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Abstract

Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular 

research, due to the capability of the method in capturing molecular events and structural 

transitions that describe the function as well as the physiochemical properties of biomolecular 

systems. Due to the progressive development of more efficient algorithms, expansion of the 

available computational resources, as well as the emergence of more advanced methodologies, 

the scope of computational studies has increased vastly over time. We now have access to a 

multitude of online databases, software packages, larger molecular systems and novel ligands due 

to the phenomenon of emerging novel psychoactive substances (NPS). With so many advances 

in the field, it is understandable that novices will no doubt find it challenging setting up a 

protein-ligand system even before they run their first MD simulation. These initial steps, such as 

homology modelling, ligand docking, parameterization, protein preparation and membrane setup 

have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular 

sciences benefit from the applications provided by these technologies. However, there still remains 

no standard on their usage. Therefore, our aim within this review is to provide a clear overview of 

a variety of concepts and methodologies to consider, providing a workflow for a case study of a 

membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with 

different stimulants, where MD simulations have recently been applied successfully.
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1. Introduction

Molecular dynamics (MD) simulations have become a powerful and widely accepted 

technique for understanding the detailed structure and dynamics of biomolecular systems 

(Karplus and McCammon, 2002). In the last decade advances in computer hardware 

(Cheatham and Roe, 2015; Kutzner et al., 2015), algorithm and force field developments 

(Larsson et al., 2011; Aldeghi and Biggin, 2017; Nerenberg and Head-Gordon, 2018; Jing et 

al., 2019), and more recently in machine learning (Böhm, 1996; Dorn et al., 2014; Behler, 

2016; Pérez et al., 2018; Chen et al., 2019; Hu et al., 2019; Plante et al., 2019; Rao et al., 

2019; Romero et al., 2019; Wang et al., 2019) and applications of virtual reality (Glowacki 

et al., 2018; Amabilino et al., 2019; O’Connor et al., 2019) have enabled rapid progress 

in the field. Any seasoned expert would tell you that this is a rather exciting time, as we 

try to make sense of and then try to apply these new methods and tools to our own work. 

With that being said, we are now more so than ever, attracting a record number of junior 

colleagues who are being taught the practical concepts much earlier in their careers, such 

as in high school, leading them to pursue related degrees at University (Burkholder et al., 

2009; Lundquist et al., 2016; Burgin et al., 2018; Taly et al., 2019). No doubt we will 

soon be looking at a new generation of molecular modellers feverishly entering the field, 

having been taught that the study of the macromolecular structure is a key point in the 

understanding of biology.

Putting aside the practical challenges of the applications of molecular modelling for 

biomolecular systems, there is a common problem amongst novices in the lead up and 

preparation for the actual MD simulation that causes much frustration and delays in projects. 

The simulation setup usually depends on following a series of steps. An expert modeller 

would normally carry out these steps skilfully with a set of tools (commercially available, 

open-source or in-house), because they have the necessary knowledge and resources to 

overcome any specific problems that would arise because of the countless hours of 

troubleshooting. However, without the adequate training a newcomer to MD simulation 

would be overcome even if one step fails. This usually happens because novices tend to 

blindly use default procedures sourced online or documented by a post-doc or fellow student 

in the lab setting. This not only leads to anguish from making spurious observations, that are 

hard to discern from the correct ones, but it also leads to the unpopularity of biomolecular 

simulations and the classification that “it is hard” or “makes no sense” by the biochemical 

community.

Hence, we only see MD simulations being restricted to research groups that have the 

necessary tools and expertise. As a community, this does not bode well in sharing best 

practices or making it easy for newcomers to learn how to perform the basic tasks. What 

is shared may not be documented well enough or is standardised for a particular molecular 

system. This leads to a lack of compatibility and interoperability when being applied to new 

systems. We can think of two ways to overcome this; a top-down approach, where we design 

one package that does everything and that becomes the standard or a bottoms-up approach, 

where we make it easier to incorporate the already existing packages. The former could be 

regarded as the wrong solution because it just introduces another set of protocols that would 

have to be learnt from scratch. Therefore, the latter would appear to point to a right solution, 
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a black box program for novices to use, with an easy to use Graphical User Interface (GUI) 

for the setup of the simulation system that can account for the many different codes, force 

fields, solvation representations, protein structures, ligands, and especially if simulating 

membrane proteins, the all so crucial lipids. If only it was that simple!

Several tools have attempted to address parts of this problem like InterMol, that allows 

the user to read and write different molecular formats, or LOOS, MDTraj and MDAnalysis 

that have tools for the end-point analysis of different outputs (Michaud-Agrawal et al., 

2011; McGibbon et al., 2015; Gowers et al., 2016; Shirts et al., 2017). These packages 

have restricted applications and use different scripts for the different packages. The 

closet tool available for use today that addresses the interoperability and integration of 

different software packages is the joint EPSRC supported Collaborative Computational 

Project for Biomolecular Simulation (CCPBioSim) and High-End Computing Resources 

by the Biomolecular Simulation Community (HECBioSim) software called BioSimSpace 

biosimspace.org) (Hedges et al., 2019). BioSimSpace is intended primarily to be used by 

novices who may be unfamiliar with programming in general. Not only does it allow 

interoperability for common software packages to work together, but it ensures that outputs 

from one package can be easily used as inputs for another package. The flexibility of its 

workflow means that it can work on different hardware and can be run in a number of 

different ways, e.g. command line or JupyterLab. BioSimSpace offers some reprieve from 

the current situation but a novice still needs a working knowledge of the offered simulation 

packages and the different steps in setting up a simulation and most importantly how to 

obtain the raw input files, which will be discussed in the next section.

The most popular simulation packages (AMBER (Reese et al., 2018), CHARMM (Brooks 

et al., 2009), GROMACS (Pronk et al., 2013; Lundborg and Lindahl, 2015) and NAMD 

(Phillips et al., 2005)) do have accompanying tools, which perform most steps of the 

preparation. Acellera ACEMD (Harvey et al., 2009) and the HTMD platform also possess 

similar tools; although the latter is not freely available; some basic versions of the tools 

are available online at playmolecule.org (Doerr et al., 2017; Jiménez et al., 2017, 2018; 

Martínez-Rosell et al., 2017; Galvelis et al., 2019). There are also many other combined 

user-friendly interfaces that provide a solution to the simulation setup utilising GROMACS 

and CHARMM (Kota, 2007; Miller et al., 2008; Roopra et al., 2009; Sellis et al., 2009; 

Makarewicz and Kaźmierkiewicz, 2013; Paissoni et al., 2014; Lundborg and Lindahl, 2015), 

while VMD provides a number of plug-ins that facilitate simulations with NAMD (Phillips 

et al., 2005). These tools provide the automatic setup functionality to prepare systems for 

simulation without an in-depth knowledge of the inner workings of the software, thereby 

promoting accessibility to the field for novices. However, there still remains a lack of a 

standardised representation of the structural information needed for the input setup, most 

interfaces are restricted to a single MD package, and the data is not easily interchangeable, 

especially force fields. There is usually an embedded scripting language that complicates the 

automation process, and without experience in coding this would be a daunting task.

Furthermore, a novice would have to decide very early on, depending on the size of the 

system and the mechanism or interactions they would like to observe, the level of detail 

needed to represent their simulated system. There are a number of different levels of detail 
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using classical molecular mechanics (MM) and quantum mechanical (QM) representations. 

Generally, MM methods are the choice for protein simulations and can either be in an 

all-atom (atomistic) representation or a course-grained (CG) representation. An atomistic 

representation would give the best representation of the actual system; however, it can be 

unfeasible for very large systems and timescales because of the computational cost required. 

While a CG representation of a system that is reduced by a number of degrees of freedom, 

offers an alternative approach when studying large systems or when long simulations are 

required. The advantage of CG simulations, because of the reduced degrees of freedom and 

lack of detailed interactions, means that less resources are required, and the calculations are 

a lot faster than that of the same system in an atomistic representation. A third method, using 

a hybrid approach of QM/MM applies the accuracy of the QM and speed of MM approaches 

to systems where an important but small part can be described by QM and the rest modelled 

by MM.

In this review we aim to provide a concise overview of the various concepts and 

methodologies that are required for the initial steps of an atomistic membrane protein setup, 

present their strengths and limitations, and highlight the open challenges faced by novices. 

We will particularly underline how to overcome these challenges with recent developments 

in MD packages and tools. Furthermore, within the context of the methodologies discussed, 

we will provide a workflow for a case study of a membrane transport protein, the full-

length human dopamine transporter (hDAT) in complex with different stimulants, where 

MD simulations have recently been applied successfully (Khelashvili et al., 2015a, 2015b; 

Razavi et al., 2017, 2018; Sahai et al., 2017, 2018; Loi et al., 2020). We will discuss 

the practical considerations of homology modelling, ligand docking and parameterization, 

protein preparation and membrane setup; which can be applied to most membrane protein 

systems before any MD simulations are performed.

2. Understanding and obtaining your protein structure

Before embarking on the various steps required for the simulation setup we feel it is 

important to ask a question recently seen on #SciTwitter (Morris, 2019) “If somebody 

gave you a protein structure and you had to open it and look around at it, would you 

know what you were looking at?” Surprisingly from nearly 300 people that participated 

in the poll (similar to the class size of the first year undergraduate Biochemistry course 

at the University of Roehampton), ~40% of them said no. This is a blunt reminder that a 

good place to start, for those unfamiliar and new to structural biology, would be to learn 

basic biochemistry to identify the 20 amino acids, different secondary structures (like alpha 

helices and beta sheets) and inter- and intra-molecular bonds (disulfide bond, hydrogen 

bond, Van der Waals and electrostatic interactions) as well as any features like conserved 

regions or domains that would allow you to categorise the various protein classes (GPCR, 

transporter, channel, kinase etc).

The US Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB 

PDB; rcsb.org), and especially PDB-101 (Berman et al., 2000; Minor et al., 2016) 

is a good place to start accessing introductory material to help beginners learn about 

these 3-dimensional (3D) structures as well as advanced tutorials for extended learning. 
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Additionally, the RCSB PDB is a repository to obtain the 3D structures that have been 

solved by the various biophysical methods that include X-ray crystallography and Nuclear 

Magnetic Resonance spectroscopy (NMR) (Opella, 1997; Zhang and Cherezov, 2019).

The RSC PDB is a member of the Worldwide PDB consortium (wwPDB; wwpdb.org) 

(Burley et al., 2019), whose members also include the Protein Data Bank in Europe (PDBe; 

pdbe.org) (Mir et al., 2018), Protein Data Bank Japan (PDBj; pdbj.org) (Kinjo et al., 

2017) and BioMagResBank (BMRB; bmrb.wisc.edu) for NMR data (Ulrich et al., 2008). 

Established in 1971, the PDB Core Archive now houses 3D atomic coordinates of >144 

000 structural models of proteins, DNA/RNA, and their complexes with metals and small 

molecules and related experimental data and metadata. The wwPDB also works closely with 

the Electron Microscopy Data Bank (EMDB; emdb-empiar.org), a worldwide repository 

that houses related experimental data/metadata from 3D Electron Microscopy (3DEM) and 

Electron Tomography (ET) (Tagari et al., 2002; Milne et al., 2013). Publication of new 

macromolecular structures in most scientific journals is conditional on mandatory deposition 

of the 3D atomic coordinates comprising the structural model plus experimental data used to 

derive the structures and associated metadata to the PDB. As such these databases should be 

the first places to start looking for your 3D structural information.

There are also general databases where you can find biological and structural information of 

the different protein classes such as The National Center for Biotechnology Information 

(NCBI; ncbi.nlm.nih.gov) and UniProt, the universal protein knowledgebase (UniProt; 

uniprot.org) (Bateman, 2019) as well as specialised databases like the Transporter 

Classification Database (TCDB) (Saier et al., 2016), GPCRdb: the G protein-coupled 

receptor Database (Vroling et al., 2011; Munk et al., 2016) and the Membrane Protein 

Data Bank (MPDB) (Raman et al., 2006).

These lists are not intended to be exhaustive, as there are many other resources available 

for the same purposes, but needless to say familiarising yourself with these databases and 

methods would help immensely when it comes time for understanding how the protein 

structure was obtained.

2.1 Visualising your protein structure

Going back to part of the #SciTwitter (Morris, 2019) question, would you know how to 

actually open and view the protein structure? A newcomer to structural biology needs to 

grasp many modern biological concepts as well as gain an appreciation of the interactions 

and relative sizes of molecular systems. While structure determines function is increasingly 

recognized as an important scientific concept for students, this relationship remains absent 

from many schematic depictions of biomolecules and processes found in biological 

textbooks. This is especially true when proteins appear as colourful blobs or structured 

boxes or even actual locks and keys when explaining enzyme activity or protein-ligand 

binding. The use of molecular visualization software provides a remedy to this however it is 

not without its own limitations; some of these tools have steep learning curves that limit the 

time that could be used to focus on the research project and they often lack the capability 

for viewing dynamic trajectories, when it comes time to analysing the molecular dynamics 

simulations. Despite its practicality, there still exists many hurdles for using molecular 
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visualization tools effectively. Choosing the right visualisation tool at the beginning of this 

journey and spending the necessary time to learn its features can be an invaluable advantage.

There are a number of common 3D molecular viewers, such as UCSF Chimera (Pettersen 

et al., 2004), OpenStructure (Biasini et al., 2010, 2013), Pymol (The PyMOL Molecular 

Graphics System, Version 2.0 Schrödinger, LLC.), Rasmol (Sayle and Milner-White, 1995), 

Swiss PDB Viewer (Guex et al., 1997) and Visual Molecular Dynamics (VMD) (Humphrey 

et al., 1996). The most commonly used software packages are free, at least for educational 

use and are available to run on a wide range of architectures and the common operating 

systems including Microsoft Windows, Apple macOS and LINUX. It is good to bear 

in mind that when choosing the software to use most likely this will be influenced by 

the preference of your research group, quality of graphical representations, and if there 

is a need to view MD trajectories. VMD is often used for this latter purpose as it can 

read the trajectory files created during simulations in formats produced by many different 

software packages (Humphrey et al., 1996). Pymol produces excellent images, but is 

less straightforward for viewing trajectories (The PyMOL Molecular Graphics System, 

Version 2.0 Schrödinger, LLC.). Other freely available software, such as UCSF Chimera 

(Pettersen et al., 2004), OpenStructure (Biasini et al., 2010, 2013), Rasmol (Sayle and 

Milner-White, 1995) and Swiss PDB Viewer (Guex et al., 1997) can be used to view 

individual conformations (snapshots) from a simulation, but they lack the ability to show 

trajectories as animations.

VMD is our preference for visualising protein systems. It has many added advantages 

with the foremost being that it supports the Tcl (Tool Command Language) scripting 

language (Dalke and Schulten, 1997). Users are supported by online documentation (tcl.tk) 

and by books targeting all levels of experience therefore even novice users are likely 

to gain experience with the language. Although this would be a new language for a 

newcomer to learn, the advantages far outweigh any initial disadvantage. Tcl can be used 

to parse the simulation configuration file, allowing variables and expressions to be used 

in initially defining options, and also change options during a running simulation, such as 

in running interactive MD like Steered Molecular Dynamics (SMD), implemented in the 

QwikMD plugin (Ribeiro et al., 2016). In addition, VMD can render publication quality 

animations and images from large trajectories stored on clusters and supercomputers with 

MPI implementations.

3. Stepping towards a molecular dynamics simulation: Our case study

Now that we have covered how to obtain your protein structure and how to visualise it in 

the above sections 2 and 2.1, we can now attempt to work through the computational system 

setup for the membrane transport protein, hDAT, in complex with various psychostimulant 

drugs. At this point we should have a working knowledge of a preferred visualisation 

software and background research on the protein system and ligand that will be needed in 

the atomistic MD simulations.
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3.1 3D structure prediction when there is no protein structure in the databases

We previously introduced databases where you can obtain the 3D coordinates of protein 

structures in Section 2. Now what happens if your protein system does not appear in any of 

these databases?

Protein structures are uniquely determined by their primary amino acid sequences (Anfinsen, 

1973), and in some cases, are unknown or unavailable (Anfinsen, 1973). However, 

identifying direct contacts between protein and ligand is contingent on having a 3D 

structure. This is especially important with hDAT, that is responsible for the reward and 

reinforcement properties of stimulants like cocaine and novel psychoactive substances (NPS) 

(Beuming et al., 2008; Bisgaard et al., 2011; Dawson et al., 2014; Sahai et al., 2017, 

2018). Briefly, hDAT belongs to the family of neurotransmitter: sodium symporters, that 

also includes the serotonin transporter (SERT) and norepinephrine transporter (NET) and 

controls dopamine (DA) homeostasis by mediating Na+ and Cl- dependent reuptake of 

DA (Rudnick and Clark, 1993; Kristensen et al., 2011). hDAT, like the other members 

of this family of transporters, has both an intracellular amino- and carboxyl-termini and 

twelve transmembrane (TM) helical domains (Yamashita et al., 2005; Penmatsa et al., 

2013b; Coleman and Gouaux, 2018) (Figure 1). Topological information like this can be 

easily obtained from UniProt (Bateman, 2019) to aid in understanding the structure of the 

protein and to confirm the location of TMs in the membrane environment. A high-resolution 

elucidation of hDAT structure, especially regarding its substrate and inhibitor recognition 

sites would be important for any studies linked to understanding the reinforcing properties of 

psychostimulants; none exist.

However, we do have access to X-ray crystal structures of proteins homologous to the NSS 

family and now more recently crystal structures of members of this family (Penmatsa et al., 

2013a, 2013b, 2015; Wang et al., 2015; Coleman and Gouaux, 2018), however, still none 

for hDAT. Before 2013, the crystal structure of a bacterial leucine transporter (LeuTAa), a 

protein homologous with the NSS family, for which several crystal structures corresponding 

to various functional states (outward open, occluded, and inward open) had been determined 

(Singh et al., 2007, 2008; Krishnamurthy and Gouaux, 2012), was used as a ‘template’ 

to employ computational modelling techniques to produce a feasible 3D hDAT structure. 

Since then we have used the crystal structure of the Drosophila melanogaster dopamine 

transporter (dDAT) (Penmatsa et al., 2013a, 2015; Wang et al., 2015), which shows a 

remarkable similarity between the TM bundles of LeuTAa (Hansen et al., 2014). Because 

of computational modelling the substrate binding site (S1) is known to be deeply buried in 

the transporter structure (Beuming et al., 2008; Bisgaard et al., 2011; Sahai et al., 2017) 

and we can describe a site that overlaps with that of dopamine and many of the popular 

psychostimulants (Sahai et al., 2017, 2018). It is also clearly distinct from the site observed 

for antidepressant binding (S2 site) to the leucine transporter (LeuTAa) which is found 

facing the extracellular vestibule above the S1 site (Quick et al., 2009).

There are three main computational modelling approaches that may be employed in 

predicting a 3D protein structure: ab initio prediction, “fold” recognition, and comparative 

(homology) modelling (Petrey and Honig, 2005). These differ principally in the sequence 

and structural database information used. While true ab initio methods rely entirely on the 
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physical and chemical information contained in the primary amino acid sequence to predict 

the structure, fold recognition, or “threading,” relies heavily on the structural similarities 

between specific distantly related or unrelated proteins (Bonneau et al., 2001; Petrey and 

Honig, 2005; Das and Baker, 2008). Comparative (homology) modelling, enables us to 

construct a 3D structure of the unknown, ‘target’ protein based on the structure of a 

similar protein, principally considered the ‘template’ (Sali and Blundell, 1993). Homology 

modelling involves challenges in finding templates with relatively high sequence identities 

but if the proteins that share greater than 40% amino acid sequence identity, comparative 

modelling is straightforward (e.g. dDAT and hDAT). For proteins with less than 30% amino 

acid sequence identity (e.g., LeuTAa and hDAT), comparative modelling becomes more 

challenging. Still, the LeuTAa crystal structure has successfully guided the creation of useful 

comparative models for hDAT computational studies despite the absence of appreciable 

amino acid sequence identity (Beuming et al., 2008; Kniazeff et al., 2008; Shi et al., 2008; 

Quick et al., 2009; Shi and Weinstein, 2010; Bisgaard et al., 2011; Zhao et al., 2012; Shan 

et al., 2011; Zhao et al., 2011; Kantcheva et al., 2013; Stolzenberg et al., 2015). This has 

revealed the 3D structure of DAT as exhibiting a LeuT-like structure fold (Perez and Ziegler, 

2013).

Conducting computational homology modelling, however, requires more than the first 

step; (1) simple ‘template’ recognition, in fact, it is a multi-step process with four more 

progressive stages; (2) sequence alignment, (3) model building for the intended ‘target’, 

which is based on the 3D structure of the ‘template’, (4) model refinement, analysis of 

alignments, gap deletions as well as additions and finally (5) model validation (Martí-Renom 

et al., 2000) (Figure 2). Often, alongside ‘template’ recognition, the subsequent ‘template’ 

alignment step is performed. The most popular server used to conduct sequence alignment 

using the ‘target’ to find the 3D coordinate for ‘template’ protein sequence is BLAST 

(Basic Local Alignment Search Tool), which is a database from the NCBI (NCBI Resource 

Coordinators, 2016). This usually relies on one obtaining the FASTA (Pearson and Lipman, 

1988; Pearson, 2014) sequence of your ‘target’ protein (e.g. hDAT), from either NCBI 

or UniProt (Bateman, 2019) and then using the ‘Standard Protein BLAST’ feature, and 

selecting the ‘Protein Data Bank proteins (pdb)’ as the ‘Database’, to search for any 

sequence similarities from the deposited structures. Usually, the most significantly aligned 

sequences are presented first with the identifiable sequence identity, important in helping to 

choose the ‘template’.

There are alternative options and servers available in the case of BLAST being unable to 

find protein structures with an appropriate sequence identity. UniProt is one such option. 

After searching for the name of the protein, and selecting the correct organism and gene 

name, the results page displays a number of options. Under ‘Structure’, you would find 

a list of available PDB entries as well as a prediction from the 3D structure databases, 

SWISS-MODEL (SMR) (Bienert et al., 2017) and ModBase (Pieper et al., 2006), with 

prepared 3D predicted structures. The Protein Model Portal (PMP; proteinmodelportal.org) 

(Arnold et al., 2009), an online server, also consists of millions of model structures provided 

by different partner resources including ModBase and SMR. A careful warning at this 

stage; it is extremely important a user of these databases is aware of the ‘template’ being 

used as well as the alignment that is produced. Reproducibility of the ‘target’ produced 
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amongst the different tools should also be cross-linked with background literature i.e. (5) 

model validation, since steps (3) model building and (4) model refinement are performed 

automatically behind the scenes.

For step (2) sequence alignment in the hDAT modelling, a previously published sequence 

alignment of the NSS-family proteins (Beuming et al., 2006) is used to first construct 

homology models for the transmembrane (TM) part of the hDAT (contained in residues 

57−590) based on the ‘template’, the outward-facing dDAT structure (PDB code: 4M48). 

See the Supplementary data for details about the alignment files, Modeller script and 

output. For the N- and C- termini we have employed ab initio methods to predict these 

segments [38]. All additional steps for the TM generation are then conducted using the 

MODELLER program (Eswar et al., 2006), available for most common operating systems. 

Incidentally, The ModWeb comparative protein structure modelling webserver is based 

on Modeller but has the added advantage of control of choosing the ‘template’ and 

the alignment. It is worth noting that there are some commercially available software 

packages that also include a homology modelling module that you can control, such as 

Schrödinger’s Prime Homology Modelling workflow (Schrödinger, LLC: Portland, OR, 

2007, Web address: www.schrodinger.com.) and MOE (Molecular Operating Environment) 

(C. C. G. I. Molecular Operating Environment (MOE), 1010 Sher- booke St. West, Suite 

#910, Montreal, QC, Canada, H3A 2R7, 2013)

To use MODELLER, you only need the pdb file for the ‘template’, an alignment file for 

the ‘target’ and ‘template’ and the Python MODELLER script; salilab.org/modeller provides 

excellent tutorials on how to use MODELLER with examples of the syntax used in the 

alignment files (usually FASTA (Pearson and Lipman, 1988; Pearson, 2014)) as well as 

the scripts. Careful editing of the alignment file and script avoids any spurious errors with 

syntaxes that can cause initial errors. If there are internal ions they can also be added to the 

alignment file with specialised syntaxes, allowing ions to also be modeled into the ‘target’.

Step (3) model building requires you to run the MODELLER Python script. Despite any 

experimental errors in the ‘template’ such as poor electron density, backbone generation 

usually reveals a good model from a series of models irrespective of such errors. In some 

cases, the ‘target’ and ‘template’ alignment can comprise of gaps or missing very flexible 

regions that could not be resolved by crystallography. Therefore, to overcome this, helices 

are inserted or deleted from the alignment and instead annotated as loops; this is known 

as the loop modelling stage and forms part of step (4) model refinement. Figure 3 gives 

details of the extracellular loop 2 (EL2). It is much shorter in dDAT and is truncated 

in the crystal structure while the longer EL2 region in hDAT is then modeled in by the 

loop modelling. Side-chain modelling is performed to ensure the inclusion of all the atoms 

within the protein. This is a fundamental component as it enables us to understand further 

protein-ligand interactions.

MODELLER also includes step (5) model validation. Usually, this is included after the 

model building step to include a model optimisation step that outputs statistical potential, 

to help you assess the models built. Optimisation also can prevent incorrect backbone 

predictions on rotamers by restraining atom positions or applying energy minimisations. In 
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MODELLER, Discrete Optimized Protein Energy, abbreviated as DOPE, is the statistical 

potential that is produced as an output from MODELLER and can help you assess the 

protein structures (Verdonk et al., 2011). While increased energies are displayed with 

higher DOPE scores, these are usually disregarded as the best model due to potential 

unfavourable non-bonded interactions. A lower DOPE score also assesses the compatibility 

of the structure, both in regard to its sequence as well as the generated model. To aid in 

this assessment it is important to visualise a 3D alignment of the ‘target’ and the ‘template’ 

with your favourite visualisation tool (Figure 3) and consider the scoring potentials from 

the homology modelling software. This model validation stage is a common technique as it 

affirms the predicted 3D protein structure is free from any errors.

3.2 Ligand preparation and docking

Molecular docking has emerged as a powerful approach in the structure-based drug 

discovery pipeline (McConkey et al.; Bohacek et al., 1996; Chou, 2004; Hou and Xu, 

2004; Kitchen et al., 2004). It can be used to model the interaction between a small 

molecule (ligand) and a protein at the atomic level, allowing us to characterize and 

understand fundamental biochemical processes when the ligand is in the binding site of 

its ‘target’ protein. The docking process involves two basic steps: (1) prediction of the ligand 

conformation as well as its position and orientation within the binding site (or ‘pose’) and 

(2) assessment of the binding affinity (Bohacek et al., 1996). These two steps are related to 

sampling methods and scoring algorithms based on different criteria including steric clashes, 

electrostatic interactions, force field interactions and hydrogen bonding to predict the most 

energetically favourable orientation of the ligand and thus to quantify the likelihood of the 

biochemical nature of docking in that position.

Knowing the location of the binding site before the docking process significantly increases 

the docking efficiency, which is the case when there are crystal structures of the protein in 

complex with ligands in the binding site. You can also obtain information about the sites 

by comparison of the ‘target’ protein with a family of proteins sharing a similar function 

(LeuTAa and hDAT) or with similar proteins co- crystallized with other ligands (dDAT 

and hDAT). If knowledge about the binding site is lacking, then there are various binding 

site prediction software or online servers that can be utilised to identify putative binding 

sites within proteins. Although not an exhaustive list, it includes software like CAVER 

(Jurcik et al., 2018), SURFNET (Laskowski, 1995), SiteMap module of Schrödinger suite 

of programs (Schrödinger, LLC: Portland, OR, 2007, Web address: www.schrodinger.com.), 

3DLigandSite (Wass et al., 2010) and DeepSite, a protein-binding site predictor using 

3D-convolutional neural networks (Wass et al., 2010). Docking without any prior knowledge 

about the binding site is called blind docking.

You can find other such tools or the database repositories for structure-based drug design 

such as Click2Drug, click2drug.org and BBCU, https://bip.weizmann.ac.il/toolbox/structure/

binding.htm.

Docking programs, like the Autodock (Morris et al., 1998), AutoDock Vina (Trott and 

Olson, 2010), GOLD (Verdonk et al., 2003) and GLIDE module of Schrödinger suite of 

programs (Schrödinger, LLC: Portland, OR, 2007, Web address: www.schrodinger.com.) all 
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follow the same general steps of preparing the protein and the ligand, defining the binding 

site and adjusting the ligand pose according to thermodynamic principles to minimise free 

energy of binding. There are many choices for each user, including mode of docking 

(flexible ligand and rigid receptor docking or flexible ligand and flexible receptor docking), 

formatting of the input files, naming and indexing of residues, orientation of the protein, and 

identification of ions. The “lock- and-key” assumption was the basis for the earliest reported 

docking methods, which states the ligand and receptor are to be treated as rigid bodies, and 

their affinities for one another should be equivalent to a geometric fit amidst their shape 

(Mezei, 2003). The “induced-fit” theory was introduced years later, proposing that the ligand 

and receptor should be treated as flexible during the docking (Hammes, 2002). Under this 

assumption, the various backbone movements of protein and ligand residues are able to 

affect various side chains of each structure, allowing the residues of each part to better fit 

one another. Therefore, the sampling procedure is of a higher order of magnitude in terms of 

the number of degrees of freedom when it is within a fully flexible receptor/ligand docking, 

compared to flexible docking in a rigid receptor. Despite the larger computational cost of 

this methodology, it predicts the binding mode of the molecule with a higher accuracy than 

rigid body algorithms (Hammes, 2002).

Ultimately, the docking process should discover the most favourable pose between a 

receptor and a ligand. Prior to docking, a number of steps should be performed to prepare 

both the ligand and protein crystal structure or homology model for docking. This includes 

adding hydrogen atoms, optimising hydrogen bonds, removing atomic clashes in the protein 

structure. Similarly, the 3D coordinates of the ligand is either downloaded from databases 

like the PDB or the NCBI PubChem, pubchem.ncbi.nlm.nih.gov or manually prepared to 

manufacture 3D geometries, assign bond orders, and generate accessible ionisation and 

tautomer states (Madhavi Sastry et al., 2013).

Docking schemes comprise of two parts: (1) an algorithm that scans the translational, 

rotational and conformational space available to a chosen molecule in the binding region, 

alongside (2) an objective function that must be minimised in this process. The function 

calculates an approximate measure of binding affinity, normally referred to as a scoring 

function (Schulz-Gasch and Stahl, 2003). Verdonk et al. (2011) discovered six specific 

limitations for all molecular docking studies (Verdonk et al., 2011). These include 1) the 

quality of the docking programs used, although there may be variability with the same 

docking program; 2) the types of targets and ligands included in the studies; 3) the 

level of experience the user has with the docking software; 4) the quality of the X-ray 

structures, where structures may have poor electron density for the ligands, disorder, or 

not be fully refined; 5) the preparation of the binding sites and ligands (protonation states 

might be incorrect) and 6) protocol differences (site grid definitions can differ between user 

experience while some users pre-optimize complexes).

We perform our docking procedure using the Schrödinger software suite (Schrödinger, LLC: 

Portland, OR, 2007, Web address: www.schrodinger.com.), which requires a license for 

academic purposes. We have docked a number of ligands and psychostimulants into the 

binding site of full length hDAT (Khelashvili et al., 2015b; Sahai et al., 2017, 2018) using 

GLIDE implemented in the Induced fit docking (IFD) protocol, in the Schrödinger software 
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suite (Schrödinger, LLC: Portland, OR, 2007, Web address: www.schrodinger.com.). We are 

also limited in our assumption that the ligands being used will have been crystallised before. 

Without a crystallised structure, it is precarious to generate a structure and to trust the 

orientation, chirality and properties. However, if caution is given to the building, preparation, 

and docking of this ligand, and if the poses are considered in the context of an extensive 

literature review, it is still possible for this docking methodology to serve its purpose of 

revealing biochemical details at the binding site of a protein.

Here we will provide an example of how three very different ligands can be prepared 

for docking: cocaine, 5-IT and a more complex ligand diphenylprolinol (D2PM) (Figure 

4). The 3D coordinates of cocaine can be retrieved from the crystal structure of dDAT in 

complex with cocaine, PDB ID: 4XP4; 5-IT is a phenethylamine derivative or substituted 

amphetamine and can be built by modifying an already existing crystal structure of 

amphetamine bound to dDAT (PDB ID: 4XP9). The 2D and 3D build function that is a 

part of Schrödinger’s GUI Maestro can do this and is freely available. The 3D coordinates 

of D2PM can be retrieved from PubChem: Compound CID: 7045371 (NCBI Resource 

Coordinators, 2016) and then prepared with the LigPrep module in Schrödinger [44]. If 

you are inundated with search results from PubChem for your own compound, it is best 

to write out the name of the compound e.g. ‘diphenylprolinol’ for your search instead 

of its abbreviation. The prepared compounds should all carry a net positive charge and 

can be assigned by Epik, a module within Schrödinger that provides pKa Prediction 

[44]. In preparation for molecular dynamics simulations, ligand parameterisation of novel 

compounds may need to be performed. Therefore, at this stage the prepared ligand should be 

save in .mol2 format. Ligand parameterisation will be discussed in Section 4.

The hDAT homology model was then prepared using the Protein Preparation Wizard module 

in Maestro, following which the Induced fit docking (IFD) protocol, in the Schrödinger 

software suite was implemented to dock the ligand. We used the binding site residues Phe76, 

Asp79, Ser149, Val152, Tyr156, Asn157, Phe326, Val328 and Ser422, previously identified 

as important for binding psychostimulants of comparable size to define the docking grid 

box (Beuming et al., 2008; Bisgaard et al., 2011). IFD Docking was then performed using 

standard precision (SP). Random initial positions and conformations of the ligand were 

screened for clashes with the protein and subsequently refined by allowing flexibility of the 

side-chains in the binding.

Depending on the number of poses generated, Schrödinger’s IFD protocol, like other 

docking protocols will produce output structures ranked by a specific score. The IFDScore 

is calculated by 1.0 Glide_Gscore + 0.05 Prime_Energy, and accounts for the protein-ligand 

interaction energy alongside the overall energy of the system and utilised to rank the 

conformations. The lower the IFDScore, the more favourable the binding. A careful warning 

is to not take these scores at face value as it is important to visualise all the poses generated 

as many of the worst poses may meet the criteria of lowest IFDScore. As a result, once 

the docking procedure has completed, numerous potential poses will be provided, each 

with their associated docking scores and penalties associated with unfavourable biochemical 

interactions or steric clashes. To choose the most biologically realistic pose, it is suggested 

to compare each pose with known binding site interactions, specific electrostatic and 
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hydrogen bonds, crystallized orientations of similar ligands or similar proteins, and to 

consider the probability of each pose given what is known about the ligand and the protein 

into which it is docked.

Figures 4 and 5 explain the workflow for the preparation of the protein and ligands for 

docking as well as the final docked result (Figure 4).

3.3 Immersion of docked complex into a membrane environment

For most docked systems, it is necessary to consider the dynamics of the complex in the 

context of a membrane in which it would be natively found. Proteins are known to interact 

with the membrane in which they are embedded, and they can influence and be influenced 

by lipid-protein interactions (Mondal et al., 2013). Both experimental and computational 

studies have remarked that the environment surrounding NSS transporter proteins can play 

a critical role in their function and can influence reorientations of TM segments and their 

direct relation to the functional mechanism (Mondal et al., 2013; Khelashvili et al., 2015a). 

Careful evaluation of the membrane-protein interaction patterns is essential in order to 

understand the functional mechanisms of these important proteins.

Therefore, once the specific complex has been chosen (from Section 3.2), it should then be 

immersed in a realistic biological environment with lipids known to be found surrounding 

that transmembrane protein. In our hDAT system, a mixture of POPE/POPC/POPS/PIP2/

cholesterol lipids, closely resembling the neuronal cell plasma membrane is used (Ariga 

et al., 1988). CHARMM-GUI membrane builder (Brooks et al., 2009) was used to create 

bilayer models of desired lipid compositions. The membrane preparation protocol in the 

software takes advantage of experimentally determined values for the area per molecule for 

different lipids and makes use of the extensive library of lipid conformations to generate a 

lipid bilayer.

Besides the CHARMM-GUI membrane builder, VMD also has a Membrane plugin. 

Additionally, the Acellera suite of tools (Doerr et al., 2017); has introduced 

MembraneBuilder on playmolecule.org, an application to build complex membranes, 

necessary to build and run atomistic simulations of membrane proteins. However, at the 

moment the lipid components are limited to POPC and POPE for the VMD plugin and 

POPC, POPE and cholesterol for MembraneBuilder.

Following the generation of the lipid bilayer, the docked complex can then be inserted. 

We refer back to the common simulation codes (AMBER (D.A. Case, I.Y. Ben-Shalom, 

S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, 

D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R Harris, N. Homeyer, S. 

Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGra, 2018; Reese et al., 2018), CHARMM 

(Brooks et al., 2009), GROMACS (Pronk et al., 2013; Lundborg and Lindahl, 2015) and 

NAMD (Phillips et al., 2005)) that have accompanying tools to help in this process. 

Considerations here would be orientation in the membrane and removing any membrane 

lipids overlapping into the protein environment. No doubt the automation of this crucial step 

can be invaluable to a novice’s toolkit.
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4. Ligand Parameterization and final steps before MD simulations

Molecular dynamics (MD) simulations must overcome many barriers to be considered a 

viable method for probing biological systems, of which includes the limitations of time 

scale, system size and accuracy in the representation of the underlying molecular system. 

With the first two relying on advances within the formations in hardware and algorithms, 

the latter requires diligent development of better force fields that are to sufficiently describe 

key interactions in the simulation system. An important limitation is the complexity of 

developing missing force field parameters for novel chemicals, such as small molecule 

ligands. These chemical entities are often vital components in the biological system of 

interest, but can obstruct the utility of the molecular dynamics technologies for fields that 

include drug discovery when difficulties arise in accurately parameterising small molecules 

(Durrant and McCammon, 2011; Borhani and Shaw, 2012).

Various empirical force fields including OPLS, AMBER, CHARMM as well as GROMOS 

have been developed for MD simulations (Guvench and MacKerell, 2008). In order to apply 

these general force fields to an arbitrary drug-like molecule, functionality for assignment 

of atom types, parameters and charges is required. Historically, quantum mechanics (QM) 

can parameterize them with better accuracy but they are computationally expensive and 

slow, which limits applicability to a small number of molecules. While accurate force fields 

are not generally available for all molecules, like novel drug-like molecules. Therefore, 

it is biased to suggest a single parameter set can sufficiently characterise a large number 

of compounds. Therefore, to address this “small molecule problem”, one approach was to 

develop a limited set of building blocks covering a particular class or family of molecules. 

This has been a principle of CHARMM General Force Field (CGenFF) (Vanommeslaeghe 

et al., 2010) as well as General Amber Force Field (GAFF) (Wang et al., 2004), of which 

only target drug-like molecules within a biological environment. Commonly used AMBER 

and CHARMM force fields contain parameters for biomolecules (proteins, nucleotides, 

saccharides, lipids, etc.), but lack parameters for other biologically relevant molecules 

(co-factors, drugs, etc.) and are not guaranteed to be transferable to all possible chemical 

environments.

There have been a variety of tools that have been developed in assigning missing parameters 

directly from analogy to already pre-existing ones, which depend on databases of molecules 

of already parameterized compounds for a particular force field. Some examples of these 

tools include ParamChem (Vanommeslaeghe et al., 2012a, 2012b), and MATCH (Yesselman 

et al., 2012) web servers for CGenFF. VMD also offers a parameterization tool known as 

the force field toolkit (ffTK) (Mayne et al., 2013 which is also designed specifically for 

the parameterization of small molecules. ffTK provides many advantages including 1) the 

optimization of the energetic contribution of each component contributing to intramolecular 

interactions including charges, bonds, angles and dihedrals; 2) user-selected level of QM 

theory; 3) visualisation at each step; and 4) a manual or automatic option in parameter 

guessing and refining. With so many options, however, there are molecule-dependent hurdles 

at each step of ffTK that require user-manipulation and troubleshooting. Newer tools like 

Parameterize found in the Acellera HTMD platform (Galvelis et al., 2019) or online on 

playmolecule.org, can also improve the quality of the parameters by QM data, by refitting 
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electrostatic potentials (ESP) charges and rotatable dihedral angle parameters. As such, tools 

like Parameterize and ffTK are poised to fundamentally solve the problem of transferability 

for atom types and parameters. One only needs to prepare a .mol2 file of your ligand, with 

added hydrogens and knowledge of the charge to use tools like Parametrize, ffTK, PubChem 

and MATCH. However, careful inspection of the prepared topologies and parameters, in 

addition to a simple minimisation in water can reveal if the parameters are correct.

Following the steps in Section 3 and this section, we have all the parts to put together the 

complex for an MD simulation. The standard MD packages will allow the protein-membrane 

complex to be solvated and ionized in order to mimic a near-physiological environment. The 

system dimensions and approximate number of atoms can vary depending on the hydration 

number of water molecules per lipid and concentration of ions used in the system. Following 

this the system can then be evaluated by MD techniques in your favourite MD package, such 

as AMBER (Reese et al., 2018), CHARMM (Brooks et al., 2009), GROMACS (Pronk et al., 

2013; Lundborg and Lindahl, 2015) and NAMD (Phillips et al., 2005) and Acellera ACEMD 

(Harvey et al., 2009).

5. MD Analysis

MD simulations produce very complex data where essentially the cartesian coordinates 

of each atom of the system are recorded at every timestep of the trajectory. Depending 

on the size of the system this could be thousands or millions of steps with huge MD 

generated trajectories taking up gigabytes or more of space. Therefore, data analysis has 

to be specialised to extract useful information in addition to data management and storage, 

which pose a major challenge for accessibility. We will concentrate our discussion on the 

types of analyses that one can perform on the data from MD simulations.

In general, there are many tools that can analyse the trajectories. It all depends on what 

data you want extracted and importantly how it is extracted. If you are familiar with 

programming languages, you can either write the code yourself in your favourite language 

or you can find already built code on open-source forums like GitHub (github.com) which 

hosts version-controlled software.

MDTraj and MDAnalysis, which have been introduced previously, can analyse the 

simulation trajectory for many different packages (Michaud-Agrawal et al., 2011; 

McGibbon et al., 2015; Gowers et al., 2016), while CHARMM (Brooks et al., 2009) 

and GROMACS (Pronk et al., 2013; Lundborg and Lindahl, 2015) packages contain a 

large number of programs that perform particular analysis tasks. Various VMD plug-ins 

can analyse NAMD trajectories (Phillips et al., 2005) and HTMD can analyse ACEMD 

trajectories (Harvey et al., 2009). This is of course not an exhaustive list but they all 

perform standard tasks including calculating a root mean square deviation (RMSD) i.e. 

the structural distance between coordinates, root mean square fluctuation (RMSF) i.e. 

the average deviation over time of a protein residue from a reference position or for 

performing principal component analysis (PCA) on the trajectory i.e. the conversion of 

the movement of all atoms in the protein into a set of principal components which are 
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linearly independent. Other measurements can include hydrogen bonding, dihedral angle 

and distance measurements or solvent accessibility.

All these tools and more solve the data generation and analysis problem, but it is up to 

the user to understand what information needs to be extracted and which tool matches their 

skills and expertise to be utilised efficiently.

6. Concluding remarks

The field of molecular mechanics has developed enormously since its inception in the 

1970s. Due to the rapid improvements of hardware, algorithms, and force fields we can now 

simulate complex systems at even better and longer time scales and resolutions. By applying 

molecular modelling methods from ligand docking to MD simulations, scientists are able 

to discover details of biochemical events such as oligomerization and neurotransmitter 

transport mechanisms of novel compounds. Nevertheless, we must equip newcomers to the 

field with the basics in a simple and straightforward manner.

Although the procedures detailed above provide advantages to existing methods, list 

solutions and provides limitations, gaps will still remain in consistency as new software and 

force fields are created. To overcome this weakness, we recommend taking robust measures 

in examining the software and outputs generated. We cannot account for all methodologies, 

but in establishing means to overcome these challenges at each step, it is our hope that 

we begin to bridge the disparities between existing methods and to pave the way for new 

methods that researchers may find workable for them.

In this way the great hurdle that appears to be the field of molecular modelling can be 

approached willingly to achieve higher accuracy when studying systems with increased 

chemical complexity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two-dimensional schematic representation of the topology of the human dopamine 
transporter (hDAT).
Colored regions indicate the transmembrane (TM) domains that are embedded in the lipid 

bilayer. Areas outside of this region appear as not coloured and are either extracellular or 

intracellular loops or the N- and C- termini that both reside on the intracellular side.
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Figure 2. A schematic of the multi-step process for molecular docking
(1) simple ‘template’ recognition; (2) sequence alignment; (3) model building for the 

intended ‘target’, which is based on the 3D structure of the ‘template’; (4) model refinement, 

analysis of alignments, gap deletions as well as additions and finally (5) model validation.
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Figure 3. hDAT homology model predicted from the dDAT crystal structure
(a) The dDAT crystal structure (Protein Database (PDB) ID: 4M48) exhibiting the LeuT-like 

structure fold. (b) A model of the hDAT tertiary structure based on the alignment in [110] 

with predicted extracellular loop 2 (EL2) and N- and C- termini regions indicated. (c) 

Superimposition of (a) and (b).
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Figure 4. Workflow for preparation for IFD docking of three compounds.
(a) The 3D coordinates of cocaine were retrieved from the PBD (PDB ID: 4XP4) and 

then prepared in Schrödinger to add hydrogens and a positive charge to the nitrogen on 

the tropane group, (b) 5-IT was built in Schrödinger by modifying the 3D coordinates of 

amphetamine (PDB ID: 4XP9); hydrogens were added and a positive charge was added 

to the amine nitrogen (c) the 3D coordinates for D2PM were retrieved from PubChem: 

Compound CID: 704537; hydrogens were added and a positive charge was added to the 

nitrogen in the pyrrole ring. In the last panel for each compound you can see that each of 

these distinct ligands (shown in red) occupies a binding pocket that is deeply buried in the 

transporter structure and overlaps with the binding site of the substrate dopamine. Selected 

central binding site residues from each ligand are shown in yellow and labelled respectively. 

The internal sodium and chloride ions are shown in magenta and purple, respectively.
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Figure 5. A schematic workflow of the docking procedure in Schrödinger.
Individual descriptions for the ligand and protein preparation as well as details for the IFD 

protocol are given. The 3D coordinates for the protein are either obtained from the PDB 

or homology modeling, while the 3D coordinates for the ligand are either obtained from 

PubChem or built manually (Figure 4).
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