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Adaptive Differential Evolution Algorithm
Wei Qian , Senior Member, IEEE, Yanmin Wu , and Zidong Wang , Fellow, IEEE

Abstract—This article is concerned with the design problem
of an H∞ optimal fault detection (FD) filter for networked
interval type-2 (IT2) fuzzy systems that are subjected to stochastic
cyberattacks. To effectively reduce the utilization of constrained
network resources, a new dynamically adjusted event-triggered
weighted try-once-discard (DAET-WTOD) protocol is developed,
in which two adaptive rules are constructed based on the
measured output and the probability of denial-of-service (DoS)
attacks. Furthermore, a fuzzy switched-like FD filter is designed
with the purpose of detecting system fault signals, while simul-
taneously considering the DAET-WTOD protocol and stochastic
cyberattacks. Subsequently, by utilizing an imperfect premise
matching (IPM) scheme, an opposition-based learning adaptive
differential evolution algorithm is proposed to deal with the net-
worked IT2 fuzzy systems. This algorithm is capable of iteratively
searching the membership function values of the fuzzy filter in
real time, thereby achieving improved H∞ performance. Finally,
some simulation results are provided to verify the feasibility and
advantages of the proposed H∞ optimal FD technique.

Index Terms—Adaptive differential evolution (ADE) algo-
rithm, fault detection (FD), interval type-2 (IT2) fuzzy systems,
opposition-based learning, stochastic cyberattacks, weighted try-
once-discard (WTOD) protocol.

NOMENCLATURE

T–S Takagi-Sugeno.
FD Fault detection.
IT2 Interval type-2.
MFs Membership functions.
IPM Imperfect premise matching.
ADE Adaptive differential evolution.
WTOD Weighted try-once-discard.
DAET-WTOD Dynamically adjusted event-triggered

weighted try-once-discard.

I. INTRODUCTION

DUE to the critical importance of FD for the safe oper-
ation and maintenance of industrial systems, the field

of FD in nonlinear systems has received widespread attention.
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As an effective tool for modeling nonlinear systems [17], the
T-S fuzzy method has been applied in various fields [3], [7],
[8], [28], [31], [34]. Considering the uncertain parameters of
nonlinear plants, the IT2 T-S fuzzy modeling method has
been proposed in [14], [44], and [50]. Several significant
FD-related issues have been explored for T-S fuzzy systems
and many excellent results have been reported in the liter-
ature. For instance, to detect system faults, a sequence of
iterative proportional-integral observers has been developed
for discrete-time T-S fuzzy systems in [29]. In line with the
IT2 T-S fuzzy model, the FD filter design issue has been
addressed in [46] for a class of nonlinear systems with sensor
saturation. Taking finite frequency performance indices into
account, a new FD strategy has been developed in [16].
Furthermore, the advancement of information technology and
wireless communication technology has significantly acceler-
ated the development of networked control systems (NCSs).
Recently, considering the wireless communication technology,
the network-based FD problem has emerged as a prominent
research focus.

Although NCSs offer several unique advantages, the intro-
duction of wireless network communication also presents new
challenges. In real-world network communication, the band-
width of communication channels is limited, and traditional
time-triggered mechanisms may lead to network congestion,
resulting in slower system response and potential instability.
To address this issue, the event-triggered (ET) communication
scheme [24], [51] has been proposed by designing an ET con-
dition, which reduces unnecessary data transmission. Several
significant results related to ET-based FD strategies have been
reported. For instance, an event-driven FD technique, consid-
ering the parameter uncertainty of the plant, has been explored
in [25] for networked fuzzy systems. Furthermore, an adaptive
ET-based reduced-order FD filter has been developed in [26]
for a class of T-S fuzzy systems with complex communication
channels.

Compared to ET communication mechanisms, data schedul-
ing protocols allow only one sensor to transmit data to
the communication channel at a time, thereby reducing the
communication burden [38]. Generally, these data scheduling
protocols include round-robin protocol [37], stochastic com-
munication protocol [4], [41], WTOD protocol [15], [19],
and FlexRay protocol [20]. Due to its high efficiency, the
WTOD protocol has garnered much attention from control and
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signal processing communities. For example, a nonfragile set-
membership filter has been designed in [13] for 2-D systems
under communication constraints. Furthermore, slow and fast
controllers have been designed using the asynchronous WTOD
protocol to ensure asymptotic stability for networked singu-
larly perturbed systems in [11]. However, WTOD’s inability to
handle significant signal fluctuations and the potential waste of
resources (when fluctuations are minimal) highlight the need
for a new WTOD protocol, which can then be applied to IT2
fuzzy FD systems.

On the other hand, parallel distribution compensation (PDC)
methods [43] have typically been employed for designing
fuzzy controllers. However, PDC technology requires that the
MFs of the controller and the system be identical, which can
lead to significant conservatism. To address this issue, the IPM
strategy has been introduced. In [47], an IPM-based fuzzy
state feedback controller has been developed to ensure that IT2
fuzzy semi-Markov systems remain finite-time stochastically
stable. Furthermore, an observer-based repetitive controller
design scheme using the IPM technique has been investigated
in [33] for networked nonlinear systems subjected to multiple
network attacks. Notably, the controller’s MFs can be selected
freely within a limited region, and this selection process is
typically based on the designer’s intuition and experience,
which may ensure system stability but not necessarily achieve
the desired system performance.

To attain better H∞ performance, a novel MF online itera-
tion strategy has been proposed in [23] and [48] to optimize
the controller MFs based on the IPM approach for T-S fuzzy
systems. This MF online learning algorithm has also been
applied to improve driving comfort levels in fuzzy vehicle
suspension systems in [48]. However, it is well-known that
the gradient descent approach used in MF online learning
algorithms [48] is highly sensitive to initial parameter values,
which may result in different local optimal solutions depending
on the initial values chosen. To overcome this challenge, a
new MF online learning method incorporating the differential
evolution (DE) algorithm has been proposed in [49] to achieve
the desired H∞ performance. Note that the conventional DE
algorithm has limitations such as premature convergence and
low search capability. Moreover, few studies have addressed
the complex problem of H∞ performance optimization for
IT2 fuzzy FD systems under stochastic cyberattacks and data
scheduling protocols. Therefore, designing a new FD scheme
to address these challenges is another key motivation of this
article.

This article explores a new H∞ optimal FD scheme for
networked IT2 fuzzy systems subjected to stochastic cyber-
attacks under a new WTOD protocol. The main contributions
are outlined as follows.

1) To manage the data transmission of distributed sensors
more efficiently, a DAET-WTOD protocol is proposed.
Unlike the existing WTOD protocols [11], [19], the
DAET-WTOD protocol integrates both an adaptive
ET mechanism and the WTOD protocol. This inte-
gration includes two time-varying adaptive rules that
regulate thresholds based on the system’s dynamic
information.

2) A fuzzy switched-like FD filter with asynchronous MFs
is designed, considering both the DAET-WTOD protocol
and stochastic cyberattacks. This filter effectively diag-
noses system faults in networked IT2 fuzzy FD systems.

3) Building on the IPM technique, a new MF online opti-
mization approach utilizing an opposition-based learning
ADE algorithm is introduced for networked IT2 fuzzy
FD systems. Through this MF optimization technique,
better H∞ performance is achieved by finding the opti-
mal fuzzy FD filter MFs in real time.

The structure of this article is organized as follows. Sec-
tion II presents the problem formulation, while Section III
outlines the main results. Sections IV and V cover the simu-
lation verification and the conclusion, respectively.

In addition, to better understand the abbreviations used in
this article, the Nomenclature regarding the main terminolog-
ical abbreviations is provided.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

A. Networked IT2 Fuzzy Model

The considered nonlinear plant is described by the IT2 fuzzy
model equipped with } rules.

Plant Rule t: IF O1(x(k)) is Ψt
1,AND · · ·ANDO~(x(k)) is

Ψt
~, THEN

x (k + 1) = Atx(k) + Etw(k) + E f tf(k)
y(k) = Ctx(k) (1)

where Oa(x(k))(a = 1, 2, . . . , ~) and Ψt
a(t = 1, 2, . . . , }) are,

respectively, the premise variables and the fuzzy sets, in which
~ and } stand for the number of IF-THEN rules and premise
variables, respectively. x(k) ∈ Rnx denotes the system state
vector. y(k) ∈ Rny represents the measured output vector.
w(k) ∈ Rnw and f(k) ∈ Rnf stand for the external pertur-
bation satisfying L2[0,∞) and the fault signal, respectively.
At, Et, E f t, and Ct stand for known system matrices. The acti-
vation intensity of the tth fuzzy rule is described as Et(x(k)) =

[εt(x(k)), ε̄t(x(k))], where εt(x(k)) =
Q~

a=1 εΨt
a
(Oa(x(k))) ≥

0, ε̄t(x(k)) =
Q~

a=1 ε̄Ψt
a
(Oa(x(k))) ≥ 0. εt(x(k)) and ε̄t(x(k))

are the lower and upper MFs (LUMFs) contenting ε̄t(x(k)) ≥
εt(x(k)). The lower and upper membership grades (LUMGs)
are represented by εΨt

a
(Oa(x(k))) and ε̄Ψt

a
(Oa(x(k))), in which

ε̄Ψt
a
(Oa(x(k))) ≥ εΨt

a
(Oa(x(k))).

Similar to [42], the IT2 fuzzy model is deduced as

x(k) =

}X
t=1

gt (x (k))
�
Atx(k) + Etw(k) + E f tf(k)

�
y(k) =

}X
t=1

gt (x (k)) [Ctx(k)] (2)

where

gt(x(k)) =
ĝt (x (k))P}
t=1 ĝt (x (k))

,

}X
t=1

gt (x (k)) = 1

ĝt (x (k)) = Ht (x (k)) εt (x (k)) + H̄t (x (k)) ε̄t (x (k)) .

The normalized membership can be represented by
gt(x(k)). Ht(x(k)) ∈ [0, 1] and H̄t(x(k)) ∈ [0, 1] are
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Fig. 1. Networked FD system with DAET-WTOD protocol.

nonlinear weighting functions (NWFs) that satisfy
Ht(x(k)) + H̄t(x(k)) = 1.

B. Probability-Dependent DAET-WTOD Protocol
As shown in Fig. 1, the measured output y(k) is trans-

mitted via a wireless network communication link and
scheduled according to a new data transmission strat-
egy. Suppose that there are ny sensor nodes. In addition,
y(k) = [yT

1 (k), yT
2 (k), . . . , yT

ny
(k)]T , in which the sampling

signal of the ıth sensor can be represented by yı(k) (ı =

1, 2, . . . ,ny). For the ıth sensor node, the following function is
devised:

uı(k) =
�
yı
�
`ıp−1

�
− yı (k)

�T
φı
�
yı
�
`ıp−1

�
− yı (k)

�
(3)

in which yı(`ıp−1) denotes the latest triggered output data
of the ıth sensor node. φı > 0 stands for the given
weighting matrix. Therefore, uı(k) represents the deviation
between the current sampling data and the previously trans-
mitted packet yı(`ıp−1) for the ıth sensor node. Based upon
the traditional WTOD protocol [19], the index of the sen-
sor node that is selected to trigger measured data at the
present moment k can be determined by the following
condition:

Υ(k) = arg max
1≤ı≤ny

uı(k) (4)

where Υ(k) ∈ {1, 2, . . . ,ny}. It is clear that only one sensor
node can be selected to transmit the measured output data
to the wireless communication network at a time. Unlike
the existing WTOD protocol [19], a novel packet trans-
mission scheme is introduced that simultaneously integrates
a probability-dependent adaptive ET mechanism with the
WTOD protocol to more effectively manage the transmis-
sion of measured packets among multiple sensor nodes.
Two time-varying threshold functions, σmax(k) and σmin(k),
are provided, where σmax(k) ∈ [σmax, σmax] and σmin(k) ∈
[σmin, σmin]. In addition, to construct the new data trans-
mission protocol, a positive parameter λı is given, where
ı ∈ {1, 2, . . . ,ny}. As a result, the following three scenarios
can be considered.

1) Case I: If there exists uı(k) ≥ σmax(k)yı(k)Tλıyı(k), all
sensor nodes can release the current sampling data at instant k.
The upper bound time-varying threshold function is provided

as follows:

σmax(k + 1)

= σmax(k) +

8̂̂̂<̂
ˆ̂:
�
σmax (k) − σmax

�
tanh

�
−β1

�
1 + θ̄

�
‖e (k)‖2

�
,

if ζ(k) ≤ 0
(σmax − σmax (k)) tanh

�
β1
�
1 − θ̄

�
‖e (k)‖2

�
,

if ζ(k) > 0
(5)

where 0 < σmax ≤ σmax. β1 stands for a positive constant.
e(k) = y(`p) − y(k). ζ(k) = ‖y(`p)‖ − ‖y(k)‖. θ̄ denotes the
probability of denial-of-service (DoS) attacks, which will be
described in the following.

2) Case II: If the condition in Case I is not met but
there exist any uı(k) ≥ σmin(k)yı(k)Tλıyı(k), the packet of
the ıth sensor node is transmitted to the network at instant k.
The lower bound time-varying threshold function is given as
follows:

σmin(k + 1)

= σmin(k) +

8̂̂̂<̂
ˆ̂:
�
σmin (k) − σmin

�
tanh

�
−β2

�
1 + θ̄

�
‖e (k)‖2

�
,

if ζ(k) ≤ 0
(σmin − σmin (k)) tanh

�
β2
�
1 − θ̄

�
‖e (k)‖2

�
,

if ζ(k) > 0
(6)

where 0 < σmin ≤ σmin. β2 is a positive constant.
3) Case III: If there is no uı(k) that satisfies either

Case I or Case II, but all measured data content uı(k) <
σmin(k)yı(k)Tλıyı(k), then no measured packets are released
to the network at instant k.

In the following discussion, S 1–S 3 are defined to represent
the moments that satisfy Cases I − III, respectively. Sub-
sequently, the release of the measured output y(k) can be
analyzed according to these three different scenarios.

Case I: For k ∈ S1, there exists uı(k) contenting

uı(k) ≥ σmax(k)yı(k)Tλıyı(k). (7)

Considering the designed probability-dependent DAET-
WTOD protocol and the stochastic DoS attack caused by
malicious network attacks under zero-order holder (ZOH)
strategy, the transmission rule of the signal yı(`ıp) can be
represented by

yı
�
`ıp
�

=

(
(1 − θ (k)) yı(k), if yı(k)satisfies (7)
yı
�
`ıp−1

�
, else

(8)

where yı(`ıp) stands for the sampling packet received by the
filter from the ıth sensor node. θ(k) denotes a random variable
that satisfies the following Bernoulli process:

Prob {θ (k) = 0} = 1 − θ̄, Prob {θ (k) = 1} = θ̄ (9)

in which θ̄ ∈ [0, 1] is a known parameter. If the measured
signal yı(k) satisfies (7) and θ(k) = 0, it indicates that
there is no DoS attack on the ıth sensor node at the current
moment, allowing the filter to receive the measured packet
yı(k). Conversely, θ(k) = 1 signifies that the ıth sensor node
is under attack by malicious hackers.
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Define eı(k) = yı(`ıp) − yı(k), (1, 2, . . . ,ny) and e(k) =

[eT
1 (k), eT

2 (k), . . . , eT
ny

(k)]T . When the measured signal yı(k)
satisfies the condition (7), eı(k) = (1 − θ(k))(yı(`ıp) − yı(k)),
and eT

ı (k)φıeı(k) is 0 or yı(k)Tφıyı(k); therefore, one has
σmax(k)yı(k)Tλıyı(k) ≥ eT

ı (k)φıeı(k), in which σmax(k)λı ≥ φı.
In the case that the measured signal yı(k) does not satisfy the
condition (7), one derives yı(`ıp) = yı(`ıp−1), then eT

ı (k)φıeı(k) =

uı(k), which signifies that σmax(k)yı(k)Tλıyı(k) > eT
ı (k)φıeı(k).

Moreover, one derives
nyX
ı=1

�
σmax (k) yı (k)T λıyı (k) − eT

ı (k) φıeı (k)
�
≥ 0. (10)

In addition, (10) holds if

σmax(k)y(k)T Λy(k) − eT (k)ze(k) ≥ 0 (11)

where Λ = diag{λ1, λ2, . . . , λny } and z = diag{φ1, φ2, . . . , φny }.
Case II: For k ∈ S2, there exists uı(k) contenting

uı(k) ≥ σmin(k)yı(k)Tλıyı(k). (12)

In this case, based on the (4), the corresponding sensor node
Υ(k) is selected. The input signal ȳı(k) obtained by the filter
can be characterized in detail via

ȳı(k) =

(
(1 − θ (k)) yı(k), if ı = Υ(k)
ȳı(k − 1), otherwise.

(13)

Set ȳ(k) = [ȳT
1 (k), ȳT

2 (k), . . . , ȳT
ny

(k)]T . Therefore, the follow-
ing formula is obtained:

ȳ(k) = (1 − θ(k))ΨΥ(k)y(k) + Ψ̃Υ(k)ȳ(k − 1) (14)

where ȳ(k) ∈ Rny represents the input signal of the filter.
ΨΥ(k) = diag{δ(Υ(k) − 1), . . . , δ(Υ(k) − ny)}.Ψ̃Υ(k) = I − ΨΥ(k).
δ(·) ∈ {0, 1} stands for the Kronecker delta function.

Case III: For k ∈ S3, all ur(k) satisfy

uı(k) < σmin(k)yı(k)Tλıyı(k). (15)

When (15) is satisfied, based upon the input signal retention
mechanism, we have

ȳı(k) = ȳı(k − 1). (16)

For all yı(k), by using (15) and (16), it is deduced that
σmin(k)yT

ı (k)λıyı(k) > (ȳı(k − 1) − yı(k))Tφı(ȳı(k − 1) − yı(k)),
that is

nyX
ı=1

�
σmin (k) yı (k)T λıyı (k) − eT

ı (k) φıer (k)
�
> 0 (17)

and therefore,

σmin(k)yT (k)Λy(k) − eT (k)ze(k) ≥ 0. (18)

Remark 1: The new DAET-WTOD protocol is designed by
leveraging the characteristics of the adaptive ET mechanism
and the principles of the WTOD protocol. This design allows
for dynamic management of the number of triggering packet
sensors in distributed sensor networks. Within the DAET-
WTOD protocol, two adaptive rules are formulated to adjust
the ET thresholds σmax(k) and σmin(k) based on real-time
system dynamics and the probability of DoS attacks. Given the
constraints of limited communication bandwidth, the proposed

DAET-WTOD protocol is more effective in conserving com-
munication resources while ensuring FD performance under
stochastic cyberattacks.

Remark 2: Based on the transformation tendency ζ(k), the
adaptive rules (5) and (6) can dynamically adjust the ET
thresholds σmax(k) and σmin(k). When ζ(k) > 0, the ET thresh-
old σmax(k) increases toward σmax; otherwise, it decreases
toward σmax. The adaptive adjustment of the ET threshold
σmin(k) follows the same principle as σmax(k). Unlike the
existing adaptive rule [40], which only provides a lower bound,
this approach defines two bounded ranges, [σmax, σmax] and
[σmin, σmin]. These bounded ranges prevent difficulties in data
transmission due to the unbounded continuous increase of ET
thresholds and address the problem of frequent data triggering
caused by overly small ET thresholds.

Remark 3: Unlike the normal WTOD protocol [11], which
only allows one sensor to transmit data to the network, the
proposed DAET-WTOD protocol categorizes sensor data into
three scenarios to manage data transmission based on the size
of data fluctuations. This approach allows for more efficient
use of limited communication resources, further conserving
bandwidth while ensuring effective data transmission.

C. Asynchronous Mf-Based FD Filter

Under the IPM strategy, the FD filter subjected to asyn-
chronous MFs can be devised as follows.

Filter Rule h: IF ϕ1(x f (k)) is Lh
1,AND · · ·ANDϕ[(x f (k))

is Lh
[ , THEN

x f (k + 1) = A f h,Υ(k)x f (k) + B f h,Υ(k)ȳ(k)
r f (k) = C f h,Υ(k)x f (k) + D f h,Υ(k)ȳ(k) (19)

where ϕ(x f (k)) = [ϕ1(x f (k)), ϕ2(x f (k)), . . . , ϕ[(x f (k))] stands
for the premise variable, and Lh

c (h = 1, 2, . . . , }; c =

1, 2, . . . , [) are the fuzzy set. x f (k) ∈ Rnx and r f (k) ∈ Rnr

are the state of fuzzy FD filter and the residual signal,
respectively. A f h,Υ(k), B f h,Υ(k),C f h,Υ(k), and D f h,Υ(k) denote the
filter gain matrices. The activation intensity of the jth fuzzy
rule can be described as Lh(x f (k)) = [ιh(x f (k)), ιh(x f (k))],
where ιh(x f (k)) =

Q[
ε=1 κLh

ε
(ϕε(x f (k))) ≥ 0 and ιh(x f (k)) =Q[

ε=1 κ̄Lh
ε
(ϕε(x f (k))) ≥ 0 are LUMFs, which satisfy ιh(x f (k)) ≥

ιh(x f (k)). κLh
ε
(ϕε(x f (k))) and κ̄Lh

ε
(ϕε(x f (k))) are LUMGs which

content κ̄Lh
ε
(ϕε(x f (k))) ≥ κLh

ε
(ϕε(x f (k))).

The global fuzzy filter is expressed as follows:

x f (k + 1) =

}X
h=1

τh
�
x f (k)

� �
A f h,Υ(k)x f (k) + B f h,Υ(k)ȳ (k)

�
r f (k) =

}X
h=1

τh
�
x f (k)

� �
C f h,Υ(k)x f (k) + D f h,Υ(k)ȳ (k)

�
(20)

where

τh
�
x f (k)

�
=

τ̂h
�
x f (k)

�P}
h=1 τ̂h

�
x f (k)

� ≥ 0,
}X

h=1

τh
�
x f (k)

�
= 1

τ̂h
�
x f (k)

�
= Nh

�
x f (k)

�
ιh
�
x f (k)

�
+ N̄h

�
x f (k)

�
ιh
�
x f (k)

�
.

τh(x f (k)) stands for a normalized membership. The NWFs
are represented by Nh(x f (k)) ∈ [0, 1] and N̄h(x f (k)) ∈ [0, 1],
and Nh(x f (k)) + N̄h(x f (k)) = 1. For ease of description, let
gt(x(k)) ∆

= gt and τh(x f (k)) ∆
= τh.
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D. Fault Weighting System

A fault weighting technique can be introduced to enhance
FD performance in this section. Here, fw(z) = N(z)f(z), where
N(z) is a function known a priori. The state-space realization
of fw(z) = N(z)f(z) is described as follows:

xw(k + 1) = Awxw(k) + Bwf(k)
fw(k) = Cwxw(k) + Dwf(k) (21)

where xw(k) ∈ Rnxw stands for the state-space vector.
Aw, Bw,Cw, and Dw denote the constant matrices.

E. Augmented FD System

Define η(k) = [xT (k), ȳT (k − 1), xT
f (k), xT

w(k)]T , and y(`p) =

[yT
1 (`1
p), yT

2 (`2
p), . . . , yT

ny
(`ny
p )]T . In addition, let r̃(k) = r f (k) −

Ffw(k), p = Υ(k), q = Υ(k + 1), and d(k) = [wT (k), fT (k)]T .
For k ∈ S1, combining (2), (8), and (20), it yields that

η(k + 1) =

}X
t=1

}X
h=1

gtτh
�
Āth,pη (k) + Ēth,pd (k) + C̄th,py

�
`p
��

r̃(k) =

}X
t=1

}X
h=1

gtτh
�
Ā1th,pη (k) + Ē1th,pd (k)

+ C̄1th,py
�
`p
��

(22)

where

Āth,p =

2664
At 0 0 0
0 0 0 0
0 0 A f h,p 0
0 0 0 Aw

3775 , Ēth,p =

2664
Et E f t

0 0
0 0
0 Bw

3775
C̄th,p =

2664
0
I

E f t

0

3775 , Ā1th,p =
�

0 0 C f h,p − FCw
�

Ē1th,p =
�

0 − FDw
�
, C̄1th,p = D f h,p.

For k ∈ S2, based upon (2), (14), and (20), it follows that:

η(k + 1) =

}X
t=1

}X
h=1

gtτh
��

Ã1th,p + Ã2th,p
�
η (k) + Ẽth,pd (k)

�
r̃(k) =

}X
t=1

}X
h=1

gtτh
��

Ã3th,p + Ã4th,p
�
η (k) + C̃1th,pd (k)

�
(23)

where

Ã1th,p =

2664
At 0 0 0

ρΨpCt Ψ̃p 0 0
ρB f h,pΨpCt B f h,pΨ̃p A f h,p 0

0 0 0 Aw

3775
Ã2th,p =

2664
0 0 0 0

−υ̃ΨpCt 0 0 0
−υ̃B f h,pCt 0 0 0

0 0 0 0

3775
Ẽth,p =

2664
Et E f t

0 0
0 0
0 Bw

3775

Ã3th,p =
�
ρD f h,pΨpCt D f h,pΨ̃p C f h,p −FCw

�
Ã4th,p =

�
−υ̃D f h,pΨpCt 0 0 0

�
, ρ = 1 − θ̄

C̃1th,p =
�

0 −FDw
�
, υ̃ = θ(k) − θ̄.

For k ∈ S3, on the basis of (2), (16), and (20), one has

η(k + 1) =

}X
t=1

}X
h=1

gtτh
�
Â1th,pη (k) + Ê1th,pd (k)

�
r̃(k) =

}X
t=1

}X
h=1

gtτh
�
Â3th,pη (k) + Ê2th,pd (k)

�
(24)

where

Â1th,p =

2664
At 0 0 0
0 I 0 0
0 B f h,p A f h,p 0
0 0 0 Aw

3775
Ê1th,p =

2664
Et E f t

0 0
0 0
0 E f t

3775 , Ê2th,p =
�

0 −FDw
�

Â3th,p =
�

0 D f h,p C f h,p −FCw
�
.

In the following, an FD mechanism is described. Similar
to [10], we define the residual evaluation function H(r f ) and
the FD threshold Hth as follows:

H(r f ) =
1
k

vuut TX
k=0

rT
f (k)r f (k) (25)

Hth = sup
0,w∈L2,f=0

H(r f ). (26)

In terms of (25) and (26), the following FD logic is provided
to detect the occurrence of faults:

H(r f ) > Hth =⇒ with faults =⇒ alarm (27)
H(r f ) < Hth =⇒ no faults. (28)

III. MAIN RESULTS

In this section, sufficient criteria for the asymptotic stabil-
ity with H∞ performance are presented for the FD system
incorporating the DAET-WTOD protocol and DoS attacks.
Additionally, based on Theorem 1, the design conditions for
the FD filter are provided in Theorem 45 [2].

A. Performance Analysis

Theorem 1: Let the fuzzy FD filter gain matrices A f h,p, B f h,p,
C f h,p, and D f h,p, and positive constants φı, λı, σ̄max, σ̄min, Λ,
z, z̄, θ̄, b, µ, f, ϑ, and γ be given. Assume that the MFs
satisfy τh − ςhgh ≥ 0 (0 < ςh ≤ 1) and there exist matrices
Gp > 0,M,N,Q satisfying (1 ≤ t, h ≤ })

Πthpq + Πhtpq − 2M < 0 (29)
ςhΠthpq + ςtΠhtpq − ςhM − ςt M + 2M < 0 (30)

Θthpq + Θhtpq − 2N < 0 (31)
ςhΘthpq + ςtΘhtpq − ςhN − ςtN + 2N < 0 (32)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/),. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI 10.1109/TNNLS.2025.3579254, IEEE Transactions on Neural Networks and Learning Systems 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Ωthpq + Ωhtpq − 2Q < 0 (33)
ςhΩthpq + ςtΩhtpq − ςhQ − ςtQ + 2Q < 0 (34)

where

Πthpq =

2664
F1thpq ∗ ∗ ∗

F2thpq F3thpq ∗ ∗

0 0 −z̄ ∗

F4thpq F5thpq 0 F6thpq

3775
F1thpq = ĀT

thpGqĀthp −Gp + ĀT
1thpĀ1thp + C̄T

t fC̄t

F2thpq = C̄T
thpGqĀthp + C̄T

1thpĀ1thp

F3thpq = C̄T
thpGqC̄thp + C̄T

1thpC̄1thp

F4thpq = ĒT
thpGqĀthp + ĒT

1thpĀ1thp

F5thpq = ĒT
thpGqC̄thp + ĒT

1thpC̄1thp

F6thpq = ĒT
thpGqĒthp + ĒT

1thpĒ1thp − γ
2I

Θthpq =

�
Γ1thpq ∗

Γ2thpq Γ3thpq

�
Γ1thpq = ÃT

1thpGqÃ1thp + ǍT
2thpGqǍ2thp

+ ÃT
3thpÃ3thp + ǍT

4thpǍ4thp −Gp
Γ2thpq = ẼT

thpGqÃ1thp + C̃T
1thpÃ3thp

Γ3thpq = ẼT
thpGqẼthp + C̃T

1thpC̃1thp − γ
2I

Ωthpq =

24 Y1thpq ∗ ∗

0 −z̄ ∗

Y2thpq 0 Y3thpq

35
Y1thpq = ÂT

1thpGqÂ1thp −Gp + ÂT
3thpÂ3thp + C̄T

t ϑC̄t

Y2thpq = ÊT
1thpGqÂ1thp + ÊT

2thpÂ3thp

Y3thpq = ÊT
1thpGqÊ1thp + ÊT

2thpÊ2thp − γ
2I

z̄ = µz, f = µσ̄maxΛ, C̄t = CtĔ, ϑ = µσ̄minΛ

Ĕ =
�

I 0 0 0
�
, b =

q
θ̄
�
1 − θ̄

�
Ǎ2thp =

2664
0 0 0 0

−bΨCt 0 0 0
−bB f h,pΨCt 0 0 0

0 0 0 0

3775
Ǎ4thp =

�
−bD f h,pΨCt 0 0 0

�
.

Then, the FD system is asymptotically stable with H∞
performance.

Proof: Select the following Lyapunov function:

V(k) = ηT (k)Gpη(k). (35)

In addition, a new variable JD(k) can be defined by

JD(k) = ∆V(k) + r̃T (k)r̃(k) − γ2dT (k)d(k). (36)

Case A: Define

ξ1(k) =
�
ηT (k) yT (lp) eT (k) dT (k)

�T
.

In accordance with (37) and (38), the difference of V(k) can
be obtained as follows:

E {JD (k) |k ∈ S1 }

≤ E
˚
ηT (k + 1) Gqη (k + 1) − ηT (k) Gpη (k)

+ r̃T (k) r̃ (k) − γ2dT (k) d (k)

+ µ
�
σ̄maxyT (k) Λy (k) − eT (k) ze (k)

�	
=

}X
t=1

}X
h=1

gtτhξ
T
1 (k)Πthpqξ1(k). (37)

To obtain more relaxed conditions, a slack matrix is intro-
duced as follows:

}X
t=1

}X
h=1

gt(gh − τh)M = 0. (38)

Inserting (38) into (37) yields

E {JD (k) |k ∈ S1 }

≤

}X
t=1

}X
h=1

gtτhξ
T
1 (k)Πthpqξ1(k) =

1
2

}X
t=1

}X
h=1

gtξ
T
1 (k)

×
�
gh
�
ςhΠthpq + ςtΠhtpq − ςhM − ςt M + 2M

�
+ (τh − ςhgh)

�
Πthpq + Πhtpq − 2M

��
ξ1(k). (39)

Case B: Based upon (23), defining

ξ2(k) =
�
ηT (k) dT (k)

�T

one derives

E {JD (k) |k ∈ S2 }

≤ E
˚
ηT (k + 1) Gqη (k + 1) − ηT (k) Gpη (k)

+ r̃T (k) r̃ (k) − γ2dT (k) d (k)
	

=

}X
t=1

}X
h=1

gtτhξ
T
2 (k)Θthpqξ2(k). (40)

By utilizing the same method as in Case A, the equation
with the slack matrix N is introduced for the inequality (40).
Then, one has

E {JD (k) |k ∈ S2 }

≤
1
2

}X
t=1

}X
h=1

gtξ
T
2 (k)

�
gh
�
ςhΘthpq + ςtΘhtpq − ςhN − ςtN

+ 2N) + (τh − ςhgh)
�
Θthpq + Θhtpq − 2N

��
ξ2(k). (41)

Case C: On the basis of (24), defining

ξ3(k) =
�
ηT (k) eT (k) dT (k)

�T

we obtain

E {JD (k) |k ∈ S3 }

≤ E
˚
ηT (k + 1) Gqη (k + 1) − ηT (k) Gpη (k)

+ r̃T (k) r̃ (k) − γ2dT (k) d (k)

+ µ
�
L̄minyT (k) Λy (k) − eT (k) ze (k)

�	
=

}X
t=1

}X
h=1

gtτhξ
T
1 (k)Ωthpqξ1(k). (42)

Similarly, the slack matrix Q is introduced. Then, one
has

E {JD (k) |k ∈ S3 }

≤
1
2

}X
t=1

}X
h=1

gtξ
T
3 (k)
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×
�
gh
�
ςhΩthpq + ςtΩhtpq − ςhQ − ςtQ + 2Q

�
+ (τh − ςhgh)

�
Ωthpq + Ωhtpq − 2Q

��
ξ3(k). (43)

For the above three cases, under τh − ςhgh ≥ 0, based on
(29)–(34), we can obtain

E {JD (k)} ≤ 0. (44)

In the case of d(k) = 0, by using the Schur complement,
it can be inferred that E{JD(k)} ≤ 0, which implies that the
FD system achieves asymptotic stability. Summing both sides
of (46), we have E{‖r̃(k)‖22} − γ

2‖d(k)‖22 < 0, which implies
that the H∞ performance can be achieved as well. The proof
is now complete. �

B. Asynchronous Fuzzy FD Filter Design

The influence of the DAET-WTOD protocol is reflected in
the FD filter gain matrices A f h,p, B f h,p,C f h,p, and D f h,p. In
Case B, by the means of the DAET-WTOD protocol, we can
conclude that p ∈ {1, 2, . . . ,ny}. In addition, since there is no
data released, p = 0 is defined for Case C. Besides, p = ny+1
is defined for Case A. Based on the above analysis, it is known
that p ∈ {0, 1, . . . ,ny+1}. In the following, Theorem 2 provides
the conditions of the fuzzy FD filter design under the proposed
DAET-WTOD protocol.

Theorem 2: Let the positive constants φı, λı, σ̄max,
σ̄min, Λ, z, z̄, θ̄, b, µ,f, ϑ, and γ be given. Assume that
τh−ςhgh ≥ 0 (0 < ςh ≤ 1) is satisfied, and there exist matrices
Gp > 0,Hp > 0,Vp > 0,Wp > 0, and M,N,Q satisfying
(1 ≤ t, h ≤ }) "

2 ~G1
pq ∗

~∆th,p + ~∆ht,p 2M

#
< 0 (45)"

2 ~G1
pq ∗

√
ςh~∆th,p +

√
ςt~∆ht,p

√
ςhM+

√
ςtM

#
< 0 (46)"

2 ~G2
pq ∗

~Σth,p + ~Σht,p 2N

#
< 0 (47)"

2 ~G2
pq ∗

√
ςh~Σth,p +

√
ςt~Σht,p

√
ςhN+

√
ςtN

#
< 0 (48)"

2 ~G3
pq ∗

~Ξth,p + ~Ξht,p 2Q

#
< 0 (49)"

2 ~G3
pq ∗

√
ςh~Ξth,p +

√
ςt~Ξht,p

√
ςhQ+

√
ςtQ

#
< 0 (50)

where

A f h,p = Ĥ−1
p Ā f h,p, B f h,p = Ĥ−1

p B̄ f h,p,
�
p = ny + 1

�
A f h,p = V̂−1

p Ã f h,p

B f h,p = V̂−1
p B̃ f h,p,

�
p ∈

˚
1, 2, . . . ,ny

	�
A f h,p = Ŵ−1

p
~A f h,p, B f h,p = Ŵ−1

p
~B f h,p, (p = 0)

C f h,p = C f h,p, D f h,p = D f h,p

and in which

~G1
pq = diag

˚
Gq − He

˚
Hp
	
,Gn − He

˚
Hp
	
,−I,−f

	

~G2
pq = diag

˚
Gq − He

˚
Vp
	
,Gq − He

˚
Vp
	
,−I,−I

	
~G3
pq = diag

˚
Gq − He

˚
Wp
	
,Gq − He

˚
Wp
	
,−I,−ϑ

	
Hp = diag

˚
H̄p, H̄p,−I,−θ

	
H̄p = diag

˚
Ĥp, Ĥp, Ĥp, Ȟp

	
Gq =

24G11,q ∗ ∗

G21,q G22,q ∗

G31,q G32,q G33,q

35

~∆th,p =

2666664
ĀT

∆th,p 0 ĀT
1th,p C̄T

t

C̄T
∆th,p 0 C̄T

1th,p 0

0 0 0 0

ĒT
∆th,p 0 ĒT

1th,p 0

3777775
ĀT

∆th,p =

2664
AT

t ĤT
p 0 0 0

0 0 0 0
0 0 ĀT

f h,p 0
0 0 0 AT

wȞT
p

3775
ĒT

∆th,p =

"
ET

t ĤT
p 0 0 0

ET
f tĤ

T
p 0 0 BT

wȞT
p

#
C̄T

∆th,p =
�

0 ĤT
p B̄T

f h,p 0
�

~Σth,p =

"
ĀT

Σth,p ǍT
Σth,p ÃT

3th,p ǍT
4th,p

ĒT
Σth,p 0 C̃T

1th,p 0

#
Vp = diag

˚
V̄p, V̄p, I, I

	
, V̄p = diag

˚
V̂p, V̂p, V̂p, V̌p

	
ĀT

Σth,p =

2666664
AT

t V̂T
p ρCT

t ΨT
p V̂T
p ρCT

t ΨT
p B̃T

f h,p 0

0 Ψ̃T
p V̂T
p Ψ̃T

p B̃T
f h,p 0

0 0 ÃT
f h,p 0

0 0 0 AT
wV̌T
p

3777775
ĒT

Σth,p =

"
ET

t V̂T
p 0 0 0

ET
f tV̂

T
p 0 0 ET

f tV̌
T
p

#

ǍT
Σth,p =

2666664
0 −bCT

t ΨT
p V̂T
p −bCT

t ΨT
p B̃T

f h,p 0

0 Ψ̃T
p V̂T
p Ψ̃T

p B̃T
f h,p 0

0 0 ÃT
f h,p 0

0 0 0 AT
wV̌T
p

3777775
~Ξth,p =

2664
ĀT

Ξth,p 0 ÂT
3th,p C̄T

t

0 0 0 0

ĒT
Ξth,p 0 ÊT

2th,p 0

3775

ĀT
Ξth,p =

2666664
AT

t ŴT
p 0 0 0

0 ŴT
p

~BT
f h,p 0

0 0 ~AT
f h,p 0

0 0 0 AT
wŴT
p

3777775
ĒT

Ξth,p =

"
ET

t ŴT
p 0 0 0

ET
f tŴ

T
p 0 0 ET

f tŽ
T
p

#
Wp = diag

˚
W̄p, W̄p, I, I

	
W̄p = diag

˚
Ŵp, Ŵp, Ŵp, W̌p
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M = diag
˚
−Gp, 0,−z̄,−γ2I

	
− M

N = diag
˚
−Gp,−γ2I

	
− N

Q = diag
˚
−Gp,−z̄,−γ2I

	
− Q.

Then, the FD system is asymptotically stable with H∞ perfor-
mance.

Proof: By utilizing Schur complement to the conditions
(29)–(34), the following inequalities can be obtained:�

2G̃1
q ∗

∆th,p + ∆ht,p 2M

�
< 0 (51)�

2G̃1
q ∗

√
ςh∆th,p +

√
ςt∆ht,p

√
ςhM+

√
ςtM

�
< 0 (52)�

2G̃2
q ∗

Σth,p + Σht,p 2N

�
< 0 (53)�

2G̃2
q ∗

√
ςhΣth,p +

√
ςtΣht,p

√
ςhN+

√
ςtN

�
< 0 (54)�

2G̃3
q ∗

Ξth,p + Ξht,p 2Q

�
< 0 (55)�

2G̃3
q ∗

√
ςhΞth,p +

√
ςtΞht,p

√
ςhQ+

√
ςtQ

�
< 0 (56)

where

G̃1
q = diag

˚
−G−1
q ,−G−1

q ,−I,−f
	

G̃2
q = diag

˚
−G−1
q ,−G−1

q ,−I,−I
	

G̃2
q = diag

˚
−G−1
q ,−G−1

q ,−I,−ϑ
	

∆th,p =

2666664
ĀT

th,p 0 ĀT
1th,p C̄T

t

C̄T
th,p 0 C̄T

1th,p 0

0 0 0 0

B̄T
th,p 0 B̄T

1th,p 0

3777775
Σth,p =

"
ÃT

1th,p ǍT
2th,p ÃT

3th,p ǍT
4th,p

B̃T
th,p 0 C̃T

1th,p 0

#

Ξth,p =

2664
ÂT

1th,p 0 ÂT
3th,p C̄T

t

0 0 0 0

B̂T
1th,p 0 B̂T

2th,p 0

3775 .
Pre- and postmultiply (51)–(56) by diag{Hp,Hp, I, I, I, I, I, I}

and its transpose, diag{Vp,Vp, I, I, I, I} and its transpose, and
diag{Wp,Wp, I, I, I, I, I} and its transpose, respectively. For p =

ny + 1, let ĀT
f h,p = A f h,pĤT

p and B̄T
f h,p = B f h,pĤT

p . For p ∈
{1, 2, . . . ,ny}, let ÃT

f h,p = A f h,pV̂T
p and B̃T

f h,p = B f h,pV̂T
p . For

p = 0, let ~AT
f h,p = A f h,pŴT

p and ~BT
f h,p = B f h,pŴT

p . Then, one
derives "

2Ḡ1
pq ∗

~∆th,p + ~∆ht,p 2M

#
< 0 (57)"

2Ḡ1
pq ∗

√
ςh~∆th,p +

√
ςt~∆ht,p

√
ςhM+

√
ςtM

#
< 0 (58)"

2Ḡ2
pq ∗

~Σth,p + ~Σht,p 2N

#
< 0 (59)

"
2Ḡ2
pq ∗

√
ςh~Σth,p +

√
ςt~Σht,p

√
ςhN+

√
ςtN

#
< 0 (60)"

2Ḡ3
pn ∗

~Ξth,p + ~Ξht,p 2Q

#
< 0 (61)"

2Ḡ3
pq ∗

√
ςh~Ξth,p +

√
ςt~Ξht,p

√
ςhQ+

√
ςtQ

#
< 0 (62)

where

Ḡ1
pq = diag

˚
−HpG−1

q HT
p ,−HpG−1

q HT
p ,−I,−f

	
Ḡ2
pq = diag

˚
−VpG−1

q VT
p ,−VpG−1

q VT
p ,−I,−I

	
Ḡ3
pq = diag

˚
−WpG−1

q WT
p ,−WpG−1

q WT
p ,−I,−ϑ

	
.

Moreover, for positive-define matrices Gq, similar to [9],
Gq − He{Hp},Gq − He{Yp}, and Gq − He{Zp} are utilized to
replace −HpG−1

q HT
p ,−VpG−1

q VT
p , and −WpG−1

q WT
p , respectively.

Then, the conditions of the fuzzy FD filter design (45)–(50)
are obtained, and the proof is completed. �

Remark 4: In accordance with the IPM technique, due to
the introduction of equations with slack matrices during the
system performance analysis process in Theorem 1, the fuzzy
FD filter MFs are freely chosen within the allowed range
specified in the following:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

ς1g1 ≤ τ1 ≤ 1
ς2g2 ≤ τ2 ≤ 1

...

ς}−1g}−1 ≤ τ}−1 ≤ 1
ς}g} ≤ τ} ≤ 1.

(63)

It should be particularly noted that, within the IPM technique,
the fuzzy filter MFs [25], [26] are generally constructed based
on the designers’ work experience and subjective intuition.
While this traditional method of selecting filter MFs can ensure
the stability of the fuzzy systems, it cannot achieve optimal
H∞ performance.

Remark 5: It is obvious that different system performance
outcomes can be achieved depending on the design of the
MFs. Consequently, we are committed to exploring an MF
optimization technique aimed at enhancing H∞ performance.
To achieve this, the opposition-based learning algorithm is
proposed for the first time. Define

T = [τ1, τ2, . . . , τ}]T ∈ R}

as the population, where τı (ı = 1, 2, . . . , }) is considered as
an individual. The main objective in this article is to find the
optimal values T∗ = [τ∗1, τ

∗
2, . . . , τ

∗
}]

T that satisfy the following
fitness function:

f (τ1, τ2, . . . , τ}) = min
T∈Ω
‖r̃(k)‖ (64)

where Ω ∈ R} represents the feasible value space of T.

C. MF Optimization With Opposition-Based Learning ADE
Algorithm

In this section, the new MF online iteration procedure using
the opposition-based learning ADE algorithm is presented to
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achieve improved H∞ performance, specifically enhancing the
disturbance attenuation ability for networked IT2 T-S fuzzy
systems. The differential evolution (DE) algorithm, known for
its effectiveness in multiobjective optimization, is employed
to address optimization problems in multidimensional spaces.
The key core steps of the DE algorithm include hybridization,
mutation, and replication manipulations. The designed ADE
method offers advantages such as ease of implementation, fast
convergence, and fewer parameters. The detailed optimization
process of the ADE approach is outlined as follows.

1) Set Initial Population: For the provided ADE algorithm,
the boundaries of each variable should be determined first
at the beginning of the algorithm. Thereupon, the lower and
upper bounds (LUBs) of the filter MFs should be determined
in advance. Considering the filter MFs limitation

P}
s=1 τs = 1

that must be guaranteed during the optimization iteration
process, }−1 filter MFs τ1, τ2, . . . , τ}−−1 are taken into account,
and the filter MF τ} is devised based on τ} = 1 −

P}−−1
β=1 τβ.

Moreover, since the lower bound of }th filter MF τ} is
ς}g}, consequently, the sum of the } − −1 filter MFs cannot
exceed 1 − ς}g}.

In accordance with the foregoing discussion, the LUBs of
each filter MFs τl (l = 1, 2, . . . , } − 1) are further deduced by8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

τ1 min = ς1 ≤ τ1 ≤
1 −

P}
t=1 ςt + ς1

Γ
= τ1 max

τ2 min = ς2 ≤ τ2 ≤
1 −

P}
t=1 ςt + ς2

Γ
= τ2 max

...

τ}−1 min = ς}−1 ≤ τ}−1 ≤
1 −

P}
t=1 ςt + ς}−1

Γ
= τ}−1 max

(65)

where

Γ =
} − 1 − (} − 1)

P}
t=1 ςt +

P}−1
t=1 ςt

1 − ς}
.

Hence, Ω = [τ1 min, τ1 max]× · · ·× [τ}min, τ}max]. Then, the size
of population NP should be determined.

For the ADE algorithm, it is crucial to select an appropriate
initial population. If the population size NP is too small, the
ADE algorithm may converge prematurely or even stagnate.
On the other hand, the computational burden may increase,
and the convergence speed may significantly slow down if the
population size is set too large. After determining the size of
the initial population, the operation (66) is performed to obtain
the initial individuals

τ0
N = τmin + diag

8<:rand, . . . , rand„ ƒ‚ …
}−1

9=;× (τmax − τmin) (66)

where τmin = [τ1 min, . . . , τ}−1 min]T and τmax = [τ1 max, . . . ,
τ}−1 max]T .

A random scalar belonging to (0, 1) is described by the
symbol rand. The initial population can be represented by the
superscript 0. In addition, the Nth individual is represented by
the subscript N.

2) Mutation: To produce the new mutants, the ADE algo-
rithm can stochastically select three different individuals.
Subsequently, two of them can be calculated by subtracting
and adjusting to produce a new result. In addition, the obtained
result can be combined with the remaining individual

Vk
N = τk

N1
+ αk �τk

N2
− τk

N3

�
N1,N2,N3 ∈ {1, . . . ,NP} , and N , N1 , N2 , N3 (67)

and

αk+1 =

(
αl + r1 × αu, if r2 < ε1

αk, otherwise
(68)

where the Nth mutant and the Nth individual are represented
by Vk

N and τk
N , respectively, in k th generation. An adaptive

scale parameter αk is utilized for controlling the impact of
difference item. r1 ∈ [0, 1] and r2 ∈ [0, 1] denote independent
stochastic values. ε1 stands for the probability of adjusting the
adaptive scale parameter αk. αl and αu are given parameters
that satisfy 0 ≤ αl ≤ αu ≤ 1, in which αu = 1 − αl. Based on
the adaptive rule (68), one can derive αk ∈ [αl, 1].

3) Crossover: For the ADE algorithm, the cross manipula-
tion can enhance the species diversity and make the population
as rich as possible. In addition, the cross manipulation can
pick excellent individuals and insert them into the current
population.

Next, the specific operation rule is given as follows:

θk
N,℘ =

(
Vk

N,℘, rand(0, 1) ≤ Cor ℘ = ℘rand

τk
N,℘, otherwise

(69)

in which θk
N,℘ stands for the value of the ℘ th dimension. The

probability of crossover can be represented by C belonging to
[0, 1]. For the current population, in the case of C is small,
more information of individuals can be maintained. Instead,
it may lead to more individuals changing in the population
increasing the number of diversity, and making the search for
optimal solutions easier. ℘rand represents a randomly generated
integer. Based on the operation (69), the species diversity can
be increased.

4) Selection: The acquired experimental individuals are
compared with the target individual. If the fitness is small
in the case of using the experimental individual, the target
individual may be replaced by the experimental individual.
And then, the experimental individual can enter the next
generation. In addition, if not, the target individual is used
for entering the next generation

τk+1
N =

(
θk

N , if f
�
θk

N

�
≤ f

�
τk

N

�
τk

N , otherwise.
(70)

The best values of the filter MFs τ∗1, . . . , τ
∗
} that can minimize

the fitness functions (64) are singled out. Then, the global
fuzzy FD filter is designed by combining the best filter MFs
with the obtained fuzzy filter gains.

Opposition-based learning [27] has been proven to be an
effective search approach. It is a commonly utilized optimiza-
tion strategy in machine learning that identifies the reverse
solutions of the current solutions at each iteration of the
algorithm. The algorithm then selects the solution that is more
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favorable for evolution from both the current solution set and
the reverse solution set. Leveraging the inherent advantages of
opposition-based learning, a new MF online iterative learning
algorithm is proposed to find the optimal MF values for the
fuzzy FD filter.

Based on the definitions of opposite number and opposite
point, an opposition operation is introduced as follows.

1) Opposition-Based Optimization: Set M =

(κ1, κ2, . . . , κz) to be a point for z-dimensional
space, where κ  ∈ [a , b ],  = 1, 2, . . . , z. The opposite
M̌ = (κ̌1, κ̌2, . . . , κ̌z) can be obtained by the following
equation:

κ̌ρ = a  + b  − κ . (71)

Based on the fitness function f (·) (64), if f (M̌ ) ≤
f (M ), the point M is replaced by M̌ ; otherwise, the
point M remains unchanged. By evaluating the point
and its opposite point, the more suitable point can
continue to be utilized.

Combining the ADE algorithm with opposition-based opti-
mization, a new ADE approach is designed to achieve better
H∞ performance for IT2 fuzzy systems. The detailed process
of designing the FD filter with optimal H∞ performance is
outlined in s.

Remark 6: In this article, a new FD scheme has been
developed for networked IT2 fuzzy systems subjected to
stochastic cyberattacks by utilizing a novel DAET-WTOD
protocol. Compared to existing results, this article exhibits the
following distinctive novelties.

1) DAET-WTOD Protocol: A new DAET-WTOD protocol
is proposed, which integrates an adaptive ET mecha-
nism with the WTOD protocol. This protocol effectively
manages the data transmission of distributed sensors,
adjusting the thresholds based on real-time system
dynamics and the probability of DoS attacks. This
approach conserves communication resources and main-
tains FD performance under stochastic cyberattacks.

2) Fuzzy FD Filter Design: A fuzzy switched-like FD
filter with asynchronous MFs is designed to diag-
nose system faults in networked IT2 fuzzy systems,
considering the DAET-WTOD protocol and stochastic
cyberattacks.

3) MF Optimization Using ADE Algorithm: An opposition-
based learning ADE algorithm is introduced to optimize
the MFs of the fuzzy FD filter in real time. This
optimization technique is shown to enhance the H∞
performance, achieving better disturbance attenuation by
finding the optimal MF values.

4) Simulation Validation: Extensive simulations are con-
ducted to demonstrate the effectiveness of the proposed
FD method. The results show that the DAET-WTOD
protocol further conserves communication resources
compared to existing methods, and the opposition-
based learning ADE algorithm improves H∞ per-
formance. Additionally, the proposed FD technique
effectively detects system faults even under malicious
DoS attacks.

Algorithm 1 FD filter design under MF online learning
scheme.

1: Give the opposition probability ℘0 and the parameters γ,
αl, αu, r1, r2.

2: In accordance with the conditions (45)–(50) of Theorem
2, the gains of the fuzzy FD filter A f h,p, B f h,p, C f h,p and
D f h,p are obtained.

3: Buffer A f h,p, B f h,p,C f h,p and D f h,p.
4: Acquire LUBs of each filter MFs τ1 min-τ~−1 min and τ1 max-
τ~−1 max in light of the operation (65).

5: Define the population size NP, scaling factors αl, αu, r1,
r2, and crossover probability C. Based on the operation
(66), the initial population is obtained.

6: Let gen = N in which the maximum iteration can be
represented by N.

7: for k = 0 : gen
8: Perform the mutation (67) to produce the result Vk

N .
Based on the crossover operation (69) and the selection
operation (70), the group T∗ = [τ∗1, τ

∗
2, . . . , τ

∗
}] is obtained.

/* Opposition-Based Generation Jumping */

9: if (rand(0, 1) < ℘0)
10: for h = 1 : } − 1
11: for l = 1 : gen
12: τ̌∗khl = τh min + τh max − τ

k
l

13: if ( f (τ̌∗khl ) ≤ f (τ∗h)
14: τ∗h = τ̌∗khl
15: else
16: τ∗h = τ∗h
17: end if
18: end for
19: end for
20: end if
21: Store the optimal group τk∗

N =(
τ∗1, τ

∗
2, . . . , τ

∗
}−1, 1 −

}−1P
β=1
τ∗β

)
.

22: By combining τk∗
N with fuzzy FD gains A f h,p, B f h,p, C f h,p

and D f h,p, the optimal FD strategy can be devised for the
IT2 fuzzy system (2).

23: Output the evaluation r̃(k).
24: if k > N then
25: Stop the iteration.
26: end if
27: end for

Overall, this article has introduced and validated a com-
prehensive FD scheme that addresses the challenges of data
transmission, FD, and system stability in the presence of
cyberattacks in networked IT2 fuzzy systems.

IV. SIMULATION RESULTS

In this section, some simulation results are provided to
demonstrate the effectiveness and advantages of the proposed
FD method under the new DAET-WTOD protocol and the
opposition-based learning ADE policy. The FD scheme is
illustrated using the tunnel diode circuit plant. The model is
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described as

iD(k) = 0.002vD(k) + ∂v3
D(k) (72)

where ∂ ∈ [0.01, 0.03] represents the uncertain parameter.
Define ∅ = 0.002 + ∂x2

1(k). Then, it can be inferred that

Cx1(k + 1) = −∅x1(k) + x2(k)
Lx2(k + 1) = −x1(k) − Rx2(k) + w(k).

Set C = 20 mF, L = 1000 mH, and R = 10 Ω. Similar
to [10], the IT2 T-S fuzzy model is obtained as follows:

x(k + 1) =

2X
t=1

gt [Atx(k) + Etw(k)]

where

A1 =

"
−∅min

C
50

−1 −10

#
, E1 =

�
0
1

�
A2 =

"
−∅max

C
50

−1 −10

#
, E2 =

�
0
1

�
∅min = 0.001, ∅max = 0.003.

Additionally, the remaining system matrices and other matrices
used in this article are provided as follows:

E f 1 =

�
−0.2392
−0.3222

�
, C1 =

�
−0.6808 −0.1847
0.0356 0.3586

�
E f 2 =

�
−0.5363
−1.2727

�
, C2 =

�
−0.4113 −0.0801
0.1426 0.0689

�
Aw = −0.9805, Bw = 0.8340, Cw = −0.3526
Dw = −0.1439.

By using the uncertain parameter ∂ ∈ [0.01, 0.03], the LUMFs
of the IT2 T-S fuzzy system are given by

ε1 (x1 (k)) =
∅max − ∅

∅max − ∅min
, with ∂ = 0.03

ε̄1 (x1 (k)) =
∅max − ∅

∅max − ∅min
, with ∂ = 0.01

ε2 (x1 (k)) =
∅ − ∅min

∅max − ∅min
, with ∂ = 0.01

ε̄2 (x1 (k)) =
∅ − ∅min

∅max − ∅min
, with ∂ = 0.03.

Based on the IPM technique, the LUMFs of the fuzzy FD
filter can be defined by

ι1
�
x f 1 (k)

�
= 0.3e−x2

f 1(k), ι1
�
x f 1 (k)

�
= ι1

�
x f 1 (k)

�
ι2
�
x f 1 (k)

�
= 1 − ι1

�
x f 1 (k)

�
, ι2

�
x f 1 (k)

�
= ι2

�
x f 1 (k)

�
.

Then, the weighting functions can be provided as follows:

Ht (x1 (k)) = sin2 (x1 (k))

H̄t (x1 (k)) = 1 − Ht (x1 (k))

Nh

�
x f 1 (k)

�
= cos2 �0.6x f 1 (k)

�
N̄h
�
x f 1 (k) = 1 − Nh

�
x f 1 (k)

�
.

In this example, two distributed sensor nodes are consid-
ered. Consequently, based on the DAET-WTOD protocol, it
can be concluded that m belongs to the set {0, 1, 2, 3}. Set

Fig. 2. Release instants of sensor 1 under the DAET-WTOD protocol.

Fig. 3. Release instants of sensor 2 under the DAET-WTOD protocol.

Fig. 4. Release instants of sensor 1 under the existing WTOD protocol [18].

µ = 0.65, σmax = 1.8, σmax = 4.1, σmin = 0.8, σmin = 0.3, γ =

1.45, ς1 = 0.08, ς2 = 0.07, and θ̄ = 0.2.
The external disturbance w(k) and the system fault f(k) are

provided as follows:

w(k) =

8̂<̂
:
−0.86, 0 ≤ k ≤ 1.3
0.72 sin(k), 1.3 < k ≤ 2.2
0, otherwise

and

f(k) =

(
1.12, 0.9 < k ≤ 2.4
0, otherwise.

By calculating the linear matrix inequalities (47)–(52),
the FD filter gains are obtained. The initial states are set
as x(0) =

�
0.04 0.06

�T and x f (0) =
�
0 0

�T . Using the
new DAET-WTOD protocol, the signal transmission of the
distributed sensors is detailed in Figs. 2 and 3. Fig. 2 shows the
signal trigger times for sensor 1, with a total of 309 triggered
signals. Fig. 3 illustrates the trigger instants and intervals for
sensor 2, with 171 signal transmissions.

For comparison, the signal transmission of the distributed
sensors under the existing WTOD data transmission protocol
[18] is shown in Figs. 4 and 5. From these figures, it can
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Fig. 5. Release instants of sensor 2 under the existing WTOD protocol [18].

Fig. 6. Weighting fault signal fw(k).

Fig. 7. Error value r̃(k) of sensors.

Fig. 8. Fuzzy filter MF trajectories in light of the new MF online learning
algorithm.

be observed that sensor 1 released 359 signals, and sensor 2
triggered 197 signals. Comparing Figs. 2–5, it is evident that
the proposed DAET-WTOD protocol further conserves limited
communication resources. By the means of using the fault
weighting technique, the weighting fault signal is depicted in
Fig. 6. The error value r̃(k) between the residual signal and
the weighting fault signal is shown in Fig. 7.

Fig. 8 displays the MF iterative trajectories of the fuzzy FD
filter using the proposed MF online learning technique with

Fig. 9. Distribution of stochastic cyberattacks.

Fig. 10. H∞ performance levels based on different methods.

Fig. 11. Evaluation functions under the proposed FD technique.

the opposition-based learning ADE algorithm. Fig. 9 illustrates
the occurrence of malicious DoS attacks. Fig. 10 depicts the
disturbance attenuation responses under the proposed strategy
and the existing method [18]. From Fig. 10, it is clear
that the provided MF online optimization technique, using
the opposition-based learning ADE algorithm, achieves better
H∞ performance by optimizing the MF values of the fuzzy
FD filter.

Fig. 11 demonstrates the effectiveness of FD under the
DAET-WTOD protocol and DoS attacks by utilizing the
designed FD scheme with the opposition-based learning ADE
algorithm. In Fig. 11, the threshold Hth is 0.02277, and system
faults are detected after 1.0694 s. Summarizing the simulation
results, it is determined that the provided FD method conserves
network bandwidth more effectively and achieves better H∞
performance. Additionally, under malicious DoS attacks, the
proposed FD technique can effectively detect system fault
signals.

V. CONCLUSION

This article has tackled the challenge of designing an
H∞ optimized FD filter for networked IT2 fuzzy systems
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subjected to stochastic cyberattacks. A novel DAET-WTOD
protocol has been developed to efficiently manage the limited
communication bandwidth among distributed sensors. Based
on measured output information and attack probability, two
adaptive laws have been introduced to dynamically update
the triggering thresholds. Furthermore, utilizing the IPM tech-
nique, an opposition-based learning ADE algorithm has been
proposed which iteratively searches for the optimal MF values
of the fuzzy switched-like FD filter to achieve the desired
H∞ performance. Finally, a practical simulation example has
been provided to demonstrate the feasibility and advantages of
the proposed FD scheme. However, the novel DAET-WTOD
protocol and the opposition-based learning ADE algorithm in
this proposed scheme may encounter some technical difficul-
ties when executed in complex networked systems and more
sophisticated cyberattacks. Therefore, some possible future
research topics include, but are not limited to, extension to
more complex networked systems [1], [2], [30], robustness
against more sophisticated cyberattacks [5], [12], integration
with machine learning techniques [21], [45], energy-efficient
FD schemes [22], [35], [36], and multiobjective optimization
[6], [32], [39].
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