IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 4, 2020, accepted July 16, 2020, date of publication July 23, 2020, date of current version August 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011508

Spark-Based Parallel Deep Neural Network
Model for Classification of Large Scale
RNAs into piRNAs and Non-piRNAs

SALMAN KHAN"1, MUKHTAJ KHAN“1, NADEEM IQBAL "1, (Senior Member, IEEE),
MAOZHEN LI*“2, AND DOST MUHAMMAD KHAN 1, (Member, IEEE)

lDepartment of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
2Department of Electronic and Computer Engineering, Brunel University London, London UB8 3PN, UK.

Corresponding authors: Mukhtaj Khan (mukhtaj.khan@awkum.edu.pk) and Nadeem Igbal (nikhan@awkum.edu.pk)

ABSTRACT With recent advancement in computational biology, high throughput next generation sequenc-
ing technology has become a de facto standard technology for genes expression studies including DNAs,
RNAs and proteins. As a promising technology, it has significant impact on medical sciences and genomic
research. However, it generates several millions of short DNA and RNA sequences with several petabytes size
in single run. In addition, the raw sequencing datasets such as RNAs are increasing exponentially leading
to a big data analytics issue in computational biology. Due to the explosive growth of RNA sequences,
the timely classification of RNAs sequence into piRNAs and non-piRNAs have become a challenging issue
for traditional technology and conventional machine learning algorithms. Parallel and distributed computing
models along with deep neural network have become a major computing platform for big data analytics now
required in the field of computational biology. This paper presents a computational model based on parallel
deep neural network for timely classification of large number of RNAs sequence into piRNAs and non-
piRNAs, taking advantages of parallel and distributed computing platform. The performance of the proposed
model was extensively evaluated using two-fold performance metrics. In the first fold, the performance of
the proposed model was assessed using accuracy-based metrics such as accuracy, specificity, sensitivity and
Matthews’s correlation coefficient. In the second fold, computational-based metrics such as computation
times, speedup and scalability were observed. Moreover, initially the performance of the proposed model
was assessed using real benchmark dataset and subsequently the performance was assessed using replicated
benchmark dataset. The evaluation results in both cases showed that the proposed model improved com-
putation speedup in order of magnitude in comparison with sequential approach without affected accuracy
level.

INDEX TERMS Deep neural network, spark, big data, piRNA, classification algorithm, artificial intelli-
gence.

I. INTRODUCTION synthesis, the mRNAs are relegated as a simple intermediate

RNA is an important molecule in computational biology
that stores genetic information embedded along a nucleic
acid chain in the form of nucleotide bases series. The RNA
molecules are grouped into coding RNA (cRNA) and non-
coding RNA (ncRNA) molecules. The cRNA molecules are
included mRNA (messenger RNA) which carries genetic
information and actively involved in the process of translation
of genes (DNA) into proteins. During the process of proteins

The associate editor coordinating the review of this manuscript and

approving it for publication was Sungroh Yoon

136978

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

between genes and proteins. The ncRNA molecules have
diverse grouped of RNA molecules including piRNAs (piwi
interacting RNAs).

The piRNA molecule belongs to a larger class of small
ncRNAs which is found in animal germline cells and human
somatic cell. The piRNA molecules having a sequence length
of 21 ~ 35 nucleotides [1]-[4]. It is important molecule from
the perspective of reproduction and development of germline
cells and act as a guardian by protecting the germline
cells from attack of transposable elements through transcrip-
tional or post-transcriptional mechanisms [S] [6]. It has been

VOLUME 8, 2020

https://orcid.org/0000-0002-2905-1755
https://orcid.org/0000-0002-4933-6192
https://orcid.org/0000-0003-1050-1792
https://orcid.org/0000-0002-0820-5487
https://orcid.org/0000-0002-3919-8136
https://orcid.org/0000-0002-2367-197X

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

reported that the piRNA molecules play significant role in
many genes functions such as translation of specific proteins,
regulate gene expression, fight against viral infection, main-
tain genome integrity and transposon silencing [7]. Further-
more, the piIRNA molecules move within genome and cause
mutation, insertion and deletion that can lead to genome insta-
bility [8]. In addition, a number of studies have shown that
the occurrence of piRNA is associated with multiple tumour
types and a signature feature for the cancer cells development
and progression. [9]-[11]. Hence, there is great interest in
identification and classification of piRNA molecules for can-
cer cells diagnosis and therapy, drug development and genes
stability.

With recent advancement in bioinformatics the raw
sequencing datasets are increasing exponentially doubling in
size every 18 months leading to a big data issue in computa-
tional biology [12]-[14]. In addition, a piRBase database has
been constructed in 2014 which collected a comprehensive
piRNA sequencing data. In 2014, the piRBase contained
77 million of piRNA sequences collected from 9 organ-
isms. Recently, the number of unique piRNA sequences have
reached to 173 million collected from 264 datasets from
21 species [15], [16]. This exponential growth in piRNA
sequences lead to a huge amount of datasets which can be
used in variety of applications including cancer diagnosis,
drug discovery and precision medicine. However, the timely
analysis and accurate classification of massive amounts of
RNA sequences is not only becoming a challenging task
for traditional machine learning algorithms but also enable
difficulties in term of timely processing for a conventional
technology.

In the literature a number of models have been developed
for classification and prediction of piRNA sequences using
machine learning (ML) algorithms, genetic algorithm and
fisher discriminative method. For example, the work pre-
sented in [3], [17]-[19] proposed computational models using
ML methods such as support vector machine (SVM) for iden-
tification of piRNA sequences. Zhang et al. [20] proposed
a piRNA predictor using Fisher discriminant algorithm [21]
with linear discriminant equation. Li et al. [22] build a clas-
sifier based on genetic algorithm for classification of RNA
sequences into piRNA sequences and non-piRNA sequences.

The aforementioned models have produced promising
results however; they have a number of limitations. Firstly,
these models based on conventional ML methods with sin-
gle stack processing layer which are unable to accurately
classify piRNA sequences due to a high non-linearity in the
sequences. Secondly, to extract optimal features for accurate
classification, these models required significant amounts of
human engineering and expertise. Thirdly, either the model
based on non-deterministic algorithm (for example, genetic
algorithm) which could not find an optimum solution or
it based on linear equation (for example, Fisher algorithm)
which does not support non-linearity in a dataset.

In order to mitigate the above limitations, an intelligent
computational model such as DNN model can be utilized

VOLUME 8, 2020

which apply multi-stack processing layers with weight opti-
mization to implicitly extract optimum features from a
given sequences using standard learning methods. Moreover,
the DNN model effectively handles the non-linearity issue
in the sequences by applying non-linear activation func-
tions with multiple hidden layers [23], [24]. For this reason,
the authors previously proposed a sequential 2L-piRNADNN
[25] model based on multi-layer deep neural network that
automatically extracts optimum features from a given feature
vector using inherit features of DNN i.e. both the feature
extraction and weight optimization are performed implicitly.
The proposed 2L-piRNADNN model achieved a highest
accuracy compared with other existing prediction models,
however, it poses a huge computation cost and takes longer
time during a training phase. The training time and compu-
tation cost of the model can be minimized through a parallel
and distributed computing methodology.

A number of researchers have proposed parallel and dis-
tributed deep learning algorithms for various complex prob-
lems in order to reduce computation time. For instance,
works presented in [26], [27] used distributed GPUs (graphic
processing units) cluster to parallelize deep learning algo-
rithms for speech recognition system. Similarly work pre-
sented in [28] proposed distributed DNN based on GPU
cloud computing platform to address communication bot-
tleneck issue arises during for data-parallel stochastic gra-
dient descent (SGD). The mentioned models significantly
reduced computation time; however, these models do not
support a fault-tolerance feature, in case a GPU node failure
occurred during the execution, the entire training process will
be affected. In order to integrate the fault-tolerance feature,
Sinthong et al. [29] parallelized DNN model using Hadoop
MapReduce framework [30], [31] for video data analysis.
Hadoop MapReduce is popular big data analytics framework
offer built-in fault-tolerance feature, however, the Hadoop-
based computational model performance is limited due a
high I/O latency associated with the Hadoop framework [32].
Moreover, the high I/O latency limited the suitability of the
Hadoop framework for iterative processing applications such
machine learning algorithms.

In this paper, we proposed a scalable, fault-tolerant and
parallel multi-layers DNN model for classification of massive
amounts of RNAs sequence into piRNAs and non-piRNAs,
taking advantages of distributed computing model. The pro-
posed model is implemented using Spark framework [33]
which has become a major computing platform for data inten-
sive applications, making use of processing nodes of a cluster.
Unlike the Hadoop, the Spark framework support in-memory
computations where the data is stored and processed using
shared memory during map phase and reduce phase com-
putations. This feature minimizes I/O latency of the Spark
framework and make it suitable computational framework for
machine learning algorithms. Moreover, the proposed model
implicitly applied data parallelization and code paralleliza-
tion techniques that significantly reduced the DNN training
time. Additionally, the proposed model applies dinucleotide

136979

IEEE Access

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

auto covariance method to formulate the RNA sequences into
a feature vector of numeric values [34], [35].
The major contributions of the paper are as follow:

« Propose a scalable distributed deep generative model
for classification of large-scale RNA sequences into
piRNAs and non-piRNAs.

o The proposed model considered non-linearity in dataset
using multi-stack processing layers and non-linear acti-
vation function.

o The proposed model implicitly distributes data and com-
putations (i.e. model code) on number of processing
nodes using spark framework to achieve massive par-
allelisms. Moreover, the fault-tolerance and scalability
characteristics are integrated in the proposed model to
make it a robust system.

e The performance of the proposed model is exten-
sively evaluated using different performance measure-
ment metrics such as accuracy, execution time, speedup
and scalability.

The performance of the proposed model is evaluated in two
stages. In the first stage, the real RNA sequences are used to
assess the performance of the proposed model. In the sec-
ond stage, the number of sequences is scale-up through
replication process to generate a big data scenario. For the
performance evaluation, we consider two sets of parameters
such as (a) accuracy, specificity, sensitivity and Matthews’s
correlation coefficient and we called them accuracy-based
metrics and (b) computation times, speedup and scalability
and we called them computational-based metrics. The evalua-
tion results showed that the proposed model has significantly
reduced the training time and improved speedup more than
3x times using four processing nodes in comparison with
sequential approach while maintained same level of accuracy
as of the sequential approach.

The remainder of this paper is structured as follows.
Section II provides background of deep neural network.
Section III presents in details the architecture and imple-
mentation of the proposed model. Section IV presents
experimental results and performance evaluation. Discussion
is provided in Section V. Finally, Section VI provides con-
cluding remarks and further research.

Il. DEEP NEURAL NETWORK ARCHITECTURE

Neural Network is rapidly emerging as a powerful machine
learning tool enabling high performance in accuracy and
solved complex problems in bioinformatics. The main moti-
vation behind the neural network was to develop a hierar-
chical network that enable to achieve intelligent behavior
and perceived similar to the human neural system. Earlier,
learning model such as perceptron [36], Adaline [37] are used
linear model to train the input data. The linear model has
various limitations such as the model was unable to solve the
complex problem. Later, with the advancement in Al and bio-
inspired models to solve non-linear problems and train deeper
to leads the term deep neural network.

136980

The deep learning algorithms allow computational models
to have multi-stack processing layers through which a com-
plex and non-linear functions can be easily learned. The deep
learning methods have proved to be the most effective method
in several fields, such as speech recognition [38], [39], image
recognition [40]-[42], natural language processing [43] and
bioinformatics [25], [44]-[46]. In addition, it has been stated
in a number of publications that the deep learning models per-
formed better than conventional machine learning algorithms
for various complex learning issues [47]-[49].

Deep neural networks inspired from human brain activities
and evolved from Neural Network having powerful learning
ability to represent the big data in form of hierarchical repre-
sentations. The learning ability of the DNN model is signif-
icantly improved in the recent years by considering different
depths of the model i.e. multiple hidden layers with input
and output layers linked through a free learning parameter
such as weight. Furthermore, many researchers have investi-
gated that the hierarchy structure of the DNN with increasing
number of processing layers and data dimensionality leads
to a computation complexity. Therefore, the DNN model
using Spark computing platform is proposed in this paper
in order to minimize computational complexity through a
parallel processing.

In this paper, the DNN model is configured with 3-hidden
layers with input layer and output layers as shown in Fig.1.
Each layer has multiple neurons that process input features
vector and produces output using Eq. (1). The weight matrix
on every neuron is initialized using Xavier function [50]
which has the ability to remain the variance same through
each layer. Moreover, a backpropagation technique is applied
to update the weight matrix in such a way that errors between
the output class and target class are minimized. Nonlinear
activation function i.e. sigmoid is applied at input layer and
at hidden layers using Eq. (2). The activation function helps
the model to learn non-linearity and complex patterns in

Back propagation
sigmoid

| Activation - |
Function

pi-RNA

ws 5 / Nonpi-RNA

. Wi Output Layers

| Input Layer | [Hidden Layers

FIGURE 1. Architecture of deep neural network.

VOLUME 8, 2020

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

a dataset. Moreover, it determines either a neuron can be
fired or ignored depending upon the output produced by that
neuron [51]. Additionally, a softmax activation function is
applied at output layer that generated a value in the range of
[0,1] that represent the probability of data-point belong to a
particular class.

vi = gbi+ Y _ xjwh) (1)

J=1

where y; represent output at a layer i, b represent bias value, w}
represent weight used at a layer i by a neuron j, x} represent
input feature and g represent non-linear activation sigmoid
function and it can be calculated using Eq. (2).

1
14+e2

As the DNN model computational cost and complexity
increases with increasing the input size. Hence we analyzed
the performance of the DNN model through calculating
computational complexity of the algorithm. The computa-
tional complexity is calculated according to the size of input
to the model i.e. n. The computational complexity reaches
its least value when it is equal to ® (1). As the number
of input increases, ultimately, the computational complex-
ity of the model is increased. The computational complex-
ity of the proposed DNN can be divided into two main
factors i.e. forward and back propagation [52]. In order to
calculate the big O notation for the forward propagation we
assume a fully connected DNN model having equal num-
ber of neurons and layers i.e. n having a time complexity
is ® (n*) [52]. Furthermore for the back-propagation, the
proposed network used gradient descent for n iterations,
and that there are n layers each with n neurons, the total
run-time of back-propagation is defined as ®(n’). Hence,
the total computational complexity of the DNN algorithm is
defined as

8(@) = @

® <n5 + n4> ~ (n%) 3)

Eq. (3) shows that the DNN algorithm retained the highest
computational complexity in comparison with other learning
algorithms. Hence the training time and computation cost of
the DNN model can be minimized through a parallel and
distributed computing methodology.

Ill. DESIGN OF PROPOSED MODEL

In this section we introduce design of the proposed
model. The architecture of the proposed model is shown
in Fig.3 which contains a number of components that are
discussed in details as follow:

A. BENCHMARK DATASET
Benchmark dataset consists of piRNA and non-piRNA
sequences. The benchmark dataset used in this paper is

VOLUME 8, 2020

obtained from piRBase [16] which is a comprehensive
database contained millions of piRNA sequences. We math-
ematically represent the benchmark dataset using Eq. (4).

D=D"uUD™ 4)

where D represents the piRNA sequences and D™ repre-
sents the non-piRNA sequences. D represents union of both
the piRNAs and the non-piRNAs sequence. We obtained
100 thousand of RNA sequences from the piRBase in which
50 thousand sequences were piRNA sequences (i.e. D*) and
the same numbers of sequences were non-piRNA sequences
(i.e. D7). Moreover, the benchmark dataset was divided
into training dataset and testing dataset. The benchmark
dataset i.e. 80% was used as the training dataset and remain-
ing 20% of the benchmark dataset was used as the testing
dataset.

B. FEATURE FORMULATION TECHNIQUE

In bioinformatics, biological sequences are originally repre-
sented in the form of FASTA format with various sequence
length. However, the statistical machine learning methods
are unable to process the biological sequences in the orig-
inal form. These methods process the data represented
in numeric values or discrete form [3], [25]. Therefore,
it is required to formulate the biological sequences into
a feature vector with numeric values before it given to a
machine learning algorithm. However, pattern and order of
the sequences information may be highly permutated dur-
ing the process of formulation. A number of techniques
have been introduced in the field of computational biology
to formulate the RNA sequences with different sequence
length into a feature vector without affecting pattern and
order of the sequence information [53]. Additionally, a num-
ber of webservers have been established that formulate
RNA sequences into a feature vector according to the user
requirement [53]-[55].

In this paper, we have employed di-nucleotide auto covari-
ance (DAC) method [34], [35] to transforms the RNA
sequences of different lengths into a feature vector with
uniform length. It measures correlation between two dinu-
cleotide of same physiochemical property which is separated
by a distance of lag along the sequence. Let suppose that a
RNA sequence is represented by R with different nucleotides
such as

R=R\RR3......... R, 5)

where, R, € {A,C,G,U} and i(1,2,3,....L), Ry represent
a nucleotide at 1st position of the sequence, R, represent
nucleotide at 2™ position of the sequence and so forth. Ry,
represents a nucleotide at L position of the sequence. L rep-
resents the length of the RNA sequence. The alpha letter
‘A, ‘U, ‘C’ and ‘G’ represent Adenine, Uracil, Cytosine
and Guanine respectively. Using the DAC method, the RNA
sequence (i.e. represented in Eq. (5)) can be formulated into

136981

IEEE Access

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

a feature vector using Eq. (6).

o(u, lag)
L—lag—1

Y (PuRiRi+1) — Pu)(Pu(RitiagRitiag+1) — Pu)
i=1

L—lag—1
(0)

where ¢ describes the correlations between two dinucleotide
of the same physiochemical property, the indices of physic-
ochemical properties (u = 1,2,3,...6) are denotes by
u. (Py(RiRiy1) (Py(RitiagRit+iag+1) represents the numerical
value of index u for dinucleotide R;R;ii1(RitiagRitiagt1)
at location i(k), P, is the average value of physiochem-
ical index u of entire sequence and can be calculated

using Eq. (7).

L—1
— P, (RiRi+1
PM=Z—“L_1“)
k=1

We used Eq. (7) to extract the feature vector having
length of LAG * N. Where LAG is the maximum of lag
(i.e. LAG =2) and N represents the number of physicochem-
ical properties. In this work we have considered six physic-
ochemical properties. Further details of RNAs sequence
formulation using DAC method is given in our previous
publication [25].

It is to be noted that the sequence formulation module of
the proposed model is sequential, and it may takes a high
computation time in case it is applied on large number of
sequences.

C. APACHE SPARK

Apache Spark is an open-source framework and distributed
computing model known as an analytical engine for analyzing
and processing large scale data using a cluster computing
platform [56]. It is in-memory computation framework where
the data is maintained and processed in shared physical mem-
ory. In case the memory is not enough and cannot store
anymore data then the Spark spills out the data into secondary
storage. This feature makes the Spark suitable computational
framework for iterative algorithms such as machine learn-
ing algorithms. The Spark framework composed of Spark-
Context, driver program, cluster manager and worker node
as shown in Fig.2. The SparkContext allows a user job to
access cluster resources and allocates resources to a user job
with the help of cluster manager. The driver program is a
java process contained main method which generates Spark-
Context. The cluster manager is considered as an external
module and responsible for resource management including
resource allocation, scheduling and resources sharing across
multiple jobs. The Spark framework can be deployed using
different cluster mangers such as Standalone Cluster Manger,
Hadoop Yarn and Mesos. The Spark framework is based on
master/slave architecture. The master node is a central coor-
dinator called Driver whereas the slave nodes are distributed

136982

Dataset

HDFS / Cassandra...

TaskSet | Task |

Cluster Manager

FIGURE 2. Execution mechanism of spark framework.

workers (executors). The Spark framework can access data
from different sources such as HDFS, HBase, Cassandra
and S3.

Additionally, a number of built-in libraries such as Spark
SQL, MLib, GraphX, and Spark Streaming are included in
the Spark framework to facilitate application developers in
different domains. The Spark SQL allows application devel-
opers to query structure data using Spark system. The MLib
is a scalable library for machine learning algorithms such
as SVM, K-nearest neighbor, random forest, etc. GraphX
is built-in library designed for parallel graphic iterative
computations. The Spark Streaming is language-integrated
API that facilitates developers to quickly create scalable,
fault-tolerant applications for streaming and real-time data
processing.

In addition to the built-in libraries, a significant memory
abstraction introduced in the Spark framework is the in-
memory resilient distributed dataset (RDD), which provides
high scalability and fault tolerance capabilities [57]. The
RDD is a set of read-only objects that partitioned across
several cluster processing nodes to allow parallel process-
ing. Moreover, the RDD achieve a fault-tolerance capability
through implementation of RDD Lineage [58] service. In case
a node failure is occurred during execution, the RDD lineage
automatically recalculate the lost RDD partition from its
parent RDD.

D. PARALLEL DEEP NEURAL NETWORK

In this section, we introduce parallel deep neural network
using Spark framework. The parallel module of the pro-
posed model is shown in Fig.3 where the Spark framework
divide large training data into samples of RDDs, denoted
as Dy, Dy, Ds,...,D, and distributed across a cluster of
nodes (i.e. using data parallelization). In addition, the Spark
framework distributes a copy of the DNN model across mul-
tiple workers (i.e. using model parallelization). The train-
ing process is started by executing the DNN model across
the worker nodes simultaneously and multiple models are

VOLUME 8, 2020

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

D=D"UD"
Pi-RNA and

Non-pi-RNA

Training
Dataset

r Feature Extraction

Covariance)

l\ Master Node\l_ Shuffle
Split

Parameter Server
(Global Model

DAC (Dinucleotide Auto J

Dataset D1

— —— 7
_— ~ Worker Node | %
DNN# : - W

(Local Model)

/7\
"Worker Node |~

= #2
DNN

Training

Dataset D2 _
(Local Model) > W2

! Q '

' '

]
Ji\ —
Worker Node

Training - AN

Dataset Dn DNN . Wn

(Local Model) ——
A

)

AW

Performance
Matrics

FIGURE 3. Framework of proposed model. The blue color lines show that each worker node updates the parameter server with their local model (i.e. W;).
The orange lines show that the parameters server share the new weight (i.e. AW) with the worker nodes.

trained in parallel with given hyper-parameters as listed
in Table 2. At the end of the training process, each worker
node updates the master node with the trained models (repre-
sented with blue line in Fig.3). After a global trained model
is achieved, each worker is given a separated test dataset
as samples of RDD. The worker nodes apply the global
trained model on the given test dataset and generate a local
result (classification metrics). Finally, the n local results
are combined through a master node (parameter server)
to produce a final result by applying average parameter
function.

In order to optimize the proposed model, we apply back-
propagation technique in each model deployed on the worker
nodes. In every iteration, the DNN model goes back and forth
to minimize the loss function. Each worker node computes
SGD on a given subset to minimize prediction error. Each
worker node reports the computed SGD to a centralized
parameter server. Synchronous communication mechanism is
applied for communication between the worker nodes and
the parameter server. The parameter server collects partial
gradients from all the worker nodes and computes a set of new
weights. Then the parameter server shared the new weights
with the worker nodes to perform gradient computation again
(represented in orange line in Fig.3). In the proposed model,
the server parameter manages the distributed scaling model
and serves as a coordination agent between the main server
and the worker nodes. [59]. The synchronous SGD achieve
a better efficiency and scalability compared to asynchronous
SGD optimization [60], [61], however, the synchronous SGD
operation may degrade the performance of the model due
to occasionally slowdowns a worker node. In the proposed
model, we assume that all the worker nodes are homogenous

VOLUME 8, 2020

and there is no slowdown worker node. At high level, the pro-
posed model performs training and testing as:

1. Spark framework divides large number of sequences
into small partitions and distribute across all worker
nodes.

2. A copy of DNN model is replicated on all the worker
nodes.

3. Each worker node executes the model on given parti-
tion to train a local model.

4. The worker node reports parameters of the local model
to a parameter server. The parameter server aggregates
the parameters to obtain a global model by averaging
of all the local models parameters.

5. The parameter server updates the weights and shares
new weight with the worker nodes.

6. The proposed model repeats steps 3, 4 and 5 several
times to obtain a global trained model with optimized
parameters.

7. The global trained model is then applied on testing
dataset to generate final average classification metrics.

The proposed approach significantly reduces computation
time with a high scalability using parallel approach. The
proposed model can be scaled up by adding more nodes
that further improves the performance of the model in term
of computation times and speedup (discussed in detail in
section IV). Additionally, the proposed model achieved fault-
tolerance feature by sharing multiple copies of data samples
in the form of RDDs across several worker nodes which
overcome the issue of a node failure situation. In case a
node failure is occurred during a job execution, the spark
framework automatically detects the node failure and assigns

136983

IEEE Access

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

workload of the failed node to another available node without
affects the job completion.

E. PERFORMANCE EVALUATION METRICS

The performance of the proposed model was assessed using
accuracy-based metrics and computational-based metrics.
For the accuracy-based metrics, we considered the widely
used metrics such as: (i) ACC, reflect the overall accuracy
of a model (ii) SP, represent a model precision, (iii) SN,
represent a model’s sensitivity and (iv), MCC, represent a
model Mathew’s correlation coefficient [62]. These metrics
can be calculated using Eq. (8) — (11).

N* + N7
ACC=1- —/——=,0<Acc =1 (8)
NT+N
Ny
SP:l—F,OsSpsl)
N+
SN:l—N—jr,OfSnfl (10)
1 NI+N]
T\ NFHN-
MCC =

N7 —N* NT-N7
\/<1+ N)<1+ N*)
—1 <Mcc<1 (11)

where

o N7 represents the total number of piRNA sequences.

e N~ represents the total number of non-piRNA
sequences.

o N7 represents the total number of piRNA sequences
wrongly predicted by the proposed model as non-piRNA
sequences

o N represents the total non-piRNA sequences incor-
rectly predicted by the proposed model as piRNA
sequences.

The computational-based metrics such as computation
time, speedup and scalability are analytical metrics and can
be achieved through simulation results. However, the speedup
of parallel processing can be calculated using Eq. (12).

IV. RESULTS AND DISCUSSION

In this section we discuss and evaluate the performance and
efficiency of the proposed model using both the accuracy-
based metrics and the computational-based metrics as men-
tioned in section III (E). The performance of the proposed
model was initially assessed using the benchmark dataset and
then subsequently assessed using replicated dataset having
large number of sequences.

A. EXPERIMENTAL SETUP

We have setup a Spark cluster with default configurations
using four physical processing nodes. Table 1 describes the
basic hardware and software specifications used in the exper-
iments. Ubuntu 12.04 LTS operating system along with Spark
2.0 and Hadoop 2.7.3 were configured on all processing

136984

TABLE 1. Configuration detail of apache spark cluster.

CPU Intel Core Tm
Processor 320GHzx 4
g;‘;ﬂ%?a‘;ifn Hard disk 480.4 GB
Connectivity 100Mbps Ethernet LAN
Memory 16 GB
Software Operating System | Ubuntu 12.04 LTS
JDK 1.8
Hadoop 2.7.3
Spark 2.0
OS Type 64-bit

TABLE 2. List of Hyper-parameters of DNN model with optimum values.

Parameters Optimized Values
Iteration 400

Learning 0.1

Activation Function Sigmoid

Seed 1234L

Number of hidden layers 3

Number of Neurons 12-10-2-1

Weight initialization XAVIER function
Regularization.I2 0.001

Dropout 0.25

Optimizer SGD Method
Updater ADAGRAD function

nodes. One processing node was configured as master node
and the remaining three nodes were configured as worker
nodes. Moreover, the master node was also used as a worker
node.

B. DNN PARAMETERS OPTIMIZATION
Deep learning network topology are usually involved a num-
ber of parameters that greatly impact on the performance of
a model. These parameters are listed in Table 2 and referred
to as hyper-parameters. Grid search technique was applied
to find a set of optimum hyper-parameter by evaluating the
outcome of the model on different set of the hyper-parameter
values using benchmark dataset. A number of experiments
were performed to find the optimum values for activation
function, learning rate, number of hidden layers and number
of neurons in each hidden layer. However, we present the
impact of only two highly influential hyper-parameters such
as learning rate and activation function in Table 3. The table
shows that how the learning rate and the activation functions
are significantly impacted on the outcome of the model.

It can be observed from the table that the model accu-
racy is slightly increased with decreasing the learning rates.

VOLUME 8, 2020

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

TABLE 3. Impact of different learning rate and activation function on
accuracy of proposed model.

TABLE 4. List of parameters of traditional machine learning algorithms
with optimized values.

Learning Rate | Sigmoid Accuracy (%) | Tanh Accuracy (%)
0.08 81.74 74.13
0.09 81.74 74.13
0.1 81.74 74.13
0.2 81.71 74.12
0.3 81.70 74.10
0.4 81.68 74.09
0.5 81.67 74.07
0.6 81.65 74.06
0.7 81.63 74.04
0.8 81.61 74.03
0.9 81.60 74.01

For examples, at learning rate 0.9, the DNN model achieved
a maximum accuracy of 81.60functions respectively. On the
other side, at learning rate 0.1, the model achieved a highest
accuracy 81.74% and 74.13% using sigmoid and Tanh acti-
vation functions respectively. Moreover, the learning rate was
further decreased to 0.08; however, the overall accuracy of
the proposed model was not significantly changed as shown
in Table. As we can see from Table 3 that the proposed model
achieved the highest accuracy using sigmoid activation func-
tion with learning rate 0.1. Hence, the optimum configuration
values for both the learning rate and activation function are
0.1 and sigmoid respectively. The hyper-parameters along
with optimum values found through grid search are presented
in Table 2.

C. PERFORMANCE COMPARISON OF LEARNING
ALGORITHMS
In this section we compare performance of proposed DNN
with other widely used machine learning algorithms such
as support vector machine (SVM) [63], K-nearest neighbor
(KNN) [64] and random forest (RF) [65]. In order to ensure
a fair comparison, we used same benchmark dataset, same
experimental setup and same accuracy-based measurement
metrics. Additionally we used optimized parameters for all
the learning algorithms during the performance comparison.
The parameters along with optimized values are presented
in Table 2 and Table 4. Fig.4 shows performance comparison
of the different learning algorithms. The figure illustrated
that the DNN model performed better than other the machine
learning algorithms. For example, the DNN model generated
a highest accuracy i.e. 81.74% whereas the RF produced
a second highest accuracy i.e. 68.98. The lowest accuracy
generated by the KNN model which is 61.07.

The main reason of outstanding performance of the DNN
model due to the multi-stack processing layers (i.e. hidden

VOLUME 8, 2020

Classifier Parameters Optimized Values

Kernal Type RBF
Kernal Degree 2

SVM Cost 0.1
Gamma 0.001
Coef0 9
Shrinkage TRUE
No. of trees 350

RF

Mtry 150
k-neighbors 500

KNN
Weighting Similarity

90

T
Sensitivity HEE
Specifity M-
80 Accuracy HEEE o
MCC —

JOb o P

60

Performance %

50

40

30

20

RF KNI SVM DNN

Learning Model

FIGURE 4. Performance comparison of machine learning algorithms.

layers) with implicit weight optimization (i.e. backpropaga-
tion) which effectively handled a complex nature dataset hav-
ing a high non-linearity whereas, the other learning models
based on single-stack processing layer which is not sufficient
to handle effectively a dataset with a high non-linearity.
As the DNN model generated a highest accuracy and per-
formance, therefore, next we have only considered the DNN
model for further evaluation and parallelization.

D. PERFORMANCE EVALUATION OF DNN MODEL USING
BENCHMARK DATA SET

We further extensively evaluate the performance of the DNN
model using different performance measurement metrics.
For this evaluation, the benchmark dataset was split into
subsets with different number of sequences in thousands
(i.e. 20,40,60,80,100). Each subset was contained equal num-
ber of piRNA and non-piRNA sequences.

Firstly, the performance of the proposed model was ana-
lyzed using accuracy-based metrics using different number of
sequences. The result of this evaluation is reported in Table 5.
Additionally, the accuracy of the proposed approach in
comparison with sequential approach is illustrated in Fig.5.
We can observe from Table 5 that both the approaches (i.e.
parallel and sequential) produced all most similar values for

136985

IEEE Access

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

TABLE 5. Performance of proposed model in comparison with sequential
model using varied number of sequences.

C/l*;;‘g:ﬁ;‘]‘;“ SN(%) | SP(%) | AcC(%) | mcc
Sequential
20K 89.2485 | 87.5304 | 81.7366 | 0.6426
40K 892167 | 87.5756 | 81.7367 | 0.6427
60 K 89.2582 | 87.5907 | 81.7369 | 0.6429
80 K 89.2500 | 87.5919 | 81.7372 | 0.6429
100 K 89.2623 | 87.5932 | 81.7374 | 0.6430
Parallel
20K 89.2485 | 87.5233 | 81.7365 | 0.6426
40K 89.2167 | 87.5610 | 81.7366 | 0.6426
60 K 89.2582 | 87.5842 | 81.7368 | 0.6427
80 K 89.2500 | 87.5917 | 817371 | 0.6430
100 K 89.2596 | 87.5931 | 81.7374 | 0.6430

the accuracy-based metrics. However, it can be observed
that in both cases the performance of the models is slightly
improved with increased number of sequences. Moreover,
Fig. 5, shows comparison of relative accuracies achieved both
the approaches with varied number of sequences. When we
compare the relative accuracy of the proposed model with
sequential approach, it is important to note that there is a pos-
sibility of difference in the accuracy caused by the sequences
partition due to the way in which the sequences are divided
up for parallelization purpose. As we can see in Fig.5 that
the accuracy difference between the sequential approach and
the parallel approach is very small and can be neglected.
For example, the sequential approach generated the accuracy
of 81.7366% whereas the proposed model is generated the
accuracy of 81.7365% using 20M sequences. The accuracy
difference between the two approaches is 0.0001% which
can be ignored during the classification process. Additionally,
we can see that the accuracy difference is converging to zero
with increased number of sequences.

Secondly, the performance of the parallel proposed model
was evaluated using computational-based metrics such as
computation time, scalability and speedup. First we compare
the execution times of the proposed model with the sequen-
tial model using different number of sequences. The exper-
imental results of this comparison are presented in Fig. 6.
It can be clearly observed from the figure that the execution
times of the proposed model are significantly reduced using
four physical processing nodes compared with sequential
approach. The execution time of the sequential approach
is clearly increased with increasing number of sequences,
whereas, the execution time of the proposed model is slightly
increased with increasing number of sequences.

Second, we evaluate scalability of the proposed model
using both a varied number of sequences and different

136986

81.7374 T T T B
Sequential Model Accuracy = x = o

81.7373 Proposed Model Accuracy - -# - PREgEE i
PR
81.7372 - * E
7 ..
81.7371 S 4
o
g sp /’ 7
g L ’ 4
g 81.7369 L :
8 <
& 8L7368 : P o i
_ .
81.7367 - SR N
8173664 ot J
8L7365% " _
81.7364 L L i
20 40 60 80 100

Number of RNA Sequences (M)

FIGURE 5. Accuracy comparison of proposed model with sequential
approach using different number of sequences of real benchmark dataset.

140 T T
Sequential Model Execution Time = % =
130 Parallel Model Execution Time - -® - - P -
120 F R e o 4
: : P
110 B s ,x’ 4
Z 100 e e T .
E | e
E 9 B TR i e e 1
5 - :
5] : :
& 70f B B 1
) B S PP - B R Ll
I "
T L R w0 i =
» : ; ‘
20 40 60 80 100

Number of Sequences (K)

FIGURE 6. Efficiency analysis of the proposed model in term of execution
times using real benchmark dataset.

number of processing nodes. The results of this evaluation
are shown in Fig.7. The figure shows the execution times
of the proposed model when it processed a varied number
of sequences using processing nodes from 1 to 4. We can
see from Fig.7 that execution time of the proposed model
significantly decreased with increasing number of processing
nodes employed. For example, the proposed model took
132 seconds when it classified 100 thousand RNA sequences
into piRNAs and non-piRNAs using single processing node
whereas the execution time of the proposed model dropped to
54 seconds when it classified the same number of sequences
using four processing nodes. These results imply that the
proposed model achieved 41% reduction in execution time
when it processed a large number of sequences using four
processing nodes.

Next we analyze the speedup of the proposed model using
a varied number of sequences and processing nodes. The
speedup of the proposed model was calculated using Eq. (12).

=T
where S represent speedup of the proposed model. T rep-
resent execution time of the proposed model on single

S (12)

VOLUME 8, 2020

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

140 T T
: 20 Thousand Sequences —x =
B0 s 40 Thousand Sequences = B ¢
. : 60 Thousand Sequences
L0 oeeeeoe e eedenne e e ee... 100 ThoUSANd Sequences —8 = |
N N
T200 e e]
T N \ : :
E [P P, o N S
RN T N
8 ~ - . : :
T
60 \\ g
50 !
40 -
30 i i
1 2 3 4

Number of Processing Nodes

FIGURE 7. Scalability analysis of the proposed model using different
number of processing nodes and varied number of sequences of real
benchmark dataset.

14
20 Thousand Sequences - : °
40 Thousand Sequences + *= « 4
L35 | 60 Thousand Sequences SR - /.“
80 Thousand Sequences —l- e
1.3 | 100 Thousand Sequences =@+ i L B
™ /'
15| A, iyl
g A o
b L g A Lt 1
i 12 i - P
2 5 A -
115 s il a i o 4
z) o
e - et 2
11t e iy ,
o L e T
17| IR oy wtite ",’ S L Y R Y ST o
WG L e
1 == - O 1 1
1 2 3 4
Number of Processing Nodes

FIGURE 8. Speedup analysis of the proposed model on different
processing nodes and varied number of sequences of real benchmark
dataset.

processing node. T, represent the execution time of the pro-
posed model using n number of processing nodes (in our case
n = 4). The result of Eq. (12) is demonstrated in Fig.8 which
shows the speedup of the proposed model. In Fig.8, when the
proposed model processed 80 thousand of sequences using
2 processing nodes, it generated 1.07 times speedup, whereas,
using 4 processing nodes it generated 1.35 times speedup on
the same number of sequences. However, when the number
of sequences was increased up to 100 thousand, 2 processing
nodes generated 1.09 times speedup, whereas, 4 processing
nodes generated 1.37 times speedup. These results imply
that in both cases i.e. increasing number of sequences and
increasing the number of processing nodes, the speedup of
the proposed model improved.

E. PERFORMANCE EVALUATION USING

REPLICATED DATASET

In this section we assess the performance of the proposed
model using replicated sequences. It is to be noted that
the feature formulation module (i.e. section III (B)) of the
proposed model applies sequential approach to formulate
RNA sequences into a feature vector. It takes longer times

VOLUME 8, 2020

6000

T
Sequential Model Execution Time —* = H A
Proposed Model Execution Time = -% - /
5000 - - . . . R R e R S
4
/
o A0 . . . R R el .
T e
E /
=
c W000F - . . . - JTEE TP S R -
2 ’
3
g A
2000 - . . . et e e .
-
-
-
|- - - » -
000 — = —
........... R
""""""""" ¥---tCC i

5.81 8.73 11.65 15.21
Number of RNA Sequences (M)

FIGURE 9. Efficiency analysis of proposed model in term of execution
times using replicate benchmark dataset.

to formulate a large number of sequences into a feature
vector. In order to evaluate the performance of the proposed
model in big data scenario, we replicated the feature vector
(formulated sequence) multiple times to generate a feature
vector with high dimensionality resultant a big data scenario.
As the dataset contained redundant and duplicate sequences,
therefore, evaluating the performance of the proposed model
using the accuracy-based metrics is meaningless. There-
fore, in this evaluation we consider only the computational-
based metrics to assess the performance of the proposed
model.

Efficiency of the proposed model in comparison with
sequential approach is illustrated in Fig.9. We can see from
Fig.9 that the execution time of sequential approach is expo-
nentially increased with increasing number of sequences
whereas, the execution time of the proposed model is slightly
increased with increased number of sequences. Moreover,
the time difference between the sequential approach and the
parallel approach is increased with increasing the number
of sequences. This is because the sequential approach is
unable to properly handle large number of sequences within
reasonable time. On the other side, the proposed model
can process large number of sequences within reasonable
time.

The scalability analysis of the proposed model in term of
both with a varied number of sequences and different number
of processing nodes are shown in Fig.10. It is clearly shown in
the figures that the proposed model execution time is greatly
reduced with increasing number of processing nodes. For
example, the execution time of the proposed model on single
machine is 2127 seconds when it classified 15.21 million
sequences whereas the execution time is dropped to 641 sec-
onds using four processing nodes when it classified the same
number of sequences. These results imply that the proposed
model achieved a 30% reduction in execution time on a
large number of sequences compared with single machine
execution time.

The speedup of the proposed model was calculated using
Eq. (12) when it processed four different sizes of sequences.

136987

IEEE Access

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

2500 T T
5.81 Million Sequences =X =
8.73 Million Sequences - ¥ -
11.65 Million Sequences

N
D00 fov g 15.21 Million Sequences —#- —

1500 - N

Execution Time(s)

1000 ; N T 4

SO0y

Number of processing Nodes

FIGURE 10. Scalability analysis of proposed model using different
number of processing nodes and varied number of sequences of
replicated benchmark dataset.

3.5 T
5.81 Million Sequences —* = n
8.73 Million Sequences = ~¥ = o~
11.65 Million Sequences s E LT
3 15.21 Millien Sequences —# - R
R
,/ P
R -
L Ll o
g 2.5 .'./' A
o L w
g -l
2 R
w T
2 R e 7
V.
225
447
1.5 bt]
e
#
g
-
1 Il Il
1 2 3 4

Number of processing Nodes

FIGURE 11. Speedup analysis of the proposed model on different number
processing nodes and varied number sequences of replicated benchmark
dataset.

The result of Eq. (12) is demonstrated in Fig.11. Consider
Fig. 11, the proposed model achieved 1.82 times speedup on
2 processing nodes and 3.08 times speedup on 4 process-
ing nodes when it processed 5.81 (M) sequences. Whereas,
the proposed model achieved 1.92 times speedup on 2 pro-
cessing nodes and 3.39 times speedup on 4 processing nodes
when it processed 15.21 (M) sequences. These results con-
firm that the proposed model is highly scalable in term of
both dataset size and number of processing nodes.

However, the proposed model never achieved the speedup
up to the number of processing nodes which are to be
expected from Amdahl’s law [66]. This is due to a number
of factors includingcluster communication overhead, task ini-
tialization overhead and network bandwidth. This phenomena
is discussed in detail in [67]

Finally, we analyze speedup of the proposed model in
both cases i.e. small number of sequences (i.e. real bench-
mark dataset) and large number of sequences (i.e. repli-
cated benchmark dataset). In the case of real benchmark
dataset, the proposed model gained a maximum speedup
1.37 times on 4 processing nodes when it processed 100
(K) sequences. Whereas, in the case of replicated benchmark

136988

dataset, the proposed model gained a maximum speedup
3.39 times on 4 processing nodes when it processed 15.21
(M) sequences. These result shows that the proposed model
achieved a maximum performance (i.e. speedup) while pro-
cessed large number of sequences. This analysis also con-
firms that the proposed model support processing of large
number of sequences with high scalability.

V. DISCUSSION

piRNAs are small sequence of non-coding RNAs that pro-
vides several functions related to the protection and regula-
tion of genes and genome. However, the complex structure
of piRNAs sequence due to a high non-linearity exist, their
accurate identification for traditional learning algorithms
has become a challenging task. A DNN model which pro-
vides reasonable solutions for a complex problem has been
employed in this research for classification of piRNAs and
non-piRNAs sequence. As piRNAs sequence increases in size
and DNN in complexity, computational intensity and mem-
ory demand increases proportionally. A high performance
computing cluster is essentially required for training a DNN
model to an adequate level of accuracy within reasonable
time. In this paper we proposed a robust parallel and dis-
tributed DNN model using Spark paradigm for classification
of massive RNAs sequence into piRNA and non-piRNA.

The DNN model is configured with several hyper-
parameters which significantly effect on the performance
of the model. A grid search technique was employed to
search optimum hyper-parameters such as activation func-
tion, learning rate, number of hidden layers and neurons.
Additionally, most of parallel and distributed algorithms
based on GPUs or within box are facing different issues
such as fault-tolerance, data availability and scalability. The
proposed model achieved the fault-tolerance through heart-
beat message whereas the data availability gained through
replication of several copies of dataset on multiple machines.
Furthermore, the proposed model is highly scalable and can
be scaled better for larger problems / models. It support scale-
out, means that the proposed model can be parallelized on
any number of machines depends on size of the problem and
computation complexity.

In order to mature the experimental results, the perfor-
mance of the proposed model was rigorously evaluated using
accuracy-based metrics and computational-based metrics.
For example, Fig. 4 showed that DNN model outperformed
all other machine learning algorithms using various per-
formance measurement metrics. The main reason of better
performance of the proposed DNN due to multi-stack pro-
cessing layers with standard learning methods and weight
optimization. The computation times of the proposed model
was significantly reduced as increased number of processing
nodes, shown in Fig.6 and Fig.9. We have noticed that the
parallelization approach slightly affected the model accuracy
using small number of sequences, however, the accuracy of
the model was improved and difference between sequential
and parallel models were converge to zero when increased

VOLUME 8, 2020

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

the number of sequences as shown in Fig. 5. Additionally we
evaluated the speedup of the proposed model on number of
processing machines as reported in Fig. 8 and Fig. 11. From
these figure we can see that the proposed model achieved
different speedup on different number of sequences using
4 processing nodes. For example, in case of small number
of sequences (i.e. 1 M), the proposed model achieved a
maximum speed up i.e. 1.37 which is far below from the
maximum speed up i.e. 3.37 achieved in the case of pro-
cessing large number of sequences (i.e. 15.21 M). These
finding shows that the proposed model performed better on
large number of sequences compared with small number of
sequences. Furthermore, these figures show that the proposed
model could not achieved a maximum speed up (i.e. equal to
the number of processing nodes) in any case, this is due to
tasks initialization overhead and network cognition occurred
during a data shuffle phase.

As the DNN model exhibited promising results however a
number of limitations are associated with the model: a) the
model is sensitive to the number of neurons in the hidden
layers i.e. a few neurons may cause under-fitting problems
whereas too many neurons may contribute to an over-fitting
problem. b) In general, a network with more hidden layers
in a training or testing process can lead to a better accuracy,
however, it arise major issues such as computation cost, com-
plexity and vanishing gradient. c) Due a high computational
complexity, the model required high performance computing
to generate reasonable results within time. d) The model
required a considerable amounts of training data to acquire
effective results (ref. Fig. 5) [68]. To address these issues
we applied a number of techniques. For example, a dropout
technique was employed at each hidden layer to overcome
the issue of over-fitting [38]. Similarly, a balanced number
of hidden layers (i.e. 3 hidden layers) was configure in the
network to overcome the computational complexity and van-
ishing gradient issue. Additionally, a distributed computing
methodology was employed to overwhelmed computational
complexity issue.

VI. CONCLUSION AND FUTURE WORK

This paper presented a parallel deep neural network model
for classification of massive RNA sequences into piRNA
sequences and non-piRNA sequences. The proposed model
was built using Spark programming model to achieve a
parallel computation by partitioning and distributing of
sequences amongst a cluster of computer nodes. In addition,
the proposed model applied DAC method for the sequence
formulation. The performance of the proposed model was
extensively assessed and experimental results showed that
the proposed model achieved a high computation speedup
in order of magnitude due to parallelization of both data and
model in comparison with the sequential approach without
affected the model accuracy. Additionally, the experimental
results showed that the proposed model is highly scalable
in term of both dataset size and number of processing
nodes.

VOLUME 8, 2020

The proposed model was implemented with default param-
eters settings. The Spark framework have several config-
ures parameters that significantly effects the performance
of the framework. In future, we have planned to propose a
methodology that automatically optimizes the configuration
parameter of the framework using gene expression program-
ming [69] and particle swarm optimization technique [70].
This will further improve the performance of the proposed
model in term of computation speedup.

REFERENCES

[1] J. Cheng, H. Deng, B. Xiao, H. Zhou, F. Zhou, Z. Shen, and J. Guo, “PiR-
823, a novel non-coding small RNA, demonstrates in vitro and in vivo
tumor suppressive activity in human gastric cancer cells,” Cancer Lett.,
vol. 315, no. 1, pp. 12-17, Feb. 2012.

[2] A. Aravin, D. Gaidatzis, S. Pfeffer, M. Lagos-Quintana, P. Landgraf,
N. Iovino, P. Morris, M. J. Brownstein, S. Kuramochi-Miyagawa,
T. Nakano, M. Chien, J. J. Russo, J. Ju, R. Sheridan, C. Sander, M. Zavolan,
and T. Tuschl, ““A novel class of small RNAs bind to MILI protein in mouse
testes,” Nature, vol. 442, no. 7099, pp. 203-207, Jul. 2006.

[3] B. Liu, F. Yang, and K.-C. Chou, “2L-piRNA: A two-layer ensemble
classifier for identifying PIWI-interacting RNAs and their function,” Mol.
Therapy-Nucleic Acids, vol. 7, pp. 267-277, Jun. 2017.

[4] D. M. Ozata, 1. Gainetdinov, A. Zoch, D. O’Carroll, and P. D. Zamore,
“PIWI-interacting RNAs: Small RNAs with big functions,” Nature Rev.
Genet., vol. 20, no. 2, pp. 89-108, Feb. 2019.

[5] S. Choudhuri, “Epigenetic regulation of gene and genome expression,” in
Reproductive and Developmental Toxicology, R. C. Gupta, Ed. San Diego,
CA, USA: Academic, 2011, ch. 60, pp. 801-813.

[6] Y. W.Iwasaki, M. C. Siomi, and H. Siomi, “PIWI-interacting RNA: Its bio-
genesis and functions,” Annu. Rev. Biochem., vol. 84, no. 1, pp. 405-433,
Jun. 2015.

[7]1 C. Klattenhoff and W. Theurkauf, “Biogenesis and germline functions of
piRNAs,” Development, vol. 135, no. 1, pp. 3-9, Nov. 2007.

[8] S.Houwing, L. M. Kamminga, E. Berezikov, D. Cronembold, A. Girard,
H. van den Elst, D. V. Filippov, H. Blaser, E. Raz, C. B. Moens,
R. H. A. Plasterk, G. J. Hannon, B. W. Draper, and R. F. Ketting, “A role
for piwi and piRNAs in germ cell maintenance and transposon silencing in
zebrafish,” Cell, vol. 129, no. 1, pp. 69-82, Apr. 2007.

[9] K. W. Ng, C. Anderson, E. A. Marshall, B. C. Minatel, K. S. S. Enfield,
H. L. Saprunoff, W. L. Lam, and V. D. Martinez, “PIWI-interacting RNAs
in cancer: Emerging functions and clinical utility,” Mol. Cancer, vol. 15,
no. 1, Dec. 2016, Art. no. 5.

[10] M. Moyano and G. Stefani, “PiRNA involvement in genome sta-
bility and human cancer,” J. Hematol. Oncol., vol. 8, no. 1, p. 38,
Dec. 2015.

[11] J.Cheng,J.-M. Guo, B.-X. Xiao, Y. Miao, Z. Jiang, H. Zhou, and Q.-N. Li,
“PiRNA, the new non-coding RNA, is aberrantly expressed in human
cancer cells,” Clin. Chim. Acta, vol. 412, nos. 17-18, pp. 1621-1625,
Aug. 2011.

[12] B. Schmidt and A. Hildebrandt, ‘“Next-generation sequencing: Big data
meets high performance computing,” Drug Discovery Today, vol. 22, no. 4,
pp. 712-717, Apr. 2017.

[13] B. Langmead and A. Nellore, “Cloud computing for genomic data anal-
ysis and collaboration,” Nature Rev. Genet., vol. 19, no. 4, pp. 208-219,
Apr. 2018.

[14] G. Zararsiz, D. Goksuluk, S. Korkmaz, V. Eldem, I. P. Duru, T. Unver, and
A. Ozturk, “Classification of RNA-seq data via bagging support vector
machines,” bioRxiv, 2014.

[15] P.Zhang, X. Si, G. Skogerbg, J. Wang, D. Cui, Y. Li, X. Sun, L. Liu, B. Sun,
R. Chen, S. He, and D.-W. Huang, “PiRBase: A Web resource assisting
piRNA functional study,” Database, vol. 2014, pp. 1-7, Jan. 2014.

[16] J. Wang, P. Zhang, Y. Lu, Y. Li, Y. Zheng, Y. Kan, R. Chen,
and S.He, “PiRBase: A comprehensive database of piRNA
sequences,” Nucleic Acids Res., vol. 47, no. DI, pp. D175-D180,
Jan. 2019.

[17] K. Wang, C. Liang, J. Liu, H. Xiao, S. Huang, J. Xu, and F. Li, “‘Prediction
of piRNAs using transposon interaction and a support vector machine,”
BMC Bioinf., vol. 15, no. 1, p. 419, Dec. 2014.

136989

IEEE Access

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

[18]

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

L. Luo, D. Li, W. Zhang, S. Tu, X. Zhu, and G. Tian, “Accurate pre-
diction of transposon-derived piRNAs by integrating various sequential
and physicochemical features,” PLoS ONE, vol. 11, no. 4, Apr. 2016,
Art. no. e0153268.

T. Li, M. Gao, R. Song, Q. Yin, and Y. Chen, “Support vector machine
classifier for accurate identification of piRNA,” Appl. Sci., vol. 8, no. 11,
p. 2204, Nov. 2018.

Y. Zhang, X. Wang, and L. Kang, “A k-mer scheme to predict piRNAs and
characterize locust piRNAs,” Bioinformatics, vol. 27, no. 6, pp. 771-776,
Mar. 2011.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugenics, vol. 7, no. 2, pp. 179-188, Sep. 1936.

D. Li, L. Luo, W. Zhang, F. Liu, and F. Luo, “A genetic algorithm-based
weighted ensemble method for predicting transposon-derived piRNAs,”
BMC Bioinf., vol. 17, no. 1, Dec. 2016, Art. no. 329.

D. Ravi, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo,
and G.-Z. Yang, “‘Deep learning for health informatics,” IEEE J. Biomed.
Health Informat., vol. 21, no. 1, pp. 4-21, Jan. 2017.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, May 2015.

S. Khan, M. Khan, N. Igbal, T. Hussain, S. A. Khan, and K.-C. Chou,
“A two-level computation model based on deep learning algorithm for
identification of piRNA and their functions via Chou’s 5-steps rule,” Int.
J. Peptide Res. Therapeutics, vol. 26, no. 2, pp. 795-809, Jun. 2020.

K. Chen and Q. Huo, “Scalable training of deep learning machines
by incremental block training with intra-block parallel optimization and
blockwise model-update filtering,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Mar. 2016, pp. 5880-5884.

A. L. Maas, A. Y. Hannun, C. T. Lengerich, P. Qi, D. Jurafsky, and
A.Y.Ng, “Increasing deep neural network acoustic model size for
large vocabulary continuous speech recognition” 2014, arXiv:1406.7806.
[Online]. Available: https://arxiv.org/abs/1406.7806

N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. Annu. Conf. Int. Speech Commun. Assoc.
(INTERSPEECH), 2015, pp. 1-5.

P. Sinthong, K. Mahadik, S. Sarkhel, and S. Mitra, ““Scaling DNN-based
video analysis by coarse-grained and fine-grained parallelism,” in Proc.
IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2020, pp. 1-6.

T. White, Hadoop: The Definitive Guide, vol. 1, 1st ed. Sebastopol, CA,
USA: O’Reilly Media, 2009.

M. Khan, “Hadoop performance modeling and job optimization for big
data analytics,” Ph.D. dissertation, Brunel Univ., London, U.K., 2015.

J. Cézar, F. Marcelloni, J. A. Gimez, and L. de la Ossa, “Building efficient
fuzzy regression trees for large scale and high dimensional problems,”
J. Big Data, vol. 5, no. 1, p. 49, Dec. 2018.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. USENIX Conf.
Hot Topics Cloud Comput., 2010, pp. 1-7.

Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector machine com-
bined with auto covariance to predict protein—protein interactions from
protein sequences,” Nucleic Acids Res., vol. 36, no. 9, pp. 3025-3030,
May 2008.

Q. Dong, S. Zhou, and J. Guan, “A new taxonomy-based protein fold
recognition approach based on autocross-covariance transformation,”
Bioinformatics, vol. 25, no. 20, pp. 2655-2662, Oct. 2009.

S. Chakraverty, D. M. Sahoo, N. R. Mahato, S. Chakraverty, D. M. Sahoo,
and N. R. Mahato, “Perceptron learning rule,” in Concepts of Soft Com-
puting. Singapore: Springer, 2019.

C.-I. Chen and G. W. Chang, “A two-stage ADALINE for harmonics
and interharmonics measurement,” in Proc. 5th IEEE Conf. Ind. Electron.
Appl., Jun. 2010, pp. 340-345.

G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 82-97, Nov. 2012.

T. N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep
convolutional neural networks for LVCSR,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 8614-8618.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural
Inf. Process. Syst., vol. 1, 2012, pp. 1097-1105.

136990

(41]

(42]

(43]

(44]

(45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

(53]

(54]

[55]

[56]

(571

(58]

[59]

(60]

[61]

[62]

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915-1929, Aug. 2013.

J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training
of a convolutional network and a graphical model for human
pose estimation,” Jun. 2014, arXiv:1406.2984. [Online]. Available:
http://arxiv.org/abs/1406.2984

T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2011,
pp. 5528-5531.

K. Wang, J. Hoeksema, and C. Liang, “PiRNN: Deep learning algorithm
for piRNA prediction,” PeerJ, vol. 6, p. €5429, Aug. 2018.

Y. Zuo, Q. Zou, J. Lin, M. Jiang, and X. Liu, “2lpiRNApred: A two-layered
integrated algorithm for identifying piRNAs and their functions based
on LFE-GM feature selection,” RNA Biol., vol. 17, no. 6, pp. 892-902,
Jun. 2020.

S. Khan, M. Khan, N. Igbal, S. A. Khan, and K.-C. Chou, “Prediction
of piRNAs and their function based on discriminative intelligent model
using hybrid features into Chou’s PseKNC,” Chemometric Intell. Lab.
Syst., vol. 203, Aug. 2020, Art. no. 104056.

J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural
nets as a method for quantitative structure-activity relationships,” J. Chem.
Inf. Model., vol. 55, no. 2, pp. 263-274, 2015.

M. K. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, “Deep learning
of the tissue-regulated splicing code,” Bioinformatics, vol. 30, no. 12,
pp. 121-129, 2014.

M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and
W. Denk, “Connectomic reconstruction of the inner plexiform layer in the
mouse retina,” Nature, vol. 500, p. 168, Aug. 2013.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” J. Mach. Learn. Res., vol. 9,
pp. 249-256, May 2010.

B. Karlik and A. Olgac, “Performance analysis of various activation
functions in generalized MLP architectures of neural networks,” Int. J.
Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111-122, 2011.

K. Fredenslund. Computational Complexity of Neural Networks.
Accessed: Jun. 19, 2020. [Online]. Available: https://kasperfred.
com/series/introduction-to-neural-networks/computational-complexity-
of-neural-networks

B. Liu, H. Wu, and K.-C. Chou, “Pse-in-one 2.0: An improved package of
Web servers for generating various modes of pseudo components of DNA,
RNA, and protein sequences,” Natural Sci., vol. 9, no. 4, pp. 67-91, 2017.
B. Liu, F. Liu, X. Wang, J. Chen, L. Fang, and K.-C. Chou, “Pse-in-
one: A Web server for generating various modes of pseudo components of
DNA, RNA, and protein sequences,” Nucleic Acids Res., vol. 43, no. W1,
pp. W65-W71, Jul. 2015.

Z. Chen, P. Zhao, F. Li, T. T. Marquez-Lago, A. Leier, J. Revote,
Y. Zhu, D. R. Powell, T. Akutsu, G. I. Webb, K.-C. Chou, A. I. Smith,
R.J. Daly, J. Li, and J. Song, “iLearn: An integrated platform and meta-
learner for feature engineering, machine-learning analysis and modeling of
DNA, RNA and protein sequence data,” Briefings Bioinf., vol. 21, no. 3,
pp. 1047-1057, 2020.

R. Guo, Y. Zhao, Q. Zou, X. Fang, and S. Peng, “Bioinformatics applica-
tions on apache spark,” GigaScience, vol. 7, no. 8, pp. 1-10, Aug. 2018.
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and 1. Stoica “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
9th USENIX Conf. Netw. Syst. Des. Implement. (NSDI), 2012, pp. 15-28.
H. Karau and R. Warren, High Performance Spark: Best Practices for
Scaling and Optimizing Apache Spark, 1st ed. Sebastopol, CA, USA:
O’Reilly Media, 2017.

J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. 31, no. 9, pp. 803-812, Sep. 1986.

J. Chen, R. Monga, S. Bengio, and R. Jézefowicz, “Revisiting distributed
synchronous SGD,” CoRR, 2016.

H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “GeePS:
Scalable deep learning on distributed GPUs with a GPU-specialized
parameter server,” in Proc. 11th Eur. Conf. Comput. Syst. (EuroSys), 2016,
pp. 1-16.

M. E. Sabooh, N. Igbal, M. Khan, M. Khan, and H. F. Magbool, ‘“Identi-
fying 5-methylcytosine sites in RNA sequence using composite encoding
feature into Chou’s PseKNC,” J. Theor. Biol., vol. 452, pp. 1-9, Sep. 2018.

VOLUME 8, 2020

S. Khan et al.: Spark-Based Parallel Deep Neural Network Model for Classification of Large Scale RNAs into piRNAs and Non-piRNAs

IEEE Access

[63] H. Byun and S. W. Lee, “Applications of support vector machines for
pattern recognition: A survey,” in Pattern Recognition With Support Vector
Machines. Berlin, Germany: Springer, 2002, pp. 213-236.

[64] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based
approach in classification,” in Proc. OTM Confederated Int. Conf. Move
Meaningful Internet Syst., in Lecture Notes in Computer Science: Includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, 2003, pp. 213-236.

[65] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and
B. P. Feuston, “Random forest: A classification and regression tool for
compound classification and QSAR modeling,” J. Chem. Inf. Comput. Sci.,
vol. 43, no. 6, pp. 1947-1958, Nov. 2003.

[66] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proc. Spring Joint Comput. Conf.
(AFIPS Spring), Apr. 1967, pp. 483—485.

[67] M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu, “Parallel
detrended fluctuation analysis for fast event detection on massive PMU
data,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 360-368, Jan. 2015.

[68] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016, pp. 372-387

[69] C.Ferreira, “Gene expression programming: A new adaptive algorithm for
solving problems,” Complex Syst., vol. 13, no. 2, pp. 87-129, 2001.

[70] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. Amsterdam,
The Netherlands: Elsevier, 2001.

SALMAN KHAN received the M.S. degree in
mobile computing from the University of Glamor-
gan, UK., in 2009. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science, Abdul Wali Khan University Mardan.
He is also a Lecturer with the Department of Com-
puter Science, Abdul Wali Khan University Mar-
dan. He has about nine year experience of teaching
and industry together. His areas of interest are big
data, mobile computing, bioinformatics, machine

learning, and parallel programming.
MUKHTAJ KHAN received the Ph.D. degree in
performance modeling and big data analytics from
the Department of Electronics and Computer Engi-
neering, Brunel University London, U.K., in 2015.
He was a Postdoctoral Fellow with the School
of Engineering, Design and Physical Sciences,
Brunel University London, in 2015 and 2016.
He is currently working as an Assistant Professor
with the Department of Computer Science, Abdul
Wali Khan University Mardan, Pakistan. He has
authored over 30 research articles published in journals and conference
proceedings. His research interests include performance modeling, big data
analytics, parallel computing, and machine learning.

VOLUME 8, 2020

NADEEM IQBAL (Senior Member, IEEE)
received the Ph.D. degree in bio and brain engi-
neering from the Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, South
Korea, in 2013. He was a Postdoctoral Fellow with
the School of Mechanical Engineering, University
of Leeds, U.K. He is currently working as an Assis-
tant Professor with the Department of Computer
Science, Abdul Wali Khan University Mardan,

! Pakistan. His research interests include supervised
and unsupervised machine learning techniques for control prosthesis, bio-
logical information processing mechanism in brain, and pattern recognition.

MAOZHEN LI received the Ph.D. degree from
the Institute of Software, Chinese Academy of
Sciences, in 1997. He was a Postdoctoral Research
Fellow with the School of Computer Science
and Informatics, Cardiff University, U.K., from
1999 to 2002. He is currently a Professor with the
Department of Electronic and Computer Engineer-
ing, Brunel University London, U.K. His research
interests include the areas of high performance
computing (grid and cloud computing), big data
analytics, and intelligent systems. He is on the editorial boards of Computing
and Informatics Journal and the Journal of Cloud Computing: Advances,
Systems and Applications. He has more than 100 research publications in
these areas. He is a Fellow of the British Computer Society.

DOST MUHAMMAD KHAN (Member, IEEE)
received the bachelor’s degree in statistics and the
master’s and Ph.D. degrees in statistics from the
University of Peshawar, Pakistan, in 2000, 2003,
and 2012, respectively. He was also a Visiting
Research Fellow with the School of Statistics,
University of Minnesota, USA, in 2008. He is
currently working as an Assistant Professor with
the Department of statistics, Abdul Wali Khan
University Mardan, Pakistan. His research inter-
ests include robust statistics, applied statistics, mathematical statistics, and
computational statistics.

136991

