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ABSTRACT Designing a well-generalized architecture for artificial neural networks (ANNS) is an important
task. This paper presents an adaptive memetic algorithm with a rank-based mutation, denoted as AMARM,
to design ANN architectures. The proposed algorithm introduces an adaptive multi-local search mechanism
to simultaneously fine-tune the number of hidden neurons and connection weights. The adaptation of the
multi-local search mechanism is achieved by identifying effective local searches based on their search
characteristics. Such an algorithm is distinguishable from previous evolutionary algorithm-based methods
that incorporate one single local search for evolving ANN architectures. Furthermore, a rank-based mutation
strategy is devised for avoiding premature convergence during evolution. The performance of the proposed
algorithm has been evaluated on a number of benchmark problems and compared with related work. The
results show that the AMARM can be used to design compact ANN architectures with good generalization
capability, outperforming related work.

INDEX TERMS Artificial neural networks (ANNSs), evolutionary algorithm, rank based mutation, adaptation

strategy, local searches.

I. INTRODUCTION

Artificial neural networks (ANNSs) have been widely applied
in scientific problems such as pattern recognition [1], classifi-
cation [2], regression [3] and dynamic system control [4]-[6].
The performance of ANNSs is greatly dependent on their
architectures. An excessively large architecture may overfit
the training set, due to its excess information processing capa-
bility. On the other hand, an excessively small architecture
can underfit the training set, due to its limit information
processing capability. Both overfitting and underfitting will
lead to poor generalizations. Thus, designing appropriate
ANN architectures is essential to effectively solve various
problems.

The Backpropagation (BP) training algorithm [7] and its
variants have been traditionally used to train a fixed ANN
architecture. These algorithms, however, suffer from the
local optima issue [8], and may not deliver ANN archi-
tectures with a satisfactory performance within a given
training period. Constructive methods [9]-[11] and pruning

methods [12]-[14] based on hill-climbing search have also
been developed for designing ANN architectures. Such meth-
ods typically explore a small architectural space and could
also be trapped into local optimal solutions [15].

To address the local optima issue, stochastic algorithms
have been proposed, a prominent approach of which is the
evolutionary algorithms (EAs) [16]. Due to their good global
search capabilities, EAs have been popularly used to evolve
ANN architectures [17]-[21]. Existing methods can be gen-
erally classified into two major types [18]: the “invasive”
approach, which relies solely on EAs to evolve ANNs’ archi-
tectures and the ‘‘noninvasive’ approach, in which EAs are
incorporated with a certain local search to evolve ANNs’
architectures. The major issue of the ‘“‘invasive” approach
is that it has little capability of fine-tuning the solutions and
thus usually takes a relatively long time to locate the optima
in a region of convergence. On the other hand, the “non-
invasive” approach, which incorporates local search, can
greatly improve the time efficiency of evolutionary process.
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However, employing one single local search, as usually
adopted in existing methods, may not well suit to solve
the complex optimization problem of designing ANN
architectures.

Recently, a few studies [22]-[24] have shown that EAs
incorporating multiple local searches are promising for
solving complex optimization problems. In these methods,
multiple local searches are employed to cooperatively and
competitively search the solution space. EAs hybridized
with local searches are often referred to as Memetic
Algorithms (MAs) [25]. Since we are concerned here with
EAs in which local searches play a critical role, this term will
be used in the paper.

Although MAs can generally deliver solutions more effi-
ciently than traditional EAs, they also suffer from the prema-
ture convergence [26]. To deal with this issue, controlling the
algorithm’s parameters, especially the mutation probability
is a promising approach. This is confirmed by studies such
as in [27] and [28], which show that appropriately control-
ling the EA’s mutation probabilities can help maintain the
balance between exploration and exploitation of the search
space, thus alleviating the premature convergence. However,
how to adapt the mutation probabilities of individuals for
improving the EA’s search capability is a vital yet open
issue.

In this paper, we propose an algorithm, called adaptive
memetic algorithm with rank based mutation (AMARM),
for designing ANN architectures. In the proposed algo-
rithm, we introduce an adaptive multi-local search mecha-
nism to fine-tune the ANN architectures. Three local searches
are employed in the mechanism. The first two aim to
refine the number of hidden neurons in ANN architec-
tures, while the third one is used to fine-tune connection
weights. The adaptation is achieved based on a strategy,
which is devised to choose an appropriate local search
from three local searches based on their search character-
istics. Furthermore, a rank based mutation strategy, which
assigns different mutation probabilities to different individ-
uals based on their fitness ranks, has been designed to avoid
premature convergence during evolution. The experimental
results show that the proposed multi-local search mecha-
nism plays an important role of effectively exploiting the
decision space, while the rank based mutation helps avoid
the premature convergence. As a result, our proposed algo-
rithm is able to deliver ANN architectures with satisfactory
performance.

The key contributions of this work are as follows:

o An adaptive multi-local search mechanism, in which
two purposely-devised local searches along with the BP
algorithm are dynamically employed to fine-tune the
ANN’s structure as well as connection weights simul-
taneously, is proposed and incorporated into an EA
for efficiently exploiting the decision space of ANN
architectures;

« A rank based mutation strategy is introduced to alleviate
the premature convergence of EA search;
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o A “sliding-windows™ based cross validation is intro-
duced as the termination condition of the evolution to
reduce the ANNS’ generalization loss.

This work is an extension of its shorter conference
version [29], in which an adaptive multi-local search mech-
anism based memetic algorithm for ANN architecture opti-
mization is briefly described along with some preliminary
results. In this work, we extend our previous paper by giving
a comprehensive description of the proposed mechanism and
providing extensive experiments as well as comparison stud-
ies to analyze its behavior and effectiveness. Further, the algo-
rithm proposed in [29] has been extended by introducing and
incorporating a rank based mutation strategy, which is used
to maintain the diversity of population. Consequently, more
accurate results can be achieved comparing to our previous
work and also other related methods in literature on the same
datasets.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents our proposed
algorithm. This is followed by a detailed description of adap-
tive multi-local search mechanism in Section IV. Section V
evaluates the proposed algorithm and compares it with related
methods. Finally, Section VI concludes the paper with a brief
summary and several further directions.

Il. RELATED WORK

A number of heuristic methods have been proposed to design
ANN architectures. Hill-climbing based constructive and
pruning methods are popular ones. The constructive methods
start with a minimal network and then add new layers, neu-
rons as well as connections if necessary during training, while
the pruning methods do the opposite by deleting unnecessary
layers, neurons and connections from an oversized network.
For example, Islam et al. [10] proposed a constructive algo-
rithm (NCA) to determine the complete topological infor-
mation of a feedforward ANN architecture. This algorithm
emphasizes on both architectural and functional adaptation.
NCA trains hidden neurons by using different training sets,
which is based on the performance of existing ANN archi-
tectures, and gradually adds hidden neurons or layers to the
ANN’s architecture. Lauret ef al. [14] proposed a pruning
algorithm to obtain the ANN’s architecture. The relevance
of hidden neurons is determined by the global sensitivity
analysis of model output. According to the obtained informa-
tion, the most unfavorable neuron will be eliminated. A good
review can be found in [30] and [31] for constructive algo-
rithms and in [32] for pruning algorithms. Recently, hybrid
methods [33], [34], which combine the constructive and prun-
ing algorithms have also been proposed in literature. For
instance, Islam ez al. [33] developed an adaptive merging and
growing algorithm to design the ANN architecture. During
the adaptation process, this algorithm merges and adds hidden
neurons repeatedly or alternatively, aiming to produce com-
pact ANN architectures. Such an algorithm can quickly locate
anear optimal ANN architecture. However, by employing the
hill-climbing search, it is susceptible to local optima.
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Recently, EAs have been widely employed to design ANN
architectures including connection weights, structures and
learning rules [35], [36]. For example, Yao and Liu [17] pro-
posed a method called EPNet to design ANN architectures.
The EPNet is based on evolutionary programming (EP) with
five mutation operators, which is used to reduce the detrimen-
tal effect of permutation problem. In addition, in the EPNet,
BP algorithm is adopted as partial training to improve the
computational efficiency. Such a method is known to suffer
from the noisy fitness evaluation problem due to its continued
reliance on BP algorithm, which is highly sensitive to initial
weights. To alleviate this issue, Palmes et al. [18] developed
a mutation-based genetic neural network, in which instead of
the BP algorithm, a scheduled mutation strategy is employed.
While in [21], Ong and Isa devised a hybrid evolutionary arti-
ficial neural network (HEANN) for simultaneously evolving
the ANN’s topology and weights. The HEANN combines a
global mutation probability with a local mutation probability
to search for the near optimal or optimal ANN architecture.
The above methods are all based on EP and emphasis on
the preservation of behavioral links between parent and child
solutions. In these methods, the crossover operators, which
recombine one part of an ANN with another part of an ANN,
may destroy both ANNs [35]. Further, although these meth-
ods can deliver better solutions as compared to hill-climbing
based methods, they generally require a large amount of time
to converge.

In order to improve the computational efficiency, hybrid
methods [37], [38], [58] that incorporate local searches into
EAs have gained popularity for designing the ANN archi-
tectures. For instance, Lu et al. [39] presented a hybrid
learning method by incorporating the BP into GA to design
ANN architectures. Similar method has also been proposed
by Nikolaev and Iba [40], in which the network struc-
ture is first determined by a genetic programming algo-
rithm and then improved by the BP algorithm. In [41],
Martinez-Estudillo er al. performed a cluster analysis to
group the ANN individuals, followed by employing the
Levenberg-Marguardt (LM) based local search to fine-tune
the best individual in each cluster. Tsai et al. [42] proposed
to incorporate the Taguchi method into a GA for designing
ANNSs. Leung et al. [43] developed an improved genetic
algorithm, which has the ability to tune the structure and
parameters of neural networks. In [59], the BP algorithm was
combined with a differential evolution (DE) algorithm for
optimizing the weights of ANN. In this method, the DE is
first used to identify promising regions of the search space.
Then, the BP method is applied to move solutions towards
the optima. In [60], Zhang et al. devised a hybrid algorithm,
called ODE-LM, in which an orthogonal differential evolu-
tion algorithm is combined with the LM method, to optimize
the weights and biases of ANN. In this method, the orthog-
onal differential evolution is employed to optimize network
weights for a certain generations. This is followed by the
LM method until a user-specified maximum number of iter-
ations being reached. In the above methods, one single local
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search is considered and applied to refine-tune the connection
weights of ANN. This, however, may not well suit to fine-tune
the entire ANN architecture and could significantly limit their
generalization ability for solving a given problem.

Apart from EAs, swarm intelligence algorithms have also
been used for designing the ANN. For example, in [64],
three variants of particle swarm optimization (PSO) algo-
rithms (i.e., basic PSO, second generation of PSO and a new
model PSO) are employed to evolve the weights, connections
and transfer functions of ANN. Yaghini ef al. [61] proposed
to combine a PSO with the BP algorithm to train ANN.
Nandy et al. [62] presented a hybridization of bee colony
algorithm with BP for training ANN. While in [63], Socha
and Blum devised a hybrid ant colony optimization method,
in which short runs of classical gradient techniques are
employed as the local search, to optimize ANN. Same as
hybrid EAs for ANN design, in these methods, one single
local search is considered and employed to refine-tune the
connection weights of ANN.

Rather than hybridizing global and local search,
an approach, which combines two global optimization
algorithms, has also been developed to design ANN. For
example, Almeida and Ludermir [44] combined evolution
strategy with PSO to form a hybrid intelligent system
for ANN design. In [45], on the other hand, a GA was
hybridized with PSO, resulting a method called HGAPSO,
for recurrent neural/fuzzy network design. In this method,
individuals in a new generation are created not only
by crossover and mutation operation as in GA but also
by PSO.

More recently, multiple local searches have been incor-
porated into EAs to solve optimization problems other than
designing the ANN architectures. In [46], Kononova et al.
designed an evolutionary framework, in which three local
searches are used for solving the inverse problem. These three
local searches are adaptively governed by a fitness diver-
sity based measure. Similarly, Caponio et al. [47] devised
two local searches with different search characteristics, pivot
rule and neighborhood, for online and offline control design
of permanent-magnet synchronous motor. In [65], Dinneen
and Wei presented a theoretical study of an adaptive MA
with two local searches (i.e., random permutation and ran-
dom complete) along with several other variants of EAs
for maximum clique problem. In [48], a multi-local search
mechanism based MA is investigated for automatic data
clustering. In this local search mechanism, three purposely-
designed local searches, each with different search features,
are employed to adaptively exploit the decision space of
data clustering. These studies have shown that MAs with
multiple local searches can lead to a better performance,
compared with one single local search based MAs. In this
paper, we introduce an adaptive multi-local search mecha-
nism to simultaneously fine-tune the number of hidden neu-
rons and connection weights of ANN architectures. To the
best of our knowledge, no such work has yet been reported
in literature.
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Algorithm 1 An Adaptive Memetic Algorithm With Rank Based Mutation for Designing ANN Architectures

Step 1: Generate an initial population of ANNs with three layers. Each ANN is encoded using the real-value representation.
The number of hidden neurons and connections are generated randomly, and the initial connection weights are also

randomly chosen in the range between -1 and 1.
Step 2:
Step 3:

Calculate the fitness value according to the fitness function for each ANN individual in the initial population.
Repeat the following steps (a) to (f) until the stopping criterion is met.

(a) Select solution pairs based on the fitness rank of the ANN individuals in population.
(b) Apply rank based mutation on each ANN individual from the best to the worst.
(c) Perform neuron splitting or merging or none of these two local searches to fine-tune the number of hidden neurons

of ANN architectures.

(d) Apply one iteration of BP algorithm to fine-tune the connection weights of ANN architectures.
(e) Calculate the fitness value for each offspring according to the fitness function.
(f) Create a new population from the individuals of previous population and their offspring.

Step 4: Output the best ANN identified.
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FIGURE 1. (a) Three-layer feedforward neural network. (b) The direct encoding scheme.

Ill. THE PROPOSED ALGORITHM
In this section, we present a memetic algorithm that combines
multi-local searches with rank based mutation (AMARM)
for designing ANN architectures. In our algorithm, multi-
local searches are employed to efficiently exploit the deci-
sion space. The adaptive choice of multi-local searches is
determined by their local search characteristics. Furthermore,
a rank based mutation strategy is introduced in our algorithm
to avoid premature convergence. Additionally, to avoid over-
fitting or uderfitting during evolution, we employ a ““sliding-
windows” based cross validation as the stopping criterion.
The evolution of the ANN architectures is terminated when
the stopping criterion is met. The output of the algorithm is
the best ANN architecture identified during evolution. The
procedure of our proposed algorithm is shown in Algorithm 1.
In the following subsection, we describe each component
of the AMARM algorithm including the representation of
solutions, fitness function, rank based mutation and stopping
criteria, while details of the proposed adaptive multi-local
search mechanism are presented in Section I'V.
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A. REPRESENTATION OF SOLUTIONS

Both binary [49] and real-value based repre-
sentations [18], [57] are commonly employed to encode the
connection weights and topology of ANNS. In a binary repre-
sentation scheme [49], an ANN is encoded by concatenation
of all connection weights, which are represented by a number
of bits. The disadvantage of binary representation lies in
the length of solution. Since the solution representing large
ANNs will become extremely long, the evolution of ANN
in turn will become inefficient. In this work, we adopt the
real-value based representation, which is able to improve the
efficiency of evolution [18], [57].

Fig. 1(a) shows a three-layer feedforward neural network
structure, which consists of one input layer, one output layer
and a set of hidden neurons employing the real-value based
representation. Each ANN structure has N;+Nj,+N, neurons,
where N;, N, and N, are the numbers of input, hidden, and
output neurons, respectively. The maximum number of hid-
den neurons Np,,,, allowable in the ANN is a user-specified
parameter, whereas the number of input and output neurons
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is problem dependent. Here, the dimensional vector H repre-
sents hidden neurons of a particular ANN, whose values are
binary entries indicating the existence of these neurons.

Fig. 1(b) shows a sample of the neuron vector and two
weight matrixes, which represents the architecture of three-
layer-feedforward neural network. The matrix W; denotes
connection weights, which is from the input layer to hidden
layer, while the matrix W, denotes connection weights, which
is from the hidden layer to output layer. The advantage of
such an encoding scheme is that it supports implicitly both
topology evolution and weight adaption. A zero entry in the
neuron vector indicates that the particular neuron does not
exist.

B. FITNESS FUNCTION

The fitness function in the proposed algorithm considers
three criteria: training error (f;), network complexity (f;) and
classification error rate on the validation set (f,), optimizing
of which aims to obtain compact NN architectures with good
generalization capability. Specifically, the fitness function
can be written as:

F=a xXfi+a xf+a3xfe (1

where aj, ap and a3 are user-defined parameters with
values between 0 and 1. The training error (f;), net-
work complexity (f;) and classification error rate (f,) are
defined as:

P N
fi 1OOXMZZ(E—O,~)2 @

NP i £
j=1 i=1

C

= 3
Je= G
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— (- 4
Je=( ot ) “

where O,,,,x and O,,,;,, are the maximum and minimum values,
respectively, of output coefficient. N and P are the number
of output neurons and training patterns, respectively. 7; and
O; are the target and network output, respectively. For three-
layered feed-forward architectures, the value of C,,, is set
based on the size of its input, output as well as the user-
specified maximum number of hidden neurons. Specifically,
Crot = N Npmax +Ny,,..xNo- The network complexity is mea-
sured using the equation (3) in term of the ratio between active
connections C and total number of possible connections Cy;.
The percentage error of classification on the validation set
is calculated using equation (4). Note that the lower fitness
value indicates a fitter individual.

In the above fitness function definition, the term f. is
used to penalize large networks while the f, is employed to
alleviate the issue of overfitting by minimizing the term f;
alone. The user-defined constant aj, a and a3z are used to
control the significance of three terms for fitness calcula-
tion and they are experimentally set to be 1.0, 0.1 and 0.3,
respectively.
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C. RANK-BASED MUTATION

During the evolution of ANN architectures, the mutation is
regarded as a major operation to explore decision spaces.
Existing EA based methods for designing ANN architectures
are usually based on the mutation operation with a fixed
probability. This, however, may not be capable of effectively
exploring the solution space, thus leading to premature con-
vergence. Here, we present a rank based mutation strategy,
in which the probabilities of mutation operation are set based
on both the individuals’ fitness as well as their fitness ranks in
the population. Specifically, in our strategy, the individual’s
fitness rank is used to adapt its mutation probability. While,
the individual’s fitness is used to penalize the severity of its
mutation probability. The idea is to assign smaller mutation
probabilities for exploiting the search space around fitter
individuals and larger mutation probabilities to the worse
individuals for exploring the search space. Hence, such a
mutation strategy can properly maintain the balance between
the exploration and exploitation of search space, thus help
avoid premature convergence during evolution. Based on the
above idea, the mutation probability for each individual in the
population is computed as:

% )
O]

where Py, and P,,,, are the minimum and maximum muta-
tion probability, respectively. Here, r = (rank(i)—1)/(m—1),
m is the size of the population and rank(i) is the fitness rank of
individual 7 in the current population. In the equation, r = 0
implies that the best individual has the minimum mutation
probability, while » = 1 implies that the worst individual
has the maximum mutation probability. Fy,. is the average
fitness value of the population at the current generation and
F (i) denotes the fitness value of i individual in population.
The penalty term Fiy/F (i) is used to normalize the indi-
vidual’s mutation probability. If the individual’s fitness is
larger than the average fitness, its mutation probability will
be reduced. Otherwise, the individual’s mutation probability
will be increased.

P; = Puin + (Pax — Pmin) X 17 X

D. STOPPING CRITERION

Terminating the evolution at an appropriate time is also essen-
tial. A “sliding-windows” based cross validation method
has been used as the stopping criterion in our work. In this
method, the training data is split into training and validation
sets in a certain proportion. The classification error rate on
the validation set is then used to terminate the evolutionary
process, with the purpose to avoid the evolved ANNs losing
its generalization. At the end of every S-generation (i.e.,
sliding-window), the generalization loss (GL) is computed as:

E,+1

GL = 100 x ( -
Eopr + 1

Y (6)

where E,, and E,, denote the validation error rates of the
fittest ANN at the current generation and the fittest ANN
identified so far during evolution, respectively.
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In our stopping criterion, a stopping counter 7 with an
initial value of zero is used to flag the stopping signal.
Once the stopping counter 7" is larger than a user-defined
constant, the evolutionary process terminates. Specifically,
the procedure of stopping criterion is implemented as follows.
During evolution, at the end of every S-generation, the GL
value is calculated. If GL > 0 is obtained, which means
overfitting may appear in the population, then the stopping
counter 7" increases by one. Since GL > 0 could be caused by
premature convergence, terminating the evolutionary process
based solely on the GL may not be appropriate in such a
situation. To deal with this circumstance, we allow the evo-
lution to continue for a few extra S-generations (i.e., sliding-
window) until the stop counter T is larger than a user-defined
constant. During the extra S-generations, if the best ANN in
the population can be improved further, then the stopping
counter 7 is reinitialized to zero and the present best ANN
is updated. This process repeats until the stopping criterion
is met. At the end of evolution, the best ANN with lowest
classification error on the validation set is selected as the
output.

IV. ADAPTIVE LOCAL SEARCHES

EAs are capable of exploring promising regions of the search
space. However, they are not well suited to fine-tune solutions
and usually require a large amount of time to locate the optima
in a region of convergence [50]. To improve the time effi-
ciency, incorporation of local searches into the regeneration
steps of EAs, creating the so-called MAs [25], is essential.
In this section, we present three local searches to design a MA
for simultaneously fine-tuning the number of hidden neurons
and connection weights of ANN architectures.

A. NEURON MERGING, NEURON SPLITTING, AND
ADAPTIVE STRATEGY
In this subsection, we first introduce two local searches, neu-
ron merging and splitting. Neuron merging is based on prun-
ing algorithms, which start with an oversized network and
then delete unnecessary neurons if necessary during training.
On the other hand, neuron splitting is based on constructive
algorithms that do the opposite by adding new neurons to
a minimal network. Then, an adaptive strategy is given for
employing these two local searches to refine the number of
hidden neurons.

The two local searches are employed to merge or split the
hidden neurons, whose significance is calculated as:

w32
o — . —l']
Pi=0itBY T ™
y

where 0; is the standard deviation computed based on the
outputs of /" neuron on the training set. Wi; is the connection
weight from neuron j to i, while S is a user-defined constant.

The significance p; is based on the variation of hidden
neurons’ output and weight decay. A smaller value of p;
means the i’ hidden neuron is less significance. If the value d;
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is close to zero, the i hidden neuron almost delivers constant
information to output neurons, thus unable to distinguish dif-
ferent training examples. In other words, the characteristics of
such a hidden neuron become redundant. The weight decay
is used to alleviate the problem of noisy pattern, with the
purpose of improving the ANN’s capability to deal with noisy
data.

The neuron merging local search works by choosing two
insignificant hidden neurons whose value of p; are lowest,
then merging them into one new hidden neuron. Suppose to
merge two neurons 4, and Ay, the input and output connection
weights of the new neuron A, are set using the following
equations:

W’"’:M’ i=1,2,...p (8)
ijZW]a+W]b» j=]727"'q (9)

where p and g are the number of neurons in input and output
layers, respectively, of the ANN. The weights w,; and wp;
are i input connection weights of h, and hy, respectively,
while wj, and wy;, are the 7™ output connection weights. The
weights wy,; and wiy, are the i input and j output connection
weights, respectively, of Ay,.

The neuron splitting local search works by first choosing
an existing hidden neuron, which has the highest value of p;.
The selected hidden neuron is then split into two new hidden
neurons. The two newly generated neurons have the same
number of weight connections as their parents. The weight
connections of new neurons are computed as:

wh=(1+0)xw (10)

wr=—0xw (1)
where w is the weight of existing neuron, w! and w? are the
weights of the two generated neurons. The value of 6 should
be within a small range to avoid a large change in the existing
network’s functionality.

Neuron merging reduces the network size by pruning
redundant hidden neurons. This local search encourages de-
correlation among hidden neurons in ANN architectures and
helps reduce the amount of training epochs for the mod-
ified ANN architectures. On the other hand, the neuron
splitting operation increases the network size by splitting
one existing hidden neuron. This operation can increase
the information processing capacity while preserving the
behavioral link between the parent and offspring ANNs.
The above two local searches generate local improvements
by merging redundant hidden neurons or splitting signifi-
cant hidden neurons in ANN architectures, thus speeding
up the search process of identifying the proper number
of hidden neurons in ANN architectures. Note, these local
searches improve the solutions from rather different aspects
and they should not be simultaneously used on the same
individual.

To appropriately use these two local searches during evolu-
tion, an adaptation strategy is then devised. Before describing
the strategy, we first introduce a criterion used for the local
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TABLE 1. Characteristics of the six benchmark classification problems.

Data sets Input Output No. of training No. of validation No. of testing
variables class examples examples examples

Iris 4 3 75 38 37
Wine 13 3 89 45 44
Diabetes 8 2 384 192 192
Card 14 2 345 173 172
Blood 4 2 374 187 187
Glass 9 6 107 54 53

search selection. In many constructive algorithms [9], [10],
the criterion E(t) — E(t + 1) < & is typically used to
test the neuron addition. However, when using such a cri-
terion the number of hidden neurons in the ANN architec-
tures is usually unknown beforehand. Furthermore, in order
to search for a near optimal or optimal ANN architecture,
we encounter a situation where the processing information
of ANNs depends largely on the number of hidden neu-
rons. Hence, we introduce a criterion by adding a penalty
term (kK — 1)/(Npmax — k) into the traditional criterion, as
follows:

E@—-EC+ 1) xk—=1/Npmax —k) <& (12)

where E(¢) and E(t 4+ 1) are the classification error rates on
training set at ¢ and ¢ + 1 generation, respectively. Here, k
is an input variable denoting the number of hidden neurons
in ANN architectures at t + 1 generation and ¢ is a user-
specified parameter, which is set to be 0.05 in this work. The
resulting criterion considers relation between the number of
hidden neurons and processing information capability of the
ANN architecture. If there are many hidden neurons in ANN
architectures, the neuron addition will be given a large penalty
for preventing neuron addition, thus obtaining a compact
ANN architecture. Based on the above criterion, our devised
adaptive strategy works as follows: For each individual, when
the above criterion is satisfied during evolution, the neuron
splitting operation will be applied on the individual. On the
other hand, if more than two hidden neurons whose p; values
are found to be close to zero and the value of above criterion
is greater than ¢, then the neuron merging operation will be
activated. Otherwise, neither of these two local searches will
be employed, since both of them become ineffective for the
individuals.

B. BP ALGORITHM

Next, we introduce a local search, which is employed to fine-
tune the connection weights of ANN architectures. When
ANN architectures are modified by a local search such as
neuron merging or splitting, the weight training then becomes
an important issue [10], [S1]. To address this issue, the BP
algorithm [52] has been further employed. BP algorithm is an
iterative algorithm for optimizing connection weights by min-
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imizing the sum squared error (SSE) criterion. Generally, as a
local search, intensive application of the BP algorithm will
lead to the problem of noisy fitness evaluation. In addition,
this algorithm could consume a large amount of time. Here,
one iteration of BP algorithm has thus been used as the third
local search to fine-tune connection weights of ANN archi-
tectures, after performing either neuron merging or splitting
or none of these two local searches. Such a local search can
exploit the search space from a different but complementary
perspective that offered by the neuron merging or splitting
local searches. These three local searches can cooperate for
the common goal of identifying the optimal or near optimal
solution.

V. EXPERIMENTS

In this section, we evaluate the performance of proposed
algorithm and compare it with related work on six benchmark
classification problems [53], which have been the subject of
many studies in the field of ANNs and machine learning.
These six problems have various numbers of input attributes,
output class and data patterns, which are summarized in
Table 1. To illustrate the capability of our proposed algorithm
for ANN design, we first examine the significance of multi-
local search mechanism. Then, the impact of rank based
mutation is investigated. Finally, we compare the proposed
method with related methods. Unless otherwise stated, all
simulations of the results were averaged over 50 independent
runs. The test error rate (TER) refers to the percentage of
classification error produced by the evolved ANNs on the
testing set. The “epochs” reported in this work is the total
number of fitness evaluation taken by the algorithm.

A. EXPERIMENTAL SETTINGS

In this work, we conduct experiments in accordance with
benchmarking methodologies, which have been popularly
employed in previous studies [17], [18], [21]. The data set
of each problem is partitioned into three sets based on the
partition rule used in [54]. The training set is used for training
and modifying ANN architectures. While the validation and
testing sets are used for terminating the training process and
measuring the generalization ability of an evolved ANN,
respectively. The number of examples in these subsets is
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TABLE 2. Parameter setting of the proposed method.

Description

Setting

Njmax (Maximum number of hidden neurons allowable in ANN architectures)

Nima=10

ay, a; and a; (constants used to control the strength of three terms in fitness function)

a1=1, a2=0.1 and L13=0.3

P, and P, (minimum and maximum of the mutation probability)

P,,=0.01, P,,,,=0.05

S and T (interval generation of sliding-window and the maximum stopping counter,

respectively, used in the stopping criterion) §=5,1=3

B (coefficient of weight decay) $=0.01

6 (coefficient of weight of new hidden neurons) 6=0.01

€ (error threshold used in neuron merging or splitting) £=0.05
M (population size) M=100

The learning and momentum rates used in BP algorithm. 0.1,0.8

TABLE 3. Comparing the performance of AMARM and its variants on six benchmark classification problems.

Problems Algorithms Connections (Std. Dev.) Epochs (Std. Dev.) TER (Std. Dev.)
AMARM 26.42(7.08) 6637.5(364.5) 1.64(1.16)
Iris AMARM_1 28.42(7.35) 9916.5(996.0) 1.67(1.71)
AMARM_2 29.75(4.56) 7100.6(453.0) 2.07(1.32)
AMARM_3 29.50(9.83) 8916.5(194.5) 1.69(1.21)
AMARM 70.75(10.99) 9937.5(495.5) 2.56(1.06)
Wine AMARM_1 66.35(9.62) 11328.6(519.2) 3.64(1.32)
AMARM_2 75.30(11.61) 10126.8(358.4) 3.31(1.25)
AMARM 3 72.19(10.29) 13684.0(462.9) 3.17(1.09)
AMARM 69.55(11.91) 5772.5(410.0) 13.79(1.67)
Card AMARM_1 57.33(25.39) 9543.0(838.5) 15.36(1.29)
AMARM 2 64.33(12.44) 9541.5(144.5) 14.73(0.72)
AMARM_3 81.92(14.41) 8208.5(334.5) 14.05(0.55)
AMARM 80.23(11.84) 12231.0(483.5) 21.19(1.07)
Diabetes AMARM_1 38.75(4.39) 15458.5(689.0) 21.70(2.43)
AMARM_2 43.75(10.04) 13833.5(589.0) 21.31(1.28)
AMARM_3 52.58(19.16) 11791.5(534.5) 21.96(1.99)
AMARM 44.29(4.46) 4956.0(451.0) 12.75(0.80)
Blood AMARM 1 46.74(6.41) 8966.5(637.4) 14.39(2.56)
AMARM_2 45.35(6.29) 6954.4(622.9) 13.44(1.37)
AMARM 3 39.66(4.23) 6336.1(563.9) 12.94(1.43)
AMARM 85.74(10.73) 9890.2(655.5) 44.45(3.23)
AMARM_1 129.04(11.35) 12692.3(723.2) 63.91(3.32)
Glass AMARM_2 103.66(12.28) 11965.9(839.5) 60.25(4.62)
AMARM_3 92.95(10.58) 12118.3(685.3) 55.21(3.16)

shown in the Table 1. The input attribute values of all prob-
lems are normalized within O and 1 using a linear function.
The output attributes of all problems are encoded using a
1-of-m output representation for the m classes. We employ
the logistic and softmax activation functions for hidden and
output layers, respectively. The output class is obtained using
the winner-take-all strategy. Table 2 shows the setting of
parameters of the proposed algorithm. These values are set
based on preliminary runs of the proposed algorithm, they
are not meant to be the optimal values.
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B. EFFECT OF MULTI-LOCAL SEARCHES

We first examine the significance of multi-local searches in
the proposed algorithm. For this purpose, we
implement a set of experiments and compare the proposed
algorithm (AMARM) with its three variants: AMARM incor-
porates no multi-local searches (denoted as AMARM_1),
AMARM incorporates the BP algorithm for partial training
(denoted as AMARM_2) and the iteration number of par-
tial training is set to be 20, AMARM incorporates partial
training, neuron merging and neuron splitting as the local
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FIGURE 2. Comparison of the classification error on validation set between AMARM_1 and three variants of EANN on two classification

problems: (a) card data and (b) diabetes data.

searches (denoted as AMARM_3). To make a fair compar-
ison, AMARM and its variants are compared using the same
parameter settings.

Table 3 shows the results of AMARM and its variants on
six benchmark classification problems. The results clearly
show the significance of multi-local searches in the proposed
algorithm. The average TER achieved by AMARM is lower
than that of its variants on the six problems to be tested.
For example, on the Wine problem, the AMARM delivers an
average TER of 2.56 while the three variants (AMARM_1,
AMARM_2 and AMARM_3) give 3.64, 3.31 and 3.17,
respectively. The AMARM_1 can easily be trapped into local
optima, with high TER values. The AMARM_2, which incor-
porates the BP algorithm for partial training to optimize the
connection weights, helps to locate a near optimal ANN.
However, the partial training may cause the noisy fitness
evaluation problem. As a result, the AMARM_2 has a worse
performance in terms of the TER than AMARM. For the
AMARM_3, although it can generally achieve lower TERs
on the six problems compared with the other two AMARM
variants, this algorithm still suffers from the noisy evaluation
problem on diabetes data set, thus resulting in the worst TER.

Moreover, it can also be observed that AMARM is effi-
cient. AMARM_1, incorporating no local searches, takes a
large amount of time to locate the optima in a region of con-
vergence. Both AMARM_2 and AMARM_3 are faster than
AMARM_1. However, employing one single local search in
AMARM_2 and multiple local searches without cooperation
in AMARM_3 is not well suited for optimizing the ANN
architectures. By employing neuron merging or neuron split-
ting followed by the one iteration of BP algorithm as local
searches, the AMARM is generally able to quickly identify
proper solutions.

C. EFFECT OF RANK BASED MUTATION

Then, we evaluate the impact of rank based mutation in
the proposed algorithm. For this purpose, we perform a set
of experiments and compare the AMARM without local
searches (denoted as AMARM_1) with three variants of evo-
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TABLE 4. The parameter settings of the six methods to be compared.

Method Description Value
Mutation rate 0.03
EPNet Learning rate 0.1
Momentum rate 0.8
Local mutation rate 0.02
Local step size of weight mutation rate 2
HEANN -
Global mutation rate 0.02
Global step size of weight mutation rate 2
MGNN-ep Range of scheduled mutation rate [0.01, 0.05]
Mutation rate in GA 0.1
Crossover rate in GA 0.5
HGAPSO Learning parameters c1, c2 in PSO 1,1
Control parameter X in PSO 0.8
Crossover rate 0.1
No. of sub-populations 2
No. of individuals in each sub-population 50
XLcC Local search interval 1
Local search intensity 10
No. of individuals in local search 10
population
Learning rate 0.1
DE-BP Momen.tum rate 0.8
Mutation rate 0.01
Crossover rate 0.1

lutionary artificial neural network (EANN): EANN_1 with
a fixed mutation probability of 0.01, EANN_2 with a fixed
mutation probability of 0.03 and EANN_3 with fixed muta-
tion probability of 0.05. The Card and Diabetes problems,
which have different degree of difficulty for classification, are
used as the examples for testing. The same parameter settings
are used for all algorithms for comparison.

Fig. 2 shows the average classification error of
AMARM 1 and the three EANN variants on the Card and
Diabetes problems. During the run of four algorithms, it can
be observed that the classification error of solutions of all four
algorithms reduces significantly at the early stage of evolu-
tion. However, EANN_1 and EANN_2 can be easily trapped
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TABLE 5. Comparison of AMARM, EPNet, HEANN, MGNN-ep HGAPSO, XLCC, and DE-BP on six benchmark classification problems.

Problems Algorithm Connections (Std. Dev.) Epochs (Std. Dev.) TER (Std. Dev.)
AMARM 26.42(7.08) 6637.5(364.5) 1.64(1.16)
EPNet 37.42(6.14) 22345.2(829.1) 2.77(2.30)
HEANN 30.36(8.75) 17336.1(851.6) 1.17(1.19)
Iris MGNN-ep 43.72(8.19) 37860.3(939.8) 3.68(1.80)
HGAPSO 30.81(5.92) 26731.4(852.1) 3.26(1.90)
XLCC 30.94(6.10) 19375.2(758.6) 2.41(2.11)
DE-BP 29.8(5.40) 22351.9(732.4) 2.33(1.44)
AMARM 70.75(10.99) 9937.5(495.5) 2.56(1.06)
EPNet 89.48(11.46) 84214.0(819.7) 5.04(1.30)
HEANN 55.42(11.10) 12838.3(817.5) 3.06(1.18)
Wine MGNN-ep 129.70(32.19) 41920.4(991.7) 3.68(1.21)
HGAPSO 106.2(13.1) 31821.1(812.9) 3.14(1.15)
XLCC 82.1(17.1) 23566.0(735.5) 2.88(1.32)
DE-BP 79.6(12.2) 33497.5(814.0) 3.09(1.10)
AMARM 69.55(11.91) 5772.5(410.0) 13.79(1.67)
EPNet 90.25(13.10) 59512.1(1031.5) 16.52(1.30)
HEANN 66.40(11.73) 24941.5(831.6) 14.27(0.84)
Card MGNN-ep 113.82(22.51) 42153.1(872.2) 14.94(1.24)
HGAPSO 93.17(18.32) 39213.8(891.0) 15.73(1.03)
XLCC 86.44(13.27) 26884.2(736.2) 14.05(1.10)
DE-BP 89.40(14.90) 31294.7(812.9) 14.67(1.08)
AMARM 80.23(11.84) 12231.0(483.5) 21.19(1.07)
EPNet 73.85(13.37) 81689.2(946.3) 24.57(1.90)
HEANN 67.56(11.32) 40404.0(835.5) 21.33(1.68)
Diabetes MGNN-ep 91.80(11.92) 56436.9(875.9) 23.06(1.21)
HGAPSO 121.80(14.84) 48198.1(873.8) 23.89(1.99)
XLCC 98.43(13.18) 31967.6(732.4) 21.96(1.22)
DE-BP 92.70(12.53) 42367.6(824.1) 23.19(1.16)
AMARM 33.29(4.46) 4956.0(451.0) 12.75(0.80)
EPNet 41.86(3.73) 62456.1(892.9) 13.44(0.90)
HEANN 22.04(7.26) 20318.0(818.5) 13.84(0.86)
Blood MGNN-ep 31.29(5.91) 38525.1(856.3) 14.23(0.81)
HGAPSO 42.31(4.91) 35982.9(813.5) 13.98(0.91)
XLCC 39.56(5.11) 24619.2(768.8) 13.82(1.13)
DE-BP 38.16(5.11) 31851.5(806.4) 13.56(1.33)
AMARM 85.74(10.73) 9890.2(655.5) 44.45(3.23)
EPNet 102.90(16.61) 93625.4(918.5) 52.12(2.93)
HEANN 91.17(11.70) 51328.1(883.1) 55.14(3.08)
Glass MGNN-ep 114.1(12.20) 58319.7(894.8) 49.1(3.32)
HGAPSO 119.90(13.80) 51948.2(903.8) 46.9(3.91)
XLCC 98.68(12.79) 35973.9(762.5) 53.21(4.03)
DE-BP 102.90(11.20) 41574.0(765.9) 50.39(3.68)

into local optima. EANN_3 can explore the solution space
more effectively than EANN_1 and EANN_2 but fail to focus
on promising optima due to the large mutation probability.
By employing rank based mutation, AMARM_1 can achieve
the best performance among the four algorithms. During
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the evolutionary process of AMARM_1, different mutation
probabilities are applied to different individuals depending on
their fitness values and ranks. The best individual has a small
mutation probability for exploiting the local optima, while
the worst individual is assigned with the largest mutation

VOLUME 5, 2017



W. Sheng et al.: Adaptive Memetic Algorithm With Rank-Based Mutation for ANN Architecture Optimization

IEEE Access

probability to explore the space. As a result, the solution
space could be appropriately searched, thus avoid premature
convergence. Similar results can also be found on the rest of
data sets.

D. COMPARISON WITH RELATED WORK

Finally, we compare the proposed algorithm with related
methods (i.e., EPNet [17], HEANN [21], MGNN-ep [18],
HGAPSO [45], XLCC [66] and DE-BP [59]), which use
different strategies for designing ANN architectures. Before
discussing the comparative results, we first briefly describe
the methods to be compared. The EPNet [17] is based on
EP, which focuses on evolving ANNs’ behaviors. In this
method, five mutation operators as well as partial training are
employed for closing behavioral links between parents and
their offspring. The HEANN is based on a hybrid evolution-
ary algorithm, which emphasizes on the balance of global and
local search during evolution. This method introduces a novel
mutation technique for adapting the mutation probability as
well as the step size of weight perturbation. The MGNN-ep
is an ““invasive” approach that is based on the EP with a
scheduled mutation probability for evolving ANNs. The
HGAPSO is a hybrid method that combines GA with par-
ticle swarm optimization (PSO). In this method, a GA is
firstly applied to reproduce solutions individuals, and then
the upper-half of best individuals are regarded as elites and
further enhanced by PSO. The XLCC is also a hybrid method,
in which a crossover-based local search is incorporated with
a cooperative coevolution framework to train ANNSs. In this
method, the local search is applied according to a user-
specified intensity for evolving a population called local
search population and the best individual in which will be
transferred to the sub-populations in cooperative coevolution
after every user-specific local search interval. The DE-BP,
on the other hand, combines the DE with BP algorithm for
optimizing ANNSs. In this method, the DE is first employed to
identify promising regions of the search space. Then, the BP
algorithm is applied to move solutions towards the optima.

To make the comparison fair and meaningful, the same
population size (i.e., 100) and termination criterion is used
for all methods to be compared. Other parameter values of the
six methods are specified or chosen according to the original
source papers for the best performance. The details of the
parameter settings are listed in Table 4.

The results are summarized in Table 5, which show that
the AMARM generally outperforms related methods to be
compared. Compared with HGAPSO, XLCC and DE-BP,
AMARM has a significantly better performance in terms of
the TER, network complexity and number of epochs on all
data sets. For example, on the Blood problem, the AMARM
takes 4956.0 epochs by average to deliver ANNs with an
average TER and network complexity of 12.75 and 33.29,
respectively. By contrast, the XLCC requires 24619.2 epochs
to obtain ANNs with an average TER and network complex-
ity of 13.82 and 39.56, respectively. Compared with EPNet
and MGNN-ep, AMARM also has a better performance
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TABLE 6. Comparison of AMARM with ODB and VNP on six benchmark
classification problems.

No. of hidden

Problems Algorithm neurons TER
AMARM 2.67 1.64

Iris OBD 4.20 191
VNP 2.25 2.18

AMARM 6.93 2.56

Wine OBD 7.06 5.03
VNP 5.72 5.26

AMARM 6.88 13.79

Card OBD 6.32 16.21
VNP 4.51 15.79

AMARM 8.23 21.19

Diabetes OBD 13.4 32.30
VNP 8.09 31.51

AMARM 3.82 12.75

Blood OBD 5.74 15.47
VNP 3.44 14.83

AMARM 8.72 44.45

Glass OBD 10.21 60.21
VNP 9.13 58.37

on all data sets, except the EPNet on Diabetes data and
MGNN:-ep on Blood data in term of network complexity.
Compared with HEANN, AMARM achieves lower TERs
on five out of six data sets to be tested and can be more
efficient to do so. The better performance of AMARM is
mainly due to the employment of multi-local search and rank
based mutation mechanisms.

Moreover, two classical pruning based methods for ANN
architecture design, i.e., Optimal Brain Damage (ODB) [12]
and Variance Nullity Pruning (VNP) [13], have been con-
sidered for comparison. The results are reported in Table 6,
which show that AMARM significantly outperforms ODB
and VNP in term of average TERs on all six problems. For
instance, the AMARM achieves an average TER of 21.19 on
the Diabetes problem while the OBD and VNP give 32.30 and
31.51, respectively. In term of average number of hidden
neurons, AMARM can deliver more compact architectures
than ODB and has comparable performance to VNP. In term
of time efficiency, AMARM requires far more training time
than ODB and VNP.

VI. CONCLUSIONS

This paper presents an adaptive memetic algorithm with rank
based mutation for designing well-generalized ANN archi-
tectures. In the proposed algorithm, we present multi-local
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searches, each has different search characteristics, to simulta-
neously and complementally fine-tune the number of hidden
neurons and connection weights. Further, an adaptive strategy
is devised to promote competition and corporation among the
local searches for exploiting the search space. In addition,
a rank based mutation strategy is introduced to avoid prema-
ture convergence. Extensive experiments have been carried
out to evaluate the performance of proposed algorithm and
compared with related methods. The results show that our
method is capable of delivering compact ANN architectures
with good generalization ability and generally outperforms
related methods to be compared.

There are several directions in which this work can be
extended further. Firstly, it is desirable to dynamically control
the parameters of AMARM during evolution to improve its
performance further. Secondly, it would also be interesting
to employ and test other adaptation strategies such as sub-
problem decomposition [55] and biased roulette wheel [56]
for selecting and applying multiple local searches. In addi-
tion, a population of ANNs contains more information than
a single ANN, applying the proposed algorithm to evolve
neural network ensembles could also be carried out in the
future.
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