OpenStreetMap
contributors. Data available under the Open Database License.
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by railwayowners and insuranceproviders under varyingSLR scenarios and
bridge typologies.

Resource availability and allocation decisions critically influence
resilience
Given the network’s disrupted state, the subsequent analysis focuses on
evaluating how resource availability and allocation decisions influence the
simulated recovery trajectories of network functionality, leveraging the
proposed resilience framework introduced in the “Methods” section. For
each realized disrupted state from the previous stage, we simulate allocation
decisions using threemethods (proxies for decision-making cases): optimal,
sub-optimal, and random, alongside varying resource availability repre-
sented by an available budget ratio b ranging from 0.01% to 100% of the
entire system replacement cost. Once the available resources are allocated,
we derive the post-disaster functionality recovery FN ðtÞ for the five hazard
scenarios defined previously.

Figure 3 illustrates the functionality recovery results for four values of b,
encompassing scenarios SLR-0, SLR-2 and SLR-4, and considering the three
allocation types. b is shown to be up to 23.4%, as this represents an
approximate point at which the network begins to show full recovery within
the defined horizon. The findings suggest that it is crucial to consider allo-
cation optimality within certain ranges of resource availability whenmodeling
the recovery trajectory of network functionality. This range varies according
to hazard intensity and foundation type. For instance, in Fig. 3, for robust
foundations at b = 11.3%, the three allocation types yield similar expected
values of FN ðtÞ under current sea level conditions, yet this changes notably as
SLR intensity increases. On the most severe hazard scenario (SLR-4), random
allocation produces drastically lower values of functionality metrics, for values
b = 3.8% to b = 23.4%, when compared to optimal and suboptimal alloca-
tions. This highlights the considerably low functionality values when an
uninformed allocation is considered in the recovery modeling.

Overall, considerable differences in functionality estimates among
different allocation types are observed at low levels of budget availability
(e.g., b > 10%). However, for higher budget levels (e.g., >20%), these dif-
ferences diminish, except in the SLR-4 scenario. In SLR-4, a budget of 1.3%
results in no functionality recovery regardless of the allocation type used,
suggesting a lower bound on the budget below which it is impossible to

restore any damaged component, making the choice of allocation type
trivial. This lower bounddepends on the severity of the hazard.Moreover, in
the majority of results shown in Fig. 3, the similarity between recovery
trajectories produced by different allocation types varies over time. Initially,
they yield similar functionality estimations that dissipate as time progresses,
reflecting the high non-linearity inherent in complex networked systems.
For instance, the red arrows in Fig. 3 indicate that for low hazard severity
(SLR-0), sub-optimal allocations produce functionality estimates within
approximately 20% of the upper and lower bounds (optimal and random,
respectively). This difference increases to around 50% for SLR-2 and col-
lapses for SLR-4, where restoration becomes more resource-demanding.
The similarity in functionality estimations across different allocations
during the early stages is due to the fact that, regardless of the number of
damaged components allocated for restoration, there is always an aggre-
gated system-level downtime caused by the individual component-level
downtimes. These observations highlight the clear need for the proposed
framework, as operators make recovery decisions based on limited
resources.

In freight transportation networks, it is important not only to assess
functionality evolution, but also to gauge the likelihood of meeting specific
demand levels at given points in time. This is particularly crucial for rail-
ways, where tolerances to damage are very low and full recovery is required
as soon as possible to mitigate negative feedback loops and prevent cas-
cading failures.Moreover, thismetric explicitly incorporates the uncertainty
about the recovery trajectory that amasses and uncertainties in the model
chain compound. Figure 4 depicts the temporal evolution of the probability
of meeting certain functionality demand ϕ, represented by P½FN tð Þ≥ ϕ�.
These results offer an additional perspective on system reliability, as
expected functionality in Fig. 3 may be driven by values below 1, signifying
incomplete recovery. For instance, for SLR = 2.0m,meeting demand ϕ ¼ 1
is unfeasible for any allocation type, despite, for example, expected func-
tionality hovering around 0.75 (for b = 23.4%). These results probabil-
istically illustrate network reliability concerning meeting freight demands,
with various probabilities obtained depending on the network’s anticipated
stress levels.

To characterize functionality recovery trajectories, the resilience index
RN is computed. This index seeks to encapsulate the complete recovery

Fig. 3 | Results for post-event network functionality. Temporal evolution of mean
network functionality E½FN ðtÞ�, for budget ratios b = 1.3, 3.8, 5.5, 11.3, and 23.4%;
and SLR-0, SLR-2 and SLR-4 scenarios, considering optimal, suboptimal and

random allocations. The red arrows illustrate the widening gap over time between
network functionality results obtained using optimal (upper limit) and random
(lower limit) allocations. These results consider robust (deep) foundations.
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trajectory across the 500-day time horizon into a single metric, aiming to
condense the time dimension for comparison purposes. Figure 5 presents
resilience index results for a complete range of budget availability b (0.01%
to 100%), allocation types, and foundation scenarios. While Figs. 3 and 4
illustrate the temporal evolution of post-disaster functionality for specific
cases, Fig. 5 encompasses a broader array of budget and allocation scenarios,
illustrating resilience index for higher budget levels. These represent
optimistic situations where infrastructure restoration is prioritized and
extensively funded. Notably, for robust foundations and the least severe
hazard scenario, considerably higher resilience values are expected for
similar budget availability across all allocation types. Conversely, in the
most severe scenario, more similar resilience outcomes are anticipated,
with the influence of foundation type on system resilience diminishing
substantially.

Another key observation arises from the results for weak (shallow)
foundations. Within the range of 3% <b < 20%, an uninformed random

allocation produces resilience values for the least severe hazard (SLR-0) that
are lower than the resilience estimations for themost severe hazard (SLR-4)
under optimal and sub-optimal allocations. This underscores the detri-
mental effects of lacking planning strategies for resource allocation, which
exacerbates the impacts of hazards during recovery.

SLR influences railway system resilience
Having explored the influenceof resource availability and allocation types in
the section above, this section presents the results of system resilience
indicators for the five defined hazard scenarios and two foundation types
under specific resource-related conditions. For these results, we assume a
medium-optimistic allocation, represented in this work by the sub-optimal
allocation introduced in the “Methods” section. This assumes that operators
will lack sufficient tools to allocate resources optimally, but will have some
form of prioritization criteria in place for allocating restoration resources.
For other applications, different allocation types may be utilized, as

Fig. 4 | Results for post-event likelihood of meeting flow demands. Temporal
evolution of probability of meeting demand ϕ, denoted as P½FN tð Þ≥ ϕ�; for budget
ratios b = 1.3, 3.8, 5.5%, 11.3, and 23.4%; and SLR-0, SLR-2 and SLR-4 scenarios,

considering optimal, suboptimal and random allocations. These results consider
robust (deep) foundations.

Fig. 5 | Results for network resilience considering three allocation types.Available
budget ratio b vs. mean network resilience E½RN � for different allocation types

(optimal, suboptimal and random), and for hazard scenarios SLR-0 and SLR-4,
considering a weak foundations and b robust foundations.
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examined in the “Discussion” section. Thus, the available budget ratio b
represents the resources available for disaster response, and the resulting
resilience indicators RN reflect the expected system resilience under these
given resource-related conditions. A resilience index of 1 signifies that the
system recovered instantaneously from the disruption, while 0 represents a
scenario with no recovery. It is reasonable to observe indices lower than 1,
but still high, in scenarios with substantial budget availability. Figure 6(a,b)
shows the resilience index for all hazard scenarios and both founda-
tion types.

Under the assumption that bridges have shallow foundations, themost
optimistic resource availability produces an expected resilience indexof 0.58
for SLR-0 scenario and 0.49 for SLR-4, indicating low resilience from the
perspective of returning to pre-event functionality levels. Conversely, for the
robust foundation scenario (Fig. 6b), we observe considerably higher
expected resilience values for SLR-0, SLR-1 and SLR-2. However, for the
most severe scenarios (SLR 1.2m and 2.0 m), similar resilience indices are
expected. When compared to current sea level conditions, for SLR = 0.5m,
the expected resilience indices show reductions of 20–25%, depending on
the available budget. The two most severe SLR scenarios (1.2m and 2.0 m)
result in further reductions of 35% to 55%, highlighting the substantial
impactofmore extremecompoundhazardsdue toSLRon systemresilience,
even under ideal budget conditions. A key observation from these results is
the diminishing returns due to the non-linearity of the budget-resilience
relationship. For robust foundations along with SLR scenarios 0.5, 1.2, and
2.0m, diminishing returns emerge at about 10–20%of the total replacement
cost. For shallow foundation scenarios, this range is about 25% to 30%.

Another key resilience indicator for high-level planning is the expected
time to achieve certain functionality levels ϕ, which can be tied to demand
expectations to assess system reliability from a flow-of-goods perspective.

Panels c and d in Fig. 6 show the results for the time to recovery Rϕ for both
foundation types. These results illustrate the effects of SLR intensity on the
expected times to reach three functionality levels (ϕ = 0.50, 0.75, and 1.00).
An overall trend showsmedian recovery times increasingwith SLR scenario
severity. Specifically, the median time to reach functionality ϕ = 0.50
increases from 150 days to 250 days from the least to most severe scenario
for shallow foundations. For the specific case ofϕ = 1.00 for SLR = 2.0m, the
boxplot shows a flattened distribution, indicating that in all iterations, the
time to achieve full functionality equals or exceeds the considered time
horizon (500 days), suggesting recovery with very low resilience. For robust
designs, median recovery times to ϕ = 0.50 are shorter (50 and 220 days for
SLR-0 and SLR-4, respectively), indicating a more resilient system. How-
ever, SLR still causes median recovery times to increase by a factor of 4.4.
These times are expected to increase by a factor of 2.5 for ϕ = 0.75 (from150
to 370 days) and 1.67 for ϕ = 1.00 (from 300 to 500 days), when comparing
SLR-0 and SLR-4. Regarding uncertainty, the results suggest that for the
current sea level conditions SLR-0, even though median recovery times are
shorter compared to SLR scenarios, these estimates show considerably
larger dispersion for most cases, as indicated by the interquartile ranges in
the boxplots. This is most evident for the weak (shallow) designs, where for
SLR-4 the system components experience extensive damage, often reaching
maximum restoration costs and times in most iterations, with low disper-
sion. As hazard severity decreases, median recovery times also decrease, but
the dispersion increases. This is due to themore diverse variation in damage
spatial distribution and recovery costs and times, as the system does not
reach the maximum possible damage. For robust foundations, this trend is
somewhat dissipated, and only observed clearly for ϕ = 1.00, suggesting
more consistent aggregated uncertainty across hazard scenarios, thanks to
proactive design considerations.

Fig. 6 | Results for key resilience indicators across all hazard scenarios.
a,bAvailable budget ratio vsmean network resilienceE½RN �. c,dTime to recoveryRϕ ,
for three functionality levelsϕ (0.50, 0.75 and 1.00). The results consider sub-optimal
allocation for the defined five hazard scenarios. In the boxplots, the central box

represents the interquartile range, with the median marked by an inner horizontal
line. The whiskers extend to the smallest and largest values within 1.5 times the
interquartile range from the lower and upper quartiles, respectively.
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Discussion
The complexity of resource availability and allocation decisions profoundly
influences the resilience of railway networks. From a resilience modeling
perspective, our study demonstrates that optimal allocation can sub-
stantially enhance estimations of railway network resilience by strategically
prioritizing intervention of damaged infrastructure components, thereby
maximizing functionality recovery over a given time horizon. However,
achieving such optimal allocation in real-world post-disaster conditions is
often unlikely due to limited information, time constraints, and computa-
tional challenges, at least with the current state of knowledge relying on
traditional infrastructure assessments. This suggests thatmodeling recovery
of infrastructure systems considering sub-optimal allocation decisions,
while less efficient, provides more realistic resilience estimations that align
better with the decision-making processes observed during post-disaster
recovery in past events28. Our framework offers high flexibility across
multiple dimensions and leverages heuristics to reduce computational
complexity, aiming to bridge a notable gap in resource-aware frameworks
for modeling resilience of complex freight networks, such as railway sys-
tems. It considers uncertainties stemming from hazard mechanisms, phy-
sical responses, and human decisions, thereby incorporating greater nuance
into resilience estimations.

For resilience planning, a task of paramount importance is to be aware
of the recovery capabilities of a system to establish a baseline for evaluating
the benefits of mitigation policies. Our analysis provided evidence that
under certain ranges of resource availability, considering optimal allocation
to model recovery trajectories may lead to an overestimation of the actual
recovery capabilities of the system. This may result in the erroneous
assumption that a system or certain components do not require mitigation
policies, potentially introducing socio-economic inequities if the available
resources or allocation optimality is not appropriately characterized.
However, modeling allocation decisions in an optimal manner provides
valuable insights into upper bounds and optimistic scenarios, which are still
valuable for evaluating or steering mitigation policies. The optimization
approach presented in this work enables computationally feasible optimal
allocation of resources by leveraging the binary nature of functionality in
railway system components. This algorithm aims to identify the set of
components to be restored that maximizes resilience over a given time
horizon. This allows policymakers to explore the upper bounds of their
return on investment in terms of expected resilience for various resource-
availability scenarios, given the hazard exposure and asset inventory of a
railway system portfolio. Overall, our framework allows for probing and
incorporating resource-related parameters, including their uncertainty, to
support a risk-informed evaluation of mitigation policies and enhance
railway network resilience.

In disaster response situations, our analysis reveals that while
optimal disaster response strategies produce the highest resilience indi-
cators and should be pursued whenever possible, heuristic-based sub-
optimal strategies still achieve considerable functionality restoration.
These sub-optimal strategies considerably outperform the uninformed
decision-making scenario, represented in this work by the random
allocation. This underscores the importance of having a disaster response
strategy in place to allocate funds effectively during disaster response,
even if these strategies are not optimal. For example, identifying prior-
itization strategies beforehand can allow policymakers and officials to
deploy resources more quickly after a disaster by reducing the time
required to evaluate allocations, thereby minimizing idle times in repair
activities. Additionally, the diminishing returns observed in resilience
improvements with increasing budget allocations suggest that satisfac-
tory resilience levels can be achieved with a fraction of the replacement
cost, thereby optimizing the return on investment in disaster response or
resilience-enhancing measures. Our framework can support the imple-
mentation of these heuristic-based sub-optimal strategies, offering a
viable alternative for policymakers when the conditions necessary for
developing optimal strategies are not met.

Concurrent and sequential disasters are critical considerations for
future resilience practice, which can be addressed through appropriate
adaptations and inputs within the proposed framework. Initially, hazard
modeling serves as a foundational input, enabling the consideration of
concurrent and sequential disasters. The developed framework can then
assess resilience variations under consecutive events, simulating back-to-
back or increasingly frequent disasters driven by climate change. For
example, by incorporating the fragility of already damaged components, it
can capture the compounded impact of subsequent events. Additionally,
more stringent budget constraints can be integrated to reflect the financial
strain imposed by recurring extreme events, allowing for a more compre-
hensive evaluation of resilience under evolving hazard conditions.

Lasty, our findings reveal a subtle effect in which, as the severity of SLR
conditions increases, even optimal allocation strategies result in marginal
improvements in resilience compared to sub-optimal and random
approaches. This effect is especially pronounced at the extremes of resource
availability: very low resources lead to poor resilience outcomes, while high
resource availability tends to yield the highest possible resilience outcomes,
regardless of the allocation strategy. This is because high resources facilitate
reconstructing large parts or the entirety of infrastructure, which is almost
independent of the damage. The study also highlights that the initial
functionality drop is primarily influenced by the physical vulnerability and
hazard exposure of railway components, while subsequent functionality
trajectories are largely governed by resource constraints and allocation
decisions. This underscores the critical need for robust infrastructure design
andproactive planning tomitigate the SLR and compoundhazard effects, as
they greatly affect the overall recovery process by lowering the starting point
in the recovery trajectory. These pre-disastermeasures are crucial regardless
of the available resources for post-disaster restoration or how they are
allocated. While they may lead to an increase in construction costs, this is
often insignificant compared to the potential losses following a severe
disaster.

Conclusions
The significance of this study lies in its potential to substantially improve the
resilience of railway infrastructure systems. Given the limited availability of
fragility and restoration data and the uncertainties in resources availability,
the proposed framework provides more nuanced resilience estimates that
can reflect the reality of coastal climate and hazard-exposed networks. This
enhances the ability to inform decision-making and resource allocation
strategies aimed at enhancing the resilience of critical infrastructure. By
offering a more nuanced and resource-aware assessment of recovery cap-
abilities, this framework helps avoid overestimation of a system’s recovery
capabilities, supporting pursuit of resilience enhancement policies that are
both effective and economically feasible. The implications of our study
extend to regional resilience planning, where the framework can guide
decision-makers on the most effective resource allocation strategies under
various budget constraints and hazard scenarios.

While our framework offers considerable value and applicability, there
are areas that present opportunities for further investigation. Firstly, our
study focuses solely on budget constraints as the primary resource for
recovery. In reality, factors such as labor availability and logistical support
also play crucial roles53,54. Future research should incorporate these addi-
tional resource-related constraints to provide a more comprehensive
assessment of post-disaster recovery capabilities. Secondly, the quantifica-
tion of resilience indicators could be improved by explicitly characterizing
and propagating uncertainty sources other than those considered in this
study, and by validating the recovery results with historical data from past
events55. In this regard, future studies may focus on gathering such data in
collaboration with governmental and non-governmental organizations
involved in disaster response. Thirdly, the use of a linear optimization
method—selected here due to the need for iterative simulations to support
uncertainty propagation—could be further expanded in future research
through the application of higher-fidelity approaches, such as nonlinear or
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multi-objective optimization techniques. While linear optimization was
chosen here for its tractability, lower computational complexity, and
broader solver availability, nonlinear methods may be feasible in certain
cases, particularly when high-performance solver licenses are accessible and
deterministic scenarios are being analyzed.

The study’s findings also highlight the importance of robust infra-
structure design and proactive planning to mitigate the effects of com-
pound climate-driven hazards. By mitigating the initial functionality
drop and improving recovery trajectories, robust design and planning
can profoundly enhance system resilience. The insights provided by this
study can inform resilience enhancement strategies and ensure that
infrastructure systems are better equipped to withstand and recover from
future hazards. Lastly, it is worth noting that the data revolution in smart
cities will, in the future, provide high-quality information that can be
effectively leveraged by the framework in this study. This presents
notable potential for continually updating and improving resilience
quantification of railway networks among other infrastructure, and
opportunities to further steer high-confidence optimal resource alloca-
tion in post-disaster scenarios.

Data availability
The inventory of bridges, embankments andnetwork topology compiled for
the case study analysis is available in Tafur et al. (2025)47, hosted on
DesignSafe at https://doi.org/10.17603/ds2-vvtn-1h54. The storm surge
hazard dataset is described in Bilskie et al. (2018)56, and available at https://
doi.org/10.7289/v5fq9tvx.

Code availability
The code developed for the case study analysis is available at https://github.
com/Padgett-Research-Group/Railway-Climate-Resilience.
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