
A Sensor Activation Approach to
Energy-Conserving Distributed Kalman Filtering for

Wireless Sensor Networks
Jiahao Song1, Zidong Wang2, Chen Gao1, and Xiao He1

1Department of Automation, Tsinghua University, Beijing 100084, China.
2Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, U.K.

Emails: songjh20@mails.tsinghua.edu.cn, Zidong.Wang@brunel.ac.uk, gaochen@tsinghua.edu.cn, hexiao@tsinghua.edu.cn

Abstract—In this paper, the distributed Kalman filtering prob-
lem is investigated for a class of wireless sensor networks. Apart
from achieving the desired estimation performance, enhancing
energy efficiency is also considered as one of the design objectives.
A novel sensor activation scheme is proposed to determine when
to temporarily shut down the sensors to conserve energy. The
influence of the sensor activation scheme is analyzed while
designing the filter gains. A greedy strategy for sensor activation
is designed to guarantee that error covariances are restricted
below covariance levels. Finally, the effectiveness of the proposed
approach is verified through a simulation experiment.

Index Terms—Distributed Kalman filtering, State estimation,
Recursive estimation, Wireless sensor network, Sensor activation

I. INTRODUCTION

The past few decades have witnessed a surge in application
demands for wireless sensor networks (WSNs) in various
scenarios, including environmental monitoring, power moni-
toring, process automation, target tracking, and so on [1]–[5].
WSNs are generally deployed with distributed architectures,
where sensors can not only acquire measurement data and
obtain local estimations but also communicate with each other.
Applying WSNs in control systems brings the advantages of
reducing overall costs, alleviating the computational burden,
and enhancing robustness [6], [7], thus improving the perfor-
mance and efficiency of the entire system.

Distributed state estimation over WSNs is a fundamental
research topic that has attracted much attention [8], [9]. So
far, most previous studies have focused only on estimation
accuracy, regardless of the energy efficiency of sensors, which
inevitably increases energy costs and accelerates the depletion
of the remaining useful life of sensors. To tackle this prob-
lem, recent studies have attempted to reduce the amount of
transmitted data by neglecting unimportant measurement data.
This line of work includes state estimation with event-triggered
transmission [10], [11], state estimation using sensors with
energy harvesting mechanisms [12], [13], state estimation with
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random sensor activation [14]–[16], partial-nodes-based state
estimation [17], and so on.

The purpose of energy conservation is to reduce energy
costs and prolong the lifespan of sensors, where the key
lies in reducing the energy consumption of the most energy-
consuming part in WSNs. In some cases, the sensing process
is the most energy-consuming. For instance, image capturing
requires a significant amount of energy to convert light into
digital data [18]. Radars and ultrasonic sensors emit signals
with high energy before obtaining the measurement [19].
Compared with such sensing processes, the energy cost of
data processing and data transmission is relatively low. Under
such circumstances, deactivating the sensors from time to
time while maintaining communication between sensors is a
straightforward and effective way to conserve energy in WSNs.

Distributed Kalman filtering is one of the most popular state
estimation approaches for minimum variance estimation. This
approach is highly scalable and can be employed to address
challenges arising from complex system dynamics and uncon-
ventional measurements [20]–[22]. Therefore, the distributed
Kalman filtering method would be a promising choice to tackle
the state estimation problem with sensor activation. Some
preliminary studies have been conducted on stochastic sensor
activation in recent years [14], [15]. Nevertheless, the design
of sensor activation schemes for energy conservation has not
been adequately investigated. To fill in this gap, there is an
urgent need to design a sensor activation scheme concerning
both estimation accuracy and energy efficiency.

Motivated by the above discussions, this paper aims to
investigate the design of sensor activation schemes to reduce
the energy consumption of the measurement process while
guaranteeing the precision of state estimation. The contribu-
tions of this paper are highlighted as follows: i) the influence
of the sensor activation on the error covariance is analyzed
theoretically; and ii) an energy-conserving distributed Kalman
filtering method is designed to achieve a balance between
energy consumption and estimation accuracy.

The organization of the rest of this paper is as follows. The
problem formulation is given in section II. In Section III, we
design the optimal filter gains, the suboptimal filter gains, and
the sensor activation scheme. A simulation example is given
to verify the effectiveness of the proposed method in Section
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IV. Finally, conclusions are drawn.

II. PROBLEM FORMULATION

Consider the following linear discrete time-invariant system
observed by a WSN with N spatially distributed sensors:

x (s+ 1) =Fx (s) + w (s) , (1)
yi (s) =qi (s) (Hix (s) + vi (s)) (2)

where s indicates the time instant in the discrete-time system,
x (s) ∈ Rn indicates the state vector at time instant s, yi (s) ∈
Rmi (i ∈ {1, 2, · · · , N}) represents the measurement provided
by the ith sensor at time instant s, w (s) is the process noise,
and vi (s) is the measurement noise. F ∈ Rn×n and Hi ∈
Rmi×n are known constant matrices.

In a WSN with a sensor activation scheme, some sensors
are deactivated at each time instant to save energy and prolong
the lifespan of sensing components. To model such a scenario,
in (2), a scalar variable qi (s) ∈ {0, 1} is introduced, where
qi (s) = 1 indicates that the ith sensor is activated at time
instant s, and vice versa [14], [15]. The value of qi is
dependent on engineering practice and is assumed to be known
to the state estimator at each time instant.

For state estimation via the WSN, it is assumed that each
sensor is equipped with a local state estimator. Communication
between neighbors via the sensor network is possible for each
local state estimator. To keep track of the system state, it
is further assumed that all local state estimators are always
working, unlike the sensors. A state estimator updates its
local state estimation not only by measurements provided by
the corresponding sensor but also by information about state
estimation received from neighbors.

To address the state estimation problem, the distributed
Kalman filtering method is considered in this paper. The local
state estimator of the ith sensor can be constructed as follows:

x̂i (s|s− 1) =Fx̂i (s− 1|s− 1) , (3)
x̂i (s|s) =x̂i (s|s− 1)

+Ki (s) (yi (s)− qi (s)Hix̂i (s|s− 1))

+
∑
j∈Ni

Lij (s) (x̂j (s|s− 1)− x̂i (s|s− 1)) ,

(4)

where x̂i (s|s− 1) and x̂i (s|s) are the prediction and the
estimation of x (s) acquired at time instant s, respectively. Ni

stands for the indices of all neighbors of the ith state estimator.
Furthermore, we assume that the topology of the WSN is
represented by an undirected graph G with an adjacency matrix
G ≜ [gij ], where gij = 1 if the ith state estimator and the jth
state estimator can receive data from each other.

Assumption 1: w (s) and vi (s) are mutually independent
Gaussian noises, which have zero mean and covariances
E
[
w (s)wT (l)

]
= δslQ and E

[
vi (s) v

T
j (l)

]
= δijδslRi. The

initial state x (0) with known mean µ0 and covariance P0 is
uncorrelated with the noises w (s) and vi (s).

Remark 1: Assumption 1 is typical for Kalman filtering. The
information about the topology of G will be used when de-
signing the state estimator without relying on any assumption
on the connectivity.

The prediction error and the estimation error of the ith state
estimator are defined as

x̃i (s|s− 1) ≜x (s)− x̂i (s|s− 1) , (5)

x̃i (s|s) ≜x (s)− x̂i (s|s) (6)

and the error covariances of the ith state estimator are then
defined as

Pi (s|s− 1) ≜E
[
x̃i (s|s− 1) x̃T

i (s|s− 1)
]
, (7)

Pi (s|s) ≜E
[
x̃i (s|s) x̃T

i (s|s)
]
. (8)

Since obtaining measurements is sometimes energy con-
suming, we aim to reduce energy consumption by setting
qi (s) = 0 for certain sensors at some time instants. The state
estimation performance is ensured by restricting

tr {Pi (s|s)} ⩽ Ji,

where Ji (i ∈ {1, 2, · · · , N}) are pre-defined covariance
levels. Detailed discussion on appropriate choices of Ji will
be made in Section III.

III. MAIN RESULTS

A. Design of Optimal Filter Gains

Theorem 1: The optimal filter gains for the ith state estima-
tor minimizing tr {Pi (s|s)} are as follows:

L̄∗
i (s) =

(
In − qi (s)Pi (s|s− 1)HT

i Mi (s)Hi (s)
)

×Gi (s)
[
ĪiPi (s|s− 1) ĪTi − ĪiP̄i (s|s− 1)

− P̄T
i (s|s− 1) ĪTi + Ξ̄i (s|s− 1)

−qi (s)G
T
i (s)HT

i Mi (s)Hi (s)Gi (s)
]−1

,

(9)

K∗
i (s) =

(
Pi (s|s− 1)− L̄i (s) ĪiPi (s|s− 1)

+L̄i (s) P̄T
i (s|s− 1)

)
×HT

i

(
HiPi (s|s− 1)HT

i +Ri

)−1
,

(10)

where Ni ≜ {i1, i2, · · · , iri} and

P̄i (s|s− 1) ≜
[
Pii1 Pii2 · · · Piiri

]
, (11)

L̄i (s) ≜
[
Lii1 (s) · · · Liiri

(s)
]
, (12)

Mi (s) ≜
(
HiPi (s|s− 1)HT

i +Ri

)−1
, (13)

Ξ̄i (s|s− 1) ≜


Pi1 Pi1i2 · · · Pi1iri
Pi2i1 Pi2 · · · Pi2iri

...
...

. . .
...

Piri i1
Piri i2

· · · Piri iri

 , (14)

Gi (s) ≜Pi (s|s− 1) ĪTi − P̄i (s|s− 1) , (15)

Īi ≜

[In In · · · In︸ ︷︷ ︸
ri

]T
. (16)
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Note that, for the sake of simplicity, in (11) and (14), the
indicator of time (s|s− 1) after Piip or Pipiq is omitted above,
where p, q ∈ {1, 2, · · · , ri}.

Proof: According to (1) to (6), we have

x̃i (s|s− 1) =Fx̃i (s− 1|s− 1) + w (s− 1) , (17)
x̃i (s|s) =x̃i (s|s− 1)− qi (s)Ki (s)

× (Hix̃i (s|s− 1) + vi (s))

+
∑
j∈Ni

Lij (s) (x̃j (s|s− 1)− x̃i (s|s− 1))

=F̄i (s) x̃i (s|s− 1)− qi (s)Ki (s) vi (s)

+
∑
j∈Ni

Lij (s) x̃j (s|s− 1) , (18)

where F̄i (s) ≜ I−qi (s)Ki (s)Hi−
∑

j∈Ni
Lij (s). Accord-

ing to (7), we have

Pi (s|s− 1) = FPi (s− 1|s− 1)FT +Q. (19)

If the ith sensor is connected to the jth sensor in the sensor
network, the cross item Pij (s|s− 1) can be defined by

Pij (s|s− 1) ≜E
[
x̃ (s|s− 1) x̃T (s|s− 1)

]
and therefore we obtain

Pij (s|s− 1) =FPij (s− 1|s− 1)FT +Q. (20)

According to (8), (11)–(16), and Assumption 1, Pi (s|s) can
be expressed in a vectorized form as follows:

Pi (s|s) =F̄i (s)Pi (s|s− 1) F̄T
i (s)

+ qi (s)Ki (s)RiKi (s)

+ F̄i (s) P̄i (s|s− 1) L̄T
i (s)

+ L̄i (s) P̄T
i (s|s− 1) F̄T

i (s)

+ L̄i (s) Ξ̄i (s|s− 1) L̄T
i (s) , (21)

where F̄i (s) = In − qi (s)Ki (s)Hi − L̄i (s) Īi.
By considering the partial derivatives of tr {Pi (s|s)}, the

optimal filter gains minimizing tr {Pi (s|s)} can be written as
follows.

L̄∗
i (s) = (In − qi (s)Ki (s)Hi)Gi (s)

×
(
ĪiPi (s|s− 1) ĪTi − ĪiP̄i (s|s− 1)

−P̄T
i (s|s− 1) ĪTi + Ξ̄i (s|s− 1)

)−1
, (22)

K∗
i (s) =

(
Pi (s|s− 1)− L̄i (s) ĪiPi (s|s− 1)

+L̄i (s) P̄T
i (s|s− 1)

)
HT

i Mi (s) . (23)

By substituting (23) into (22), (9) can be obtained, which
completes the proof. □

After determining the filter gains, the error covariances of
different sensors can be acquired. If the ith sensor is connected

to the jth one in the sensor network, Pij (s|s) can be updated
as follows:

Pij (s|s) =F̄i (s)Pij (s|s− 1) F̄T
j (s)

+ F̄i (s)
∑
h∈Nj

Pih (s|s− 1)LT
jh

+
∑
g∈Ni

Lig (s)Pgj (s|s− 1) F̄T
j (s)

+
∑
g∈Ni

∑
h∈Nj

Lig (s)Pgh (s|s− 1)LT
jh (s) .

(24)

Remark 2: Note that the optimal filter gains K∗
i (s) and

L̄∗
i (s) are dependent on qi (s). Hence, it is necessary to

consider how to design qi (s), and this will be addressed later.
Remark 3: The computation of the optimal filter gains is

computationally costly since it involves computing the inverses
of high-dimensional matrices. In the following subsection, the
design of suboptimal filter gains that are easier to compute in
distributed filtering will be discussed.

B. Design of Suboptimal Filter Gains

Lemma 1: For an arbitrary positive scalar ρ > 0 and real
matrices X , Y , the following inequality holds:

XY T + Y XT ⩽ ρXXT + ρ−1Y Y T .

The following theorem presents the way of obtaining an
upper bound (UB) on Pi (s|s− 1) and an UB on Pi (s|s).

Theorem 2: For any given positive constants βii1 , · · · , βiiri
and βi, an UB on Pi (s|s− 1) and an UB on Pi (s|s) can be
calculated by

Pi (s|s− 1) =FPi (s− 1|s− 1)FT +Q, (25)
Pi (s|s) = (1 + βi) F̄i (s)Pi (s|s− 1) F̄i (s)

+ L̄i (s)Λi (s|s− 1) L̄T
i (s)

+ qi (s)Ki (s)RiK
T
i (s) , (26)

Pi (0|0) ≜Pi (0|0) , (27)

where βiiri
= 0 and, for j = 1, 2, · · · , ri,

ηi,ij ≜
(
1 + β−1

i

) [j−1∏
l=1

(
1 + β−1

iil

)] (
1 + βiij

)
, (28)

Λi (s|s− 1) ≜diag
{
ηi,ijPij (s|s− 1)

}
. (29)

In other words, we have Pi (s|s− 1) ⩾ Pi (s|s− 1) and
Pi (s|s) ⩾ Pi (s|s).

Proof: Assuming that Pi (s− 1|s− 1) ⩾
Pi (s− 1|s− 1) holds, we can easily obtain

F (Pi (s− 1|s− 1)− Pi (s− 1|s− 1))FT ⩾ 0 (30)

and
Pi (s|s− 1) ⩾ Pi (s|s− 1) . (31)

Next, we consider the estimation error Pi (s|s). Applying
Lemma 1 to the cross terms in (21), we have

Pi (s|s) ⩽ (1 + βi) F̄i (s)Pi (s|s− 1) F̄T
i (s)
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+
(
1 + β−1

i

)
E

[(
ri∑
l=1

Liil (s) x̃il (s|s− 1)

)

×

(
ri∑
l=1

Liil (s) x̃il (s|s− 1)

)T


+ qi (s)Ki (s)RiK
T
i (s)

⩽ (1 + βi) F̄i (s)Pi (s|s− 1) F̄T
i (s)

+
(
1 + β−1

i

)
(1 + βii1)

× Lii1 (s)Pi1 (s|s− 1)LT
ii1 (s)

+
(
1 + β−1

i

) (
1 + β−1

ii1

)
× E

[(
ri∑
l=2

Liil (s) x̃il (s|s− 1)

)

×

(
ri∑
l=2

Liil (s) x̃il (s|s− 1)

)T


+ qi (s)Ki (s)RiK
T
i (s)

⩽ (1 + βi) F̄i (s)Pi (s|s− 1) F̄i (s)

+

ri∑
l=1

ηi,lLiil (s)Pil (s|s− 1)LT
iil

(s)

+ qi (s)Ki (s)RiK
T
i (s) . (32)

According to (29) and (31), we have

Pi (s|s) ⩾ Pi (s|s) . (33)

Since the initial condition Pi (0|0) ⩽ Pi (0|0) is satisfied,
the relations Pi (s|s− 1) ⩽ Pi (s|s− 1) and Pi (s|s) ⩽
Pi (s|s) hold for any s ⩾ 1, and this completes the proof.
□

Theorem 3: Suboptimal filter gains minimizing the trace of
Pi (s|s) can be expressed as

K
(d)
i (s) = (1 + βi)

(
In − L̄i (s) Īi

)
Pi (s|s− 1)

×HT
i Mi (s) , (34)

L̄(d)
i (s) = (1 + βi)

[
In − qi (s) (1 + βi)Pi (s|s− 1)HT

i

×Mi (s)HiH
T
i Mi (s)Hi

]
Pi (s|s− 1) ĪTi

×
[
(1 + βi) ĪiPi (s|s− 1) ĪTi + Λi (s|s− 1)

− qi (s) (1 + βi)
2
ĪiPi (s|s− 1)

×HT
i Mi (s)HiPi (s|s− 1) ĪTi

]−1
, (35)

where

Mi (s) =
(
(1 + βi)HiPi (s|s− 1)HT

i +Ri

)−1
.

Proof: This proof is similar to the proof of Theorem 1
and is skipped here. □

C. Design of the Sensor Activation Scheme

Theorem 4: Compared with the case where qi (s) = 0, the
trace of Pi (s|s) is always smaller when qi (s) = 1.

Proof: According to (26), we have

Pi (s|s) = (1 + βi)
(
In − L̄i (s) Īi

)
Pi (s|s− 1)

×
(
In − L̄i (s) Īi

)T
+ L̄i (s)Λi (s|s− 1) L̄T

i (s)

+ qi (s)
(
Ki (s)Mi (s)K

T
i (s)

−Ni (s)K
T
i (s)−Ki (s)N

T
i (s)

)
⩾ (1 + βi)

(
In − L̄i (s) Īi

)
Pi (s|s− 1)

×
(
In − L̄i (s) Īi

)T
+ L̄i (s)Λi (s|s− 1) L̄T

i (s)

− qi (s)Ni (s)M
−1
i (s)NT

i (s) , (36)

where

Mi (s) ≜ (1 + βi)HiPi (s|s− 1)HT
i +Ri,

Ni (s) ≜ (1 + βi)
(
In − L̄i (s) Īi

)
Pi (s|s− 1)HT

i .

The equality in (36) holds when Ki (s) = K
(d)
i (s). Since

Mi (s) > 0, it follows from the utilization of K
(d)
i (s) and

qi (s) = 1 that qi (s)Ni (s)M
−1
i (s)NT

i (s) > 0. The proof
is now complete. □

According to (25) and (26), the updating process of
Pi (s|s− 1) can be compactly rewritten as follows:

P (s+ 1|s) =Ψ (s)P (s|s− 1)Ψ (s)

+ diag
{
qiFKi (s)RiK

T
i (s)FT +Q

}
+ F Γ̄ (s)P (s|s− 1) Γ̄TFT , (37)

where

P (s|s) ≜diag {P1 (s|s) , · · · ,PN (s|s)} ,
P (s|s− 1) ≜diag {P1 (s|s− 1) , · · · ,PN (s|s− 1)} ,

Ψ(s) ≜diag
{√

1 + βiF F̄i (s)
}
,

Γ̄ (s) ≜ [Γi,j (s)] ,Γi,j (s) ≜

{
0, if gij = 0√

ηi,jLij (s) , if gi,j = 1.

According to Theorem 4, by setting qi (s) = 1, the UB
P (s|s) of error covariance can be reduced compared with
the case where qi (s) = 0. Furthermore, if qi (s) ≡ 1 (∀1 ⩽
i ⩽ N, s ⩾ 1), an infimum of P (s|s) can be acquired. Let
P∗ (s|s) denote the infimum, and we have

P (s|s) ⩾ P∗ (s|s) ,∀s ⩾ 1. (38)

Assumption 2: When qi (s) ≡ 1,∀i, s, there exist constant
filter gains Ki, L̄ij , i, j ∈ {1, 2, · · · , N} such that ρ

(
J̄
)
< 1

where

J̄ ≜
[
diag

{√
1 + βiF

(
In −KiHi − L̄iĪi

)}]
⊗
[
diag

{√
1 + βiF

(
In −KiHi − L̄iĪi

)}]T
+
(
F Γ̄
)
⊗
(
F Γ̄
)T

,

Γ̄ ≜
[
Γi,j

]
,Γi,j ≜

{
0, if gij = 0√

ηi,jLij , if gi,j = 1.
(39)

Assumption 3:
(√

1 + βiA,Q1/2
)

is reachable.
Theorem 5: Under Assumptions 1 to 3, P∗ (s+ 1|s) (with

any positive definite initial value) converges to the unique
positive-definite solution Ω of the following equation:

Ω =ΨΩ(Ψ)
T
+ F Γ̄Ω

(
Γ̄
)T

FT +∆, (40)
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where

Ψ ≜diag
{√

1 + βiF
(
In −KiHi − L̄iĪi

)}
,

Γ̄ ≜ [Γi,j ] ,Γi,j ≜

{
0, if gij = 0√

ηi,jLij , if gi,j = 1,

Ω = lims→∞ P∗ (s+ 1|s), Ki = lims→∞ Ki, and L̄i =
lims→∞ L̄i (s).

Proof: The proof of the convergence of P (s+ 1|s) is
similar to the proof of Theorem 6 in [14]. Due to space
limitations, the proof is skipped here. □

In case that Ω = diag {Ω1, · · · ,ΩN} and that a series of
expected covariance levels Ji satisfies

Ji > tr {Ωi} , i = 1, 2, · · · , N.

It is obvious that, when qi (s) ≡ 1, we have
lims→∞ tr {Pi (s|s)} = tr {Ωi} < Ji. Therefore, there
always exists a series of qi (s) which restricts Pi (s|s) below
Ji when s → ∞.

According to (25), (26), (34), and (35), Pi (s|s) can be
determined by Pj (s|s− 1), Pi (s|s− 1), and qi (s), where
j ∈ Ni. Furthermore, when Pi (s|s) = P

(0)
i (s|s) (if qi (s) =

0), a greedy strategy for sensor activation can be designed as
follows:

qi (s) =

0, tr
{
P

(0)
i (s|s)

}
< Ji

1, tr
{
P

(0)
i (s|s)

}
⩾ Ji.

(41)

Remark 4: In (41), a feasible and easy-to-implement scheme
is proposed to design qi (s). Such a sensor activation scheme
not only guarantees that the expected covariance levels are
reached but also efficiently reduces the energy consumption
caused by measurement acquisitions.

IV. NUMERICAL SIMULATIONS

In this section, a simulation example is proposed to verify
the effectiveness of the proposed method.

Consider the following linear tracking system:

x (s+ 1) =


1 0.1 0 0
0 1 0 0
0 0 1 0.1
0 0 0 1

x (s) + w (s) , (42)

yi (s) =

[
1.0 + 0.5i 0 0 0

0 0 1.1− 0.4i 0

]
x (s) + vi (s) ,

(43)

where w (s) ∼ N (0, 0.01I4) and vi (s) ∼ N (0, 0.01I2).
Fig. 1 illustrates the topology of the sensor network. The
expected covariance levels are set as J1 = 0.22, J2 = 0.10,
J3 = 0.24, J4 = 0.14, and J5 = 0.21.

The true states and the state estimation acquired by the
distributed Kalman filter developed in Section III-B are il-
lustrated in Fig. 2. In Fig. 3, tr {P (s|s)}, tr {P∗ (s|s)}, and
the mean-square error of the estimation are shown. Indicators
of measurements qi (s) are shown in Fig. 4.

It is observed that, at the beginning of the state estimation
process, measurements are always required to quickly reduce

Fig. 1. The topology of the sensor network
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Fig. 2. State estimation

tr {P (s|s)}. Measurements are obtained less frequently when
tr {P (s|s)} is close to the expected covariance level. It is
worth noting that q2 (s) = 0 when s > 7. The reason is that
sensor 2 can receive information from sensors 1, 4, and 5. This
information is enough for sensor 2 to obtain a state estimation
that is accurate enough.

It is revealed that after applying the sensor activation
scheme, the number of measurements obtained by sensors is
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Fig. 4. Indicators of measurements

reduced by 54.8% while tr {P (s|s)} is around 16% larger
than tr {P∗ (s|s)}. Moreover, the actual mean-square error
is much smaller than tr {P (s|s)}. Therefore, the proposed
sensor activation scheme can effectively reduce energy con-
sumption without losing too much accuracy.

V. CONCLUSIONS

In this paper, the reduction of energy consumption for a
class of WSNs has been addressed in the context of the
distributed Kalman filtering problem. A filter model has been
proposed to describe the influence of the sensor activation
scheme. Optimal filter gains have been designed to minimize
the covariance of the filtering error. Suboptimal filter gains for
distributed Kalman filtering have also been designed to mini-
mize the UBs of the error covariances to reduce computational
complexity. A sensor activation scheme has been designed to
reduce the required amount of measurement data and restrict
the UBs of the error covariances of filtering below expected
covariance levels. Finally, the effectiveness of the proposed
method has been verified via a simulation example.
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