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Remote State Estimation for Nonlinear Systems
Under Compression-Decompression Mechanism: A

Modified Unscented Kalman Filtering Approach
Jiahao Song, Zidong Wang, Qinyuan Liu, and Xiao He

Abstract—In engineering practice, some large-scale systems
have high-dimensional measurements that exhibit redundancy
and are suitable to be compressed. Measurement compression-
decompression is an effective approach to saving communication
resources in networked control systems, and compressive sensing
(CS) is a popular high-performance compression-decompression
method for such measurements. In this paper, we investigate
the remote state estimation for nonlinear systems under a
compression-decompression mechanism on the measurement out-
put. With the application of CS, a state estimator is designed
based on the unscented Kalman filter. Despite the prominent
advantages of CS, the presence of measurement noise and
quantization errors in practice is inevitable, which could lead to
a degradation in the performance of CS and an enlargement of
state estimation errors. To address this challenge, we analyze the
combined influence of measurement noise and quantization er-
rors on the performance of data compression-decompression and
state estimation. The design of estimator gains is approached by
minimizing an upper bound of the estimation error covariance.
Furthermore, a sufficient condition is derived to ensure the mean-
square exponential boundedness of the estimation error. Finally,
the effectiveness of the proposed method is verified through
simulation experiments conducted on power grid systems, which
are characterized by highly redundant measurements that are
suitable for compression-decompression.

Index Terms—State estimation, networked system, unscented
Kalman filter, data compression, compressive sensing.

I. INTRODUCTION

In the past few decades, networked control systems (NCSs)
have received ever-growing attention from both academia and
industry owing primarily to the rapid advancement of net-
work technologies. The introduction of networks into control
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systems has brought several remarkable advantages includ-
ing flexible architecture, simplified deployment, and reduced
maintenance costs [16], [31], [42]. These superiorities have en-
abled the extensive applications of NCSs in various scenarios
such as power grids, environment monitoring, and industrial
automation [7], [22], [30], [33]. During the implementation
and operation of NCSs, state estimation has been recognized
as an essential task whose aim is to obtain precise estimates of
system state information. State estimation is crucial for several
key tasks like control, decision-making, fault diagnosis, and so
on [44], [46], [49]. Consequently, state estimation for NCSs
has been identified as an important research domain in recent
years [12], [34], [45].

The limitation of communication resources has been identi-
fied as one of the most important challenges in the application
of NCSs [19], [40], [41], restricting the amount of information
that can be transmitted and thus degrading the performance
of state estimation. To handle this challenge, compression-
decompression of measurement data has been a widely ap-
plied technique in recent years [47], [48]. Specifically, the
fundamental task of data compression involves the reduction
of data size while retaining essential information, whereas
data decompression aims at recovering the original information
from the compressed data [14], [21]. In this paper, a partic-
ular interest is shown in large-scale practical systems with
high-dimensional state vectors and measurement vectors with
strong correlations between the vectors’ components. Typical
examples can be seen in power grids, transportation systems,
antenna arrays, and so on [2], [4], [10]. Such high dimen-
sions and strong correlations indicate extensive redundancy
in measurement vectors, which are suitable for compression-
decompression.

Compressive sensing (CS), a promising compression-
decompression technique attracting extensive attention over
the past two decades, is particularly effective for processing
data characterized by high dimensions and high redundancy.
Several remarkable advantages are associated with CS, in-
cluding a high compression rate, efficient data acquisition,
and low computational complexity for compression, among
others [25]. As a result, CS has found widespread application
in various scenarios such as sonar systems, radar systems,
geophysical sensing systems, image compression, data mining,
Magnetic Resonance Imaging, and others [17], [25]. Given
the significant strengths of CS demonstrated in engineering
practice, the employment of CS in state estimation tasks
to achieve high-performance data compression-decompression
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Fig. 1: A fundamental workflow of CS-based state estimation

has been a prevalent research topic [15], [23]. Therefore,
the main focus of this paper is on incorporating CS into
state estimation. A fundamental workflow of CS-based state
estimation is illustrated in Fig. 1, where the core idea involves
employing CS to convey measurement data while conserving
communication resources.

Despite the excellent performance and promising prospects
of CS, it is important to acknowledge that CS is a lossy
compression-decompression method, that is, the data obtained
after decompression is not identical to the original data prior
to compression. Here, decompression error is defined as the
difference between the decompressed data and the original
data. Such decompression error is unavoidable and is influ-
enced by various factors. A notable issue in state estimation
is the inevitability of measurement noise. Measurement noise
compromises the level of data redundancy, thereby rendering
the measurement data more challenging to compress and
decompress. Given that CS is particularly sensitive to such
redundancy degradation, measurement noise can lead to large
decompression errors and the loss of key information, which
is detrimental to state estimation. Thus, it becomes a major
challenge to analyze the influence of measurement noise on
data compression-decompression in CS-based state estimation.

Another notable issue arises from the necessity of data
quantization due to the prevalent use of digital communication
channels in NCSs. As illustrated in Fig. 1, compressed data
must undergo quantization before transmission through the
communication channel. Data quantization inevitably intro-
duces quantization errors into the transmitted data. Compared
to uncompressed data, compressed data possesses lower di-
mensions and less redundancy, and is therefore more sus-
ceptible to the effects of quantization errors. Therefore, the
negative impact of quantization errors must be considered
when implementing data compression-decompression meth-
ods. Unfortunately, analyzing the influence of data quan-
tization on CS presents a particularly challenging task as
the decompression process of CS typically involves complex
iterative optimization steps [6], [23], [29].

In recent years, there has been a surge in the literature
on assisting state estimation with CS-based data compression.
For instance, when system states possess high dimensions and
embedded redundancy, it has been shown in [3] that the mea-
surement vectors can be transformed into sparse vectors, where
the sparsity can characterize the redundancy, and are thus

particularly suitable to be compressed by CS. Based on this
fundamental example, some well-established state estimation
approaches (i.e. Kalman filtering and Bayesian filtering) have
been integrated with CS [11], [15], [23]. A general case, where
special measurement models lead to measurement vectors with
high redundancy, has also been investigated by implementing
CS for measurement compression [28]. However, to the best
of our knowledge, a theoretical analysis of the impact of mea-
surement noise and quantization effects on the performance of
CS-based state estimation remains largely unexplored.

In light of the discussions presented above, the key chal-
lenges confronted include: 1) the application of CS for the
compression and decompression of noisy measurement data,
followed by the development of a state estimator based on
the decompressed measurements; 2) the analysis of the com-
bined impact of measurement noise and quantization errors
on the data compression-decompression process; and 3) the
design of state estimator gains to ensure the performance
of state estimation under the influence of data compression-
decompression. With the aim to address these challenges,
this paper focuses primarily on the state estimation problem
with measurement compression-decompression by taking into
consideration unfavorable factors such as measurement noise
and quantization errors. The contributions of this paper are
highlighted as follows.

1) The data decompression error is characterized by analyz-
ing the influence of measurement noise and quantization
errors based on a well-established CS approach for data
compression-decompression.

2) A modified unscented Kalman filter (UKF) is inte-
grated with measurement compression-decompression
and implemented for state estimation, wherein the filter
gains are designed to minimize an upper bound of the
estimation error covariance.

3) The impact of data compression-decompression on state
estimation performance is analyzed, and a sufficient
condition is derived for ensuring the mean-square ex-
ponential boundedness of the estimation error.

II. PROBLEM FORMULATION AND PRELIMINARIES

In Fig. 2, a block diagram is shown to illustrate the
architecture of the state estimation system considered in this
paper. In this system, the compression-decompression process
is implemented using CS, digital communication is taken into
account, and state estimation is performed utilizing data after
decompression. In this section, details will be provided to
model this state estimation system.

A. Redundancy in Measurement Data

As discussed in the previous section, the aim here is
to conserve communication resources by implementing data
compression-decompression through utilizing the redundancy
inherent in the measurement data. It is crucial to articulate the
nature of this redundancy and ascertain the suitability of the
measurement data for compression-decompression.

First, the concept of sparsity is defined as follows.
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Fig. 2: Block diagram of the state estimation system

Definition 1 (s-sparsity): A vector is called s-sparse if it
has no more than s non-zero components.

In a sparse vector, the quantity of non-zero components
is typically significantly lower than the vector’s dimension.
The bulk of essential information within a sparse vector is
conveyed by its non-zero components, creating a distinct
division between useful and redundant information in sparse
vectors. Consequently, the concept of sparsity is particularly
apt for characterizing the redundancy present in measurement
vectors.

To uncover redundancy and highlight key information in
measurement vectors, it is imperative to establish a linkage
between the redundancy in measurement data and sparsity.
In certain practical situations, vectors characterized by re-
dundancy can be transformed into sparse vectors through
appropriate transformations [28]. This transformation process
is termed sparsification, which is formally defined as follows.

Definition 2 (s-sparsification): For a vector x and a matrix
Ψ, if Ψx is an s-sparse vector, we say that Ψ can s-sparsify
x.

In accordance with the discussion above, a measurement
vector amenable to sparsification is deemed suitable for com-
pression and decompression. Subsequently, the data that has
been decompressed can be employed for state estimation.
This paper is dedicated to providing a rigorous mathematical
description of both the compression-decompression process
and the ensuing state estimation process. Furthermore, and
most critically, the impact of compression-decompression on
the performance of state estimation will be subjected to further
analysis.

B. System Model

Consider a class of discrete-time nonlinear dynamical sys-
tems as follows:

xk+1 = f (xk, uk) + wk, (1)

where xk ∈ Rn is the state variable, f (·) : Rn → Rn is a
known nonlinear state transition function, uk represents the
known input vector, and wk ∈ Rn denotes Gaussian white
noise with zero mean and known covariance Qk.

In this paper, a special type of system is considered wherein
the measurement vectors exhibit considerable redundancy and
are amenable to sparsification. An illustrative example of such
a system is the smart grid system as investigated in [28].

To fulfill the condition for sparsification, the measurement
model must adhere to certain complex conditions. For the sake
of concise expression, such systems are characterized by a
general nonlinear measurement model as follows:

yk = h (xk) + vk, (2)

where yk ∈ Rm is the measurement vector, h (·) : Rn → Rm

is a known nonlinear measurement function, and vk ∈ Rm

represents Gaussian white noise with zero mean and known
covariance Rk.

To aid in unveiling the redundancy inherent in the measure-
ment, the following assumption is established.

Assumption 1: There exist a non-singular matrix Ψ ∈
Rm×m and a constant s ∈ N+ (s≪ m) such that the noise-
free measurement, namely h (xk), can always be s-sparsified
by Ψ.

A matrix Ψ, which satisfies Assumption 1, plays a pivotal
role in revealing the redundancy inherent in measurement
vectors. Herein, such a matrix Ψ is defined as a sparsifying
transformation.

It should be emphasized that the choice of Ψ is not
unique. As mentioned in [28], for certain practical systems,
various transformations (e.g. Fourier transform and wavelet
transforms) can potentially act as sparsifying transformations
[27]. To verify whether Assumption 1 is satisfied, one can try
out different sparsifying transformations to see if a suitable
candidate for Ψ can be found. In practice, Assumption 1
is usually satisfied for systems with redundant or correlated
measurements. In this paper, it is assumed that a suitable
sparsifying transformation Ψ is already known.

C. CS-Based Measurement Compression

Denote

z∗k ≜ Ψ(yk − vk) = Ψh (xk) , (3)

zk ≜ Ψyk = z∗k +Ψvk. (4)

In accordance with Definition 2 and Assumption 1, z∗k is
classified as an s-sparse vector. However, due to the unknown
nature of the process noise vk, the true value of z∗k remains
unattainable. Given the availability of zk, the objective is
to perform data compression on zk. Note that zk is not
necessarily s-sparse due to the impact of the process noise
vk. We will conduct a detailed analysis of the influence of the
process noise later.

In this paper, given that CS is a widely recognized high-
performance technique for the compression and decompres-
sion of sparse vectors, we choose to employ CS to process
zk. The fundamental principle of CS involves employing a
linear mapping to transform a high-dimensional sparse vector
into a low-dimensional non-sparse vector. By applying CS, the
compressed data vector, represented by lk, can be expressed
as

lk = Φzk, (5)

where Φ ∈ Rp×m is a predefined matrix and p ≪ m is a
known constant integer.
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Remark 1: As the compressed low-dimensional vector lk is
unable to convey as much information as the high-dimensional
vector zk, it is imperative that the matrix Φ is selected with
care to ensure that the compression process does not result in
excessive loss of critical information. The criteria for selecting
Φ will be elaborated later in Lemma 1.

D. Network-Induced Quantization

In the context of the widely utilized digital communication
channels, data quantization is a prerequisite prior to data
transmission. Furthermore, since quantization is implemented
to the compressed data, the influence of quantization is non-
negligible to the state estimation process. Thus, quantization
is a necessary step in the data transmission process.

In this part, an element-wise uniform quantization, which is
commonly applied, is considered for the compressed data vec-
tor lk. Denoting lk =

[
lk,1 lk,2 · · · lk,p

]T
, the quantizer

is described as:

Q (lk) ≜
[
Q1 (lk,1) Q2 (lk,2) · · · Qp (lk,p)

]T
.

Here, Qi (·) (i ∈ {1, 2, · · · , p}) are uniform quantizers for
scalars and Qi (·) is given as

Qi (lk,i) ≜ δiR
(
lk,i
δi

)
,

where δi > 0 is a pre-defined quantization level and R (·)
stands for the function rounding a real number to the nearest
integer. As a result, the quantization error of each element
satisfies

|lk,i −Qi (lk,i)| ⩽
δi
2
, i = 1, 2, · · · , p. (6)

Denoting the quantization error as

εk ≜ Q (lk)− lk, (7)

the result of quantization can be rewritten as

Q (lk) = Φzk + εk.

Denote

ε̄ ≜
1

2

√√√√ p∑
i=1

δ2i .

Using (6), it is clear that the quantization error vector
satisfies

∥εk∥2 ⩽ ε̄.

Though not being the main focus of this paper, limited
quantization levels may also be a practical concern. In this
case, we can consider clipping the measurement vector yk so
that the compressed data vector lk does not exceed the range
of quantization. The impact of clipping is the same as that of
sensor saturation, which has already been extensively studied
in the existing literature [36].

E. CS-Based Measurement Decompression

In this paper, it is assumed that the quantized data Q (lk)
can be transmitted through the digital communication channel
without any loss. Consequently, data decompression becomes
necessary. Adhering to the principles of CS, the decompression
of measurements can be undertaken by solving the following
optimization problem [6], [13]:

ẑ∗k ≜ argmin
ẑk

∥Q (lk)− Φẑk∥2

s.t. ∥ẑk∥0 ⩽ s,
(8)

where ∥ẑk∥0 stands for the l0 norm of ẑk, which represents
the count of non-zero components within the vector ẑk. The
main idea of this optimization problem is to derive an s-sparse
vector ẑ∗k that is capable of reconstructing the received data
vector Q (lk) with maximal accuracy.

Due to the non-convex nature of the l0 norm, the opti-
mization problem (8) is classified as NP-hard [9]. As a fea-
sible alternative, the Compressive Sampling Matching Pursuit
(CoSaMP) algorithm is employed to secure an approximated
solution [29]. In this context, CoSaMPs is denoted as the
CoSaMP algorithm specifically for obtaining an s-sparse vec-
tor.

Define supp (x) as the support of a vector x, which repre-
sents a set containing the indices of non-zero elements of x.
For a set T , |T | represents the number of elements in T . For
z ∈ Rm and T ⊂ {1, 2, · · · , n}, denote z|T ∈ R|T | as the
part of elements in z with indices in T . Similarly, for a matrix
Φ ∈ Rp×m, Φ|T ∈ Rp×|T | is composed of the columns of Φ
with indices in T . Furthermore, denote zs as an s-sparse vector
obtained from the vector z by preserving the s elements with
the largest magnitudes and setting all other elements to zero.
Similarly, y2s can also be obtained by setting all elements in
y to zero except the 2s elements with the largest magnitudes.
bs can be acquired in the same way. Moreover, denote A†

as the Moore-Penrose pseudo inverse of the matrix A. With
the above notations, the CoSaMPs algorithm for measurement
decompression can be summarized as Algorithm 1.

Algorithm 1 CoSaMPs for measurement decompression [29]
Input: Compressed and quantized data vector Q (lk), com-
pression matrix Φ, number of iterations tk, and allowed
number of non-zero components s.

1: For initialization, let ẑ[0]k ← 0 and v ← Q (lk).
2: for k ← 1 to tk do
3: y ← ΦT v.
4: Ω← supp (y2s).
5: T ← Ω ∪ supp

(
ẑ[k−1]

)
.

6: b|T ← Φ†
TQ (lk).

7: b|TC ← 0.
8: ẑ[k] ← bs.
9: v ← Q (lk)− Φẑ[k].

10: end for
11: Let ẑk ← ẑ

[tk]
k .

Output: ẑk as an approximated solution to (8).
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Using Q (lk), CoSaMPs tries to recover zk and produces
ẑk. In light of (4), the decompressed measurement, denoted
by y̌k, can be acquired with y̌k = Ψ−1ẑk.

Unfortunately, the result of decompression y̌k is different
from the original measurement vector yk due to the following
three reasons: 1) CS is a lossy compression-decompression
method; 2) CoSAMPs only acquires an approximated solution
of (8); and 3) measurement noise and quantization errors pose
additional disturbances on the compression-decompression
process. Here, we denote the difference between y̌k and yk
as the decompression error:

dk ≜ yk − y̌k. (9)

Apart from Q (lk) and Φ, CoSaMPs is reliant on two
other important parameters, namely the number of non-zero
elements s and the number of iterations tk. Here, s is a
known constant that is related to the characteristics of the
system model. tk influences the decompression error, and will
be decided later based on requirements on the decompression
performance.

The performance of the CoSaMP algorithm is dependent
on the dimensions and sparsity of zk. Generally, a more
sparse vector zk with higher dimensions leads to a smaller
decompression error. Though a precise relation is currently
unavailable, as a rough guideline, CoSaMP would have a good
performance if the order of magnitude of p satisfies

p ⩾ Cs log
m

s

where C indicates an algorithm-related constant. Therefore,
CS-based compression-decompression is typically suitable for
high-dimensional systems in which the measurement vectors
exhibit redundancy and sparsity.

Remark 2: An intuitive method to deal with data compres-
sion is to directly incorporate the compression process into the
measurement model, which involves considering

zk = Ψ(h (xk) + vk) (10)

as a modified measurement equation. Based on (10), a state
estimator can then be designed. This method appears to
be easily implementable and can circumvent the complex
decompression operation. However, this approach is flawed
because it neglects the critical aspect of sparsity, thereby
compromising observability. Given that a nonlinear system
is under consideration in this paper, a theoretical analysis of
observability is unfeasible. Furthermore, the disadvantage of
using (10) as the measurement model for state estimation will
be demonstrated through simulation experiments in section IV.

F. State Estimation Problem

It is worth noting that the remote estimator can only
receive the decompressed measurement y̌k, which is inevitably
distorted by noises. Thus, the state estimation problem requires
us to utilize y̌k, the system model (1)–(2), information about
the compression-decompression process, and knowledge of
the noises to design a state estimator that reaches optimal
estimation performance.

To help specify the performance index for state estimation,
we first construct the estimator. To handle the nonlinear system
characteristics in (1)–(2), a UKF with the following update rule
is implemented following [24]:

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
y̌k+1 − ŷk+1|k

)
, (11)

where the notations are slightly different from the filter design
in [24]. Here, x̂k+1|k is the one-step prediction at time
instant k + 1, x̂k+1|k+1 is the state estimate at time instant
k+1, y̌k+1 stands for the decompressed measurement, ŷk+1|k
represents the predicted measurement based on x̂k+1|k, and
Kk+1 denotes the filter gain matrix. x̂k+1|k and ŷk+1|k can
be obtained by following the standard UKF method, while
Kk+1 is to be designed later.

To help design and analyze the state estimator, the state
prediction error, state estimation error, and measurement pre-
diction error at time instant k+1 are denoted, respectively, as
follows:

x̃k+1|k ≜ xk+1 − x̂k+1|k (12)

x̃k+1|k+1 ≜ xk+1 − x̂k+1|k+1 (13)

ỹk+1|k ≜ yk+1 − ŷk+1|k. (14)

Based on the above notations, we further denote

Pk+1|k ≜ E
{
x̃k+1|kx̃

T
k+1|k

}
Pk+1|k+1 ≜ E

{
x̃k+1|k+1x̃

T
k+1|k+1

}
Pxy,k+1|k ≜ E

{
x̃k+1|kỹ

T
k+1|k

}
Pyy,k+1|k ≜ E

{
ỹk+1|kỹ

T
k+1|k

}
,

where Pk+1|k is the covariance of the state prediction error,
Pk+1|k+1 denotes the covariance of the state estimation error,
Pxy,k+1|k stands for the cross-covariance of state prediction
error and measurement prediction error, and Pyy,k+1|k rep-
resents the covariance of measurement prediction error. In
this paper, tr

{
Pk+1|k+1

}
is selected as the main performance

index characterizing the overall estimation accuracy.
As will be clarified later, it is infeasible to analytically com-

pute the exact expression of Pk+1|k+1 owing to the combined
impact of quantization errors and measurement compression-
decompression. As a tractable alternative, an upper bound
of Pk+1|k+1, denoted by P̄k+1|k+1, is to be obtained. Sub-
sequently, the state estimator gain matrix Kk+1 should be
designed to minimize tr

{
P̄k+1|k+1

}
to help improve the

estimation precision. Finally, the performance of the designed
estimator should be analyzed by evaluating the mean-square
exponential boundedness of the estimation error.

The main results, which are presented in the next sec-
tion, are in correspondence with the problems and objectives
stated above. Specifically, the impact of the compression-
decompression process on the data transmission process is ana-
lyzed in detail in Section III-A. In Section III-B, a comprehen-
sive analysis is proposed to illustrate how the data transmission
process influences the estimation error, and P̄k+1|k+1 is sub-
sequently obtained. Filter gains are also designed to minimize
tr
{
P̄k+1|k+1

}
. At last, performance analysis is conducted
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for the designed estimator, where conditions are proposed
for ensuring the mean-square exponential boundedness of the
estimation error in Section III-C.

III. MAIN RESULTS

A. Analysis of Decompression Error

In this part, we aim to analyze the combined influence of
measurement noise and quantization errors on the decompres-
sion error.

We start by studying a basic decompression problem. Con-
sider a compressed vector y = Φx+e, where x is the original
data vector, Φ is a matrix with fewer rows than columns,
and e denotes bounded disturbance. Denote xs as an s-sparse
vector obtained by preserving s components with the largest
magnitudes in x and setting all other components to zero.
Here, xs is a best s-sparse approximation to x [29], which
satisfies

xs =argmin
x̄
∥x− x̄∥2

s.t. ∥x̄∥0 ⩽ s.
(15)

Let

ϵ̃s ≜ ∥x− xs∥2 +
1√
s
∥x− xs∥1 + ∥e∥2 . (16)

Let x[t] represent the outcome obtained after executing the
CoSaMPs for t iterations. Then, the efficacy of CoSAMPs can
be described by the following lemma.

Lemma 1 (Theorem 2.1, [29]): If there exists a constant
0 < δ4s ⩽ 0.1 such that the inequality

(1− δ4s) ∥z∥22 ⩽ ∥Φz∥22 ⩽ (1 + δ4s) ∥z∥22 (17)

holds for any vector z satisfying ∥z∥0 ⩽ 4s, then there exists
a positive constant κ so that∥∥∥x− x[t]∥∥∥

2
⩽ 2−t ∥xs∥2 + κϵ̃s. (18)

Remark 3: The constant κ in (18) is dependent on a
few factors such as the matrix Φ and the specific value
of δ4s in (17). Variations in system characteristics result in
differing values of κ. The readers are referred to [29] for
further elaboration. Using random matrices as candidates is
an effective method for choosing Φ [8].

It is pointed out in Lemma 1 that the upper bound of∥∥x− x[t]∥∥
2

decreases and converges to κϵ̃s as the num-
ber of iterations t increases. Specifically speaking, the term
2−t ∥xs∥2 in (18) converges to zero while t approaches
infinity. Therefore, we can always keep the term 2−t ∥xs∥2
below a predefined level θ > 0 by selecting a proper t. With
θ given as a known constant, Lemma 1 can be extended as
follows:

Lemma 2: Consider the decompression process introduced
in Lemma 1. Suppose that the number of iterations t in Lemma
1 is set as

t∗ ≜ ⌈log2
∥x∥2
θ
⌉ (19)

where, for any a ∈ R, ⌈a⌉ indicates the smallest integer equal
to or larger than a. Then, the decompression error satisfies∥∥∥x− x[t∗]∥∥∥

2
⩽ θ + κϵ̃s

with ϵ̃s defined in (16).
Proof: Combining (18) and (19) yields∥∥∥x− x[t∗]∥∥∥

2
⩽2−t∗ ∥xs∥2 + κϵ̃s

⩽
θ

∥x∥2
∥x∥2 + κϵ̃s

=θ + κϵ̃s,

which completes the proof.
According to Lemma 2, when obtaining ẑk using Algorithm

1, we can set the number of iterations tk as

tk = ⌈log2
∥zk∥2
θ
⌉. (20)

While zk remains unknown during the decompression
phase, it is accessible during the compression process, en-
abling the straightforward calculation of tk. Subsequently, tk
can be relayed through the communication network together
with the compressed data vector. Given that tk is merely
an integer, its transmission imposes minimal strain on the
communication network.

With tk decided, we can employ CoSaMPs for data decom-
pression. It is quite challenging to analyze the characteristics
of zk − ẑk or yk − y̌k due mainly to the existence of the
measurement noise and quantization errors. To address this
issue, we present Lemma 3 and Theorem 1.

Lemma 3: xs satisfying (15) is also a solution to the
following optimization problem:

argmin
x̄
∥x− x̄∥1

s.t. ∥x̄∥0 ⩽ s.
(21)

Proof: It is obvious that xs can be obtained by setting
all but the largest (in magnitude) s components of x to zero.
A solution to (21) can be obtained in the same way, which
implies that xs is also a solution to (21).

Before proceeding further, the following lemma, which
can be easily derived from the well-known Cauchy-Schwarz
inequality, is presented as a useful tool.

Lemma 4: For any vector z ∈ Rm, the following relation
holds:

zzT ⩽ zT zI.

To analyze the characteristics of the decompression error,
we propose the following theorem.

Theorem 1: At time instant k, we apply CoSaMPs after
setting the number of iterations tk according to (20). Then,
with the decompression error defined in (9), dk satisfies

E
{
dkd

T
k

}
⩽ ξkΨ

−1
(
Ψ−1

)T
,

where ξk is a scalar given as

ξk ≜ 2κ2
(
1 +

√
n√
s

)2

tr
{
ΨRkΨ

T
}
+ 2 (θ + κε̄)

2 (22)

Proof: Using (2) and (4), we have

zk = Ψh (xk) + Ψvk. (23)
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According to Assumption 1, the term Ψh (xk) is a sparse
vector with no more than s non-zero components, namely

∥Ψh (xk)∥0 ⩽ s. (24)

Define zsk as an s-sparse vector obtained by preserving s
components with the largest magnitudes in zk and setting all
other components to zero. Following (15), zsk satisfies

zsk = argmin
z̄
∥zk − z̄∥2

s.t. ∥z̄∥0 ⩽ s.
(25)

According to Lemma 3, the following relation holds as well:

zsk = argmin
z̄
∥zk − z̄∥1

s.t. ∥z̄∥0 ⩽ s.

Due to the optimality of zsk, for any z satisfying ∥z∥0 ⩽ s,
we have

∥zk − zsk∥2 ⩽ ∥zk − z∥2 , (26)
∥zk − zsk∥1 ⩽ ∥zk − z∥1 . (27)

Combining (23), (24), (26), and (27) yields

∥zk − zsk∥2 ⩽ ∥zk −Ψh (xk)∥2 = ∥Ψvk∥2 , (28)
∥zk − zsk∥1 ⩽ ∥zk −Ψh (xk)∥1 = ∥Ψvk∥1 . (29)

According to Lemma 2, (20), (28), and (29), we have

∥zk − ẑk∥2

⩽ θ + κ

(
∥zk − zsk∥2 +

1√
s
∥zk − zsk∥1 + ∥εk∥2

)
⩽ θ + κ

(
∥Ψvk∥2 +

1√
s
∥Ψvk∥1 + ∥εk∥2

)
⩽ κ

(
1 +

√
n√
s

)
∥Ψvk∥2 + (θ + κ ∥εk∥2) . (30)

Considering the square on both sides of (30) leads to

∥zk − ẑk∥22
= (zk − ẑk)T (zk − ẑk)

⩽κ2
(
1 +

√
n√
s

)2

∥Ψvk∥22 + (θ + κ ∥εk∥2)
2

+ 2κ

(
1 +

√
n√
s

)
∥Ψvk∥2 (θ + κ ∥εk∥2)

⩽ 2κ2
(
1 +

√
n√
s

)2

∥Ψvk∥22 + 2 (θ + κ ∥εk∥2)
2

⩽ 2κ2
(
1 +

√
n√
s

)2

tr
{
Ψvkv

T
k Ψ

T
}
+ 2 (θ + κε̄)

2
. (31)

Taking the mathematical expectation of both sides of (31)
with respect to vk, we have

E
{
(zk − ẑk)T (zk − ẑk)

}
⩽ 2κ2

(
1 +

√
n√
s

)2

E
{
tr
{
Ψvkv

T
k Ψ

T
}}

+ 2 (θ + κε̄)
2

⩽ 2κ2
(
1 +

√
n√
s

)2

tr
{
ΨRkΨ

T
}
+ 2 (θ + κε̄)

2
= ξk (32)

It follows from Lemma 4 and (32) that

E
{
(zk − ẑk) (zk − ẑk)T

}
⩽ E

{
(zk − ẑk)T (zk − ẑk) I

}
= E

{
(zk − ẑk)T (zk − ẑk)

}
I = ξkI,

where I represents the m×m identity matrix.
Following the definitions of zk and y̌k, we have

E
{
dkd

T
k

}
= E

{
Ψ−1 (zk − ẑk) (zk − ẑk)T

(
Ψ−1

)T}
= Ψ−1E

{
(zk − ẑk) (zk − ẑk)T

}(
Ψ−1

)T
⩽ ξkΨ

−1
(
Ψ−1

)T
,

and the proof is thus complete.
Remark 4: Theorem 1 points out that the decompression

error of the measurement is bounded. According to (22), the
upper bound approaches zero when the measurement noise
covariance Rk, the upper bound ε̄ of quantization error, and
θ converge towards zero. The characteristic of decompression
error holds significant importance as it reflects the impact of
the compression-decompression process on state estimation.

B. Design of State Estimator

As stated in Theorem 1, an upper bound of E
{
dkd

T
k

}
is known and can be further utilized in the state estimator
design. Using (14), the update rule of the state estimator can
be rewritten as

x̂k+1|k+1 = x̂k+1|k +Kk+1ỹk+1|k −Kk+1dk+1.

In light of Theorem 1, it’s acknowledged that only an
upper bound of E

{
dk+1d

T
k+1

}
is known, with the analytical

expressions for the mean or covariance of dk+1 remaining
elusive. This complexity poses substantial challenges in analyt-
ically determining the value of the estimation error covariance
Pk+1|k+1. Consequently, it is very hard to obtain the optimal
filter gain by minimizing Pk+1|k+1. As a workaround, a
variance-constrained methodology is adopted to deduce an
upper bound for Pk+1|k+1 and to formulate a suboptimal filter
gain by minimizing this upper bound of Pk+1|k+1 [24].

To facilitate the derivation, a useful lemma is presented
below.

Lemma 5 ( [24]): For any real vectors x, y with the same
dimension and positive scalar σ > 0, the following inequality
holds:

xyT + yxT ⩽ σxxT + σ−1yyT .

The establishment of the upper bound for Pk+1|k+1 and the
formulation of the suboptimal filter gain are presented in the
subsequent theorem.

Theorem 2: For an arbitrary positive scalar a > 0, an
upper bound of the estimation error covariance Pk+1|k+1 is
calculated as:

P̄k+1|k+1 ≜ (1 + a)
(
Pk+1|k −Kk+1P

T
xy,k+1|k

− Pxy,k+1|kK
T
k+1 +Kk+1Pyy,k+1|kK

T
k+1

)
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+
(
1 + 2a−1

)
ξk+1Kk+1Ψ

−1
(
Ψ−1

)T
KT

k+1.
(33)

To minimize the trace of P̄k+1|k+1, the gain matrix Kk+1 is
computed as follows:

Kk+1

=Pxy,k+1|k

[
Pyy,k+1|k +

1 + 2a−1

1 + a
ξk+1Ψ

−1
(
Ψ−1

)T]−1

.

Proof: According to (12) and (13), we have

x̃k+1|k+1 = x̃k+1|k −Kk+1ỹk+1|k +Kk+1dk+1. (34)

Then, the estimation error covariance can be computed as:

Pk+1|k+1

= E
{
x̃k+1|k+1x̃

T
k+1|k+1

}
= Pk+1|k − Pxy,k+1|kK

T
k+1 −Kk+1P

T
xy,k+1|k

+ E
{
x̃k+1|kd

T
k+1

}
KT

k+1 +Kk+1E
{
dk+1x̃

T
k+1|k

}
+Kk+1Pyy,k+1|kK

T
k+1

−Kk+1E
{
ỹk+1|kd

T
k+1

}
KT

k+1

−Kk+1

{
dk+1ỹ

T
k+1|k

}
KT

k+1

+Kk+1E
{
dk+1d

T
k+1

}
KT

k+1. (35)

Before proceeding further, we give some more details about
ŷk+1|k according to the results in [26], [43]. Considering the
linear expansion of h (·), ỹk+1|k can be written as:

ỹk+1|k = Γk+1Hk+1x̃k+1|k + vk+1, (36)

where
Hk+1 ≜

∂h (x)

∂x

∣∣∣∣
x=x̂k+1|k

is a Jacobian matrix, and

Γk+1 ≜ diag {γk+1,1, γk+1,2, · · · , γk+1,m}

is applied to quantify the linearization errors. As will be shown
later, Γk+1 only serves as a placeholder here and we do not
need to determine the specific value of Γk+1 during state
estimator design.

With the expansion of ŷk+1|k, we have

Pxy,k+1|k = E
{
x̃k+1|k

(
Γk+1Hk+1x̃k+1|k + vk+1

)T}
,

= Pk+1|kH
T
k+1Γk+1, (37)

Pyy,k+1|k = E
{(

Γk+1Hk+1x̃k+1|k + vk+1

)
×
(
Γk+1Hk+1x̃k+1|k + vk+1

)T}
= Γk+1Hk+1Pk+1|kH

T
k+1Γk+1 +Rk+1. (38)

Substituting (37) and (38) into (35) yields

Pk+1|k+1

= (I −Kk+1Γk+1Hk+1)Pk+1|k (I −Kk+1Γk+1Hk+1)
T

+ Sk+1 + STk+1 − Tk+1 − T T
k+1

+Kk+1Rk+1K
T
k+1 +Kk+1E

{
dk+1d

T
k+1

}
KT

k+1, (39)

where

Sk+1 ≜ E
{
(I −Kk+1Γk+1Hk+1) x̃k+1|kd

T
k+1K

T
k+1

}
,

Tk+1 ≜ E
{
Kk+1vk+1d

T
k+1K

T
k+1

}
.

According to Lemma 5, for any positive scalar a > 0, we
have

Sk+1 + STk+1 ⩽ aE
{
(I −Kk+1Γk+1Hk+1)Pk+1|k

× (I −Kk+1Γk+1Hk+1)
T
}

+ a−1Kk+1E
{
dk+1d

T
k+1

}
KT

k+1, (40)

−Tk+1 − T T
k+1 ⩽ aKk+1Rk+1K

T
k+1+

+ a−1Kk+1E
{
dk+1d

T
k+1

}
KT

k+1. (41)

Using Theorem 1, we obtain the following inequality:

E
{
dk+1d

T
k+1

}
⩽ ξk+1Ψ

−1
(
Ψ−1

)T
. (42)

Combining (39), (40), (41), and (42), we have

Pk+1|k+1 ⩽ (1 + a) (I −Kk+1Γk+1Hk+1)Pk+1|k

× (I −Kk+1Γk+1Hk+1)
T

+ (1 + a)Kk+1Rk+1K
T
k+1

+
(
1 + 2a−1

)
ξk+1Kk+1Ψ

−1
(
Ψ−1

)T
KT

k+1

= P̄k+1|k+1. (43)

When designing the filter gain Kk+1, we aim to minimize
the trace of the upper bound P̄k+1|k+1. Considering the partial
derivatives of tr

{
P̄k+1|k+1

}
, we have

∂tr
{
P̄k+1|k+1

}
∂Kk+1

= 2 (1 + a)
(
−Pk+1|kH

T
k+1Γk+1

+Kk+1Γk+1Hk+1Pk+1|kH
T
k+1Γk+1

)
+ 2 (1 + a)Kk+1Rk+1

+ 2
(
1 + 2a−1

)
ξk+1Kk+1Ψ

−1
(
Ψ−1

)T
.

By letting
∂tr

{
P̄k+1|k+1

}
∂Kk+1

= 0,

the filter gain Kk+1 can be designed as

Kk+1 = (1 + a)Pk+1|kH
T
k+1Γk+1 [(1 + a) Γk+1

×Hk+1Pk+1|kH
T
k+1Γk+1 + (1 + a)Rk+1

+
(
1 + 2a−1

)
ξk+1Ψ

−1
(
Ψ−1

)T ]−1

= Pk+1|kH
T
k+1Γk+1

(
Γk+1Hk+1Pk+1|kH

T
k+1Γk+1

+Rk+1 +
1 + 2a−1

1 + a
ξk+1Ψ

−1
(
Ψ−1

)T)−1

, (44)

Using (37) and (38), Kk+1 can be rewritten as

Kk+1

= Pxy,k+1|k

(
Pyy,k+1|k +

1 + 2a−1

1 + a
ξk+1Ψ

−1
(
Ψ−1

)T)−1

.

(45)
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Noting that Γk+1 is not involved in the expression of Kk+1,
the specific value of Γk+1 is not required. With (43) and (45)
derived, the proof is complete.

Remark 5: In light of the derivation in Theorem 2, for
any a > 0, P̄k+1|k+1 is an upper bound of the estimation
error covariance and Kk+1 can always minimize the trace of
P̄k+1|k+1. The value of a will be determined later in (85)
considering performance analysis.

Given that only upper bounds of estimation error covari-
ances are attainable, it necessitates a modification to the
UKF such that upper bounds are utilized in lieu of exact
values when computing sigma points. In alignment with the
approach detailed in [24], the execution of the modified UKF
is encapsulated within Algorithm 2.

Remark 6: With the introduction of Algorithm 2, the issue
of remote state estimation has been addressed for a specific
category of nonlinear systems influenced by quantization
effects and the process of data compression-decompression.
Embedded within the UKF framework, the proposed state
estimation algorithm offers a straightforward implementation.

C. Performance Analysis

In this part, we aim to conduct the performance analysis of
the designed state estimator by assessing the boundedness of
the estimation error. First, some useful lemmas are presented.

Lemma 6 ( [20]): For arbitrary real vectors x, y, positive-
definite matrix P with compatible dimensions, and positive
scalar σ > 0, the following inequality holds:

xTPy + yTPx ⩽ σxTPx+ σ−1yTPy.

Lemma 7 ( [43]): For positive definite matrices A > 0, C >
0, and matrix B with compatible dimensions, the following
inequality holds:

A−1 > B
(
BTAB + C

)−1
BT .

Lemma 8: By defining

R̃k+1 ≜ Rk+1 +
1 + 2a−1

1 + a
ξk+1Ψ

−1
(
Ψ−1

)T
, (46)

Kk+1 and P̄k+1|k+1 given in Theorem 2 can be rewritten as
follows:

Kk+1 =
1

1 + a
P̄k+1|k+1H

T
k+1Γk+1R̃

−1
k+1, (47)

P̄−1
k+1|k+1 =

1

1 + a

(
P−1
k+1|k

+HT
k+1Γk+1R̃

−1
k+1Γk+1Hk+1

)
. (48)

Proof: Substituting (44) into (43), we have

P̄k+1|k+1 = (1 + a)
[
Pk+1|k − Pk+1|kH

T
k+1Γk+1

×
(
Γk+1Hk+1Pk+1|kH

T
k+1Γk+1 + R̃k+1

)−1

×Γk+1Hk+1Pk+1|k
]

= (1 + a) (I −Kk+1Γk+1Hk+1)Pk+1|k. (49)

For the sake of simplicity, define

Mk+1 ≜ Γk+1Hk+1Pk+1|kH
T
k+1Γk+1 + R̃k+1. (50)

Algorithm 2 Modified UKF
Input: Initial state estimation x̂0|0, initial estimation error

covariance P0|0, and system model information.
1: Let P̄0|0 = P0|0 and k = 0.
2: At time instant k, generate 2n+1 sigma points as follows:

χ0
k|k = x̂k|k,

χi
k|k = x̂k|k +

(√
(λ+ n) P̄k|k

)
i

, 1 ⩽ i ⩽ n,

χi
k|k = x̂k|k −

(√
(λ+ n) P̄k|k

)
i−n

, n+ 1 ⩽ i ⩽ 2n,

where λ is a scaling factor defined in [39].
3: Obtain predictions of sigma points as

χi
k+1|k = f

(
χi
k|k, uk

)
, 0 ⩽ i ⩽ 2n.

4: Compute the prediction and the prediction covariance as

x̂k+1|k =
2n∑
i=0

Wm
i χ

i
k+1|k,

Pk+1|k =

2n∑
i=0

Wc
i

(
χi
k+1|k − x̂k+1|k

)
×
(
χi
k+1|k − x̂k+1|k

)T

+Qk,

where Wm
i and Wc

i are constant weights defined in [39].
5: Compute the measurement prediction and covariance ma-

trices as follows:

Yi
k+1|k = g

(
χi
k+1|k

)
, 0 ⩽ i ⩽ 2n,

ŷk+1|k =
2n∑
i=0

Wm
i Yi

k+1|k,

Pyy,k+1|k =

2n∑
i=0

Wc
i

(
Yi
k+1|k − ŷk+1|k

)
×

(
Yi
k+1|k − ŷk+1|k

)T

+Rk+1,

Pxy,k+1|k =
2n∑
i=0

Wc
i

(
χi
k+1|k − x̂k+1|k

)
×

(
Yi
k+1|k − ŷk+1|k

)T

.

6: Determine the filter gain Kk+1 according to (45).
7: Update the state estimation x̂k+1|k+1 according to (11).
8: Compute P̄k+1|k+1 according to (33).
9: Let k ← k + 1 and return to Step 2 until the maximum

step is reached.

Combining (44), (46), and (50) yields

Kk+1 = Pk+1|kH
T
k+1Γk+1M

−1
k+1

= Pk+1|kH
T
k+1Γk+1R̃

−1
k+1

− Pk+1|kH
T
k+1Γk+1M

−1
k+1Mk+1R̃

−1
k+1

+ Pk+1|kH
T
k+1Γk+1M

−1
k+1R̃k+1R̃

−1
k+1

=
(
I − Pk+1|kH

T
k+1Γk+1M

−1
k+1Γk+1Hk+1

)
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× Pk+1|kH
T
k+1Γk+1R̃

−1
k+1

= (I −Kk+1Γk+1Hk+1)Pk+1|kH
T
k+1Γk+1R̃

−1
k+1.

(51)

According to (49) and (51), (47) can be obtained. Besides,
applying the matrix inversion lemma to (49), we have

P̄k+1|k+1 = (1 + a)
(
P−1
k+1|k

+HT
k+1Γk+1R̃

−1
k+1Γk+1Hk+1

)−1

, (52)

which indicates that (48) holds. Thus, the proof is complete.

Before proceeding to the performance analysis, we consider
the linear expansion of x̃k+1|k as follows:

x̃k+1|k = ΛkFkx̃k|k + wk, (53)

where the Jacobian matrix Fk is defined as

Fk ≜
∂f (x, u)

∂x

∣∣∣∣
x=x̂k|k,u=uk

,

and
Λk ≜ diag {λk,1, λk,2, · · · , λk,n}

quantifies the linearization errors. Then, we make the follow-
ing assumption about system parameters:

Assumption 2: There exist positive constants fmin, fmax,
hmin, hmax, λmin, λmax, γmin, γmax, qmin, qmax, rmax, and
ψmax such that the following bounds hold for any k > 0:

f2minI ⩽ FkF
T
k ⩽ f2maxI, (54)

h2minI ⩽ HkH
T
k ⩽ h2maxI, (55)

λ2minI ⩽ ΛkΛ
T
k ⩽ λ2maxI, (56)

γ2minI ⩽ ΓkΓ
T
k ⩽ γ2maxI. (57)

qminI ⩽ Qk ⩽ qmaxI, (58)
rminI ⩽ Rk ⩽ rmaxI, (59)
ψminI ⩽ Ψ ⩽ ψmaxI, (60)
ξmin ⩽ ξk ⩽ ξmax, (61)

Define

r̃min ≜ rmin +
1 + 2a−1

1 + a

ξmin

ψ2
max

,

r̃max ≜ rmax +
1 + 2a−1

1 + a

ξmax

ψ2
min

,

we have the following theorem.
Theorem 3: Under Assumption 2, let η̄ be a positive scalar

such that

P̄0|0 ⩽ η̄I, (62)
1

(1 + a) η̄
⩽

1

λ2maxf
2
maxη̄ + qmax

+
h2minγ

2
min

r̃max
. (63)

Then, there exist positive constants pmin and pmax such that

pminI ⩽ P̄k|k ⩽ pmaxI.

Proof: Using (53), we have

Pk+1|k = ΛkFkP̄F
T
k Λk +Qk. (64)

It follows from (48) and (64) that

P̄−1
k+1|k+1 =

1

1 + a

[(
ΛkFkP̄F

T
k Λk +Qk

)−1

+HT
k+1Γk+1R̃

−1
k+1Γk+1Hk+1

]
⩽

1

1 + a

(
Q−1

k +HT
k+1Γk+1R̃

−1
k+1Γk+1Hk+1

)
.

According to (59)–(61) and (46), R̃k+1 is bounded by

r̃minI ⩽ R̃k+1 ⩽ r̃max. (65)

Using Assumption 2 and (65), we have

P̄−1
k+1|k+1 ⩽

1

1 + a

(
1

qmin
+
h2maxγ

2
max

r̃min

)
I.

Constructing

pmin ≜

[
1

1 + a

(
1

qmin
+
h2maxγ

2
max

r̃min

)]−1

,

we have
P̄k+1|k+1 ⩾ pminI. (66)

Next, let us prove the existence of the upper bound by
mathematical induction. Since P̄0|0 ⩽ η̄I is bounded, we
assume P̄k|k ⩽ η̄I . Using (48), (63), and (64), we have

P̄k+1|k+1 ⩽ (1 + a)

[
1

λ2maxf
2
maxη̄ + qmax

+
h2minγ

2
min

r̃max

]−1

I

⩽ η̄I.

Then, construct
pmax ≜ η̄,

and we have
P̄k+1|k+1 ⩽ pmaxI. (67)

It follows from (66) and (67) that the proof is complete.
Remark 7: The boundedness of P̄k+1|k+1 is intricately

linked to the observability and detectability of the system [18],
[35]. Given the focus on nonlinear systems within this paper,
pinpointing precise conditions for observability or detectability
proves to be impractical. As a feasible alternative, a sufficient
condition for the boundedness of the estimation error will be
contemplated. Theorem 3 serves as an important foundation
of Theorem 4, which is a core result of performance analysis
proposing conditions for the mean-square exponential bound-
edness of the estimation error.

With the boundedness of P̄k+1|k+1 now assured, attention
shifts towards examining the properties of the estimation error
x̃k+1|k+1. To facilitate this analysis, the subsequent lemma is
presented as a foundational instrument.

Lemma 9 ( [1], [37]): For a stochastic process ηk, assume
that there exist a stochastic process V (ηk) and constants
νmin > 0, νmax > 0, µ > 0, and 0 < λ ⩽ 1 such that
the following two conditions are fulfilled for any k > 0:

νmin ∥ηk∥22 ⩽ V (ηk) ⩽νmax ∥ηk∥22 ,
E {V (ηk) | ηk−1} − V (ηk−1) ⩽− λV (ηk−1) + µ.
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Then, the stochastic process ηk is exponentially bounded in
mean square, namely

E
{
∥ηk∥22

}
⩽
νmax

νmin
E
{
∥η0∥22

}
(1− λ)k

+
µ

νmin

k−1∑
i=1

(1− λ)i .

With the lemmas and intermediate results mentioned above,
the main results for performance analysis are presented as
follows.

Theorem 4: Consider the modified UKF designed in this
paper. Under Assumption 2, if the conditions in Theorem 3
are satisfied, then there exists a constant a > 0 such that the
estimation error x̃k|k is exponentially bounded in mean square.

Proof: We start the proof by constructing

Vk
(
x̃k|k

)
≜ x̃Tk|kP̄

−1
k|k x̃k|k.

According to Theorem 3, Vk
(
x̃k|k

)
is bounded by

1

pmax

∥∥x̃k|k∥∥22 ⩽ Vk
(
x̃k|k

)
⩽

1

pmin

∥∥x̃k|k∥∥22 . (68)

Using (34), (36), and (48), we have

E
{
Vk+1

(
x̃k+1|k+1

)
| x̃k|k

}
= E

{[
(I −Kk+1Γk+1Hk+1) x̃k+1|k −Kk+1vk+1

+Kk+1dk+1]
T
P̄−1
k+1|k+1

[
(I −Kk+1Γk+1Hk+1) x̃k+1|k

−Kk+1vk+1 +Kk+1dk+1] | x̃k|k
}
.

According to Lemma 6, for any σ > 0, we can obtain

E
{
Vk+1

(
x̃k+1|k+1

)
| x̃k|k

}
⩽ (1 + σ)E

{[
(I −Kk+1Γk+1Hk+1) x̃k+1|k

−Kk+1vk+1]
T
P̄−1
k+1|k+1

[
(I −Kk+1Γk+1Hk+1) x̃k+1|k

−Kk+1vk+1] | x̃k|k
}
+
(
1 + σ−1

)
× E

{
(Kk+1dk+1)

T
P̄−1
k+1|k+1 (Kk+1dk+1) | x̃k|k

}
. (69)

Defining

Ξk+1 ≜
[
(I −Kk+1Γk+1Hk+1) x̃k+1|k −Kk+1vk+1

]T
× P̄−1

k+1|k+1

[
(I −Kk+1Γk+1Hk+1) x̃k+1|k

−Kk+1vk+1] , (70)

we have

Ξk+1

= x̃Tk+1|kP̄
−1
k+1|k+1x̃k+1|k +

(
Γk+1Hk+1x̃k+1|k + vk+1

)T
×KT

k+1P̄
−1
k+1|k+1Kk+1

(
Γk+1Hk+1x̃k+1|k + vk+1

)
− x̃Tk+1|kP̄

−1
k+1|k+1Kk+1

(
Γk+1Hk+1x̃k+1|k + vk+1

)
−
(
Γk+1Hk+1x̃k+1|k + vk+1

)T
KT

k+1P̄
−1
k+1|k+1x̃k+1|k.

(71)

Substituting (44) and (48) into (71) yields

Ξk+1 =
1

1 + a
x̃Tk+1|kP

−1
k+1|kx̃k+1|k

−
(
Γk+1Hk+1x̃k+1|k

)T (
1

1 + a
R̃−1

k+1

− 1

(1 + a)
2 R̃

−1
k+1Γk+1Hk+1P̄k+1|k+1H

T
k+1

×Γk+1R̃
−1
k+1

) (
Γk+1Hk+1x̃k+1|k

)
+

1

(1 + a)
2 v

T
k+1R̃

−1
k+1Γk+1Hk+1P̄k+1|k+1

×HT
k+1Γk+1R̃

−1
k+1vk+1. (72)

Let

Πk+1 ≜
1

1 + a
R̃−1

k+1 −
1

(1 + a)
2 R̃

−1
k+1Γk+1Hk+1

× P̄k+1|k+1H
T
k+1Γk+1R̃

−1
k+1.

According to (44), (46), and (47), we have

Πk+1

=
1

1 + a
R̃−1

k+1 (I − Γk+1Hk+1Kk+1)

=
1

1 + a
R̃−1

k+1

[
I − Γk+1Hk+1Pk+1|kH

T
k+1Γk+1

×
(
Γk+1Hk+1Pk+1|kH

T
k+1Γk+1 + R̃−1

k+1

)−1
]

=
1

1 + a

(
Γk+1Hk+1Pk+1|kH

T
k+1Γk+1 + R̃k+1

)−1

. (73)

Combining (72) and (73) leads to

Ξk+1

=
1

1 + a

[
x̃Tk+1|kP

−1
k+1|kx̃k+1|k −

(
Γk+1Hk+1x̃k+1|k

)T
×
(
Γk+1Hk+1Pk+1|kH

T
k+1Γk+1 + R̃k+1

)−1

×
(
Γk+1Hk+1x̃k+1|k

)]
+

1

(1 + a)
2 v

T
k+1R̃

−1
k+1Γk+1

×Hk+1P̄k+1|k+1H
T
k+1Γk+1R̃

−1
k+1vk+1.

Since wk is Gaussian white noise, we have

E
{
Ξk+1 | x̃k|k

}
= E

{
1

1 + a

[(
ΛkFkx̃k|k

)T
P−1
k+1|k

(
ΛkFkx̃k|k

)
+ wT

k P
−1
k+1|kwk −

(
Γk+1Hk+1ΛkFkx̃k|k

)T
N−1

k+1

×
(
Γk+1Hk+1ΛkFkx̃k|k

)
− (Γk+1Hk+1wk)

T

×N−1
k+1 (Γk+1Hk+1wk)

]
+

1

(1 + a)
2 v

T
k+1R̃

−1
k+1

×Γk+1Hk+1P̄k+1|k+1H
T
k+1Γk+1R̃

−1
k+1vk+1 | x̃k|k

}
.

(74)

where

Nk+1 ≜ Γk+1Hk+1ΛkFkP̄k|kF
T
k ΛkH

T
k+1Γk+1

+ Γk+1Hk+1QkHk+1Γk+1 + R̃k+1.

Inequalities (54) and (56) imply that (ΛkFk)
−1 exists.

Therefore, by applying Lemma 7 and (64), we acquire that(
ΛkFkx̃k|k

)T
P−1
k+1|k

(
ΛkFkx̃k|k

)
⩽ x̃Tk|k (ΛkFk)

T (
ΛkFkP̄k|kF

T
k Λk

)−1
(ΛkFk) x̃k|k
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= x̃Tk|kP̄
−1
k|k x̃k|k = Vk

(
x̃k|k

)
. (75)

According to Lemma 7, we have

(Γk+1Hk+1ΛkFk)
T
N−1

k+1 (Γk+1Hk+1ΛkFk) < P̄−1
k|k . (76)

Defining

ζk+1

≜
x̃Tk|k (Γk+1Hk+1ΛkFk)

T
N−1

k+1 (Γk+1Hk+1ΛkFk) x̃k|k

x̃Tk|kP̄
−1
k|k x̃k|k

,

it follows from (76) that ζk+1 < 1.
Using (54)–(57), (65), and Theorem 3, we have

ζk+1 ⩾ pmin (γminhminλminfmin)
2 [
qmaxγ

2
maxh

2
max

+r̃max + pmax (γmaxhmaxλmaxfmax)
2
]

≜ ζmin.

From the definitions of ζk+1 and ζmin, we obtain

x̃Tk|k (Γk+1Hk+1ΛkFk)
T
N−1

k+1 (Γk+1Hk+1ΛkFk) x̃k|k

⩾ ζminVk
(
x̃k|k

)
. (77)

Additionally, define

µk+1 ≜
1

1 + a

[
wT

k P
−1
k+1|kwk − (Γk+1Hk+1wk)

T

×N−1
k+1 (Γk+1Hk+1wk)

]
+

1

(1 + a)
2 v

T
k+1

× R̃−1
k+1Γk+1Hk+1P̄k+1|k+1H

T
k+1Γk+1R̃

−1
k+1vk+1.

(78)

Applying Lemma 7 yields

(Γk+1Hk+1wk)
T
N−1

k+1 (Γk+1Hk+1wk)

< wT
k

(
ΛkFkP̄k|kF

T
k Λk +Qk

)−1
wk

= wT
k P

−1
k+1|kwk.

Subsequently, we have

µk+1 > 0.

Since µk+1 is a scalar, using the property of trace, the upper
bound of µk+1 can be obtained as

µk+1 = tr {µk+1}

⩽
1

1 + a
tr
{(

ΛkFkP̄k|kF
T
k Λk +Qk

)−1
Qk

}
+

1

(1 + a)
2 tr

{
R̃−1

k+1Γk+1Hk+1P̄k+1|k+1

×HT
k+1Γk+1R̃

−1
k+1Rk+1

}
⩽

1

1 + a
n+

1

(1 + a)
2

γ2maxh
2
maxpmaxrmax

r̃2min

m

≜ µmax. (79)

Combining (74), (75), (77), and (78), we have

E
{
Ξk+1 | x̃k|k

}
⩽

1− ζmin

1 + a
Vk

(
x̃k|k

)
+ E

{
µk+1 | x̃k|k

}
.

(80)

Let

ϱk+1 ≜ (1 + σ)E
{
µk+1 | x̃k|k

}
+
(
1 + σ−1

)
× E

{
(Kk+1dk+1)

T
P̄−1
k+1|k+1 (Kk+1dk+1) | x̃k|k

}
> 0, (81)

and

p̄min ≜ qmin + λ2minf
2
minpmin,

p̄max ≜ qmax + λ2maxf
2
maxpmax,

kmax ≜
p̄maxhmaxγmax

p̄minh2minγ
2
min + r̃2min

.

Then, it follows from (44) and (64) that

p̄minI ⩽ Pk+1|k ⩽ p̄max, Kk+1K
T
k+1 ⩽ k2maxI.

Subsequently, we have

(Kk+1dk+1)
T
P̄−1
k+1|k+1 (Kk+1dk+1)

= tr
{
ξk+1K

T
k+1P̄

−1
k+1|k+1Kk+1Ψ

−1
(
Ψ−1

)T}
⩽
k2maxξmax

pminψ2
min

m ≜ ςmax. (82)

According to (79), (81), and (82), an upper bound of ϱk+1

can be expressed as

ϱk+1 ⩽ (1 + σ)µmax +
(
1 + σ−1

)
ςmax ≜ ϱmax. (83)

Define

ϕ ≜ 1− (1 + σ) (1− ζmin)

1 + a
.

From (69), (70), (80), and (83), it is illustrated that

E
{
Vk+1

(
x̃k+1|k+1

)
| x̃k|k

}
− Vk

(
x̃k|k

)
⩽− ϕVk

(
x̃k|k

)
+ ϱmax. (84)

Since 0 < ζmin < 1, we can choose a and σ satisfying:

0 < a <
1− ζmin

ζmin
, 0 < σ <

ζmin

1− ζmin
. (85)

Then, it follows that

0 < ϕ < 1. (86)

Since (68), (84), and (86) hold, we can apply Lemma 9.
Therefore, x̃k|k is exponentially bounded in mean square and
satisfies

E
{∥∥x̃k|k∥∥22} ⩽

pmax

pmin
E
{
∥x0∥22

}
(1− ϕ)k

+
ϱmax

pmin

k−1∑
i=1

(1− ϕ)i ,

which completes the proof.
Remark 8: Theorem 4 suggests that, despite the presence of

measurement noise and quantization errors, the state estimator
employing decompressed data maintains assured performance.
The convergence rate of the developed estimation algorithm is
related to ϕ. Specifically, the convergence is quick when ϕ is
close to 1. This theorem addresses the previously identified
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gap, where scant research has delved into the impact of CS-
based data compression and decompression on the perfor-
mance of state estimation.

Remark 9: This paper distinguishes itself from the existing
literature on state estimation in NCSs by introducing novel
contributions that center around the integration of CS and
analysis for handling high-dimensional and redundant mea-
surement data, particularly in the presence of measurement
noise and quantization errors. The key distinctions and novel
contributions of this work can be summarized as follows:

1) Innovative Use of CS: While CS has been explored in
various contexts, this paper uniquely applies CS to the
compression and decompression of measurement data in
NCSs.

2) Comprehensive Analysis of Decompression Error: The
paper provides a detailed examination of the decompres-
sion error introduced by CS, factoring in both measure-
ment noise and quantization errors.

3) Development of a Modified UKF: The adaptation of the
UKF to accommodate the nuances of CS-based data
compression and decompression, particularly through
the innovative handling of decompression error, show-
cases a novel integration of CS with established state
estimation techniques.

4) Rigorous Performance Analysis: The paper goes beyond
simple implementation by offering a thorough perfor-
mance analysis that includes the derivation of a sufficient
condition for the boundedness of estimation error.

5) Practical Implications and Versatility: By demonstrat-
ing the effectiveness of the proposed approach through
simulation experiments on power grid systems (in the
next section) and potentially other large-scale systems,
the paper underscores the practical applicability and
versatility of its contributions.

IV. NUMERICAL SIMULATIONS

In this paper, numerical simulations are conducted on the
IEEE 69 bus system to assess the performance of the proposed
state estimation method. The system architecture of the IEEE
69 bus system is shown in Fig. 3. As stated in [28], power
grid systems are typical examples of systems whose measure-
ment vectors can be sparsified. In this study, we follow the
structure of the power system given in [32], and the system
configuration described in [5].

When performing simulations, we follow the system model
utilized in [28]. The state variable is defined as:

xk ≜
[
|V1|k · · · |VN |k θ1,k · · · θN,k

]T
,

where N = 69 is the total number of buses. |Vi|k and
θi,k (i ∈ {1, 2, · · · , N}) represent the voltage magnitude and
the voltage angle of the i-th bus at time instant k, respectively.
By tradition, the first bus is set as the slack bus serving as a
reference for all other buses, and we have |V1|k = 1 and
θ1,k = 0 for any k > 0. In this paper, we mainly focus on
the tracking problem of the power grid and assume the system
state is slowly varying over time. Therefore, we consider the
following state transition equation:

xk+1 = xk + wk,

Fig. 3: System architecture of the IEEE 69 bus system [38]

where wk is the white Gaussian process noise with known
covariance matrix Qk = 10−4I [28]. Besides, P0|0 is set as
10−2I and a is chosen as 0.1.

The measurement of the considered power grid system
consists of the active and reactive injected power of each bus.
As to the i-th bus at time instant k, its active injected power
Pi,k and reactive injected power Qi,k can be computed using
the following nonlinear expressions [28]:

Pi,k = |Vi|k
N∑
j=1

|Vj |k (Gij cos θij,k +Bij sin θij,k) , (87)

Qi,k = |Vi|k
N∑
j=1

|Vj |k (Gij sin θij,k −Bij cos θij,k) , (88)

where θij,k ≜ θi,k − θj,k denotes the difference between the
voltage angles of the i-th and the j-th bus. Known constants
Gij and Bij represent the real and imaginary terms of the
element at the i-th row and j-th column of the power grid
admittance matrix, which is dependent on the configuration
of the power grid system. Finally, the measurement vector is
defined as

yk ≜
[
P1,k · · · PN,k Q1,k · · · QN,k

]T
+ vk, (89)

where vk indicates the zero-mean Gaussian measurements with
known covariance Rk = 10−4I .

To design Φ, we follow [8] and set Φ as a random matrix
of which each entry is drawn from i.i.d. Gaussian distribution
N (0, 1/p) with p = 40. By evaluating the measurements
of the IEEE 69 bus system, we found that the Haar matrix
[27], [28] performs well in obtaining sparse representations
of measurement vectors. Therefore, we apply the Haar matrix
as the sparsifying transformation. Then, the sparsified mea-
surement can be compressed and decompressed by the CS
method. Fig. 4 illustrates the original measurement and the de-
compressed measurement. Here, the measurement is split into
two parts, namely active injected power and reactive injected
power. It is shown that the values of active injected power
are relatively large and strongly correlated, and can thus be
decompressed accurately. In contrast, the values of the reactive
injected power are small and prone to measurement noise and
quantization errors. As a result, the difference between the
original reactive injected power and the decompressed values
is relatively large.
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Fig. 4: Original and decompressed measurement

Fig. 5 illustrates the true value and estimated value of the
state vector at the last time instant. It can be seen that both
the voltage magnitude and voltage angle can be precisely
estimated. Fig. 6 shows the mean-square error (MSE) of state
estimation over time. It is demonstrated that the designed state
estimator can quickly converge and reach a high estimation
performance.
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Fig. 5: State estimation at the last time instant

To verify the necessity of data decompression, we follow
the intuitive method described in Remark 2, which can be
operated without data decompression. As shown in Fig. 7, the
method without data decompression can hardly obtain accurate
state estimation. Furthermore, without data decompression, the
MSE is much higher than the MSE of our method with data
decompression. Therefore, data decompression is a crucial step
that effectively utilizes information of sparsify and maintains
the observability of the system.

Since it is infeasible to analytically obtain the expression
of E

{
dkd

T
k

}
, an upper bound of E

{
dkd

T
k

}
is derived in

Theorem 1 as an alternative. The utilization of Lemma 1 and
inequality manipulations inevitably lead to conservativeness in
the upper bound of E

{
dkd

T
k

}
, and thus increases the conser-
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Fig. 7: Comparison of state estimation at the last time instant

vativeness in the upper bound of estimation error covariance.
To reduce the conservativeness, one possible countermea-

sure is to perform Monte Carlo experiments to assess the
statistics of the vector zk − ẑk and subsequently provide an
estimate of E

{
dkd

T
k

}
. In other words, this method focuses on

obtaining an empirical upper bound of E
{
dkd

T
k

}
to assist the

practical implementation of the designed approach.

V. CONCLUSIONS

In this paper, the remote state estimation has been ad-
dressed for a class of NCSs integrated with data compression-
decompression. Considering the redundancy embedded in the
measurements, CS has been utilized for high-performance
data compression-decompression. Then, a modified UKF has
been applied for the state estimation task using decompressed
measurement data. A key challenge of this task is that mea-
surement noise and quantization errors lead to nonnegligi-
ble decompression errors, which inevitably degrade the state
estimation accuracy. Accordingly, the combined impact of
measurement noise and quantization errors on decompression
errors has been analyzed. Then, filter gains of the modified
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UKF have been devised to minimize an upper bound of the
estimation error covariance. A sufficient condition has also
been given to ensure that the estimation error is exponentially
bounded in the mean square. Finally, simulation experiments
have been conducted based on the IEEE 69 bus system
to verify the effectiveness of the proposed state estimation
method.
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