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Abstract—Accurately predicting real estate enterprise risk is
crucial for the national economy. Although some initial works
have been made on this topic such as Z-score, support vector
machines, and logistic regression, there remains a gap in com-
prehensive models that can effectively capture the dynamic risk
fluctuations from real estate-specific data. As such, a novel predic-
tion model called HRAGRU is proposed for real estate enterprises
to forecast potential risk through multimodal data including news
reports, policy updates, and stock information in this paper. We
first extract the semantic information from news text by using a
BERT model optimized for high-target semantic density. Then we
investigate the relationships among various data types through
a graph neural network (GNN) model with randomly masked
edges or nodes. Finally, we establish an improved gated recurrent
unit (GRU) model to capture the interactions between new and
historical data. The effectiveness of the proposed HRAGRU
model is validated using data from A-share and Hong Kong-listed
real estate companies, demonstrating its superior performance in
forecasting corporate risk indices. Our sources are released at
https://github.com/maxiaoyan290/HRAGRU

Index Terms—Real Estate Enterprise Risk, BERT, Graph
Neural Network, Gated Recurrent Unit

I. INTRODUCTION

The real estate sector serves as a cornerstone in the devel-
opment of China’s national economy, standing as one of its
pivotal industries [1]-[3]. Consequently, accurately predicting
its potential future trajectories is critically important. Stock
prices, as financial instruments shaped by supply and demand
dynamics, reflect public assessments of a company’s risk
management and overall risk profile [4]-[6]. In addition,
corporate financial statements and news data are integral to
comprehensive risk assessment. Financial statements provide
insights into a company’s profitability, liquidity, and solvency,
while news data influences investor sentiment and corporate
performance [7]-[9]. Furthermore, government policies and
macroeconomic controls play a crucial role in determining the
susceptibility of businesses to various risks [10]-[12].

Deep learning techniques for stock sequence prediction have
attracted considerable research interest due to their superior
accuracy and effectiveness in capturing complex patterns in
financial data [19]-[21]. Techniques including Convolutional
Neural Networks (CNN), Long Short-Term Memory net-
works (LSTM), and Gated Recurrent Unit (GRU) are exten-

*These authors contributed equally to this work.
TCorresponding Author.

sively used to analyze stock data and predict future price
movements [13]-[15]. Additionally, pre-trained models like
BERT are widely employed to extract the pertinent features
from stock-related news, thereby augmenting the predictive
efficacy of financial forecasting models [23]-[25].

However, existing methods struggle to effectively analyze
multimodal data, including news, policy, and stock informa-
tion, for comprehensive risk assessment in the real estate
domain, as they often overlook the interplay among diverse
data modalities. Some models rely solely on stock data,
neglecting the impact of corporate news and national policies
on stock price fluctuations [16], [17]. Others incorporate
news data but do not fully exploit the connections between
news and stock data for enhanced prediction accuracy [18],
[23]. Moreover, many aspect-based semantic representation
models used in news text processing lack a focus on target
information, reducing their effectiveness in downstream tasks.

To address these challenges, we introduce HRAGRU, a
novel corporate risk index prediction model comprising High-
Target-BERT (HTBERT), Random-Masked-GNN (RMGNN),
and Attention-GRU (AGRU). Firstly, HTBERT utilizes BERT
to generate semantically rich sentence representations tailored
to specific targets, with an attention mechanism enhancing
their relevance. Secondly, RMGNN applies random masking
of graph edges and nodes to clarify interrelationships within
the data, effectively mitigating the issue of node scarcity.
Finally, AGRU uses an attention mechanism in the GRU gating
process, enhancing the model’s ability to capture historical and
new data correlations.

In summary, the main contributions of our work can be
summarized as follows: (1) We propose RMGNN to effectively
incorporate stock-related data, combined with a novel HT-
BERT model to address the issue of sparse target semantics;
(2) We design a real estate enterprise risk index and propose
the AGRU to enhance the model’s ability to consider corre-
lations within series data; (3) We extensively test our model
on real estate enterprise datasets, achieving performance that
surpasses baseline models.

II. METHOD

For each stock, given an input sequence X = {z;_741,

XTt—T42, ..., T}, where T is th46 sequence length and x;
= {zl, 22, 23, o, 2, .., 2777 ) represents five data
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(a) The proposed model HRAGRU
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Fig. 1.

The structure diagram of model HRAGRU. (a) illustrates the overall architecture of HRAGRU. The HTBERT (b) employs an attention mechanism,

intending to denser semantic representations for the target. The RMGNN (c) utilizes a heterogeneous graph neural network with random masking for data
integration, enhancing data comprehension. The AGRU (d) employs attention matrices for gate computation to enhance prediction accuracy.

categories. x} € R%, 22 € RP4, 23 € R™?, and z} € R/
represent the daily stock data, current policy data, national
macroeconomic data, and Corporate financial data on day ¢,
respectively. Additionally, x, 417 s the 7-th news item on day
t. sd, pd, md, and fd denote the vector dimensions of xt,
22, x}, and x}, respectively. We aim to predict the enterprise
risk sequence over the next 7~ trading days, denoted as ¥ =
{Yt+1> Yt+2> ---» Yer1'}, Where y, represents the real estate
enterprise risk index on the #-th day. This index is calculated
as y; = rank(%) with close; being the 5-day
exponential moving average of the closing price on the t-
th day. The function rank ranks each real estate enterprise’s
stock volatility, yielding percentage-based results. The value
y; ranges from 0 to 1, with values above 0.5 indicating higher

risk and below 0.5 indicating lower risk.

A. High-Target-BERT

We utilize the pre-trained BERT model to extract semantic
information from each entry. Formally, the original news
sentence is represented as ST = {[CLS], wi, ..., t1, ...,
tms - > Wy, [SEP]}, where ST comprises n words, with each
w; denoting a word in ST. The target enterprise, TE = {¢1,

m ), consists of m words, where each t; is a specific
word in ST that belongs to TE. Following Ma et al. [26],
we introduce explicit markers <asp>and </asp>to denote
aspect boundaries: ST’ = {[CLS], wy, ..., <asp>, ti, ...,
tm, </asp>, , Wn, [SEP]}.

Inspired by the work of Karimi et al. [27], we use a semantic
sequential layer to acquire more profound linguistic knowl-
edge, using ST’ as input, and ultimately apply an attention
mechanism to obtain the final representation by incorporating
the target company’s semantics. As is shown in Figure 1, after
applying a transformer encoder [31] to each hidden layer,

a softmax layer is added to integrate global features. The
preliminary representation f/ € R? of x?ﬂ is computed as

> i =1"(softmax(Wso; + b))
n

fi = @
where W, € R4*® and b, € R? are trainable parameters.
Here, 0; € R? is the output for the i-th word from the encoder,
with b as the output dimension of the encoder and d as the
dimension of the semantic representation vector input to the
attention layer. The /representation of the target entity within
mfﬂ, denoted as ft] e R4, is similarly defined by:

’ S (softmazx(Wyo; + b))

f 2

m

where 0; € R® represents the feature representation output
for the i-th word, W; € R%*t and b, € R? are trainable
parameters.

Having obtained ftj and ftj /, we apply the attention mech-
anism, calculating the normalized scores for the news data

. 4’ j .
277 and the target entity as s = W and a] =
j/ j/
W’ respectively. Finally, the semantic dense repre-

sentation f7 is formulated as follows:

J ; J i/
e W fl e W, fi

5= -
esz + eai

3)

where Wy, Wy, and W, € R%*? are trainable transformer
attention parameters, a is the dimension of the semantic rep-
resentation vector output from the attention layer. ® represents
the Hadamard product, e denotes the base of the natural
logarithm, - signifies scalar multiplication with matrices.
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B. Random-Masked-GNN

In most cases, the number of daily news items for real
estate companies far exceeds other types of data. Therefore,
we preprocess the news data by averaging all articles for
the day to capture overall sentiment. An attention mechanism
then weights each article based on its correlation with this
sentiment, as shown below.

’ 17 WgocetOW f?//
Z?:l(ft] ) a e% 7
Ct = ’ 7Ct:ct|‘ § :( 7 WVft )
n — , WgetOWg f]
=1 Z;'l:1 € Ve
“)

where n’ represents the total number of news articles on the
t-th day, ¢; € R® is the clustered news representation, and
c; € R? is the final feature representation for that day. W,
Wi, Wy € R®*® are the trainable parameters. || denotes
vector concatenation.

The graph comprises up to five nodes (xf, 22, x3, x},
¢;), forming a fully connected structure at each time step ¢,
denoted as gf. Random masking is applied to both edges and
nodes, resulting in m’ generated subgraphs, G = {gf, gé, R
gt/ }. The original graph gf, along with m’ masked graphs, are
utilized in the feature extraction process by the GNN encoder.
The encoder computation for each node is as follows:

0ij = q" © tanh(Wy(o(Wy;n;)llo(Ws,m:)) + by)

AR )
Py = E 0ij M = Bij - W’anj + Woni
jen: © JEN;

where ~; represents the node category, o is the activation
function, ¢7 € RO, W, € RO* 2P and by € RO are
all learnable parameters. O and P are the dimensions of
the attention vectors and graph nodes, respectively. W.,, and
W.,, are learnable parameters for node categories i and j,
respectively. 7; and n; are nodes vectors, N; is the neighbor
set of node i, 0;; is the attention value, 3;; is the attention
coefficient, and ng € R” is the new node vector after GNN
transformation.

The final integrated data is obtained by concatenating the
hierarchical graph representations from g§ and G = {g}, g,

., gfn,}, as shown in the following equation:

. ZiEgS "71/‘ || Ziegf 7’2 || H ZiEQfH, 7];
" Num(g}) 'Num(g}) "' Num(gf, )

where d; denotes the ultimate representation of stock-related
data on day t. The function Num calculates the total number
of nodes in the graph g’ ,.

(6)

C. Attention-GRU

The traditional GRU computes the update gate using linear
transformations and activation functions, neglecting dynamic
correlations between input data and hidden states. We ad-
dress this challenge by enhancing the GRU with an attention
mechanism that evaluates correlations between input data and
previous hidden states and improves the accuracy of the update

gate calculation, while maintaining the overall structure of the
GRU except for the update gate computation.
xy = c|ldl|ay o |27 |2
re=0(Uy ®xy + W, ® hy_q + by)
2z = o(Att(Tanh(Wyz, + by)||[Tanh(Wyhi_1 + by)) + b.)
h = Tanh(Upz, + Wi (re - hi_1) + D)
ht = (1—Zt)'il+2t'ht71

, )
where z, € R, hy_q, hy € RH represent the input, previous
hidden state, and currently hidden state vectors, respectively.
o is the activation function sigmoid. r; denotes the internal
reset vector, z, represents the update vector, and h € RH
indicates the new memory content. U, € RI, W, € R,
b., Uy € RIXI 1, € REIXH p c RH are learnable
parameters corresponding to the reset gate and new memory
content. I = 2a +m’ X P + sd + pd + fd + md and H
denote the input and hidden sizes. Att € R%P represents the
learnable attention function, where D denotes the dimension
of the attention vectors. W, € RP*I w, € RP*H p e RP,
b, € RP, and b, are learnable parameters.

D. Loss Function

To ensure the interpretability of the proposed HRAGRU, we
design the unique loss functions for the respective module. As
is shown in Figure 1, the loss function can be computed as
follows:

E r ZjGSt(pg _p.g)z ,C _ i(l/ 71 )2
! Num/(S¢) + e 2 b

t;—&l-T’ = (®)
L= > (4 —y)% L= NLi+ AL+ AsLs
t=T+1

where S; denotes the set of all news items on day ¢ and the
function Num/’ retrieves individual news items 4’,f/r0m S¢. The
predictions p? , [;, and y, are obtained from f/, dq, and hy
through a multilayer perceptron (MLP). p{ and p{ represent
the predicted sentiment polarity and the corresponding senti-
ment label of the j-th news item on the day ¢, with positive
and negative sentiments labeled as 1 and 0O, respectively.
Similarly, l; and [/, denote the predicted and actual real estate
enterprise risk indices for day ¢, derived from the graph-level
representation. y; and y; represent the time series model’s
predicted and actual real estate enterprise risk indices on the
day t. Data from days 1 to 7" are used to predict the risk index
for days T+ 1 to T+ T". A1, A2, and A3 adjust the weights
of the different loss functions.

III. EXPERIMENTS
A. Datasets

Our dataset originates from the quantitative data platform
Akshare!. We have curated a sample of 125 real estate
enterprises, encompassing daily data spanning from January

lakshare.akfamily.xyz
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3, 2018, to June 30, 2024, as AKshare data had only been
updated through the end of 2024 at the time of the experiment.
These enterprises are publicly listed on China’s A-shares and
Hong Kong stock exchanges. The dataset is partitioned into
a training period from January 3, 2018, to December 31,
2021, and a testing period from January 3, 2022, to June 30,
2024. The training subset comprises approximately 120,000
samples, while the testing subset consists of 75,000 samples.
Each temporal sequence in the dataset involves forecasting the
corporate risk index at the 31st time step using the preceding
30 time steps as input.

B. Baselines and Settings

We compare our proposed HRAGRU model with the fol-
lowing baselines: CNN [29], LSTM [28], GRU [30], NGCU
[32], Transformer [31], CTTS [22], FactorVAE [33], TRA
[34], AlphaStock [35], DeepTrader [36], Mamba [37], xL-
STM [38], and PatchTST [40], incorporating BERT [39] for
news representation extraction as part of the input. In the
baseline model comparison experiment, we normalized and
concatenated the various input data types used in HRAGRU
and fed them into the baseline models, adjusting them to utilize
multimodal data.

In our experiments, we set the batch_size to 16 and the
number of epochs epoch to 100 to ensure stable training. For
the HTBERT module, parameters d and b are set to 10 and 768,
respectively. In the RMGNN task, two masked graph versions
are generated with a 50% probability of masking nodes and
edges, with O and P set to 15 and 20, respectively. The AGRU
module is trained with a 0.2 dropout rate and D and H are
set to 10 and 256, respectively. The loss function weights,
A1, A2, Ag, are 0.2, 0.3, and 0.5. To ensure the statistical
significance of the performance improvements, we trained
each model in both the baseline and ablation experiments 8
times. After confirming model convergence, we averaged the
predictions from these 8 runs to obtain the final results.

C. Prediction Performance

In our experiments, model performance is assessed using
Mean Squared Error (MSE), Accuracy (ACC), Recall, and
Fl-score (F1) metrics applied to the testing set. Enterprises
are categorized as low or high risk based on a 0.5 threshold
for predicted risk indices, with values below 0.5 classified
as high risk and those above 0.5 classified as low risk. As
shown in Table I, although traditional models (CNN, LSTM,
GRU, NGCU, TRA, and Transformer) perform well, they fail
to fully capture the complex relationships between new and
historical data. Advanced models (AlphaStock, DeepTrader,
CTTS, FactorVAE, Mamba, xLLSTM, and PatchTST) offer
improved capabilities in capturing dynamic temporal relation-
ships, yet they still fall short of optimal performance due
to challenges in fully leveraging data interrelationships. Our
model, as shown in Table I, surpasses these baseline models,
achieving the lowest MSE and the highest ACC, Recall,
and F1-score, highlighting the benefits of integrating intrinsic
temporal relationships in forecasting corporate risk indices.

TABLE I
THE INDEX OF THE BASELINE EXPERIMENTS AND ABLATION
EXPERIMENTS

model MSE ACC Recall F1

CNN 0.1618 0.5073 0.0961 0.1001
LSTM 0.0850 0.6378 0.5479 0.6137
GRU 0.0775  0.6450 0.6001  0.6225
NGCU 0.1361 0.4023 0.6193 0.5102
TRA 0.1166 04350 0.2287 0.2668
Transformer 0.1193  0.4672 0.1425 0.1968
AlphaStock 0.1122 04753 0.0556 0.2120
DeepTrader 0.1350 0.5048 0.3494  0.3992
CTTS 0.0746  0.6597 0.6912  0.6832
FactorVAE 0.0738  0.6771 0.6802 0.6793
Mamba 0.0755 0.6730 0.5425 0.6728
xLSTM 0.0760 0.6714 0.5601 0.6711
PatchTST 0.0734  0.6766  0.6941  0.6842
HRAGRU-(b)+BERT 0.0730  0.6755 0.6959  0.6864
HRAGRU-(c) 0.0728  0.6742  0.6923  0.6850
HRAGRU-(d)+GRU 0.0743  0.6735 0.6901 0.6821
HRAGRU 0.0726 0.6798 0.7028 0.6876

D. Ablation Study

Furthermore, we conduct ablation experiments to assess the
efficacy of the three proposed modules. Table I summarizes
the results, showing that the full model, which integrates
all three modules, delivers the best predictive accuracy for
forecasting corporate risk indices. This underscores the critical
roles of HTBERT (b), RMGNN (c), and AGRU (d). HTBERT
excels at extracting key information from textual news data,
while RMGNN effectively identifies and analyzes complex
interrelationships within the dataset. When combined with
AGRU, these modules significantly enhance the model’s abil-
ity to uncover intrinsic data relationships. Moreover, AGRU
demonstrates a clear advantage over traditional GRU within
the same architecture, owing to its enhanced capability to
capture relationships across varying time intervals, further
solidifying its contribution to the model’s overall performance.

IV. CONCLUSION

In this paper, we have proposed a novel time series model
HRAGRU for predicting real estate enterprise risk, addressing
limitations in extracting insights from real estate data by
capturing interrelationships within the data. We have also
introduced the real estate enterprise risk index as a metric to
track evolving risk profiles. Empirical findings have confirmed
the superior predictive performance of our proposed model
relative to baseline methods, verifying its effectiveness in real
estate enterprise risk prediction and supporting the use of
advanced data mining techniques in risk assessment.
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