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Rising compound hot-dry extremes
engendering more inequality in human
exposure risks

Check for updates
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Chunming Shen7

Compound hot-dry events, with their amplified negative impacts on ecosystems and societies, are
attracting growing attention. This study investigates the global-scale inequality and risks of hot-dry
compound events under various shared socioeconomic pathways (SSP) scenarios, considering
hazards, exposure, and vulnerability. Results show a worldwide increase in hot-dry extreme events
and population exposure by mid-century (2041–2070), with variations among scenarios and regions.
Climate factors are identified as the primary contributors to future changes in population exposure.
SSP1-2.6 shows lower risks than SSP5-8.5 notably. Spatially, ASIA and the Middle East and Africa
(MAF) will likely face higher exposure risks due to large populations, lower income levels and aging
demographics, which amplify climate impacts. Under SSP3-7.0, rapid population growth introduces
greater uncertainty in exposure estimates, particularly in ASIA, MAF, Latin America and the Caribbean
(LAM). Aging populations, especially under SSP3-7.0 and SSP5-8.5 scenarios, exacerbate exposure
risks through climate-demographic interactions.

Droughts and heat waves are among the most severe and frequent climate
hazards globally, posing serious threats to both ecosystems and human
societies1. Under global warming, high-temperature anomalies often coin-
cide with prolonged precipitation deficits, giving rise to “hot-dry” events2.
These events are driven not only by the thermodynamic relationship
between temperature and precipitation but also by the influence of large-
scale circulation patterns and land-atmospheric feedbacks1,3,4. Unlike iso-
lated extreme events, compound hot-dry events intensify adverse impacts
by simultaneously exerting pressure onboth natural ecosystems andhuman
systems. Beyond the immediate consequences of heatwaves and droughts,
these extremeweather events can trigger cascading secondary crises, such as
food insecurity4,5, water scarcity6, and an elevated risk of wildfires in forests
and grasslands7,8. The increasing frequency and severity of such events have
drawn growing attention in recent years9–12.

Various definitions have been developed to identify hot-dry events,
typically relying on either absolute thresholds or percentile-based criteria for
temperature and precipitation anomalies9. Nevertheless, the utilization of

absolute thresholds can underestimate the impacts of high temperatures in
high latitudeorhistorically cooler regions,where smaller anomaliesmay still
have significant consequences13. Relative thresholds are thus often con-
sidered more suitable for global-scale and cross-regional assessments14,15.
Moreover, heat extremes can also be characterized using daily mean
temperature16, minimum temperature14, and perceived temperature17. For
drought, precipitation serves as the primary indicator, supplemented by
standardized metrics such as the Standardized Precipitation Index (SPI)9,18

and the Standardized Precipitation Evapotranspiration Index (SPEI)19, and
soil moisture in some cases20.

Current research on compound hot-dry events has made progress in
characterizing their frequency, duration, and severity through historical
observations, reanalysis datasets, and climate model projections5,10,18,21,22.
Previous global-scale studies utilizing the CoupledModel Intercomparison
Project Phase 5 and 6 (CMIP5 and CMIP6) simulations further suggest a
substantial rise in compound hot-dry events under future climate
scenarios6,20,23–27. To better capture the societal implications of these events,
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population exposure—defined as the number of people affected multiplied
by the duration or intensity of extreme events—has emerged as a widely
used metric for quantifying human risk and vulnerability3,9,28.

Despite these advances, global-scale assessments of exposure
inequalities related to compound extreme events remain limited. Few
studies have incorporated vulnerability dimensions, such as income
levels or aging populations, into global exposure assessments—even
though these factors critically shape how risks are distributed across
regions and demographic groups29,30. Another challenge lies in the cli-
mate data used to project future events. Global climate models differ in
initial conditions, physical parameterizations, and resolutions, leading to
uncertainty and potential biases in historical climate simulations, which
may subsequently propagate into future projections31. Furthermore, the
coarse spatial resolution of GCMs often limits their ability to capture
local-scale climate signals and population heterogeneity32. This high-
lights the need for a high-resolution global climate dataset, appropriate
downscaling and bias correction techniques to improve the accuracy of
future projections9,33.

Thus, this study aims to identify global hotspots and inequality patterns
in exposure to compound hot-dry events under different climate and
socioeconomic scenarios.We employ a bias-corrected, high-resolutionGCM
dataset to assess future changes in compound event hazards, exposure, and
vulnerability across the globe under the SSP framework. Special attention is
given to regional disparities in exposure, particularly with respect to popu-
lation aging and income levels. The results are intended to support more
targeted adaptation planning and international climate risk governance.

Results
Future changes in hot-dry extremes
As global temperature rises, there is an overall increasing trend in the fre-
quency of hot-dry extreme events across most regions of the world, which is

statistically significant at the 5% level (Fig. 1). Relative to the baseline period
(1981–2010), significant changes in the annual mean duration of hot-dry
events during themid-century (2041–2070) are primarily concentrated in the
low to mid-latitude regions near the equator. In particular, regions such as
South America, Western and South Asia, the Middle East, and northern and
central Africa are projected to experience notable increases in the number of
hot-dry days. Under medium- to high-emission scenarios (i.e., SSP3-7.0 or
SSP5-8.5), the annual average number of hot-dry days in these regions is
expected to rise by more than 25 days compared to the baseline period.
Additionally, under the SSP5-8.5 scenario, noticeable increases are projected
in regions such as the eastern part of Greenland and central Australia.
Although the spatial distribution of these changes remains generally con-
sistent across different scenarios, both the frequency and spatial extent of hot-
dry events are further amplified with increasing greenhouse gas concentra-
tions, particularly under SSP5-8.5. To assess inter-model uncertainty, the 10th
and 90th quantile results among GCMmodels are calculated. For the annual
meandurationof hot-dry events (Fig. S1), greater uncertainty is observednear
the equator and in the high-latitude regions of the Northern Hemisphere,
particularly in areas such as northern South America, and central Africa.

Figure 2 illustrates the changes in the intensity of hot-dry compound
extreme events during themid-century period.With increasing greenhouse
gas concentrations, the intensity of the hot component of compound events
is expected to become more pronounced, accompanied by an expansion of
affected areas (significant at the 5% level). Even under the low-emission
SSP1-2.6, future hot event intensity is projected to increase by more than
1.0 K. Under SSP5-8.5, however, this increase could exceed 3.5 K. Spatially,
the largest increases in hot intensity are concentrated around 45°N, notably
in Asia, Europe, northern Africa, and North America. As emission levels
increase, the spatial extent of hot event intensity expands into the Southern
Hemisphere. On the other hand, although the dry intensity in hot-dry
compound extreme events shows smaller changes across scenarios, it also

Fig. 1 | Projected changes in annual mean duration of hot-dry event under
different SSP scenarios.Changes are shown for the period 2041–2070 relative to the
baseline period (1981–2010): a SSP1-2.6, b SSP2-4.5, c SSP3-7.0, d SSP5-8.5. Light

gray dots indicate areas where changes are statistically significant at a 5% level based
on the Student’s t test. (unit: days)
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displays a general upward trend with increasing emissions. The regions
experiencing the most pronounced increase in dryness intensity are pri-
marily concentrated in Europe and Central Asia. In the Southern Hemi-
sphere, areas near the equator, such as northern SouthAmerica and parts of
central Africa, are also expected to become drier relative to the baseline
period. Figures S2 and S3 illustrate the uncertainty in model projections of
hot-dry event intensity. For hot intensity, higher uncertainty is found in the
Northern Hemisphere, particularly under the SSP3-7.0 and SSP5-8.5 sce-
narios. In contrast, notable uncertainty in dry intensity is expected in central
Africa and northern South America, likely due to known challenges in
simulating precipitation variability in these regions34,35.

We investigated the return periods of high-end extreme events under
various future scenarios to analyze the probability of occurrence of his-
toricallymost extreme events in the future. The spatial patterns and regional
averages of projected return periods are depicted in Fig. S4 and Table 1.
Overall, the return periods of high-end events are projected to decrease in
the future, implying that such extreme events will occur more frequently
than in the past (i.e., shifting froma30-year event to one occurring every few
years). This increasing risk is evident across all scenarios, with the shortest
return periods projected under SSP5-8.5. Spatially, regions including
southern South America, most of Africa, the Middle East, Europe, and
Central Asia show the most marked reductions in return periods. Among

Fig. 2 | Projected changes in hot and dry intensity of hot-dry events under
different climate scenarios. Changes in annual mean hot intensity (left column,
unit: K) and dry intensity (right column, unitless) are shown for the period

2041–2070 relative to the baseline period (1981–2010): (a, b) SSP1-2.6, (c, d) SSP2-
4.5, (e, f) SSP3-7.0, (g, h) SSP5-8.5. Light gray dots indicate areas where changes are
statistically significant at a 5% level based on the Student’s t test.
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these, countries in theMiddle East andAfrica (0.54–1.41 years) andmost of
Asia (0.74–1.77 years) are projected to experience the highest likelihood of
extreme events, while developed regions such as those in the OECD (the
Organization for Economic Co-operation and Development 90, EU
member states and candidates) show the longest return periods (1.39–2.38
years). The cumulative probability distribution of return periods for high-
end extreme events across all global grid points and within subregions can
provide an indication of the proportion of grid points falling within specific
return periods (Fig. 3) The analysis clearly indicates that under higher
emission scenarios, a larger proportion of the globewill experiencehigh-end
extreme events with return periods shorter than a defined threshold, par-
ticularly evident in the ASIA and MAF regions.

Population exposure to hot-dry extremes
The changes in population exposure to hot-dry compound extremes under
the four emission scenarios are influenced by climate change, population
dynamics, and their interactions, resulting in distinct spatial patterns
(Fig. S5). Population exposure is projected to increase substantially in
regions such as Southeast Asia, the Indian subcontinent, and central Africa,
compared to the baseline period, while a decrease is expected in the high-
latitude regions of the Northern Hemisphere. According to contribution
analysis (see Methods section), the climate factor (ΔE1) plays a dominant
role indriving exposure changes compared toother factors.This is primarily
because a large population base combined with intensified hot-dry events
can significantly elevate exposure levels—evenmodest climate changes can
lead to substantial changes in exposure.On theotherhand, the interactionof

climate change and population dynamics (ΔE3) becomes especially influ-
ential under the SSP3-7.0 scenario, particularly in the Indian subcontinent
and Africa. This is primarily due to the interplay between climate change
and population dynamics—such as the increased frequency of extreme
events and continued population growth in vulnerable regions—which
pronouncedly amplifies population exposure to hot-dry compound
extremes3.

From a regional perspective, the five major economic areas show dis-
tinct patterns in future population exposure risks and the relative con-
tributions of different factors (Fig. 4). Overall, the MAF and ASIA regions,
with the highest population base among the five regions, would face sub-
stantial exposure risks, even under relatively modest increases in the fre-
quency of compound hot-dry extreme events (Fig. 4d, e). Conversely, the
REF region (the Reforming Economies of Eastern Europe and the Former
Soviet Union) exhibits the lowest exposure risk, mainly due to its relatively
small population. Under SSP1-2.6 and SSP5-8.5, anticipated population
decline further mitigates this risk, leading to comparatively lower exposure
levels (Fig. 4b). Across most regions and scenarios, climate change remains
the primary contributor, followed by the interaction between climate and
population, and then population alone (Fig. 4f–i). Notably, as emission
concentrations increase, the relative contribution of the interaction effect
also tends to rise (with SSP5-8.5 possibly being an exception). Inmost areas,
SSP5-8.5 is associated with substantially higher exposure levels, primarily
driven by the increased frequency of hot-dry events.

Figure S6 illustrates the uncertainty analysis of changes in population
exposure, decomposed into the contributions from climate effects, popu-
lation effects, and their interaction across different regions and SSP sce-
narios. The results show that the climate effects constitute the primary
source of uncertainty in future exposure projections. Notably, the SSP3-7.0,
which assumes a larger population, results in increased uncertainty in
regions such as ASIA, MAF, LAM. In contrast, in the OECD region, SSP5-
8.5 shows slightly elevated uncertainty, mainly due to the interaction effects
between population and climate.

Vulnerability in the face of hot-dry events
Socioeconomic disparities. In general, a country’s economic condition
serves as a key indicator of its resilience and adaptability to natural hazards.

Fig. 3 | Cumulative probability distribution of global and regional return periods for high-end events under different climate scenarios.

Table 1 | Regional-average return periods (years) for high-end
events in the period 2041–2070 across various scenarios

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ASIA 1.77 1.32 0.96 0.74

LAM 1.97 1.58 1.11 0.95

MAF 1.41 1.03 0.72 0.54

OECD 2.38 2.14 1.62 1.39

REF 1.97 1.63 1.35 1.10
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Economically stronger countries typically possess greater financial resour-
ces, well-developed infrastructure, and robust social safety nets, enabling
more effective prevention, mitigation, and recovery from hazard-induced
losses36.

Based on the economic classifications of the five major regions
(Fig. S7), the OECD region ranks highest, with more than 80% of its
population belonging to the high-income category. Fromapurely economic
perspective, although population exposure in the OECD region is at a
moderate level relative to other regions (Fig. 4), the associated overall risk is
likely to be relatively low due to its stronger economic capacity. Conversely,
MAF and ASIA, particularly the former, exhibit both high levels of popu-
lation exposure and the weakest economic conditions. This combination
suggests limited governmental capacity to implement effective adaptation
and mitigation strategies, rendering these regions more vulnerable to the
increasing frequency of hot-dry compound events in the future.

Leading countries in exposure. Compared to the baseline period,
countries in Sub-Saharan Africa, Latin America and the Caribbean, and the
Middle East andNorthAfrica are projected to constitute a larger proportion
of the top 50 countries with the greatest annual incremental population
exposure to hot-dry compound events (Fig. 5). Collectively, these nations
may account for over 60% of the total. Notably, low- and lower-middle-
income countries constitute a pronouncedly higher proportion of these
high-exposure nations compared to other income groups. Under the SSP2-
4.5 and SSP3-7.0 scenarios, this proportion could reach~58%, underscoring
the heightenedvulnerability of less developed countries to future compound
climate extremes. Particularly, populous countries such as India consistently
rank among the top 20 in exposure. Countries with high population density
are also expected to face greater exposure risks in the future. For instance,
Bangladesh, ranked first, has a small land area but a large population,

making it one of the most densely populated countries in the world.
Additionally, it is worth mentioning that some European countries show a
notable increase in both the number of countries (from 5 to 7) and rankings
under the SSP5-8.5 scenario, including nations like Italy and the United
Kingdom.

Changes in elderly population exposure. In the context of increasing
hot-dry compound events, the elderly population emerges as one of the
most vulnerable groups. Firstly, seniors typically exhibit relative frailty in
terms of their physical and physiological resilience, making them more
prone to heat-related illnesses, such as heatstroke, dehydration and cardi-
ovascular complications37. Additionally, certain chronic illnesses or
underlying health conditions prevalent among the elderly, such as cardio-
vascular and respiratory diseases, further heighten their sensitivity and risk
to heat waves and droughts38. We conducted statistical analyses on global
population trends, including total and elderly (65+) populations from 2010
to 2070underdifferent regions and scenarios (Fig. S8). Thefindings indicate
a clear trend of population aging worldwide, with particularly notable
implications for theMAF region, where the elderly populationmay increase
by 5–9 times by 2070 compared to the baseline (Table S2).

Regionally, Asia andAfrica are projected to remain themost populous
continents, especially under the SSP3 “rocky road” scenario, which assumes
limited mitigation and adaptation efforts. Under this pathway, population
growth is especially pronounced. Regarding the elderly population, Asia
exhibits a steep upward trend, particularly under SSP1 and SSP5. OECD
countries rank second in terms of elderly population, though their growth is
comparatively moderate. Notably, the MAF region, despite having a small
elderly base at the century’s start, shows the fastest growth rate. By 2070,
under SSP1 and SSP5, its elderly population is projected to nearly or even
surpass that of OECD countries. Table 2 presents the percentage change in

Fig. 4 | Population exposure and contributing factors to hot-dry events across
global subregions and scenarios. Changes in population exposure (bar, unit:
Kpop×days, where Kpop=thousand people) and relative contributions (stacked bar,

unit: %) under different SSP scenarios are shown for: a OECD, b REF, c LAM,
d MAF, e ASIA, f SSP1-2.6, g SSP2-4.5, h SSP3-7.0 and i SSP5-8.5.
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exposure to hot-dry events for both total and elderly populations under
different scenarios. Compared to the baseline period, global population
exposure is projected to increase severalfold (ranging from SSP1 to SSP5),
with elderly exposure rising evenmore sharply, increasing by several dozen
times in some regions, particularly in MAF. As previously mentioned, Asia
andAfrica are particularly vulnerable due to their large population bases. In
Asia, for instance, the elderly population is expected to grow nearly fivefold,
while the duration of hot-dry events could increase by more than sixfold,
jointly driving pronounced exposure increases. In Latin America, the sharp
rise in exposure risks is primarily driven by the considerable increase in hot-
dry events, especially under the SSP3-7.0 andSSP5-8.5 scenarios, potentially

resulting in exposure increasing by tens of times. These findings underscore
the urgency of focusing adaptive capacity and mitigation efforts in regions
with high climate sensitivity and rapidly aging populations.

The contributions of climate change, population aging, and their
interaction factors to the exposure of elderly populations to hot-dry extreme
events under different scenarios are further examined (Fig. 6). A notable
distinction from the drivers of the total population is that the interaction
between climate change and population aging accounts for a substantially
larger proportion of elderly exposure risk (exceeding 50% in certain
regions). Moreover, this interaction effect intensifies under higher emission
scenarios. In other words, under different SSP scenarios, the combined

Fig. 5 | Leading 50 countries with the largest projected increase in population
exposure to hot-dry compound events.Annual increase in population exposure to
hot-dry compound events (unit: Kpop × days, where Kpop = thousand people) are

shown for the period 2041–2070 under different SSP scenarios: a SSP1-2.6, b SSP2-
4.5, c SSP3-7.0, and d SSP5-8.5 scenarios.

Table 2 | Population exposure changes (%) across different scenarios and regions (elderly population exposure changes in
parentheses)

ASIA LAM MAF OECD REF

SSP1-2.6 501.92 (2457.53) 546.47 (2523.93) 688.84 (2899.95) 292.16 (699.52) 252.21 (798.98)

SSP2-4.5 730.99 (2651.51) 802.72 (2785.89) 1198.47 (3256.33) 372.75 (761.32) 350.52 (805.55)

SSP3-7.0 1115.33 (2945.18) 1365.63 (3447.10) 2043.71 (3849.51) 492.58 (959.51) 570.99 (956.01)

SSP5-8.5 1113.79 (5071.43) 1147.12 (5023.99) 1729.01 (6879.06) 889.42 (1699.76) 616.17 (1721.58)
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impact of climate change and demographic aging becomes increasingly
prominent. As population aging accelerates, these regions are projected to
face markedly elevated risks of exposure to hot-dry compound extreme
events.

Discussion
With the intensification of global warming, compound hot-dry events are
projected to increase in frequency, duration, and intensity on a global
scale11,18,20. The underlying driving mechanisms behind the increasing
compound hot-dry events are multifaceted, involving both anthropogenic
and natural factors. While precipitation deficits are a fundamental com-
ponent of drought, human-induced greenhouse gas emissions are a primary
contributor to rising surface temperatures, which can intensify the fre-
quency and severity of suchcompoundevents.However, the extent towhich
these changes can be directly attributed to anthropogenic climate change
remains under active investigation19,21. One key mechanism is the soil
moisture–temperature feedback, which amplifies hot-dry conditions
through land-atmosphere interactions39. A depletion of soil moisture leads,
on onehand, to reduced evaporation and, on the other, to enhanced sensible
heat fluxes that, ultimately, contribute to the increment of surface air
temperatures8,40,41. Warmer air, in turn, enhances atmospheric moisture
demand, further exacerbating both drying conditions and heat extremes.
This self-reinforcing feedback loop plays a central role in sustaining and
intensifying hot-dry extremes, often contributing to their persistence and
spatial clustering42,43.

Additionally, from a broader perspective, large-scale atmospheric
anomalies (such as El Niño and La Niña events) play a pivotal role in
triggering and sustaining hot-dry compound events10,12,22,44. The correlation
between temperature and soil moisture is intensified due to enhanced
land–atmosphere feedbacks and changes in their underlying thermo-
dynamical and dynamical driving mechanisms20. Furthermore, other local-
scale phenomena driven by human activity (e.g. changes in the land cover22,
urban heat island effect44,45) may also contribute to escalation of already
established hot and dry anomalies.

Although projections across four emission scenarios indicate an
increase in future hot-dry extreme events and associated population
exposure, the magnitude of these increases varies among scenarios. Under
the SSP1-2.6 scenario, characterized by sustainable development and

significant long-term reductions in greenhouse gas emissions, hot-dry
extreme events are still expected to rise, but to a much lesser extent com-
pared to SSP5-8.5, which assumes continued high emissions without early
mitigation3. In contrast, due to the substantial population increase projected
under the SSP3 scenario, it is anticipated that population exposure will
experience the greatest rise correspondingly. These results are consistent
with previous studies, which have similarly identified SSP3 as the scenario
with the highest population exposure to diverse hazards20,46.

In terms of spatial distribution, the overall hot-dry exposure risks are
highest in the ASIA and MAF regions, primarily due to their large popu-
lation bases, which amplify the impacts of climate change. As a result, slight
enhancements in hazard risks driven by future climate change could lead to
disproportionately severe impacts in these areas47. Moreover, both regions
are characterized by relatively low income levels, especially in MAF, which
exhibits the highest population exposure alongside the poorest economic
conditions. This implies that low-incomepopulationsmay bemore exposed
or vulnerable to natural hazards than wealthier individuals. Accordingly,
climate change impacts vary significantly across income groups12, under-
scoring the importance of incorporating socioeconomic disparities and
regional complexities into the formulation of climate mitigation policies.
Furthermore, the rising population exposure projected in certain developed
countries in Latin America and Europe also warrants particular attention in
future risk assessments.

With the exacerbation of aging, the elderlywill continue to face notable
risks from hot-dry compound events. Compared to the baseline, global
population exposure is projected to increase severalfold, while exposure
among the elderly tends to surge by several dozen times, particularly inAsia
andAfrica. As aging continues to increase, these regions are expected to face
even greater vulnerability to extreme hot-dry disasters29.

Our study also has several limitations that warrant acknowledgment.
Firstly, it is important to recognize the inherentuncertainties associatedwith
data sources. To mitigate these uncertainties, the use of multi-model
ensemble is widely recommended for reducing model-specific biases and
improving robustness22. In this study, we utilized 11 downscaled CMIP6
models to investigate exposure risks to hot-dry extremesunder different SSP
scenarios. As discussed, there is a certain degree of uncertainty among
models regarding future projections for the duration and intensity of hot-
dry extremes, population exposure, and contributing factors. Future

Fig. 6 | Drivers of elderly population exposure to hot-dry compound extremes
under different climate scenarios. Relative contributions of climate change,
population growth, and their interaction to elderly population exposure across

global subregions are shown for the period 2041–2070 under different SSP scenarios:
a SSP1-2.6, b SSP2-4.5, c SSP3-7.0, and d SSP5-8.5.
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research would benefit from incorporating a broader set of CMIP6 models
to enhance the representativeness of climate projections. Additionally, a
simple arithmetic ensemble mean method is employed to characterize the
results, whichmay inadvertently amplify the weighting of underperforming
models48. Future efforts should consider applying model ranking or
performance-based weighting schemes to improve the credibility of
ensemble results and minimize bias from individual models23,49. Moreover,
uncertainty also arises from future population and economic projections,
which are inherently influenced by socioeconomic trajectories. In our
analysis, we adopted the World Bank’s income-based classification to
explore the relationship between economic status and exposure risks across
five major regions. However, this classification does not fully account for
regional climatic heterogeneity. For example, although Australia shares an
income category with North America and Europe, its climate differs sub-
stantially. Tobetter informadaptationplanning, futurework should explore
hybrid regionalization frameworks that integrate both climatic zones and
economic tiers. Additionally, utilizing more advanced and high-resolution
socioeconomic data (both spatially and temporally) would improve the
accuracy of population exposure estimations23.

Methodological choices introduce another major source of uncer-
tainty. Different definitions and thresholds for hot-dry events can lead to
varying estimates of exposure3,6,23. Some studies suggest that using pre-
cipitation to define dryness yields smaller expected changes compared to
definitions based on soil moisture20. Thus, using soil moisture instead of
precipitation to define dry events may lead to different results. Besides, our
study focuses on summer months, which is common practice in studies of
mid-latitude extremes19,50. However, tropical regions generally lack clear
seasonal divisions and are instead dominated by wet and dry seasons. Thus,
the conventional definition of “summer” may not adequately capture the
spatiotemporal characteristics of tropical climates. Lastly, the calculation of
the returnperiod is basedon classical extreme value theory51, whichassumes
statistical independence among extreme events. This assumption has been
widely adopted inmany traditional studies as it simplifies computations and
provides intuitive estimates of return periods. However, we also recognize
that autocorrelation within time series may affect the assumption of inde-
pendence, especially when calculating hot extreme events based on daily
temperature. This could introduce additional uncertainty into return period
estimates52.

Methods
Data
Daily near-surface air temperature and precipitation are obtained from 11
CMIP6-GCMs (Supplementary Table S1) provided by the NASA Earth
ExchangeGlobalDailyDownscaled Projections (NEX-GDDP) dataset. The
GCM outputs are bias-corrected by employing a statistical downscaling
algorithm and are available at 0.25° spatial resolution globally53. In this
study, we selected the historical baseline period spanning from1981 to 2010
and conducted future projections for the mid-century period (2041–2070)
under four scenarios known as shared socioeconomic pathways and
representative concentration pathways (SSPs). These scenarios, namely
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, integrate the socioeconomic
pathways with different climate forcings and represent a sustainable sce-
nario, a medium-growth scenario, a regional rivalry scenario and a fossil-
fueled development scenario54, respectively.

To investigate the impact of hot-dry events on the population, the
Global One-Eighth Degree Population Base Year and Projection Grids
Based on the SSPs dataset (v1.01) is utilized6,55. This dataset includes total
population data for the base year and population projections at 10-year
intervals from 2010–2100 at a 0.125° spatial resolution, allowing it to
effectively reflect the populationdynamics described in each SSPnarrative56.
This alignment makes it a valuable tool frequently employed to evaluate
climate change vulnerability, impacts, and adaptation. It should be noted
that given the global population grid data used in this study has a different
temporal resolution from the continuous hot-dry data, the population
exposure is calculated as follows: the population data from 2010was used as

the baseline period. For future periods, exposure is calculated using the
average population values for the years 2040, 2050, 2060, and 2070, which
corresponds to the average hot-dry period of 2041–2070.

Supplementing the dataset, data on the elderly population (65+) from
historical periods and various SSP scenarios are essential for evaluating the
risks and challenges posed by aging populations when confronted with
compounded impacts of hot-dry events in diverse global regions. The data
on the aged population originate from the SSP database, developed by the
International Institute for Applied Systems Analysis (IIASA)54. Since these
data are available at the national scale rather than at the grid level, we first
compute the mean of compound hot-dry events across all grid cells within
each country, thereby generating country-aggregated indices. Subsequently,
the exposure of the elderlypopulation to these events canbe calculated at the
national or regional scale.

In examining the vulnerability of populations to exposure risks
during hot-dry compound events, the level of economic development is a
pivotal factor under consideration. In this study, we followed IIASA’s
classification to divide the world into five major economic regions, which
are delineated as follows57: OECD (the Organization for Economic Co-
operation and Development 90, EU member states and candidates), REF
(the Reforming Economies of Eastern Europe and the Former Soviet
Union), ASIA (most Asian countries except for theMiddle East, Japan and
Former Soviet Union states), MAF (countries of the Middle East and
Africa), LAM (countries of Latin America and the Caribbean). Addi-
tionally, according to the classification standards set by the World Bank
Group, based on current GDP, we categorized countries worldwide into
four income groups: low-income, lower-middle-income, upper-middle-
income, and high-income (Fig. S7). The World Bank’s classifications are
dynamic and undergo annual updates as of July 1st, primarily relying on
the previous year’s per capita Gross National Income (in US dollars)58. To
evaluate population exposure based on income levels, we averaged the hot-
dry climate grid data at the country and regional levels. Then, the risk of
population exposure across different regions and countries with varying
income levels was analyzed.

hot-dry event definition
A hot-dry event is defined as a period with co-occurring heatwave and
drought conditions. This study focuses exclusively on compound dry and
hot events during thewarm season, particularly during the summermonths
from June to August in the Northern Hemisphere and December to Feb-
ruary in the Southern Hemisphere19,50. Specifically, we followed these steps
to define and identify a hot-dry extreme event (Fig. S9).

Data sample. The maximum daytime and minimum nighttime tem-
peratures, along with daily precipitation data for the summer season
(June-August for the NorthernHemisphere andDecember–February for
the Southern Hemisphere), are first extracted to construct the
sample data.

Heatwave identification. For each grid, a hot day (or night) in each grid
is defined as one where the daily maximum (or minimum) temperature
exceeds the 90th percentile threshold, which is calculated for each day of
the summer period. To mitigate the influence of the annual cycle and
reduce inconsistencies in percentile-based extreme indices, the data for
each day are ranked within a 15-day window centered on that day during
the baseline period. Then a heatwave event is identified when both the
daytime maximum and nighttime minimum temperatures exceed their
respective thresholds for three consecutive days in the same grid43.

Drought identification. The SPI index is chosen to identify drought
events. The index is derived by transforming the precipitation time series
into a standardized normal distribution, which represents the number of
standard deviations by which the observed precipitation anomaly devi-
ates from the long-termmean. The SPI index has been recommended by
the WMO as the indicator to track the meteorological drought18,42,59.
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Here, SPI is calculated on a three-month timescale and a meteorological
drought event is defined as having an SPI value less than −1, in accor-
dance with WMO’s definition60.

Compound event identification. Years in which both heatwave and
drought occur simultaneously are considered instances of hot-dry
compound extreme events. The annual duration and intensity of com-
pound hot–dry conditions are calculated as follows:

D ¼
XN

i¼1

di ð1Þ

IT ¼
PN

i¼1

Pdi
j¼1

ðTxi;j�TXRjÞþðTni;j�TNRjÞ
di

N
ð2Þ

IP ¼ SPI ð3Þ

whereD is the yearly total number of participating hot-dry extreme days,N
is the number of hot-dry extreme events in a given year, i is the index of a
hot-dry event. The hot-dry intensity is divided into two components: one is
hot intensity (IT , as defined by Formula 2), where j denotes the day within
the hot-dry event (i). Here, di is the duration of a hot-dry event (i); Txi,j and
Tni,j are the daily maximum andminimum temperature at day j during the
hot-dry extreme event (i);TXRj andTNRj are the 90th percentile thresholds
for the daily maximum and minimum temperature at day j. The other
component is represented by drought intensity (IP), which is characterized
by the annual average SPI value during hot-dry event years. A lower SPI
indicates greater drought intensity. These calculations are performed
separately for each GCM, and the ensemble mean is then computed. The
statistical significance of future changes in hot-dry extremes at each grid
point is assessed using a Student’s t test at the 95% confidence level.

Exposure to hot-dry events
The definition of exposure is the presence of people, infrastructure, and
other assets in areas where hazardous eventsmay occur61. Here, we used the
annual population exposure (E) to measure the impact of hot-dry extreme
events on the population. Following references9,23, the E can be indicated as
the number of hot-dry events multiplied by the number of people exposed,
as follows:

E ¼ D×P ð4Þ

whereD and P represent the duration of hot-dry events and population in a
certain period. The future change in population exposure is calculated as
follows:

ΔE ¼ Df × Pf � Dh × Ph ¼ ðDh þ ΔDÞ× ðPh þ ΔPÞ � Dh × Ph

¼ ΔD× Ph

zfflfflfflffl}|fflfflfflffl{ΔE1

þΔP ×Dh

zfflfflfflffl}|fflfflfflffl{ΔE2

þΔD×ΔP
zfflfflfflffl}|fflfflfflffl{ΔE3 ð5Þ

where ΔE indicates the change in future population exposure compared to
the historical period.Dh (Df ) and Ph (Pf ) are the number of compound
extreme days and population in the historical (future) period, respectively.
ΔD andΔP represent thedifference in compoundhot–dry extremedays and
population between the future and historical periods, respectively.

According to Eq. 5, the future changes in population exposure can be
decomposed into three components, namelyΔD× Ph (ΔE1),ΔP ×Dh (ΔE2)
andΔD×ΔP (ΔE3), and they represent the climate effect, population effect
and interaction effect on total exposure change. Correspondingly, the
relative contribution (%) of climate (RCclim), population (RCpop) and the

interaction effect (RCinter) to the total exposure change are calculated as
3,23:

RCclim ¼ Ph ×ΔD
ΔE

× 100 ð6Þ

RCpop ¼
Dh ×ΔP

ΔE
× 100 ð7Þ

RCinter ¼
ΔP ×ΔD

ΔE
× 100 ð8Þ

Return period of the high-end risk
The term “high-end risk” refers to the maximum intensity thresholds
of hot and dry events observed during the recent historical period.
This analysis aims to assess the likelihood that these events will be
equally or more severe in the future than observed in the recent
period26,62. Essentially, evaluating high-end risk involves estimating
the probability of such extreme events occurring in the future or,
equivalently, calculating their return period, which is the inverse of
the occurrence probability. Specifically, the joint probability of
occurrence of high-end risk events for each latitude and longitude
grid in the future climate scenario was computed. This probability is
obtained by dividing the total number of compound hot-dry days by
the overall number of days within that specific period, given as:

PðH \ DjIT;f ≥ IT;h;�SPIf ≥ �SPIhÞSSP;lat;lon

¼
PN

n¼1

P
HDEðlat; lon; SSPjIT;f ≥ IT;h;�SPIf ≥ �SPIhÞ

ndays ×N

ð9Þ

Where PðH \ DjIT;f ≥ IT;h ;�SPIf ≥ � SPIhÞSSP;lat;lon is the conditional
joint probability, IT;h and SPIh are the maximum hot and dry intensity in
the historical period for each grid. Analogously, IT;f and SPIf are the hot
and dry intensity in the future climate scenario (SSP) for each grid, andN is
the total number of CMIP6-GCMs used in the study. Subsequently, the
return period is computed by normalizing the reciprocal of the conditional
probability with the number of days per year. A smaller return period
implies a greater risk of future hot-dry events surpassing the intensity
observed in historical extremes.

RPSSP;lat;lon ¼
1

PðH \ DjIT;f ≥ IT;h ;�SPIf ≥ � SPIhÞSSP;lat;lon × 365
ð10Þ

Data availability
Data analyzedduring the current study is theNASAEarth ExchangeGlobal
Daily Downscaled Projections (NEX-GDDP-CMIP6) gridded dataset dis-
tributed data archive [https://ds.nccs.nasa.gov/].
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