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Abstract
A bearing is a machine element that constrains relative motion to only the desired motion
and reduces friction between moving parts, especially in high-speed trains, wind turbines,
and railway wheelset applications. As the complexity of equipment and the harshness of
operational environments in these industries increase, bearings, as critical components, are
prone to faults that can lead to significant damage and costly maintenance. Therefore, ac-
curately and in real-time detecting these faults is crucial for ensuring the safe and efficient
operation of equipment. This research explores modern signal processing techniques and
machine learning algorithms, integrating multimodal data such as vibration and sound, to
propose efficient fault diagnosis models, providing valuable insights for future industrial
intelligent maintenance systems.

Firstly, for fault diagnosis in high-speed train rolling bearings, this thesis introduces a
model based on frequency domain feature extraction and a Bidirectional Long Short-Term
Memory (Bi-LSTM) network. High-speed trains, operating under long periods of dynamic
load and high-frequency vibrations, are prone to bearing fatigue damage, making early
fault detection essential for safety. Traditional fault detection methods mainly focus on
time-domain signal analysis, which often fails to capture key frequency domain features.
To address this, the study first transforms time-domain signals into the frequency domain
using Fast Fourier Transform (FFT), followed by fault classification using the Bi-LSTM
model to identify fault types from both directions of sequential data. Experimental results
demonstrate that the Bi-LSTM model based on frequency domain signals significantly
improves fault classification accuracy compared to traditional methods, validating its
effectiveness and superiority.

Secondly, a real-time monitoring system for wind turbine bearing fault detection is designed
and implemented, utilizing a simplified neural network model running on a Raspberry
Pi. Wind turbine bearings are subjected to high loads and harsh environmental condi-
tions, and bearing faults can lead to turbine shutdowns, affecting energy production and
increasing maintenance costs. To achieve real-time monitoring and fault prediction, a
simplified neural network algorithm is designed, efficiently implemented on a Raspberry
Pi. By segmenting sensor data, the system quickly analyzes each data segment and delivers
predictions within milliseconds. This model demonstrates high fault detection efficiency
and response speed, significantly reducing maintenance costs and improving operational



efficiency.

Finally, for railway wheelset bearings, this thesis proposes a new fault detection method
based on Grey Wolf Optimizer (GWO) and Support Vector Machine (SVM). Wheelset bear-
ings in railway vehicles endure complex loads and environmental pressures, making fault
detection critical. Traditional single-source vibration signal analysis often falls short of
capturing comprehensive fault characteristics. The study innovatively integrates vibration
and sound data, providing a richer set of diagnostic information. The GWO is employed to
optimize the SVM model’s hyperparameters, resulting in a highly efficient fault detection
method. The experimental results show that the proposed approach significantly improves
fault detection performance compared to traditional models, achieving rapid and accurate
predictions, thereby minimizing downtime and maintenance costs.

Overall, this research demonstrates the potential of various machine learning and op-
timization algorithms in bearing fault detection across different industrial applications.
By integrating frequency domain signal processing, neural networks, and optimization
algorithms, the thesis overcomes the limitations of traditional time-domain methods, sig-
nificantly enhancing the accuracy and real-time capabilities of fault diagnosis. Specifically,
the high-speed train bearing fault diagnosis method, based on FFT and Bi-LSTM, show-
cases superior performance in handling complex frequency domain signals. The real-time
monitoring system for wind turbine bearings leverages lightweight neural networks on
embedded devices, offering high efficiency and low latency. The vibration-sound fusion
method for wheelset bearings, optimized by GWO, achieves better detection precision and
speed. Future research could explore the integration of additional sensor modalities and
combine deep learning algorithms with optimization techniques to further improve diag-
nostic accuracy and application breadth. Overall, the three methods proposed in this thesis
offer effective solutions for intelligent maintenance systems and provide essential techno-
logical support for the safe operation and maintenance of industrial equipment in the future.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Background

In contemporary industrial and transportation networks, the dependability and safety of
mechanical apparatus are essential. Bearings, as fundamental components of this equip-
ment, provide the essential function of conveying motion and load. Bearing failure is a
primary cause of equipment downtime and production disruption throughout high-speed
railroads, wind power generation, aerospace, and diverse manufacturing gear. With in-
creasing equipment operating speed, load, and environmental complexity, diagnosing
and preventing bearing failures have become critically important. Timely and accurately
identifying bearing issues can reduce maintenance costs, prevent unexpected equipment
failures, and improve overall system stability.

The working environment of bearings is usually harsh, and they are often affected by
high stress, vibration, temperature changes, and contaminant intrusion from the outside.
This makes bearings prone to failures such as fatigue damage, wear, and corrosion during
long-term operation. If these problems are not discovered and repaired in time, the bearing
may fail seriously, leading to downtime for the entire equipment or system. Therefore,
effectively detecting and diagnosing bearing failures, especially in discovering potential
problems in the early stages, has become one of the key challenges in mechanical equip-
ment maintenance.

In recent decades, bearing fault detection methods have evolved from traditional experience-
based manual detection to automation and intelligence. Traditional detection methods
mainly rely on analyzing vibration signals, especially time domain and frequency domain
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Chapter 1. Introduction

analysis techniques. These methods identify anomalies by analyzing the vibration charac-
teristics of bearings in normal and faulty states. However, traditional methods have the
following limitations:

• Limitations of time domain signals: Although time domain analysis methods can
capture the overall vibration characteristics of bearings, they cannot fully reflect the
frequency components in the signal, especially since some types of faults are not
obvious in the time domain.

• Singleness of frequency domain analysis: Although frequency domain analysis can
reveal the frequency characteristics of signals through Fourier transform (FFT), it
ignores the time dependence of signals and makes it difficult to accurately locate
faults in dynamic environments.

• Limitations in data processing capabilities: Traditional signal analysis techniques
often cannot cope with complex and diverse working conditions, and it is difficult
to capture all fault modes in complex systems. In addition, as the complexity of
modern industrial equipment increases, the collected signals are becoming more
and more diverse, and traditional analysis methods make it difficult to cope with the
real-time processing requirements of large amounts of data.

In order to address the limitations of traditional methods, intelligent algorithms such as
machine learning and deep learning have been gradually applied to the field of fault detec-
tion in recent years. These methods can achieve more accurate prediction and diagnosis
of faults by extracting features and patterns from a large amount of historical data. For
example, deep learning methods such as Convolutional Neural Networks (CNNs) and Long
Short-Term Memory Networks (LSTMs) have been widely used to process time series
signals and have made significant progress in the accuracy of fault detection. However,
there are still some challenges for existing intelligent algorithms, including:

• Limitations of single-modal signals: Many existing intelligent algorithms are still
limited to processing a single type of signal (such as vibration signals or sound
signals), and cannot fully reflect the various fault characteristics in complex systems.

• Real-time requirements: Although intelligent algorithms have improved detection
accuracy, their high computational complexity leads to certain difficulties in real-
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time detection in embedded or low-resource environments.

• Complexity of data fusion: Complex equipment faults usually involve multi-dimensional
data, such as vibration, sound, temperature, etc. How to effectively fuse multiple data
to improve the detection capability and robustness of the model is still an important
research issue.

In complex industrial environments, a single signal type is usually unable to fully charac-
terize the working state of bearings. For example, vibration signals can reflect the dynamic
characteristics of mechanical motion, while sound signals can provide sound changes in
the internal operation of the equipment. By fusing these different types of signals, the
working state of the equipment can be comprehensively analyzed from multiple angles
to obtain more accurate fault diagnosis results. Multi-modal data fusion technology can
better capture the characteristics of different fault types by integrating data from multiple
sensors, making the detection model more robust and flexible.

In recent years, many studies have begun to explore fault detection methods that com-
bine multi-modal data fusion with intelligent optimization algorithms to solve the above
problems. This type of method can not only comprehensively utilize the advantages of
multiple signals such as vibration and sound, but also improve the performance of the
model through optimization algorithms (such as genetic algorithms, grey wolf optimization
algorithms, etc.), thereby achieving significant breakthroughs in the accuracy, real-time
and applicability of fault detection. This trend represents an important direction for the de-
velopment of fault detection technology from single signal processing to multi-dimensional
data fusion, and promotes the further evolution of intelligent maintenance systems.

In summary, with the increasing complexity of industrial equipment and the demand for
efficient and stable equipment operation, bearing fault detection technology is gradually
moving from traditional single signal analysis to combining multi-modal data fusion and
intelligent algorithms. This research direction not only has broad application prospects, but
can also significantly improve the operating safety, reliability and maintenance efficiency
of mechanical equipment.
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1.2 Motivation

Bearings are core components in mechanical equipment, and their reliability directly
affects the safety and operational efficiency of the equipment. However, due to the high
load and complex working environment that bearings endure during operation, long-term
vibration, wear, and fatigue may lead to bearing failure, thereby affecting the normal
functioning of the entire system. Quickly and accurately detecting bearing faults can not
only reduce downtime but also lower maintenance costs and extend the equipment’s service
life. Nevertheless, current fault detection technologies still face certain challenges and
limitations, forming the primary motivation for further research.

Firstly, traditional fault detection methods mainly rely on vibration signal analysis, particu-
larly single-signal processing methods in either the time domain or the frequency domain.
However, these methods show limitations when handling complex operating conditions
and diverse fault modes.

• Limitations of single signal type: Many traditional methods rely on a single time-
domain or frequency-domain signal, but these signals often fail to fully reflect the
fault characteristics of bearings under complex environments. For example, while
time-domain signals can capture certain vibration patterns, they lack the resolution
in the frequency domain. Conversely, frequency-domain signals may overlook some
dynamic features over time. This results in low detection accuracy, especially for
early fault diagnosis.

• Unmet real-time requirements: With the increasing demand for real-time monitoring
of industrial equipment, achieving rapid, real-time fault diagnosis while ensuring
high detection accuracy has become an urgent issue. Although traditional methods
have shown good results in laboratory settings, they often fail to deliver sufficient
computational efficiency in embedded or resource-constrained environments, mak-
ing it difficult to meet real-time fault detection requirements.

• Insufficient utilization of multimodal data: Complex mechanical equipment faults
usually exhibit multi-dimensional characteristics, such as changes in vibration, sound,
and temperature signals. Traditional detection methods are mostly limited to single-
signal processing and cannot effectively utilize multimodal data (e.g., combining
vibration and sound signals), thus restricting the accuracy and robustness of fault
detection.
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Secondly, with the rapid development of Industry 4.0 and the Internet of Things, the need
for intelligent monitoring and equipment maintenance is becoming increasingly intense.
Companies aim to use intelligent fault detection systems to accurately diagnose and provide
early warnings at the early stages of equipment failure, preventing major losses caused by
bearing failure. To achieve this, considerable research is increasingly focused on two main
areas:

• Application of intelligent algorithms: Machine learning and deep learning algorithms
can automatically extract features and learn fault patterns through large-scale data
training, promising to significantly improve the accuracy of fault detection. However,
existing intelligent algorithms are computationally complex, making them difficult
to apply in embedded systems. Additionally, their capability to process multimodal
data has not been fully explored.

• Real-time optimization in embedded devices: Real-time detection systems for in-
dustrial equipment are often deployed in embedded environments with limited
computational resources. Therefore, it is essential to design lightweight, real-time
fault detection algorithms to meet the low-latency requirements of practical applica-
tions.

Additionally, analyzing single signals is insufficient to fully reflect the condition of bearing
faults, especially in complex industrial environments where bearing failures often manifest
through comprehensive changes across multiple dimensions. For example, the fusion of
vibration and sound signals can provide more comprehensive fault information. Multi-
modal data fusion techniques can enhance the accuracy and robustness of fault detection
by integrating signals from different sensors. Using intelligent optimization algorithms to
further improve the performance of multimodal data fusion models has become an effective
approach to enhancing fault detection capabilities.

Lastly, based on the above issues and requirements, the motivations of this thesis can be
summarized as follows:

• Overcoming limitations in signal processing: The accuracy and robustness of fault
detection can be enhanced by improving existing signal processing methods, par-
ticularly by converting time-domain signals into frequency-domain signals and
integrating intelligent algorithms.
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• Achieving real-time fault detection: Developing lightweight intelligent detection
models to fit the computational capacity of embedded devices and meet real-time
requirements, providing technical support for online fault diagnosis in industrial
settings.

• Utilizing multimodal data fusion and intelligent optimization algorithms: By com-
bining various signal data such as vibration and sound, and integrating intelligent
optimization algorithms, the accuracy and efficiency of fault detection can be further
improved, providing more comprehensive solutions for equipment monitoring in
complex industrial environments.

In summary, the motivation of this thesis is to address the limitations of existing bearing
fault detection methods by improving detection accuracy, real-time performance, and
multimodal data fusion capabilities to meet the diverse demands of complex industrial
environments. These improvements will not only enhance the reliability of equipment
operation but also effectively reduce maintenance costs, advancing the application of
intelligent fault detection technology in industrial practice.

1.3 Aim and objectives

The aim of this thesis is to design and implement a bearing fault detection system based
on intelligent algorithms, capable of achieving high accuracy, real-time performance, and
multimodal data fusion in complex industrial environments. By improving signal process-
ing techniques, optimizing detection models, and integrating multiple fault signals, this
thesis aims to address the limitations of existing fault detection methods in terms of ac-
curacy, real-time capabilities, and adaptability. The specific thesis objectives are as follows:

• The first objective is to enhance fault feature extraction by improving existing signal
processing methods, specifically by converting time-domain signals into frequency-
domain signals. While time-domain signals can reflect overall trends of bearing
faults, frequency-domain signals are more capable of capturing specific fault features
in complex industrial environments. This thesis will employ the FFT to convert
time-domain signals into frequency-domain signals and utilize a Bidirectional Long
Short-Term Memory (Bi-LSTM) model to process these signals. Bi-LSTM has
unique advantages in handling sequential data and can predict fault trends in both
forward and backward directions. This combination will not only improve feature
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extraction but also significantly enhance fault detection accuracy in complex working
environments, overcoming the limitations of current detection methods.

• Real-time monitoring has become a core requirement in industrial equipment man-
agement. Therefore, this is necessary to design a fault detection model that can
efficiently operate on embedded devices, ensuring low-latency and high-accuracy
real-time fault detection in industrial applications. Given the computational con-
straints of embedded systems, it is essential to design a lightweight neural network
model with minimal computational complexity. The second objective is simplifying
the network structure and integrating efficient algorithm optimization techniques to
enable fast model execution on embedded devices. This method allows the system
to analyze sensor data in real-time and immediately trigger alerts upon detecting
anomalies, minimizing potential downtime. This approach improves equipment
efficiency and reduces unplanned maintenance costs caused by failures.

• A single signal type is insufficient to fully capture bearing fault characteristics, espe-
cially in complex industrial environments where signals such as vibration and sound
provide multidimensional information. Therefore, multimodal data fusion becomes
an essential approach for improving detection accuracy. The third objective is to
apply multimodal data fusion techniques by combining data from various sensors,
such as vibration and sound signals, to enhance the model’s sensitivity to complex
fault patterns. This thesis will utilize the GWO to optimize the hyperparameters
of a Support Vector Machine (SVM) to improve the overall performance of the
multimodal data fusion model. The GWO’s global search capability allows it to find
the optimal model configuration quickly, further enhancing fault detection accuracy
and efficiency. Through collaborative multimodal data processing, the system can
more accurately identify different types of faults, significantly improving detection
robustness and adaptability.

Achieving these objectives will provide innovative solutions to the challenges in bearing
fault detection, particularly addressing bottlenecks in signal processing, real-time embed-
ded detection, and multimodal data fusion. The system developed through this thesis
will not only improve fault detection accuracy but also achieve real-time performance on
embedded devices while enhancing its adaptability in complex environments, offering
robust technical support for the safe operation and maintenance of industrial equipment.

1.4 Thesis contribution

The main contributions of this thesis are as follows:
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• A novel diagnostic approach that combines FFT-based frequency domain analysis
with Bi-LSTM neural networks for detecting rolling bearing faults in high-speed
trains. By transforming vibration signals into the frequency domain, the method
overcomes the limitations of time-domain analysis, providing more effective fault
detection. Using Bi-LSTM improves the ability to classify different types of faults,
and validation on public datasets shows that the approach offers significant im-
provements over traditional methods. This contribution enhances the safety and
reliability of high-speed trains by reducing the likelihood of bearing-related failures
and improving operational safety.

• Real-time fault monitoring through the efficient processing of vibration data, both
in wind turbines and transportation systems, ensuring minimal system downtime
and enabling proactive maintenance strategies. The deployment of a real-time
monitoring system for wind turbine bearings using a simplified Multi-Layer Per-
ceptron (MLP) neural network on a Raspberry Pi. This system segments sensor
data into smaller chunks, enabling fast and accurate fault detection while running
efficiently on low-complexity edge devices. The MLP model is designed to work in
real-world environments with limited computational resources, offering a practical,
cost-effective, and scalable solution for wind turbine maintenance. This method
supports the reliability of wind turbine operations, helping to reduce downtime im-
proving system reliability, and extending the lifespan of equipment, and maintenance
costs while promoting sustainable energy solutions.

• A multi-modal data fusion method based on the GWO algorithm and SVM was
proposed, which successfully combined vibration and sound signals, significantly
improved the performance of fault detection, and optimized the algorithm hyperpa-
rameters. The thesis highlights the importance of data fusion techniques, particularly
the combination of vibration and sound signals, to enhance fault detection by lever-
aging complementary information from both sources. This fusion provides more
robust and reliable fault identification compared to analyzing individual signals in
isolation.

The approach is validated through real-time analysis, showing that it can effectively
detect faults with minimal latency, making it highly applicable to transportation
systems. This contribution reduces maintenance costs and enhances operational
efficiency by enabling timely fault detection, thus improving the reliability and safety
of transportation infrastructure.
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1.5 Thesis structure

This thesis has six chapters. The first chapter is an introduction which is this chapter,
which includes the background, research questions, motivations, aims and objectives of
my thesis.

Chapter 2 is a literature review, reviews the existing research in the field of bearing fault
detection, analyzes the advantages and disadvantages of traditional methods and intelligent
algorithms, and proposes the research framework of this thesis.

In chapter 3, the fault detection method based on frequency domain signal and Bi-LSTM,
introduces the technical details and experimental results of converting time domain signals
into frequency domain signals and using the Bi-LSTM model for fault detection.

In chapter 4, the real-time fault detection on embedded devices, describes how to imple-
ment efficient fault detection models on resource-limited embedded systems, as well as
related system optimization and experimental evaluation.

In chapter 5, the multimodal data fusion method based on GWO-SVM, introduces the
multimodal data fusion method combining grey wolf optimization algorithm and support
vector machine, and its application in fault detection and experimental results.

Finally, the last chapter is the conclusion and future prospects, summarizes the contribu-
tions of this thesis, and looks forward to possible future research directions.
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Chapter 2

Literature Review

In this chapter, I will systematically explore the key components and monitoring technolo-
gies of two modern engineering systems: high-speed trains and wind turbines. First, I will
provide a brief introduction to the core components of high-speed trains and wind turbines,
analyzing their design and operational characteristics. The focus will then shift to one of
their critical elements—bearings—examining their structure, functions, and performance
under various operating conditions.

Subsequently, I will delve into the sensor technologies used for bearing monitoring, in-
cluding vibration, temperature, and acoustic sensors.

Building on this foundation, I will further analyze signal preprocessing techniques. Fol-
lowing this, feature extraction methods will be introduced, ranging from traditional time-
domain and frequency-domain features to data-driven automatic feature extraction tech-
niques. Finally, I will examine various classification methods, including traditional machine
learning algorithms such as SVM, and deep learning models such as Bi-LSTM, evaluating
their effectiveness in bearing fault diagnosis within the context of high-speed trains and
wind turbines based on application scenarios and performance metrics.
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2.1 Bearing

2.1.1 Introduction of bearing

High-speed trains and wind turbines, though operating in different domains, share a com-
mon requirement: the need for efficient mechanical systems to convert energy into motion
or electrical power. Within these complex mechanical systems, there is an indispensable
core component—the bearing. Whether it is the smooth rotation of high-speed train wheels
or the efficient operation of wind turbine blades, bearings play a critical role.

As shown in Figure 2.1.

Figure 2.1: Generator bearing. (a) Generator; (b) bearing.

The basic functions of a bearing include support, friction reduction, load transmission, and
efficiency improvement. Bearings support rotating or moving components, ensuring they
move in a fixed direction; reduce friction between components through rolling or sliding
mechanisms; withstand radial and axial loads (or a combination of both) and transfer them
to other mechanical parts; and minimize energy loss to enhance mechanical efficiency.

2.1.2 Sensor of bearing

Introduction

Sensors play an important role in both industrial production and scientific research. In
modern scientific research, there are many things to observe: the vast universe, invisible
particles, long celestial evolution, and instants in seconds. In addition, there is research
on high-tech materials, the development of new energy sources, and the deepening un-
derstanding of matter, which are not directly accessible to humans. Therefore, sensors
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are indispensable. Many scientific researches are based on the acquisition of external
information. Some high-quality sensors often make breakthroughs in some science and
technology. The development of sensors can also be considered the core of some scientific
research [6].

More importantly, sensors are important in a variety of industries, such as industrial produc-
tion, space development, ocean exploration, environmental protection, resource surveys,
medical diagnostics, bioengineering, and even the protection of cultural relics. In modern
society, almost every project is inseparable from sensors. Sensors have many characteris-
tics, such as miniaturization, digitization, intelligence, multifunctionality, systematization,
and networking. It is the main support point for economic growth in the 21st century [1].

Therefore, sensors in bearings are used for real-time condition monitoring, supporting
predictive maintenance, optimizing operational efficiency, ensuring safety, and providing
data analysis to enhance equipment performance and life [7].
The sensor composition is shown in Fig. 2.2.

Figure 2.2: Sensor composition [1], is a sensor-based system for monitoring and analyzing
mechanical equipment’s performance through vibration data acquisition and processing.

Mainly sensor in detection system

Vibration, sound, and temperature are the most commonly used key indicators in bearing
monitoring. Monitoring these indicators comprehensively helps identify problems early,
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prevent downtime, and enhance the efficiency and reliability of the equipment.

Acoustic sensor

The acoustic sensor functions the same as a microphone. It is used to receive sound waves
and record the oscillation pattern of sound [8]. Generally, the acoustic sensor is used to
detect the position, speed, etc. of the vehicle [9]. In this thesis, an acoustic sensor and a
vibration sensor are combined to use the acoustic sensor to detect the location of a train
failure.

Vibration sensor

A vibration sensor is a sensor that can sense the parameters (vibration speed, frequency,
acceleration, etc.) of mechanical motion vibration and convert it into a usable output
signal [8]. When some parts of the train are abnormal, its vibration mode will change
slightly. However, the driver finds it hard to notice the vibration during the driving. The
vibration sensor can detect these abnormalities, hence the vibration sensor is significant
for all vehicles [10].

Temperature Sensor

Temperature sensors are usually electronic components that convert temperature into elec-
tronic data. A temperature sensor is made of a conductor whose resistance changes with
temperature. The element most commonly used is platinum, which has a resistance of
100 ohms (Pt100) at 0 ° C. Semiconductor temperature sensors are usually integrated
with amplification and regulation circuits. The oscillation frequency of the crystal os-
cillator changes with temperature, so the temperature can be measured very accurately [11].

For thermocouples that use the thermoelectric effect to measure temperature, the surface
charge density of the thermoelectric material changes with temperature, so the surface
charge intensity can be used to measure temperature.

From the early 17th century, people began to use them to make some measurements,
modern temperature sensors are minuscule, making them widely used in various fields of
production practices, including high-speed railway monitoring.
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2.1.3 Application scenarios of bearing

High-speed trains

As an important component of the bogie, the high-speed train transmission system is
composed of traction motors, gearboxes, axle boxes, bearings and other key components.
It is mainly responsible for power driving and power transmission. The power transmission
route is as follows: the torque output of the traction motor is through the meshing gear. It
is transmitted to the wheelset to drive the train [12].

The operating environment of the high-speed train transmission system is harsh. When the
train is running at high speed, it has to not only generate and transmit the driving force
and the driving torque but also bear the disturbance of the track irregularity. Long-term
high-frequency vibration makes it easy for the key components of the high-speed train
transmission system to appear. Fatigue damage affects the safe operation of the train.

Motor

The traction motor is the power unit of the high-speed train and plays an important role in
the transmission system. Motor bearing failures account for 40% of motor failures [13].
As shown in Figure 2.3 [2]. Common motor bearing fault types are wear, fatigue peeling,
fracture, corrosion, and bonding.

Figure 2.3: Traction motor [2], is the power unit of the high-speed train.

15



Chapter 2. Literature Review

Bearing wear failure is mainly caused by improper installation or poor lubrication. The
surface of the bearing element is rough and wears during operation.

Fatigue spalling is the most typical fault of motor bearings, which is mainly manifested as
partial damage or fall off on the inner ring, outer ring, rolling element and other surfaces
of the bearing. The main cause of bearing fatigue spalling is the fatigue stress under
alternating loads. When the bearing has fatigue spalling failure, it generates shock pulses
at specific frequencies.

Fracture is one of the more severe forms of bearing failure, primarily caused by factors such
as poor machining, excessive load, prolonged fatigue damage, and inadequate lubrication.

Bearing corrosion failures are mainly divided into chemical corrosion and electrical corro-
sion. Chemical corrosion is mainly caused by the presence of moisture in the lubricating
oil. Electrochemical corrosion refers to corrosion induced by electrochemical reactions.
Bearings affected by chemical corrosion develop rust on their surfaces, while those sub-
jected to electrochemical corrosion exhibit surface pitting, resembling the characteristics
of fatigue spalling.

Glueing failure refers to the occurrence of adhesion on the bearing surface. Glueing failure
is mainly caused by the rise in temperature caused by a too-high speed or poor lubrication.

Gearbox

The gearbox is a key component of the high-speed train transmission system, as shown in
Figure 2.4 [3]. It consists of gear pairs, box bodies, bearings, transmission shafts and other
components. The main function is to reduce speed, increase torque and transmit power.
In the process of gear meshing, internal excitation and external excitation are generated.
The internal excitation refers mainly to the excitation of the gear mesh. When the train
is running at high speed, the frequency of alternating loads of the mesh increases, the
excitation of the mesh and the external load received by the gears increase, and it is easy to
cause gear failures under the action of high frequency alternating loads for a long time [14].
In addition, the gearbox experiences vibrations from internal excitations due to gear mesh-
ing and external excitations from track irregularities transmitted through the transmission
shaft and bearings. This results in the bearings and gearbox casing being subjected to
random alternating loads over time, making them susceptible to failure. Common failures
in high-speed train gearboxes include gear failure, bearing failure, and casing failure. [15].
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Figure 2.4: Gearbox [3], is a key component of the high-speed train transmission system,
composed of gear pairs, box bodies, bearings, transmission shafts and other components.

• Common types of gear failure mainly include tooth surface wear, pitting, spalling,
fatigue cracks, and tooth breakage [16–19].

Gear wear is caused by the friction between the gear surfaces when the gears are
meshed. Normal wear will not cause impact signals and modulation signals. How-
ever, when the abrasion is severe, an impact signal will be generated, and the meshing
frequency and its higher harmonic frequencies will appear when reflected in the
frequency domain spectrum of the vibration signal. Tooth surface wear is mainly
related to poor lubrication [20–22].

Gear pitting failure is primarily caused by excessive contact stress and repeated load-
ing. When gear pitting occurs, periodic impact signals appear in the time-domain
waveform of the vibration signal. In the frequency domain, this manifests as a
modulation phenomenon, where the rotational frequency of the shaft modulates the
meshing frequency on either side of the faulty gear [17, 23].

Gear tooth breakage is a more serious type of gear failure. Gear tooth breakage are
usually caused by two reasons, one is that it receives an impact or load that exceeds
their carrying capacity, and the other is that the alternating stress during meshing

17



Chapter 2. Literature Review

exceeds the fatigue limit of the tooth surface. When the gear is broken, the time-
domain waveform will have regular impact components, and the frequency-domain
spectrum will have a modulation phenomenon centred on the meshing frequency
and the rotation frequency of the shaft where the gear is located [24].

• The common faults in high-speed train gearboxes include cracks, oil leakage, and ex-
cessive oil temperature. Gearbox cracks are primarily caused by cyclic reciprocating
stress that exceeds the material’s stress limit. The causes of cracks include internal
issues, such as casting process problems that lead to uneven wall thickness and
stress distribution, and external factors, such as wheel irregularities and resonance
from the alignment of the gearbox’s natural frequency with external forces. These
combined factors increase the likelihood of cracks, affecting the gearbox’s reliability
and performance [25, 26].

The gearbox oil leakage failure will cause poor lubrication of the gearbox and ac-
celerate the wear of the gear pair. The main reason for the gearbox oil leakage may
be related to the lack of sealing. The high oil temperature of the gearbox may be
related to the quality of the lubricating oil, or it may be related to the wear of gears,
bearings and other components [27].

• Gearbox bearing failure types are similar to motor bearing failure types, with a
key difference being that the vibration frequencies of various gearbox components
can interact with each other. For instance, the frequencies generated by the contact
between the rolling elements and the inner and outer rings of the gearbox bearing
may interfere with one another, especially when operating at high speeds. This
interaction can propagate vibrations throughout the gearbox casing, potentially
impacting the entire system’s stability and amplifying wear or damage [28].

Axle box

The axle box and the axle box bearing together form the axle box device, which is
responsible for transmitting the weight and load of the car body to the wheelset, as shown
in Figure 2.5 [4]. This part of the work is mainly completed by the axle box bearing. The
axle box bearing runs at high speed and heavy load for a long time. Easy to cause fatigue
damage. The fault types of axle box bearings are the same as those of motor bearings,
including fatigue spalling, pitting, wear, and fracture. According to the statistical analysis
of the failure of the axle box bearing in the literature [29], the axle box bearing is very
prone to raceway peeling failure, especially the outer raceway fault, which accounts most
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of the axle box failure, which is the most frequent type of failure of the axle box bearing.
When the bearing peels off, it will produce periodic impact components, and the main
vibration characteristics shown are:

Figure 2.5: Alexbox [4], is responsible for transmitting the weight and load of the car body
to the wheelset.

The bearing’s outer ring experiences spalling. When this occurs, periodic pulses with the
characteristic frequency of the outer ring fault appear in the time domain. In the frequency
spectrum, these pulses manifest as spectral lines centered around the natural frequency of
the outer ring, with clear separation at the fault frequency of the outer ring [30].

The inner ring of the bearing is peeled off. Since the inner ring of the axle box bearing is
connected to the axle, the characteristic frequency of the inner ring will be modulated by
the rotation frequency of the axle. In the spectrogram, there will be a spectrum centered
on the natural frequency of the inner ring of the bearing, a spectrum separated by the
fault characteristic frequency of the inner race, and a spectrum separated by the rotation
frequency [30, 31].

For roller failure, there will be a spectrum centered on the natural frequency of the rolling
element, and a spectrum separated by the frequency of the rolling element failure, and a
spectrum separated by the revolution frequency of the rolling element [32].

Wheelset

The wheelset is the part of the rolling stock that is in contact with the steel rail. It consists
of two wheels on the left and right firmly pressed on the same axle, as shown in Figure 2.6.
The role of the wheelset is to ensure the running and steering of the rolling stock on the rail,
bearing all the static and dynamic loads from the rolling stock, transmitting it to the rail,
and transmitting the load caused by the uneven track to the parts of the rolling stock. In
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addition, the driving and braking of rolling stock are also affected by wheel sets. There are
strict requirements on the assembly pressure and press-fitting process of axles and wheels.
The distance between the inner sides of the wheels must be within 1353 mm [33]. In order
to ensure the smooth running of locomotives and vehicles, reduce the wheel-rail interaction
force and running resistance, the machining ovality and eccentricity of axle journals and
wheel treads, as well as the journal taper, shall not exceed the prescribed limits.

Figure 2.6: Wheelset, is the part of the rolling stock, consists of two wheels on the left and
right firmly pressed on the same axle.

Wheelset bearings have large axial and lateral clearances, which aggravate the vibration of
the bearing rolling elements, and at the same time cause the impact of the bearing rolling
elements and raceways to increase, and it is easy to cause uneven load distribution between
the inner ring and the rolling elements. When the bearing is subjected to excessive load or
impact, the bearing will undergo plastic deformation. If it is coupled with poor lubrication
and high-speed operation, the temperature of the bearing will rise sharply, and the surface
metal will be glued, and the bearing will appear indentation or spalling area. Damage or
fracture of the bearing cage will increase the friction between the cage and the rolling
elements, and may also cause the rolling elements to jam and cause bearing damage. As
the vehicle runs at high speed, most of the falling materials or impurities in the external
environment roll with the rolling elements, and the change in the gap between the cage
and the rolling elements will accelerate the wear of the rolling bearings [34]. Under the
action of alternating loads, the internal structural parts of the bearing move relative to
each other, which may cause structural internal cracks. The expansion of the cracks to the
contact surface will increase the impact load, vibration and noise of the bearing during
operation [35, 36]. It can be seen that any damage and failure of the wheelset bearing will
result in the reduction of bearing operation accuracy, intensified shock and vibration, and a
sharp rise in temperature. There are hidden safety hazards such as hot shafts, short shafts,
shaft cutting, and motion interruptions, which will seriously affect the train. Ride comfort
and driving safety. At present, high-speed trains run at a high speed, and the vibration
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state of various structural components is aggravated, and the deterioration rate is rapid.
Wheelset bearings have been used in harsh vibration time-varying environments for a long
time, and they are prone to burn, corrosion, peeling, pitting, code skins, and dents. Faults
such as marks, cracks, bruises, scratches, deformations, etc.

Wind turbine

A wind turbine is a device that generates electricity by harnessing wind energy. It converts
the kinetic energy of the wind into mechanical energy, which is then further converted
into electrical energy. The main components of a wind turbine typically include a rotor,
generator, pitch control system, nacelle, and tower [37–39].

The working principle of a wind turbine is based on aerodynamics. The wind drives the
rotation of the rotor blades, which capture the wind’s kinetic energy and generate mechani-
cal power. This power is transmitted through a drivetrain to the generator, which produces
electric current by cutting through a magnetic field, ultimately generating electricity.

Wind power has several advantages, including being a clean, environmentally friendly
energy source that produces no greenhouse gases or waste emissions. It utilizes renewable
wind resources, reducing reliance on fossil fuels, and has relatively low operating and
maintenance costs once installed. However, it also has drawbacks, such as intermittency
due to variable wind speeds, which can lead to inconsistent power output. Additionally,
wind turbines may produce noise and have a visual impact on the landscape, and large-scale
wind farms require substantial land, which can affect local ecosystems [40–44].

Wind power technology is widely applied around the world, particularly in areas with
abundant wind resources. In many countries, offshore wind farms are being developed to
harness the strong, steady winds over the sea [45, 46].

Rotor

The rotor is the main component responsible for capturing wind energy in a wind turbine,
consisting of multiple blades designed to convert the wind’s kinetic energy into mechanical
energy. The design of the rotor blades is especially critical, as they must efficiently initiate
rotation at low wind speeds while maximizing energy capture across a wide range of
conditions. Blades are typically designed with aerodynamic profiles similar to airplane
wings, creating lift as wind flows over them. This lift force drives the rotation of the rotor,
which is connected to the turbine’s generator. The number, length, and shape of the blades
are carefully optimized to balance power output, durability, and cost, making rotors one of
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the most technically demanding components of wind turbine design. Advanced materials,
such as carbon or glass fiber composites, are often used to ensure strength, reduce weight,
and improve overall efficiency. Larger rotors can capture more energy, which is especially
advantageous for low-wind sites or offshore installations where stable, high wind speeds
are prevalent [37, 39, 47]. As shown in Figure 2.7.

Figure 2.7: Wind turbine rotor, is the key component responsible for capturing wind energy
in a wind turbine, consisting of multiple blades.

Generator

The generator in a wind turbine is the core component responsible for converting the
mechanical energy captured by the rotor into electrical energy. Its performance directly
determines the efficiency, stability, and cost-effectiveness of a wind power system.
A wind turbine generator typically comprises the following components:

• Stator: The stationary part of the generator, usually consisting of an iron core and
windings. The induced current in the windings determines the output voltage and
power. The design of the stator is crucial for minimizing losses and enhancing
efficiency.

• Rotor: The rotating part, which can include permanent magnets (as in permanent
magnet synchronous generators) or an excitation winding to create a magnetic field
(as in electrically excited synchronous generators and induction generators). The
rotor design affects the generator’s magnetic field strength and stability.
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• Bearings and cooling system: Bearings support stable rotation, while the cooling
system dissipates heat to prevent overheating during prolonged operation [48].

• Power electronics equipment: Modern wind generators often include converters and
rectifiers to adjust the frequency and voltage of the output current, meeting grid
requirements.

For generator, Doubly-Fed Induction Generator (DFIG): DFIGs integrate power electronics
with the rotor, allowing variable-speed operation. This enables optimal efficiency across
a range of wind speeds. As shown in Figure 2.8, DFIGs offer high efficiency, lower
maintenance costs, and are a popular choice in modern wind power systems [49–51].

Figure 2.8: Wind turbine generator is the core component responsible for converting the
mechanical energy captured by the rotor into electrical energy.

Pitch control system

The pitch control system is a crucial component of a wind turbine, used to adjust the angle
of the turbine blades to control the rotor speed and power output. By adapting blade angles
to varying wind speeds, the pitch control system optimizes power generation and protects
the turbine. This system not only enhances the efficiency of the wind turbine but also
positions the blades safely during high wind speeds to prevent equipment damage [52, 53].
As shown in Figure 2.9.
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Figure 2.9: Pitch control system, is a crucial component of a wind turbine, used to adjust
the angle of the turbine blades to control the rotor speed and power output.

Working Principles and Functions of the Pitch Control System:

• At lower wind speeds, the pitch control system adjusts the blade angle to capture as
much wind energy as possible, ensuring maximum power output. As wind speed
increases, the system gradually changes the blade angle to prevent the rotor from
overspeeding, maintaining stability in the power generation system [54].

• When wind speeds become too high, the pitch system can position the blades to a
“stall” angle, reducing their wind-facing area to significantly decrease rotor load.
This “stall protection” prevents excessive wind forces from damaging the generator
and mechanical components, ensuring the turbine’s safe and stable operation in
extreme weather conditions [55].

• The pitch system also helps minimize noise and mechanical load. By adjusting
the blade pitch angle appropriately, the system can reduce noise output from high-
speed rotation, which is especially beneficial for wind farms near residential areas.
Additionally, pitch control reduces blade vibration in turbulent airflows, extending
the turbine’s operational life [38, 56, 57].

• Active pitch control uses hydraulic or electric servo systems to adjust the blade angle
in real-time with high precision. Though it offers greater accuracy, it also requires
higher costs and maintenance.
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Passive pitch control relies on aerodynamic or mechanical mechanisms to automati-
cally adjust blade angles. It is simpler and lower-cost, though less precise, and is
typically used in smaller wind turbines [58].

Nacelle

The nacelle is one of the core structures of a wind turbine, located at the top and typically
mounted above the tower. Its primary function is to protect and support the turbine’s
essential components, ensuring the smooth operation of the wind turbine. The nacelle
houses complex and vital systems, including the generator, gearbox, control system,
cooling system, and braking system, all of which contribute to its intricate structure and
diverse functions [37]. As shown in Figure 2.10.

Figure 2.10: Nacelle, is located at the top and typically mounted above the tower to protect
and support the turbine’s essential components.

The nacelle faces several technical challenges in design, given its need to operate continu-
ously under harsh weather conditions:

• The nacelle requires robust sealing to prevent rain, dust, and corrosive air from
entering. This is especially crucial for offshore wind farms, where nacelles must have
enhanced sealing and anti-corrosion features to withstand marine environments [39].

• The weight of the nacelle directly affects the structural requirements of the tower
and foundation, making lightweight design essential. The use of composite materials
and lightweight metal alloys is a growing trend in modern nacelle design, allowing
for reduced weight without compromising strength.
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• Despite limited space within the nacelle, it must accommodate a variety of complex
equipment. The design must prioritize ease of access for repairs and component
replacements, reducing maintenance time and costs.

• With high-speed rotating components inside the nacelle, controlling vibration and
noise is a critical design factor. This is typically achieved through damping systems
and soundproofing materials to minimize vibration and noise levels within the
nacelle [38, 59].

Tower

The tower is a critical component of a wind turbine, supporting the entire turbine structure
and elevating the rotor and nacelle to an optimal height to capture more wind energy. The
design height and structural type of the tower directly impact the efficiency and stability
of the wind turbine. Generally, the higher the tower, the greater the wind speeds it can
capture, thus increasing energy output. However, taller towers also present challenges in
terms of materials, manufacturing, and transportation [38, 60]. As shown in Figure 2.11.

Figure 2.11: Tower, supports the entire turbine structure and elevates the rotor and nacelle
to an optimal height to capture more wind energy.

Key Design Considerations for the Tower:

• Tower height has a direct impact on power generation efficiency. Generally, the taller
the tower, the higher the wind speeds it can capture, which can significantly increase
power output with each additional meter in height. However, increased height also
raises manufacturing and maintenance costs, necessitating a balance between height
and cost.

• Tower materials are typically high-strength, corrosion-resistant steel or concrete.
For offshore wind farms, materials must also be resistant to corrosion and wave
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impact. Recently, high-strength composite materials and lightweight metals have
been introduced in tower design to reduce weight and enhance strength [61].

• The tower must withstand environmental stresses from strong winds and seismic
activity, making wind and seismic resistance critical. Design solutions often include
dampening devices or thicker materials to mitigate the impact of wind and seismic
forces on the tower [62, 63].

• Tower design must also address vibration and noise. Due to the tower’s height
and the rotational forces from the rotor, vibration and low-frequency noise can be
generated. To reduce environmental impact, towers are commonly equipped with
dampers or damping materials to minimize vibration [64, 65].

• Transporting tall towers to wind farm sites and assembling them can be costly and
complex. For remote locations, segmented transport and on-site assembly methods
are often used to reduce transportation costs and logistical challenges.

2.2 Fault detection of Bearing

In the previous section, I introduced the various sensors commonly used in modern engi-
neering systems, such as vibration, temperature, and acoustic sensors. These sensors play
a critical role in capturing raw data that reflect the operational state of key components like
bearings. Faults in bearings often lead to changes in these sensor readings, as shown in
Figure 2.12.

Figure 2.12: Sensor response: normal and fault bearing.

This section builds on the foundation of sensor technologies to explore how these data
changes can be effectively analyzed to detect and diagnose bearing faults. A bearing
fault detection system typically consists of three main components: signal preprocessing,
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feature extraction, and classification methods. Each of these components works in synergy
to transform raw sensor data into actionable insights for fault detection and maintenance
decision-making, as shown in the following flowchart 2.13:

Figure 2.13: Example of flowchart, describes the progress of the system.

Figure 2.13a shows the wheelset bearing setup used in the experiment. Sensors are
mounted to capture raw vibration signals during operation, providing critical data for
fault diagnosis. Figure 2.13b illustrates the raw vibration signals collected from the
sensor. These time-domain signals represent the baseline data that will undergo further
analysis to extract meaningful features. However, these signals often include noise, trends,
and irrelevant components that can obscure meaningful patterns. To address this, data
preprocessing is applied as the first step in the analysis pipeline such as noise reduction,
normalization and segmentation. Figure 2.13c shows the application of feature extraction
techniques, specifically using FFT to convert the raw signals into the frequency domain.
This transformation highlights important frequency components that may indicate faults
in the bearing. Figure 2.13d outlines the machine learning workflow. The process begins
by splitting the dataset into training and testing subsets. A deep learning model is trained
iteratively, with each iteration evaluating the fitness of the model. Optimization is achieved
by updating key parameters to enhance the model’s performance. Figure 2.13e represents
the final prediction phase. The trained model predicts the condition of each segment of the
dataset, enabling accurate detection and classification of potential faults in the wheelset
bearing system.

2.2.1 Signal pre-processing

Signal preprocessing is an essential step in bearing monitoring, aimed at improving signal
quality, removing noise and interference, and laying the groundwork for subsequent analy-
sis and feature extraction. Common signal preprocessing methods include time-domain
analysis, time-frequency analysis and denoising techniques.

The primary goal of signal preprocessing is to transform complex, noisy raw signals into
clearer and more structured representations, providing reliable data for subsequent feature
extraction and classification.

28



Chapter 2. Literature Review

2.2.2 Feature extraction

Feature extraction is the process of extracting representative features or information from
data to facilitate subsequent machine learning or data analysis tasks. It is commonly
applied to various types of data, such as text, images, audio, and time-series data, and is a
critical step in machine learning and data mining. By focusing on key features, feature
extraction helps to reduce data dimensionality, improve model performance, and enable
more efficient data processing [66, 67].

Fast Fourier Transform (FFT)

FFT is an efficient algorithm for computing the Discrete Fourier Transform (DFT), trans-
forming time-domain signals into the frequency domain. FFT significantly reduces the
computational load of DFT, accelerating calculation speed, and is widely used in fields
like signal processing, image processing, communication systems, and audio analysis [68].

DFT is the core algorithm for frequency domain analysis of discrete signals, converting
signals from the time domain to the frequency domain to obtain amplitude and phase at
different frequency components. Given a sequence x(n) of length N, its DFT is expressed
as:

X(k) =
N−1

∑
n=0

x(n) · e− j2πkn/N for k = 0,1, . . . ,N −1 (2.1)

Directly computing the DFT has a time complexity of O(N2), which becomes computa-
tionally intensive when N is large.

FFT leverages the symmetry and periodicity properties of DFT, reducing the computational
complexity to O(N logN) [68]. The classic FFT algorithm is the Cooley-Tukey algorithm,
which recursively decomposes the DFT into smaller DFTs, minimizing redundant calcula-
tions. FFT typically employs a butterfly structure, dividing the original sequence into odd
and even parts, calculating the DFTs of these subsequences, and then combining the results.
This decomposition avoids redundant operations, making the algorithm more efficient.

FFT has extensive applications, especially where frequency analysis is essential. In signal
processing, FFT is used for tasks such as filtering and spectrum analysis to extract key
frequency components from signals. In image processing, it enables frequency domain
analysis for applications like image compression and enhancement. In audio processing,
FFT aids in speech recognition and audio feature extraction by analyzing the frequency
spectrum of audio signals. In communication systems, FFT plays a critical role in technolo-
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gies such as OFDM (Orthogonal Frequency-Division Multiplexing) for signal modulation
and demodulation. Additionally, in vibration and fault diagnosis, FFT is used to analyze
the vibration signals of mechanical equipment, helping to identify different frequency
components and detect potential faults. These diverse applications showcase FFT’s ability
to reveal essential frequency characteristics across a variety of fields [69–71].

FFT offers the advantage of fast computation, making it well-suited for processing large-
scale data, and it efficiently reveals the frequency information of signals, facilitating
analysis and understanding of frequency structures. However, FFT has limitations: it is less
effective for non-stationary signals since it assumes signal stability over the entire analysis
period, and its resolution is limited by the sampling rate. In certain cases, additional
window functions or methods like the Short-Time Fourier Transform (STFT) are necessary
for more precise time-frequency analysis [72, 73].

The efficiency and widespread application of FFT makes it an indispensable tool for
frequency domain analysis and numerous engineering applications.

Mel-Frequency Cepstral Coefficients (MFCC)

Mel-Frequency Cepstral Coefficients (MFCC) is a widely used feature extraction method in
speech processing and audio signal analysis, especially suitable for applications like speech
recognition and music classification. MFCC leverages human auditory characteristics to
transform audio signals into a set of cepstral coefficients, effectively capturing speech
features within audio [74].

Steps in MFCC Calculation [75, 76]:

• The audio signal is preprocessed, often removing silence, and then divided into
short-time frames (typically 20–40 ms) to capture the transient characteristics of
speech. Each frame contains hundreds of sampling points.

• To minimize spectral distortion due to framing, a Hamming window or other window
function is applied to each frame. This windowing reduces edge effects and ensures
continuity across frames.

• FFT is applied to each windowed frame to convert the time-domain signal into the
frequency domain, extracting the frequency components of each frame to obtain
spectral information.

• Mel frequency simulates the human auditory scale. A triangular filter bank (usually
20 to 40 filters) is designed based on this scale, with filters more densely placed in
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the low-frequency range to reflect human sensitivity to lower frequencies.

The energy output for each filter is computed to form the Mel spectrum.

• The logarithm of each filter’s energy output is taken, reducing the dynamic range of
amplitude and emphasizing contributions from lower energy components, making
them comparable to higher energy components.

• DCT is applied to the Mel spectrum, converting it to the cepstral domain. This com-
presses the frequency information into fewer dimensions, reducing the correlation
between adjacent frequency bands to produce cepstral coefficients.

Typically, the first 12-13 coefficients are selected as MFCC features, capturing the
essential characteristics of the speech signal.

MFCC is widely applied across various fields, particularly in speech recognition, where
it captures the core frequency characteristics of human speech, making it essential for
automatic speech recognition systems. In music classification, MFCC analyzes spectral
features of music signals, aiding in the categorization of different music genres or timbres.
It also supports speaker recognition by representing the unique frequency attributes of an
individual’s voice, facilitating speaker identification. Additionally, in emotion analysis,
MFCC extracts speech features to assess emotional states, as emotions influence the speech
spectrum [75–78].

MFCC has notable advantages, including its alignment with human auditory characteristics,
which allows it to effectively capture essential frequency features in speech, and its high
computational efficiency with low-dimensional features, making it suitable for real-time
applications. However, MFCC is sensitive to background noise, which can significantly
affect its accuracy, and it is less effective at representing temporal dynamics in speech,
often necessitating supplementary features like first-order and second-order derivatives to
capture transient changes [74–76, 78].

MFCC, combining frequency characteristics of audio signals with human auditory percep-
tion, is a highly effective and computationally efficient feature extraction method, widely
used in various audio and speech processing systems.

Empirical Mode Decomposition (EMD)

Under normal conditions, the high-speed rail wheelset runs smoothly, and its sound signal,
temperature, vibration signal, etc. Fluctuate smoothly within a certain range, and the
fluctuations obey a certain distribution [79, 80]. When the high-speed rail wheelset fails,
the sound signal, temperature curve and vibration signal light will all produce serious
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deformation, which can be used as a basis for fault diagnosis [81].

Norden E. Professor Huang proposed a method of adaptively decomposing non-stationary
signals into a series of zero-mean Intrinsic Modal Functions (IMF), which was called
Empirical Mode Decomposition (EMD) [82]. The EMD method is not limited by the
Fourier analysis and is an adaptive time-frequency local refinement analysis method. EMD
is widely used in various fields, including voice recognition [83], image processing [84],
and fault diagnosis. Due to the adaptability of EMD and its advantages in non-stationary
signal processing, many people innovate on the basis of EMD.

To address the limitations of the classic EMD method, such as modal aliasing and bound-
ary effects, NE Hung mitigated modal aliasing by introducing Gaussian white noise and
innovatively developed the Ensemble Empirical Mode Decomposition (EEMD). Generally,
time-domain and frequency-domain features exhibit varying sensitivities to faults and are
easily influenced by operating conditions. Time-frequency domain features, on the other
hand, can simultaneously capture both time-domain and frequency-domain information of
a signal, though each time-frequency analysis method comes with its own strengths and
limitations. Wavelet decomposition, with its high time-frequency resolution, demonstrates
significant advantages in processing non-stationary signals. Nevertheless, both wavelet
decomposition and wavelet packet decomposition face the challenge of selecting an op-
timal wavelet basis. EEMD effectively addresses the modal aliasing issue in EMD by
incorporating Gaussian white noise during the decomposition process, enabling adaptive
decomposition of signals into intrinsic modal functions across different frequency bands,
making it particularly suitable for handling nonlinear and non-stationary signals. However,
individual time-domain, frequency-domain, and time-frequency domain features are typi-
cally sensitive to specific faults. Therefore, the integration of multi-domain features can be
considered to provide a more comprehensive representation of the mechanical operating
state.

Lotfi Saidi et al. [85] used EMD to dissect the non-stationary signal into several IMFs
according to the local characteristic time scale of the signal. The bispectrum of H-order
statistics was used to determine the phase coherence effect. For Gaussian noise, the bis-
pectrum analysis theoretical value is zero, and it is constant for non-Gaussian white noise,
so the bispectrum is insensitive to random noise. The author combines the advantages of
EMD and bispectrum and proposes the bispectrum EMD method.

Jaouher Ben Ali et al. [86] used the IMF energy bribe generated by empirical mode de-
composition to describe seven different bearing states. Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) methods are used for feature reduction
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processing of bearing vibration signals. The extracted IMF, PCA, and LDA are used
as feature vectors to perform Probabilistic Neural Network (PNN) and simplified Fuzzy
Auto Adaptive Resonance Theory MAP (SFAM) neural network analysis. The calculation
results show that the combined analysis of IMF-LDA-PNN-SFAM is an effective method to
improve the accuracy of bearing fault classification, and it has good application capabilities
and can be used for bearing detection in different mechanical systems.

Jacek Dybala et al. [87] proposed an early damage detection method for rolling bearings
based on EMD. Several IMFs obtained by decomposition are used to aggregate into three
Combined Mode Functions (CMF), and the vibration signal is divided into H parts; pure
noise part, pure signal part and pure trend part. The local amplitude of the frequency
spectrum is used to further extract the eigenvalues related to bearing faults. This method
can effectively identify the early failure of the bearing and its development trend.

Wang et al. [88] proposed a new Non-negative EMD Manifold (NEM) bearing failure
feature extraction method. Manifold features are mainly extracted from IMF related to the
fault. First, the non-negative EMD matrix is decomposed through correlation analysis, the
relevant IMF is selected, and the non-negative EMD is extracted through the optimization
algorithm; then, the internal law of the non-negative EMD feature is further explored, and
redundant information is removed to obtain the inherent stability feature. The stability
characteristics associated with a large amount of vibration data can characterize the charac-
teristics of the best value in the failure mode.

Feature selection refers to the selection of several effective features from a set of high-
dimensional features. The principle of selection is separability between classes. Traditional
feature dimensionality reduction methods mainly include PCA and LDA. Both of these
methods are linear dimensionality reduction methods, but the features extracted in engi-
neering practice are generally non-linear, so the linear dimensionality reduction method is
limited in its application. In order to reduce the dimensionality of nonlinear features, the
Kernel Principal Component Analysis (KPCA) method is developed, which maps the fea-
tures to the nonlinear feature space through the kernel function to achieve dimensionality
reduction [89].

Popular learning is a more popular dimensionality reduction method in recent years. It
has been widely used in the field of fault diagnosis. Among them, Laplacian Eigenmaps
(LE) [90], Locality Preservation Projection (LPP) [91], Locally Linear Embedding (LLE)
[92], Local Tangent Space Alignment (LTSA) [93] and improved algorithms of these
algorithms. Qingbo He et al. [94] used LLE to extract the popular features of wavelet
packet energy and effectively distinguished bearing and gear failures with different failure
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degrees. Benwei Li et al. [95] used the supervised LLE algorithm to map the features
from the high-dimensional space to the embedding space and performed bearing fault
classification in the embedding space.

2.2.3 Classification methods

Neural networks

The Artificial Neural Network (ANN) is simply referred to as the neural network [96].
It is a complex network formed by a large number of interconnected neural processing
units. It is a simplified abstraction of the human brain from the microscopic structure and
function. It features large-scale parallel analogue processing, continuous-time dynamics,
and a global network, which can greatly increase the speed of work. The storage of
information is reflected in the distribution of connections between neurons. The neural
network has strong adaptability and learning ability, robustness and fault tolerance, which
can replace complex traditional algorithms and make signal processing closer to human
thinking activities. The study of neural networks involves a wide range of subject areas
that combine, infiltrate and promote each other.

The neural network is a mathematical model that uses information similar to the structure of
brain synaptic connections for information processing. A neural network is an operational
model consisting of a large number of nodes (or neurons) and interconnected. Each node
represents a specific output function called an activation function. The connection between
every two nodes represents a weighting value for passing the connection signal, called
weight, which is equivalent to the memory of the artificial neural network. The output
of the network varies depending on the network’s connection method, weight value, and
excitation function. The network itself is usually an approximation of an algorithm or
function in nature, or it may be an expression of a logic strategy.

Its construction philosophy is inspired by the operation of biological (human or other
animal) neural network functions [97]. Neural networks are usually optimized through
a learning method based on mathematical statistics types, so neural networks are also a
practical application of mathematical-statistical methods [98]. We can get a large number
of usable functions through statistical standard mathematical methods. To express the local
structural space, on the other hand, in the field of artificial sensing of artificial intelligence,
we can use the application of mathematical statistics to make decisions about artificial
perception (that is, through statistical methods, neural networks can be similar to humans).
It has the same simple decision-making ability and simple judgment ability. This method
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is more advantageous than the formal logical reasoning calculation [99].

Neural networks advantages

First, it has an independent learning function. For example, when identifying an image,
only a plurality of different image templates and corresponding recognition results are
input into the neural network, and the network slowly learns to recognize similar images
through the self-learning function.

Second, this associative capability can be achieved using the feedback mechanism within
the neural network.

Third, the ability to find optimized solutions at high speed. Finding an optimal solution to
a complex problem often requires a large amount of computation. By using a feedback
neural network designed for a problem, the computer’s high-speed computing power can
be used to find an optimal solution [100].

Neural network basic feature

Neural networks possess four fundamental characteristics: nonlinearity, boundlessness,
variability, and non-convexity. Their widespread recognition and application are primarily
attributed to these distinct features: learning capability, distributed architecture, parallel
processing, and nonlinearity.

The learning capability of neural networks is a critical indicator of their intelligence. It
allows the network to abstract the core features of training samples through the learning
process, demonstrating a high degree of adaptability.

In conventional serial computing systems, data is stored in discrete memory units, making
any corruption in a specific unit potentially render the entire dataset unusable. In contrast,
neural networks distribute information across the interconnections of neurons. While
individual neuron connections or weights hold limited significance on their own, collec-
tively they encapsulate specific informational patterns. Damage to individual neurons or
weights has a minimal impact on the overall data representation, highlighting the robustness
(self-stabilization under disturbances) and fault tolerance of neural networks. Even when
subjected to input disturbances, the network’s output remains largely unaffected. This
distributed information storage also endows neural networks with powerful associative
capabilities.
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Neural networks are inspired by the structure and functionality of the human brain, with
a primary focus on structural simulation. Each neuron independently processes its input
and produces an output. This parallel computation mechanism enables neural networks to
process information efficiently in real-time, laying the foundation for the development of
next-generation intelligent computing systems.

The neural network can effectively realize the nonlinear mapping of the input space to
the output space. Seeking a nonlinear relationship model between input and output is a
common problem in the engineering community. For most model-free nonlinear systems,
neural networks are well simulated. Therefore, neural networks have become an important
tool for the study of nonlinear systems.

Neural network classification

According to the classification of algorithms, neural networks can be broadly categorized
into supervised learning networks, unsupervised learning networks, hybrid learning net-
works, associative learning networks, and optimization application networks. Among
these, the primary focus is on supervised learning networks, which serve as the foundation
for this classification [101].

There is a machine learning method called supervised learning, and supervised learning
can judge its function based on specific training data. In supervised learning, each training
instance consists of input and output. The supervised learning algorithm analyzes these
training data and infers the function, and after observing some training examples, the
supervised learning algorithm can predict all the outputs corresponding to this type of data
input value. Therefore, to achieve this goal, the supervised learning algorithm needs to
correctly determine the label of the training data through a ”reasonable” method.

According to the connectionist classification, neural networks are primarily divided into
feed-forward networks, recurrent neural networks (RNNs), and reinforcement networks.
Among these, RNNs are the main focus of this classification [102].

Next, I will mainly introduce CNN, RNN and LSTM.

Convolutional neural networks (CNNs)

CNNs have been used for machine learning operations and computer vision. Deep 2D
CNNs have many hidden layers and millions of parameters, enabling us to learn com-
plex objects and patterns and a visual database trained with ground-truth labels. 1D has
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been proven successful in several applications such as health monitoring, biomedical data
classification, motor-fault detection and anomaly detection and identification in power
electronics [103].

Recurrent neural networks (RNNs)

Unlike other traditional neural networks, RNNs focus on transmitting information from
the start to each neural network layer. RNNs are designed to create loops that allow
information to flow from one layer to subsequent or even later layers. Unlike traditional
neural networks, which typically operate under the assumption that inputs and outputs are
relatively independent, RNNs account for the dependencies between them. In real-world
problems, outputs often rely not only on the current inputs but also on information from
previous states or memories, making RNNs particularly effective for tasks involving se-
quential or temporal data [104, 105].

xt is the input of layer t, which could be a one-hot or distributed representation vector. st is
the hidden layer of layer t and it will be the memory of whole network. st is depending
on the output of the last layer t −1 and input of current layer t. st = f (Uxt +Wsti1) where
f is a nonlinear activation function, usually will be tanh or ReLU. In theory, st should
be able to capture all the information in each layer before as the st will be keeping pass back.

ot is the output of layer t. Like in the experiment will predict the sequence of movements,
ot is a vector with the length of V , and V is all the states of the movements. ot [i] is the
possibility of the next statement wi. The softmax function could be used to normalize
these possibilities, ot = so f tmax(Vst ). Where the parameters U , V , W in every layer are
shared to reduce the parameter space. And the outputs and inputs are not necessary for
every layer, some RNNs may only need output in the last layer. The hidden layers are most
important in RNN.

RNN learns the parameters with backpropagation and gradient descent algorithm, so the
error function in layer t is related to ot . And ot dependent with all the xi and si, i < t

in the layers before which is so-called BackPropagation Through Time(BPTT). In these
BPTT networks, the vanishing gradient problem and the exploding gradient problem
may appear because the network is too deep. A simple modification could be applied to
avoid these problems by shortening the dependence of ot . Let ot only decided by xi and
si, t−1≤ i≤ t. Or a unique method called LSTM could be applied to solve these problems.

Long short-term memory (LSTM)
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LSTM is a special RNN that can learn long-term dependencies [106].

As mentioned in the last subsection, vanishing gradient problems and exploding gradient
problems are hard to avoid in traditional RNNs. LSTM learned the long-term dependence
on the network with passed these problems. The hidden layer of traditional RNN is usually
a tanh function or ReLU. A typical LSTM unit will conclude 3 sigmoid layers and 1 tanh

layer.

LSTM consists of three gate variables as follows:

Input gate: Indicates whether information is allowed to be added to the memory unit. If
the value is 1 (door open), the input is allowed. If it is 0 (door closed), it is not allowed, so
some useless input information can be discarded.

Forgetting Gate: Indicates whether to retain the historical information stored in the current
hidden layer node. If the value is 1 (door open), it is reserved. If it is 0 (gate closed), the
historical information stored by the current node is cleared.

Output gate: indicates whether the current node output value is output to the next layer
(the next hidden layer or output layer). If the value is 1 (door open), the output value of the
current node will be applied to the next layer. If it is 0 (gate closed), the information is
discarded.

A cell state C is applied in LSTM with only a few linear operating on it which could
retain information easily. The first gate in LSTM is the forget gate which decides what
information should be discarded. xt will be sent to a sigmoid function with ht−1 and get a
value between 0 and 1 which is multiplied by the cell state Ct−1. The output of the sigmoid
function will decide how much information to remain. Part of the information in the last
layer t −1 has been forgotten in the cell state Ct−1 and the new information in the current
layer will be added by a tanh function and a sigmoid function. This sigmoid function is
called an input gate, and the output of it will multiply by a tanh function. When the value
of it is 0, the cell state doesn’t need to be updated.

Then the last cell state Ct−1 multiplies with forget gate ft to discard part of the information
and update the information from it ×Ct . The information in the updated cell state Ct will
output after a tanh function and a sigmoid function and this is called the output gate. A
brief figure of LSTM is shown in Fig. 3.3
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Figure 2.14: LSTM network. (a) RNN with LSTM unit; (b) the structure of LSTM unit.

LSTM has the advantages of long-term trajectory memory and transient memory unifi-
cation, simulation of selective brain forgetting, and more accurate trajectory modelling.
Therefore, the multi-layer structure can be mixed to solve the efficiency and stability
problems of massive data training

SVM

SVM (Support Vector Machine) is a supervised learning model and algorithm widely used
for classification and regression tasks in machine learning and data science. The primary
goal of SVM is to find an optimal hyperplane that separates different classes of data as
widely as possible, providing strong classification and predictive capabilities [107]. In a
simple binary classification scenario, SVM aims to find an optimal hyperplane (a linear
separating plane) that divides the dataset into two classes while maximizing the distance
between the hyperplane and the nearest points of each class (called support vectors). This
maximum margin approach enhances the model’s generalization, allowing it to classify
new data accurately. Support vectors are the data points closest to the decision boundary,
playing a crucial role in defining the optimal hyperplane. Since SVM relies only on these
support vectors to determine the boundary, it is less sensitive to noise from data points far
from the boundary. For data that is not linearly separable, SVM uses kernel functions (such
as polynomial, radial basis, or Gaussian kernels) to map the data into a higher-dimensional
space where a linear separating plane can be found. Kernel functions enable SVM to
handle non-linear problems effectively, achieving strong classification results even with
complex data structures.
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SVM Advantages

SVM, as a classic machine learning algorithm, offers several advantages:

SVM performs well in high-dimensional spaces, particularly suitable for datasets with a
large number of features. In high dimensions, SVM identifies a hyperplane that maximizes
the margin between classes, which enhances model generalization and reduces the risk of
overfitting as data dimensionality increases [107–109].

SVM utilizes kernel functions (such as linear, polynomial, and Gaussian kernels) to map
data into a higher-dimensional feature space, enabling it to effectively classify nonlinearly
separable data. This use of kernels allows SVM to achieve strong results with complex
data distributions [107, 109].

By maximizing the margin between classes to select the optimal decision boundary,
SVM inherently reduces model complexity and increases generalization, making it highly
resistant to overfitting. This is particularly advantageous when working with small
datasets [108, 109].

SVM relies on support vectors—points closest to the decision boundary—to determine the
hyperplane, meaning data points far from the support vectors have little influence on the
model. As a result, SVM is relatively robust to noise and outliers in the data [110].

SVM does not require large datasets to perform well, which gives it an advantage over
small datasets. This makes SVM especially useful in scenarios where data availability is
limited or labeling is costly [107, 108].

SVM provides a clear geometric explanation by maximizing the margin between two
classes to achieve the optimal classification boundary. This geometric interpretation not
only improves model interpretability but also aids in understanding the decision-making
process [110].

These advantages make SVM particularly effective for applications involving high-dimensional,
nonlinear, and limited-sample data, such as text classification, image classification, and
bioinformatics.
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2.3 Summary

Existing high-speed train bearing fault diagnosis methods primarily focus on time-domain
signal analysis. While time-domain features are relatively simple to extract and compute,
they often fail to capture critical fault-related characteristics more apparent in the frequency
domain, especially under the influence of high-frequency vibrations and dynamic loads
in high-speed trains. Many traditional approaches also overlook the sequential nature of
vibration data, which contains temporal dependencies crucial for understanding progressive
fault development. Additionally, fault diagnosis systems may struggle with early detection,
leading to delayed responses and potential safety risks in high-speed train operations.
My thesis applies frequency-domain feature extraction using FFT and integrates it with a
Bi-LSTM model to effectively capture both the frequency characteristics and sequential
dependencies, enabling more accurate and timely fault detection.

Wind turbine bearings operate in harsh environments and are subject to high loads, making
them prone to faults that require immediate detection to prevent costly downtime. How-
ever, traditional machine learning models often require high computational resources and
offline processing, making them unsuitable for real-time applications. The deployment
of computationally heavy algorithms on embedded devices, such as those used in wind
turbines, is particularly challenging due to resource constraints (e.g., limited processing
power, memory, and energy). More importantly, current fault detection systems also suffer
from latency issues, delaying predictions and reducing the ability to implement real-time
corrective actions. My thesis addresses these limitations by developing a lightweight
neural network optimized for deployment on a Raspberry Pi, capable of segmenting and
analyzing data in milliseconds for efficient real-time fault detection.

Most existing fault diagnosis methods for railway wheelset bearings rely exclusively on
vibration data. While effective in many scenarios, vibration signals alone may fail to
capture the full spectrum of fault characteristics, especially in complex loading and envi-
ronmental conditions commonly experienced by railway systems. Acoustic data, which
often contains complementary fault-related information, is frequently ignored, leading
to incomplete diagnostics and reduced fault detection accuracy. Additionally, traditional
diagnostic models often fail to optimize their parameters effectively, resulting in subopti-
mal performance, especially in noisy or highly variable conditions. My thesis integrates
vibration and acoustic data for a more comprehensive fault detection approach and employs
the Grey Wolf Optimizer (GWO) to optimize the hyperparameters of the SVM model,
significantly enhancing detection precision and robustness.

By addressing these three critical challenges, my thesis introduces innovative solutions
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tailored to the unique requirements of high-speed trains, wind turbines, and railway
wheelsets, significantly improving the accuracy, efficiency, and practicality of bearing fault
diagnosis systems.
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Chapter 3

Frequency Domain Feature Extraction

and Long Short-Term Memory for

Rolling Bearing Fault Diagnosis

3.1 Introduction

A few essential components ensure that the train operates safely and efficiently, and the
development of high-speed rail has considerably improved traffic conditions in many
countries. The transmission system is one of them and is crucial to the efficient running of
high-speed trains. In the majority of high-speed train transmission systems, the traction
motor serves as the power source and is a critical component. Therefore, it is important to
recognize traction motor breakdowns. The most frequent type of motor failure is motor
bearing failure [13]. For instance, according to the research, 40% of motor failures are
caused by motor bearing failures. Fatigue spalling, which includes partial damage or
fall-off on the inner ring, outer ring, rolling element, and other bearing surfaces, is one
of the most common defects in motor bearings. Fatigue stress from alternating loads is
the main factor in bearing fatigue spalling [111]. When a bearing experiences a fatigue
spalling failure, a particular frequency of shock pulse will manifest. As a result, rolling
bearing maintenance is quite expensive and very important for every country. For instance,
the US spends hundreds of billions of dollars every year on maintaining machinery and
routinely replacing vital components [112].
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However, if the crucial components of the equipment are not updated in a timely manner,
catastrophic tragedies could happen. For instance, on June 3, 1998, a high-speed train in
Germany’s elastic wheel burst due to prolonged use, resulting in 101 fatalities and 194
serious injuries [113]. 72 people lost their lives and 416 were hurt when 9 carriages of the
NO.T195 train from Beijing to Qingdao derailed and crashed with the NO.5034 train from
Yantai to Xuzhou on April 28, 2008, in China. [114].

Consequently, rolling bearing detection and recognition for health monitoring has emerged
as one of the key research fields in order to lower the cost of rolling bearing maintenance
and maintain the safety of operation for high-speed trains. In recent years, some labo-
ratories used accelerometers located at the driving end of the motor housing to adopt a
significant amount of vibration data. The sampling frequency is usually 12000 samples per
second, 25600 samples per second and 48000 samples per second. These vibration data
lengths are generally more than 120000, and many subcategories of vibration signals exist.

Hence, signal processing and status recognition have taken center stage in rolling bearings
research. For signal processing, He and Partha [115] proposed Locality Preservation Projec-
tion (LPP), Zhang et al. [116] proposed Linear Local Tangent Space Alignment (LLTSA).
More importantly, status recognition achieves much success as well. For instance, Shao
et al. [117] proposed a Deep Wavelet Auto-Encoder (DWAE) with an Extreme Learning
Machine (ELM). They used the wavelet function to design a wavelet autoencoder, to get
data features and improve the ability to study unsupervised features. ELM is a classifier.
The result is 95.2%. Shao et al. [118] proposed Ensemble Deep Auto-Encoders (EDAEs).
Use the Unsupervised feature learning from the raw vibration data and design a strategy to
ensure accuracy and stability. The result is 97.18%. Tao et al. [119] proposed Deep Belief
Networks (DBN). DBN can reduce energy loss between the output and input vibration
signals. The result is 96.67%. Gan and Wang [120] proposed Hierarchical Diagnosis
Network (HDN) can achieve 99.03%. Zhuang and Qin [121] proposed a Multi-Scale
Deep CNN (MS-DCNN) model that can reach 99.27%. Guo et al. [122] constructed a hi-
erarchical Adaptive Deep Convolutional Neural Network (ADCNN), the accuracy is 97.7%.

In these recognition methods, the ability to reinforce learning is the most similar to manual
detection. Among them, Wang et al. [123] proposed a reinforcement neural architecture
search method to achieve success. The article suggested and validated the neural network
architecture automatic search method. The framework of the article includes two parts: the
controller model and the child model.

The controller model has 2 Nascell layers, and the output of this model are convolutional
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kernel size and kernel number and a pooling kernel size of each layer. They formed the
CNN [124]. The child models are CNNs. The model consists of an input layer. The two
groups of the same convolutional layer, the pooling layer, take turns to each other. The
complete connection layer.

However, the time domain is the main emphasis of these methods. The time domain
analysis is unable to observe the frequency-dependent signal properties for the vibration
signal. The frequency domain analysis is more succinct than the time domain. Following
the signal in the frequency domain provides a deeper and more practical analysis of the
issue.

This chapter proposed feature extraction and recognition for rolling bearing fault diagnosis
based on frequency domain and LSTM to overcome the shortcomings mentioned before. In
this method, uses the FFT to alter the bearing’s time-domain signal before it is transmitted
to the network. I only need to fine-tune the maxepochs and hidden units in the process.

3.2 Related works

In recent years, numerous neural network-based approaches have been proposed for
rolling bearing fault detection. These methods often incorporate advanced feature extrac-
tion techniques and deep learning architectures, aiming to improve diagnostic accuracy
and robustness under complex industrial conditions. Among them, Reinforced Neural
Architectures—enhanced with hybrid layers, attention mechanisms, or domain-specific
transformations—have demonstrated significant potential.

To better position my proposed method, we summarize and compare several representative
works in Table 3.1. These methods are evaluated in terms of their feature processing
strategies, network design, and classification performance.

From the comparison in Table 3.1, it is evident that frequency-domain analysis, when
combined with deep learning models such as ADCNN, tends to yield higher accuracy
and better robustness. However, such methods often come at the cost of increased model
complexity and training requirements. Conversely, models like EDAEs offer efficient
learning but may suffer from sensitivity to hyperparameters.

The comparison focuses on Reinforcement neural architecture because it represents one
of the most advanced methods among the listed approaches, with key advantages such
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as automated architecture design through reinforcement learning, elimination of manual
network tuning, and strong generalization performance. Compared to traditional CNN,
DBN, or AE-based models, Reinforcement neural architecture significantly reduces human
effort and achieves high accuracy.

Overall, while many of the existing methods demonstrate promising results, they either rely
heavily on handcrafted features or require intensive computation. These limitations moti-
vate the development of a more balanced approach, as proposed in this work, combining
frequency domain feature extraction with Bi-LSTM for enhanced fault detection.

Table 3.1: Comparative Summary of State-of-the-Art Methods for Rolling Bearing Fault
Diagnosis

Methods Time
Domain

Frequency
Domain

Deep
Learning Advantages Shortcoming

DWAE+ELM [117] ✓ ✓ ✓ No manual fea-
ture, strong unsu-
pervised learning

Relies on wavelet
basis, limited to
shallow classifier

DBN [119] ✓ ✗ ✓ Extracts features
layer-wise, han-
dles nonlinearity

Difficult to tune,
slow training

EDAEs [118] ✓ ✗ ✓ Ensemble
improves ro-
bustness and
accuracy

High computa-
tional cost, less
interpretable

ADCNN [122] ✓ ✗ ✓ Automatically
extracts hierar-
chical features

Requires tuning,
sensitive to over-
fitting

HDN [120] ✓ ✓ ✓ Two-level diag-
nosis, high preci-
sion

Needs hand-
crafted features
(WPT), more
parameters

MS-DCNN [121] ✓ ✗ ✓ Multiscale filters,
end-to-end learn-
ing

Model design
complexity,
data-sensitive

Reinforcement
neural architec-
ture [123]

✓ ✗ ✓ Auto architecture
search, high
adaptability

Large training
cost, requires RL
expertise

FFT+BiLSTM ✗ ✓ ✓ Low variance
and high stability,
Simple two-step
pipeline: FFT +
Bi-LSTM

Requires FFT
preprocessing
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3.3 System

3.3.1 Overview of system

The structure of the proposed method is shown in Fig. 3.1, the vibration signal is collected
by accelerometers which are located at the drive end of the motor housing, and the signal
is measured at 1750 RPM in each working state. Then, the vibration signal is divided into
several overlapping samples, and each sample is window processed and transformed with
FFT. And then input these data into networks, the neural network trains these data, gets
outputs and calculates the accuracy. Adjust the number of the hidden units and MaxEpochs
until the result reaches the best.

The layers in the neural network system include the input layer, Bi-LSTM layer, fully
connection layer, softmax Layer and classification Layer.

Figure 3.1: Overview of the system: (a) raw data example from CWRU dataset [5]; (b)
segmented data with 300 points; (c) segmented data using FFT; (d) training data sent to
the network; and (e) score of 12 classes.
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3.3.2 Frequency domain analysis

The existence of FFT makes DFT play a central role in algorithms in digital signal process-
ing. The calculation formula of Discrete Fourier Transform is [125]:

X(k) =
N−1

∑
n=0

x(n)W nk, for (0 ≤ k ≤ N −1) (3.1)

X(k) =
1
N

N−1

∑
n=0

x(n)W−nk, for (0 ≤ k ≤ N −1) (3.2)

Where x stands a limited long sequence, X stands data after Discrete Fourier transformation,
N is sampled n points in a sinusoidal cycle, and W = e

− j2p
N is the Fourier factor. For a

discrete signal x, FFT will transform the signal in frequency domain. Fig 3.2 shows that
the signal changes before and after FFT.

To justify the use of frequency-domain feature extraction and sequence modeling with
Bi-LSTM, it is essential to understand the internal structure of the vibration signal data.
As illustrated in Figure 3.2, the left column shows the original time-domain signals for
different bearing states, while the right column shows the corresponding signals after
applying the Fast Fourier Transform (FFT). In the time domain, the signals appear complex
and visually indistinct between different fault types. However, once transformed into the
frequency domain, each condition reveals unique frequency patterns—peaks and spectral
energy concentrations—that are closely associated with specific types and severities of
faults.

This clear separation in frequency space provides a strong rationale for choosing FFT as a
preprocessing step. Furthermore, the frequency-domain data can be treated as sequential
patterns of spectral magnitudes. Bi-LSTM, which models sequences in both forward and
backward directions, is particularly well-suited for capturing dependencies across the
frequency components, even though they do not follow a strict time progression. This
structural insight supports the combined use of FFT and Bi-LSTM in our method, aligning
the algorithm design with the characteristics of the data itself.
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Figure 3.2: Signal transformed by FFT, left part is raw data, each of them has 300 points,
the right part is data with FFT, each of them has 150 points. (a) An example of normal
signal; (b) an example of ball fault size 0.007 inches signal; and (c) an example of outer
fault size 0.007 inches signal.

3.3.3 Bi-LSTM

LSTM is a special RNN that can learn long-term dependencies [126]. Vanishing and
exploding gradient problems are hard to avoid in traditional RNNs. LSTM learned the
long-term dependence on the network with passed these problems. The hidden layer of
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traditional RNN is usually a tanh function or ReLU. A typical LSTM unit will conclude 3
sigmoid layer and 1 tanh layer.

LSTM consists of three gate variables: Input gate, Forgetting Gate and Output gate.
A cell state C is applied in LSTM with only a few linear operating on it, which could retain
information easily. The first gate in LSTM is forget gate, which decides what information
should be discarded. xt will be send to a sigmoid function with ht−1 and get a value
between 0 and 1 which multiplied with the cell state Ct−1. The output of the sigmoid
function will decide how much information remains. Part of the information in the last
layer t −1 has been forgotten in the cell state Ct−1, and the new information in the current
layer will be added by a tanh function and a sigmoid function. This sigmoid function is
called input gate and the output of it will multiply by a tanh function. When the value of it
is 0, the cell state doesn’t need to update.

Then the last cell state Ct−1 multiply with forget gate ft to discard part of information and
update the information from it ×Ct . The output gate concludes the information in updated
cell state Ct and the output after a tanh function and a sigmoid function. A brief figure of
LSTM is shown in Fig. 3.3.

Figure 3.3: LSTM. (a) The network structure of LSTM; (b) LSTM unit. The repetitive
module in LSTM has four interaction layers, three sigmoid and one tanh, and they interact
in a unique way.

LSTM has the advantages of long-term trajectory memory and short-memory unification,
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simulation of selective brain forgetting, and more accurate trajectory modeling. Therefore,
the multi-layer structure can be mixed to solve the efficiency and stability problems of
massive data training.

Bi-LSTM is an RNN with LSTM unit and will predict the sequence from both directions
[127]. It could perform better in a sequence without directionality [128]. Actually the
sequences are sent to two LSTM unit indenpently with different directions. The structure
of Bi-LSTM is shown in (a) of Fig. 3.4.

Figure 3.4: Bi-LSTM networks. The LSTM framework is used to merge the input
sequence’s front and backward directions. The two LSTM layers’ vectors can be added to,
averaged out, or connected.

3.4 Case Western Reserve University dataset experiment

3.4.1 48,000 samples/second dataset

The data are collected from the Electrical Engineering Laboratory at Case Western Reserve
University [5]. The data were collected at 48,000 samples/second and have four different
fault inches: 0.007, 0.014 and 0.021.
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Siamese network

A siamese network is a type of neural network architecture that is designed for comparing
two inputs and determining their similarity. Unlike standard neural networks, siamese
networks consist of two identical subnetworks (hence the name ”Siamese”) that share the
same weights and parameters. The primary objective of a siamese network is to learn a
meaningful comparison function that can differentiate between similar and dissimilar input
pairs [129].
As shown in Figure 3.5,

Figure 3.5: Saimese network, is a type of neural network architecture that is designed for
comparing two inputs and determining their similarity.

For an image-based task, a typical siamese network could consist of convolutional layers
that extract features from both input images, followed by a fully connected layer to map
these features to a fixed-dimensional embedding space. Then, the distance between the
two embeddings is computed, and the network learns to minimize the distance for similar
image pairs and maximize it for dissimilar pairs [130].

Experiment setup

In this experiment, the subset data related to 36 faulty types are used, each of which
has 7 samples, 3 samples for training and 4 samples for testing, totally 252 samples and
the length of each sample is 2048 because of the limitations length of some data. The
parameter information is shown in Table 3.2.
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Table 3.2: Description of 36 states.

Data no. Fault type Fault size/inches Motor speed (r/min)
1

Inner Race Fault

0.007 1730
2 0.014 1730
3 0.021 1730
4 0.007 1750
5 0.014 1750
6 0.021 1750
7 0.007 1772
8 0.014 1772
9 0.021 1772

10 0.007 1797
11 0.014 1797
12 0.021 1797
13

Ball Fault

0.007 1730
14 0.014 1730
15 0.021 1730
16 0.007 1750
17 0.014 1750
18 0.021 1750
19 0.007 1772
20 0.014 1772
21 0.021 1772
22 0.007 1797
23 0.014 1797
24 0.021 1797
25

Outer Race Fault-Center@6:00

0.007 1730
26 0.014 1730
27 0.021 1730
28 0.007 1750
29 0.014 1750
30 0.021 1750
31 0.007 1772
32 0.014 1772
33 0.021 1772
34 0.007 1797
35 0.014 1797
36 0.021 1797

As shown in Figure 3.6, there are three states: Inner ring fault 0.007 inches, ball fault
0.007 inches, and outer ring fault 0.007 inches. The length of each sample of raw data was
2048, each sample was window processed and transformed with FFT and then reshaped
and resized to 105 by 105 images.
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Figure 3.6: Data processing, the left part is raw data, each of them has 2048 points, the
right part is data with FFT, each of them has 1024 points, reshaped and resized to 105 by
105 images.

Results of siamese network

In this part, I tested the data with different parameters, as shown in Table 3.3 and Table 3.4,
the best test result was 86.8%.

Table 3.3: Siamese network result of 32 by 32 images.

NO.convolution Layers and Stride Convolution kernel Result%

Con3-Stride2

7-5-3 27.1
7-3-5 29.9
5-3-5 35.4
5-3-3 56.3
3-3-3 50.7

Con4-Stride1
5-3-5-3 61.1
3-3-3-3 59
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Table 3.4: Siamese network result of 105 by 105 images.

NO.Iterations Learning Rate Result%

1000
0.005 14.6

0.00006 84
0.00001 86.8

2000 0.00001 85.4

In Table 3.3, the length of data after FFT is 1024, hence, the size of the images is 32 by 32,
for 3 convolution2d layers with Stride 2, the best result is 56.3%, and for 4 convolution2d
layers with Stride 1, the best result is 61.1%. 61.1% corresponds to 5-3-5-3, which refers
to the kernel sizes of the convolutional layers in the network.

5-3-5-3 indicates the sizes of the convolution kernels (filters) in four convolutional lay-
ers of the network, as follows: The first convolutional layer uses a kernel of size 5×5,
the second convolutional layer uses a kernel of size 3×3, the third convolutional layer
again uses a kernel of size 5×5, and the fourth convolutional layer uses a kernel of size 3×3.

Due to the accuracy, I reshaped and resized images into 105×105 images, the image of
105 by 105 can offer a balance between enough detail for classification and computational
feasibility for training, This results in a higher-resolution image that retains the spatial
structure from the 32×32 matrix but provides finer detail.

In Table 3.4, I adopted 4 convolution2d layers with Stride 1 and the size of the convolution
kernels was 5-3-5-3. Then, I tested different learning rates and iterations. The best result
was 86.8%, the learning rate was 0.00001 and iterations were 1000, the training loss is
shown in Fig. 3.7.
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Figure 3.7: The loss curve of changes with training progress in siamese network.

I was not satisfied with this result, and due to the limitations of the data length, I selected
12k sampling dataset.

3.4.2 12,000 samples/second dataset

The data are collected from the Electrical Engineering Laboratory at Case Western Reserve
University [5]. The data was collected at 12,000 samples/second and has four different
fault inches: 0.007, 0.014, 0.021 and 0.028 inches.

LSTM sequence-to-sequence networks

Unlike directly using classes as the cell state of LSTM, LSTM sequence-to-sequence
networks use another sequence as the cell state, which will output each frame in this cell
state sequence. The whole sequence will be predicted, and the classification will only be
made at the final step after analysing the whole sequence. The structure of it is shown in
(c) of Fig. 3.8.
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Figure 3.8: LSTM sequence-to-sequence networks, are a type of neural architecture that
uses LSTM units to map input sequences to output sequences, commonly applied in tasks
like machine translation and time-series prediction.

Experimental setup

In this experiment, I selected eight types of data in different states, the motor speed is
1750 (r/min), and the sampling frequency is 12 (kHz). To facilitate comparison, a sample
is taken every 2048 data points, 50 samples of each non-overlapping type, 8 types, and
400 samples in total. Then, FFT will be used for feature extraction of the sample, and abs
will be used for absolute value processing of data. The parameter information is shown in
Table 3.5.
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Table 3.5: Details of subjects in dataset.

Data no. Fault type Fault size/inches
1 Normal 0
2 Inner Race Fault 0.007
3 Ball Fault 0.007
4 Outer Race Fault 0.007
5 Inner Race Fault 0.014
6 Inner Race Fault 0.021
7 Ball Fault 0.021
8 Outer Race Fault 0.021

Results of LSTM sequence-to-sequence

The dataset has been divided into train set and test set with subject independent. The first
320 samples are used as train set and the last 80 samples are used as test set, first 250
samples are used as train set and the last 150 are used as test set, first 80 samples are
used as train set and the last 320 are used as test set. 400 samples have been disrupted in
advance.

Table 3.6: Comparison of Bi-LSTM and sequence-to-sequence (%).

Train Numbers
320 250 80

Bi-LSTM Seq2Seq Bi-LSTM Seq2Seq Bi-LSTM Seq2Seq
1 96.3 20 92 15 76.9 15.6
2 97.5 12.5 95 19 81.9 15.6
3 100 21.3 97 23 84.2 30
4 100 23.8 100 24 88.1 35
5 100 31.3 100 11.5 90.3 26.3

Average 98.76 21.78 96.8 18.5 84.28 24.5

Table 3.6 shows that in the Bi-LSTM method, the more training sets, the higher the
accuracy obtained. The highest single training accuracy reaches 100%, and the highest
accuracy average is 98.76%. The sequence-to-sequence method has low accuracy in
various situations, and the average value does not exceed 25%.
Hence, the Bi-LSTM network was the best choice.

Bi-LSTM networks

Experiment 1

In this experiment, I tested the accuracy for each kind of fault and normal state. The
parameter information is shown in Table 3.7. 64 datasets in different states include one
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normal state and 63 fault states. Each of these has 50 samples. Among them, the first 40
samples are training samples, and the left 10 samples are test samples, a total of 3200
samples, and the length of each sample is 2048.

Table 3.7: Motor speed and fault size classification.

Category Motor Speed (rpm) Fault Size (inches)

Normal

1730 -
1750 -
1772 -
1797 -

Inner fault

1730 0.007, 0.014, 0.021, 0.028
1750 0.007, 0.014, 0.021, 0.028
1772 0.007, 0.014, 0.021, 0.028
1797 0.007, 0.014, 0.021, 0.028

Ball fault

1730 0.007, 0.014, 0.021, 0.028
1750 0.007, 0.014, 0.021, 0.028
1772 0.007, 0.014, 0.021, 0.028
1797 0.007, 0.014, 0.021, 0.028

Outer center fault

1730 0.007, 0.014, 0.021
1750 0.007, 0.014, 0.021
1772 0.007, 0.014, 0.021
1797 0.007, 0.014, 0.021

Outer Orthogonal fault

1730 0.007, 0.021
1750 0.007, 0.021
1772 0.007, 0.021
1797 0.007, 0.021

Outer Opposite fault

1730 0.007, 0.021
1750 0.007, 0.021
1772 0.007, 0.021
1797 0.007, 0.021

I divided the data into 4 parts; the first part was the comparison of normal and inner faults,
totally 20 classes. The second part was the comparison of normal and Ball faults, totally
20 classes. The third part was the comparison of normal and outer faults, totally 32 classes.
The last part was the comparison of normal and all faults, totally 64 classes.

As shown in Table 3.8, for raw data, the best result was outer faults with normal with the
accuracy achieved 30.9% and 17.5% for all faults with normal.
As shown in Table 3.9, the best result was outer faults with normal which the accuracy
achieved 94.6% after FFT, and 92.4% for all faults with normal.
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Table 3.8: Comparison of fault and normal categories without FFT.

Category Types Samples 3 Times Result(%) Average (%)
Inner & Normal 20 1000 8, 9, 16.5 11.2
Ball & Normal 20 1000 9, 9, 10.5 9.5

Outer & Normal 32 1600 27.8, 25.9, 39.1 30.9
All Faults & Normal 64 3200 10.2, 18, 24.2 17.5

Table 3.9: Comparison of fault and normal categories with FFT.

Category classes Samples 3 Times Result(%) Average (%)
Inner & Normal 20 1000 89.5, 94.5, 96.5 93.5
Ball & Normal 20 1000 82.5, 82.5, 82.5 82.5

Outer & Normal 32 1600 93.4, 96.9, 93.4 94.6
All Faults & Normal 64 3200 91.1, 93.1, 93.1 92.4

These two tables show the excellent performance of Bi-LSTM combined with FFT, inte-
grating Bi-LSTM and FFT enhances signal processing by utilizing the strengths of both
temporal and frequency-based feature extraction, improving the accuracy, robustness, and
generalization of models in tasks like fault detection and time-series classification.

Experiment 2

The parameter information is shown in Table 3.10. Twelve data in different states include
one normal state and eleven fault states, motor speed is 1750 r/min. Each of these has 400
samples. Among them, the first 350 samples are training samples, and the left 50 samples
are test samples, a totally of 4800 samples, and the length of each sample is 300.

Table 3.10: Description of 12 states, one normal state and eleven failure states.

Data no. Fault type Fault size/inches
1 Normal 0
2

Ball Fault

0.007
3 0.014
4 0.021
5 0.028
6

Inner Race Fault

0.007
7 0.014
8 0.021
9 0.028

10
Outer Race Fault-Center@6:00

0.007
11 0.014
12 0.021

The last vision of network parameters in this chapter is in the following Table 3.11.
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Table 3.11: Parameters of network.

Name of Parameters Size of Parameters
Mini Batch-Size 20
Input Size 1
Number Hidden Units 100
Number Classes 12
Max Epochs 100

Results of experimental 2
In this experiment, the experimental setting follows the same one in paper [123] for a fair
comparison. In this setting, the subset data related to 12 faulty types are used, as shown in
Table 3.10. In [123], the result of the recognition accuracy is 98.47%, and the standard
deviation obtained by reinforcement neural architecture after 10 experiments are 0.61.

The average classification accuracy rate of proposed method on raw data can reach 94.88%,
and the accuracy standard deviation after 10 experiments is 1.90 as shown in Table
3.12. The average classification accuracy rate for data with FFT can reach 99.70±0.23%,
improved by 4.82%. Compared wi-th neural reinforcement architecture, enhanced by
1.23%, the classification accuracy of test samples is summarized in Table 3, which is better
than reinforcement neural architecture. Therefore, it can be considered that FFT data in
Bi-LSTM has better performance.

Table 3.12: Results of comparison paper, Bi-LSTM for raw data and FFT data.

Method
Average accuracy (%)
± standard deviation (%)

Reinforcement neural architecture [123] 98.47 ± 0.61
Raw data+Bi-LSTM 94.88±1.90
FFT+Bi-LSTM 99.70±0.23

And the 10 times of results show in table 3.13, the best result for raw data is 97.83% and
the worst is 92%. The best result for data with FFT approached 100% and the worst is
99.33%, which improved 2.17% and 7.33% respectively.
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Table 3.13: Test results of raw data and data with FFT.

NO. Times Raw data+Bi-LSTM % FFT+Bi-LSTM %
1 97.83 100
2 96.67 100
3 96 99.83
4 96.5 99.83
5 95.67 99.83
6 94 99.67
7 93.67 99.5
8 93.67 99.5
9 92.83 99.5
10 92 99.33

It is significantly better than the comparison network structures, it can be seen that the
proposed method has better performance. The diagnostic results are summarized in Fig. 3.9.

Figure 3.9: Accuracy of the 10 times. The horizontal axis is the number of iterations and
Vertical axis is accuracy. The blue folding line is the result of the raw signal combined
with the Bi-LSTM network, the orange folding line is the result of the signal after FFT
combined with the Bi-LSTM network.

3.5 Summary

Deep learning methods, in particular, have become increasingly popular in recent years.
As a result, deep learning-based automated recognition is now utilized in numerous new
sectors. The goal of increasingly more automatic recognition systems is to simplify our
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lives. In this chapter, the signal is transformed from the time domain to the frequency
domain by fully using the FFT. The best result, when combined with Bi-LSTM, is 100%,
while the mean value over ten times is 99.70±0.23 %. Future studies on the existing
research issue can include a variety of methods, including EMD. Practical engineering
challenges will be solved using some methodologies that will be enhanced and employed
in this contribution.

63



Chapter 4. Real-Time Monitoring of Wind Turbine Bearing Using Simple Neural
Network on Raspberry Pi

Chapter 4

Real-Time Monitoring of Wind Turbine

Bearing Using Simple Neural Network

on Raspberry Pi

Although Chapter 3 demonstrated that a Bi-LSTM model trained on frequency-domain
features can achieve high classification accuracy for bearing fault detection, the method
relies on offline computation using desktop-level resources. This limits its applicability in
real-time industrial monitoring scenarios.

To overcome this limitation, this chapter focuses on designing and implementing a
lightweight fault detection system deployable on embedded hardware. Specifically, the pro-
posed system utilizes FFT for efficient feature extraction and a simplified neural network
model optimized for real-time inference on a Raspberry Pi platform. This enables on-site
fault classification with minimal latency and without the need for external computation.

4.1 Introduction

Wind energy has now become a component of the energy mix, significantly bolstering its
role in renewable energy sources. According to the International Energy Agency (IEA) in
2020 the global installed capacity for wind power amounted to 721GW [131]. Wind power
plays a role in minimizing impact and fostering the adoption of low carbon alternatives
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over traditional fossil fuels. The growing demand for energy has driven the acceptance of
wind turbines as a pivotal technology for generating renewable energy, which is essential
for our worldwide shift towards cleaner and more sustainable energy sources. This tran-
sition is essential in reducing our reliance on fossil fuels, curbing carbon emissions and
promoting progress. The reliability of wind turbines largely determines the consistency
of the electricity supply. When wind turbines are operating, they experience loads and
stress in key components like bearings. Bearings are essential in converting wind energy
into power. However, these components are susceptible to wear and damage, especially
when exposed to conditions such as high winds, temperature fluctuations, or salty offshore
atmospheres. Any defects in the bearings possibly affect the performance of wind turbines
and may lead to unforeseen unexpected downtime and substantial maintenance costs. This
ultimately impacts the viability and overall energy output of wind farms.

One of the most common reasons for wind turbine downtime is generator failure, which
accounts for 37% of all failure downtimes [132]. Real-time generator defect detection can
aid in preventing system shutdowns and mitigating their effects.

There are a number of defect detection systems for wind turbine generators. These
methods include spatiotemporal attention-based long-short-term memory auto-encoder net-
works [132], marker-tracking for immediate rotational speed measurement [133], chaotic
system and extension neural network fault diagnostics [134], time-varying models with
augmented observers [135], deep learning approaches for sensor data prediction and fault
diagnosis [136], sensor selection algorithms for real-time fault detection [137], enhanced
variational mode algorithms fault diagnosis [138], image texture analysis for fault detection
and classification [139], and cost-sensitive algorithms for online fault detection [140].

The wind turbine bearing is one of its key components and the performance and lifespan
of the device are significantly influenced by its normal operation. However, wind turbine
bearings frequently sustain damage and malfunction in long-term operation due to high
loads and harsh weather conditions. These flaws, which pose major risks to the ability of
the wind turbine to operate safely, may include rolling bead fatigue, inadequate lubrication,
and unbalanced load [141].

For prompt maintenance actions, shorter stop times, and lower maintenance costs, real-
time detection of wind turbine bearing failures is crucial. Preventive maintenance can
be accomplished through real-time monitoring quickly and precisely detecting bearings,
preventing further degradation of faults, and timely correcting faults to maintain wind
turbines’ continuous functioning and dependability.
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Currently, the detection of bearing faults mainly relies on traditional vibration analysis and
oil analysis [141]. These techniques often involve processing amounts of raw data, which
makes real-time detection and prediction more complicated. Recently, deep learning tech-
niques such as CNN and LSTM have also been used in bearing fault detection [142–144].
However, their complex model structures and numerous parameters make it challenging
to deploy them in real time on edge devices. With Variational Mode Decomposition with
Deep Convolutional Neural Networks (VMD-DCNNs) [145], it is possible to diagnose
rolling bearing faults that do not require manual labor or human experience. The perfor-
mance variations of existing approaches in various contexts and situations are obtained by
extracting characteristics from each IMF. The Multi-Scale Convolutional Neural Network
with Bidirectional Long Short-Term Memory (MSCNN-BiLSTM) model [146], using a
weighted majority voting rule, enhance the intelligent fault diagnosis of bearings in wind
turbines under complex working and testing environments, achieving improved diagnos-
tic performance compared to existing methods. The deep bi-directional long short-term
memory (DB-LSTM) [147] method circumvents feature selection challenges, enhances
computational efficiency, and generates simulated data that closely resemble real-world
settings, hence improving the approach’s applicability. Supervisory Control And Data
Acquisition (SCADA) is ensemble method that consists of XGBoost [148], a framework
based on ensemble learning and genetic algorithms, utilizing SCADA data to detect
faults in wind turbines. The Deep Convolutional Neural Network (DCNN) and Synchro
Squeezing Transform (SST) [149], compared to traditional spectral analysis methods, can
automatically identify fault features, avoiding misdiagnosis and missed diagnosis that
may be caused by manual identification, and its excellent classification effect has been
verified through experiments. The Self-Adaptive Teaching-Learning-Based Optimization-
Multi-Layer Perceptron (SATLBO-MLP) [150] is a data-based wind turbine bearing fault
diagnosis method that is applied to the SATLBO algorithm optimization MLP model. The
related experimental results demonstrate the effectiveness of the method.

Some studies have attempted to address this issue by training models in the cloud [151]
and then transferring them to edge devices. However, this method relies on a network
connection and has challenges in meeting real-time performance demands in practical
applications. Currently, research mostly concentrates on the impact of models, while
giving less consideration to the practical viability of models, such as optimizing model
size and predictive latency. This aspect requires further enhancement.

Overall, real-time defect detection research on wind turbine bearing failure has not been
conducted, and most methods need to process raw data, which will cost time in practical
engineering applications, resulting in the inability to make strategic adjustments and take
appropriate measures in a timely manner, which may lead to irreparable losses. In gen-
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eral, the existing approaches for detecting bearing faults still have limitations in terms of
real-time capability, user-friendliness, and other factors, making it challenging to fulfill the
requirements of real-time monitoring and prediction in industrial settings.

In spite of that, deep learning exhibits significant promise for utilization in wind turbine
health monitoring, particularly in the detection of bearing faults. Compared to traditional
machine learning techniques, the main benefits of deep learning include the following:
Unsupervised learning has the capacity to extract intricate and non-linear patterns from
data without the need for manual configuration, making it particularly well suited for
complicated datasets [152]; Deep learning is acquiring intricate functional connections by
utilizing multi-layer network architectures with strong fitting capabilities [153]; Finally, its
implements of end-to-end learning, autonomously capturing the geographical and temporal
relationships within the data [154]. Due to the growing processing power and data volume,
performance is consistently enhancing and has surpassed manually built algorithms in
numerous tasks [155]. Furthermore, the operational data of bearings contains abundant
information in both the time and frequency domains. The neural network model has the
capability to automatically acquire these intricate characteristics by utilizing its multilayer
network architecture. Furthermore, it can proficiently address the difficulties posed by
substantial data quantities and the fusion of multiple sensors. Thanks to advancements in
edge computing and mobile Internet technology, the neural network model can now be
deployed in real-time on edge devices. For example, the neural network model can be
deployed on the control box of a wind turbine [136], resulting in a significant improvement
in the response speed of bearing fault monitoring. In summary, neural networks have shown
huge application potential in the monitoring of wind turbine bearing failure monitoring.

In this study, ”real-time” refers to the system’s ability to process and classify incoming
sensor data within one second—the duration of each data acquisition window. Specifically,
for the wind turbine dataset, vibration signals were collected at a sampling rate of 25,600
Hz, resulting in 25,600 data points per second. For 64 data points of each segment, the
system is considered real-time if it can process this 2.5-ms each segment and provide
diagnostic output before the next segment arrives.

In order to achieve the real-time detection of wind turbine bearing failure, this chapter
aimed to apply machine learning methods in a Raspberry Pi to achieve high-precision and
low-delay real-time monitoring with this portable device, which is of great significance
for improving the reliability and utilization rate of wind power equipment. Our model
can accurately identify patterns by training the physical characteristics of health and fault
bearings. The data were divided into smaller segments so that the model can quickly
analyze each segment and generate high-speed predictions. In addition, in order to achieve
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a minimal delay treatment, high-efficiency algorithms were developed. The network was
trained and, subsequently, the NN algorithm was embedded into the Raspberry Pi. The
network has two fully connected layers, and the tested time was 0.06 milliseconds on the
Raspberry Pi. The results of this chapter indicate that the model can accurately detect
wind turbine bearing faults and provide real-time predictions within milliseconds of the
fault occurrence. This model possesses the capability to generate real-time predictions
and assess the holistic health condition of bearings, thereby substantially diminishing
maintenance expenses and enhancing the accessibility and efficacy of wind turbines. In
essence, this chapter demonstrates the potential of AI-driven solutions in optimizing the
generation of renewable energy and mitigating reliance on fossil fuels.

4.2 Methodology

4.2.1 Overview of the proposed system

The overview of the proposed method is shown in Figure 4.1. The vibration signal is
collected by accelerometers, which are located at the non-drive end in the wind turbine.
Wind turbines are usually constructed in areas where wind energy is abundant, such as
coastlines, mountains, plains, and deserts.

Figure 4.1a shows wind turbines constructed on grasslands. The data were trained in
the model, which was implemented in Python language on PC. The data were divided
into small segments; thus, the model can quickly analyze each segment without other
processing methods, as shown in Figure 4.1b,c. The trained neural model was embedded
in the Raspberry Pi, as is shown in Figure 4.1d. The last step was for the trained model to
predict each segment’s score, as is shown in Figure 4.1e.
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Figure 4.1: Overview of the system: (a) wind turbine; (b) modeling in python language;
(c) neural network model; (d) Raspberry Pi implementation; and (e) predictions.

4.2.2 The description of the neural network model

Many research works use neural networks for fault detection or the monitoring of bearings.
Fu et al. [156] monitored wind turbines with deep learning. In their paper, CNN and LSTM
are used to analyze variables and monitor wind turbine gears. Gearbox bearing temperature
data are processed for AI monitoring and troubleshooting. Asmuth and Korb [157] provide
a basic three-dimensional CNN-based wake model to predict wind turbine wake flow fields.
The model accurately predicts wake flow characteristics, showing its potential for wind tur-
bine wake forecasts. Xie et al. [158] proposed an attention mechanism-based CNN-LSTM
wind turbine fault prediction model. The CNN extracts feature, LSTM captures time
sequence correlations, and an attention algorithm gathers fault-related target information
from the ontology-annotated Semantic Sensor Network. The model was shown to be
precise and generalized.

In this chapter, I adopted a real-time detection neural network model to assess wind turbine
bearing failure, as shown in Figure 4.2. The model adopts the architecture of a MLP [159].
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Figure 4.2: Proposed network, it contains two fully connected layers, and the second fully
connected layer acts as the output layer.

The neural network model contains two fully connected layers (FC1 and FC2), and the
second fully connected layer (FC2) acts as the output layer. The first fully connected layer
(FC1) has 64 input features and 20 hidden units, which are used to learn complex features
in the input data. The output layer (FC2) is a layer that takes the 20 output features from
FC1 and reduces them to two output features, which are used to map the learned features
to faults and normal categories.

4.2.3 From input layer to hidden layer

The input vector x ∈ R64. The first fully connected layer has a weight matrix W1 ∈ R20×64

and a bias vector b1 ∈ R20. The operation performed by this layer can be expressed as:

h =W1 × x+b1 (4.1)

Then, the ReLU (Rectified Linear Unit) activation function is applied to h. The ReLU
function is defined as f (z) = max(0,z), which introduces non-linearity, allowing the model
to learn more complex functions:

h′ = max(0,h) (4.2)
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In the hidden layer of the model, the ReLU (Rectified Linear Unit) [160] is used as the
activation function. The ReLU function can enhance the non-linear modeling capabilities
of the model and help capture the complex features of the input data.

4.2.4 From hidden layer to output layer

The vector h′ is then passed through the output layer (‘FC2‘), which transforms the 20-
dimensional input into a 2-dimensional output suitable for binary classification. Let the
weight matrix of the output layer be W2 ∈ R2×20 and the bias vector be b2 ∈ R2. The final
output y can be expressed as:

y =W2 ×h′+b2 (4.3)

During the forward-direction of the model, the input data that first passed the first full
connection layer (FC1) and activated the function ReLU are applied to the output of the
hidden layer. Then, the final prediction result is output through the output layer (FC2).

In order to enable the model to accurately identify the mode of health and bearing faults,
the method of monitoring learning was adopted for the training of model parameters. The
labeling dataset was used for training and optimizing the weight and bias of the model by
minimizing the loss function, so that the prediction results of the model were as close to
the real label as possible.

The structure of neural network models is simple and effective, with less parameters and
computing complexity, and it can operate efficiently on edge equipment such as a Raspberry
Pi. Through this model, we can realize the real-time detection of wind turbine bearing faults
and provide fast and accurate predictive results to provide feasible solutions for reducing
maintenance costs and improving the availability and efficiency of wind turbines.

4.2.5 Acceleration sensor and data logger

As shown in Figure 4.3a, the primary purpose of the acceleration sensor located on the
bearing is to monitor and assess the condition and functionality of the bearings. These
sensors offer an efficient means for detecting and preventing possible malfunctions by mon-
itoring the acceleration of the vibration in the bearing while it is in operation [161–163].

As shown in Figure 4.3b, the data logger obtains an analog signal from the acceleration
sensor at the bearing, and uses the A/D converter to convert it to a digital signal. Then, the
conversion signal is stored [164, 165].
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Figure 4.3: Embedded devices. (a) Acceleration sensor; (b) data logger; (c) Raspberry Pi
board; and (d) performance evaluation.

4.2.6 Raspberry Pi

With Eben Upton serving as the project manager, the “Raspberry Pi Charity Foundation”
was established in the UK. The world’s smallest desktop computer, sometimes referred to
as a card-type computer, was officially introduced in March 2012 by Emben Apoton [166],
a Cambridge University research lab.

In this chapter, the network model is trained on the desktop and embedded it into Raspberry
Pi 4 [167]. It can be seen as a small and easy to carry computer. As shown in Fig. 4.3 (c),
some parts are marked and the touch screen as shown in Fig. 4.3 (d).

The Raspberry Pi was chosen over the Arduino Nano 33 because the latter lacks the
computational capacity required for deep learning model inference. Specifically, the
Arduino Nano 33 is designed for lightweight sensor interfacing and control tasks, but
it does not have sufficient processing power or memory to support neural networks like
BiLSTM or CNNs. In contrast, the Raspberry Pi 4B offers a full Linux environment, multi-
core CPU, and enough RAM to enable on-device FFT, signal processing, and inference
with TensorFlow Lite. Furthermore, the Raspberry Pi ecosystem is rapidly evolving, with
increasing support for AI applications, making it a more future-proof platform for real-time
fault detection systems.
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4.3 Experiments

4.3.1 Dataset

There are many acceleration sensors on the bearing of the wind turbine generator. The data
used in the experiment were the signal from one of the acceleration sensors. Data were
collected from the turbine generator of a company. The vibration data were collected at
25,600 samples/second and a collection time of 3 s.

The generator is a device that converts mechanical energy into electrical energy. It usually
consists of a rotor and a stator, where the rotor is supported by bearings rotating on a shaft.
The generator bearing is an important component that supports the rotor, and its proper
functioning is critical to the performance and reliability of the generator. It is shown in
Figure 4.4a.

In order to monitor the health of the generator bearings, acceleration sensors are installed
on the bearings. An acceleration sensor is a device that measures the acceleration of an
object. When a generator is in operation, the bearings are subjected to a variety of forces
and vibrations that cause the bearings to change in acceleration. The acceleration sensor
senses and measures these changes and converts them into a digital signal. It is shown in
Figure 4.4b.

Figure 4.4: Data collection platform. (a) Wind turbine generator; (b) acceleration sensor.

Important information about generator bearing vibration can be obtained by analyzing the
data collected by the acceleration sensor. Vibration data can include parameters such as
the vibration amplitude, the frequency, and the time variation. These data are critical for
monitoring the health of the bearing. Abnormal vibration data may indicate bearing failure
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or wear, such as loose bearings, overheating, or damage. By detecting these problems in
time, the safety monitoring system can take appropriate repair and maintenance measures
to prevent further damage or failure from occurring.

Therefore, acceleration sensor data acquisition is crucial for generator bearing monitoring
and maintenance. It provides valuable information to better manage and optimize the
generator system, ensuring its proper operation and extended service life.

4.3.2 Experimental baseline

Neural networks are particularly well-suited for handling large-scale datasets and high-
dimensional data, especially deep learning network structures that perform exceptionally
well on big data. Compared to traditional machine learning algorithms, neural networks
are less sensitive to data volume and often achieve better results on large datasets. Hence,
my experiment used neural networks for the dataset. The following Table 4.1 is the
pre-experiment.

Table 4.1: Accuracy of different samples in each neural network(%).

Sample Size Trilayered Wide Narrow Bilayered Medium Sampling time
2048 83.3 78.9 77.2 76.7 73.3 80 ms
1024 91.4 76.8 87.3 86.8 79.7 40 ms
512 96.4 93.5 94.4 96.4 96 20 ms
256 97.5 99 97.8 98.7 98.2 10 ms
128 97.6 99.3 97.3 98.3 98.3 5 ms
64 98.8 98.9 98.6 98.8 99 2.5 ms
32 99.2 99.7 99.2 99.2 99.6 1.25 ms
16 99 99.4 99 99.1 99.4 0.625 ms

As sample length decreases, the accuracy of all networks gradually improves. With shorter
sample lengths (such as 64), the accuracy is consistently close to 99%, suggesting that this
length is sufficient to capture essential features and provide high accuracy. The sample
length of 16 is too short and may yield high accuracy due to sample bias rather than
generalization capability. At such a short length, differences in network structure have
minimal impact, making it difficult to meaningfully distinguish the effects of network
architecture. Therefore, starting from a sample length of 64 for further experiments will
provide a more practical evaluation of the model’s performance and ensure sufficient
feature capture.
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4.3.3 Experimental setup

Data analysis

Two different states are Normal and Fault. Each state has 9600 segments in testing, 2400
segments in training, and each segment has 64 samples; details are shown in Table 4.2.

Table 4.2: Description of data.

Fault Type Training Segments Testing Segments Samples in Each
Segment

Normal 9600 2400 64
Fault 9600 2400 64

As shown in Figure 4.5, the length of each sample of raw data was 64, and the raw data
produced irregular waveform diagrams. The difference in the amplitude value was readily
apparent. After FFT, the difference between health and faults at the peak value was also
obvious.

Figure 4.5: Data spectrum, the left part is raw data, each of them has 64 points, the right
part is data with FFT, each of them has 32 points.
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Data groups

The parameter information is shown in Table 4.3. The data were evenly divided into 10
groups of data with different states, including five normal states (Group 1–5) and five
fault states (Group 6–10). In the experiment, in order to validate the performance of
the methodology, comparison models were introduced, i.e., a medium neural network,
wide neural network, bi-layer neural network, tri-layer neural network, and narrow neural
network. The validation of the method accuracy was determined under 5-fold cross-
validation.

Table 4.3: Dataset was split into training and testing subsets.

Training Group Testing Group

Subset 1 2, 7, 3, 8, 4, 9, 5, 10 Subset 1 1, 6
Subset 2 1, 6, 3, 8, 4, 9, 5, 10 Subset 2 2, 7
Subset 3 1, 6, 2, 7, 4, 9, 5, 10 Subset 3 3, 8
Subset 4 1, 6, 2, 7, 3, 8, 5, 10 Subset 4 4, 9
Subset 5 1, 6, 2, 7, 3, 8, 4, 9 Subset 5 5, 10

4.3.4 Experimental results

In this experiment, to verify the performance, five comparison networks were introduced.
The first was used to confirm the accuracy of each method and the second was used to
confirm the testing time of each method.

Comparison performance

In this part, the raw data were trained and tested with a few neural network methods [168].
For testing the comparison methods, the best method was the medium neural network,
whose accuracy was 99.0%. The poorest one was the narrow neural network, whose
accuracy was 98.6%. For the proposed method, the accuracy achieved was 99.8%. The
accuracy data are shown in Figure 4.6.
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Figure 4.6: Accuracy comparison of raw data, the proposed method and other five methods.

For the proposed method, the network output was used to classify tasks (using ‘CrossEn-
tropLoss’). The loss curve of changes with training progress shows that the training
converged, as is shown in Figure 4.7.

Figure 4.7: The loss curve of changes with training progress in proposed simple neural
network.
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Speed

In this part, the tested times are shown in Figure 4.8. From the five comparison methods,
the fastest was the narrow neural network, whose testing time was 0.72 ms. The slowest
was the wide neural network, whose testing time was 3.67 ms. For the proposed method,
the testing time achieved was 0.06 ms.

Figure 4.8: Testing time comparison of raw data, the proposed method and other five
methods.

For the compared methods, they had a similar accuracy at around 99.0%. However, the
testing time of the wide neural network was greater than that of the other methods at 3.67
ms. The main reason for this is that this network has a wide layer. The fastest comparison
method was the narrow neural network because of its narrow layer. The average accuracy
of the proposed method was 99.8% and the testing time was within 0.06 ms under 5-fold
cross-validation. Compared with the other methods, these values represent improvements
of 0.8% and 0.66 ms, respectively. It is obvious from the figure 4.8 that the proposed
method had a better performance than the other methods.

4.4 Analysis

Achieving a practical model requires a small model, with a high accuracy that can function
in real time.
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4.4.1 Effect of different segments and epochs

There are four types of segments: the first kind of segment has 8 samples, the second
segment has 16 samples, the third segment has 32 samples, and the last segment has 64
samples. In this experiment, different epochs were tested: 20 epochs, 200 epochs, 1000
epochs, 2000 epochs, and 3000 epochs. In addition, the layer size in this experiment was
10. The results are shown in Figure 4.9.

From Figure 4.9, the best performance was observed for 32 sample segments and 64 sample
segments. Among them, the best results were seen at 3000 epochs. For 32 sample segments,
the result was 96.8% and, for 64 sample segments, it was 98.5%. Hence, the segments of
32 and 64 samples at 3000 epochs were tested in the next experiment.

Figure 4.9: Accuracy of different samples in each segment.

4.4.2 Effect of different number of nodes

For testing the effect of a different number of nodes in the network, two ablation experi-
ments were introduced. Details are shown in Table 4.4.

Table 4.4: Description of different segments.

Samples in Each Segment Fault Type Training Segments Testing
Segments

32
Normal 19,200 4800

Fault 19,200 4800

64
Normal 9600 2400

Fault 9600 2400
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In the first experiment, each of these had 2400 segments, and each segment had 32 sam-
ples. Among them, 5-fold cross-validation was applied. Moreover, 19,200 segments were
training segments, and the remaining 4800 segments were test segments.

For the second experiment, each of these had 1200 segments, and each segment had 64
samples. Among them, 5-fold cross-validation was applied. Moreover, 9600 segments
were training segments, and the remaining 2400 segments were test segments.

In this part, testing was performed with different numbers of nodes, i.e., 5, 10, 15, and
20, in the fully connected layer and at 3000 epochs to validate the model. There were
five groups. The final model was obtained through training data and was tested with the
remaining data from this model.

As shown in Figure 4.10, the best performance was obtained for a 20-layer ANN, which
achieved 99.8% for 32 samples and 99.7% for 64 samples with a model size of around 5 kb.
Therefore, the next step was to confirm the testing time so that the experiment could achieve
real-time detection.

Figure 4.10: Accuracy under different numbers of nodes in the fully connected layer.

4.4.3 Effect of speed

In this part, the length of the layer was 20 and the epoch was 3000. The testing time was
tested on different devices: a desktop computer and the Raspberry Pi. The results are
shown in Table 4.5.
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Table 4.5: Test results and time of raw data on Raspberry Pi and desktop computer.

Samples of Segment Devices Accuracy Testing Time Sampling
Time

32
Desktop 99.7% 0.005 ms

1.25 ms
Raspberry Pi 99.7% 0.028 ms

64
Desktop 99.8% 0.009 ms

2.5 ms
Raspberry Pi 99.8% 0.058 ms

On the Raspberry Pi, for 64 samples of segments, the testing data were divided into
2400 segments, and each segment had 64 points.

The proposed system can efficiently process the sensor data and performs rapid analysis
and prediction within 0.059 milliseconds per data segment. The experimental results
demonstrate that the model achieves a 99.8% accuracy in detecting wind turbine bearing
faults within milliseconds of their occurrence.

Regarding the 32 samples per segment, the testing dataset was divided into 4800 in-
dividual segments, with each segment consisting of 32 samples. In terms of system
performance, the proposed approach exhibits efficient data processing capabilities, en-
abling swift analysis and prediction within a remarkable timeframe of 0.028 milliseconds
per data segment. The experimental findings underscore the model’s exceptional accuracy,
with a reported 99.7% detection rate for wind turbine bearing faults within milliseconds of
their manifestation.

On the desktop, for 64 samples of segments, the testing data were divided into 2400 seg-
ments, and each segment had 64 samples.

The proposed system can efficiently process the sensor data and performs rapid analysis
and prediction within 0.009 milliseconds per data segment. The experimental results
demonstrate that the model achieves a 99.8% accuracy in detecting wind turbine bearing
faults within milliseconds of their occurrence.

In the case of segments consisting of samples, the testing dataset was partitioned into 4800
individual segments, with each segment containing 32 samples. The proposed system
demonstrates notable efficiency in processing sensor data, facilitating swift analysis and
prediction within an impressive timeframe of 0.005 milliseconds per data segment. The
experimental results substantiate the model’s remarkable performance, yielding a detec-
tion accuracy of 99.7% in identifying wind turbine bearing faults within milliseconds of
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their manifestation.

Both the Raspberry Pi and the desktop achieved identical outcomes by utilizing the
proposed method. However, the testing times varied. The Raspberry Pi was significantly
slower than the PC when it came to test speeds. The proposed method was significantly
better, with respect to accuracy and execution time, compared to the comparison networks.
The proposed method demonstrated superior performance and aligns with the specific
requirements. Multiple models were chosen based on our requirements, i.e., for rapid
speed, we selected 32 samples per segment, and for high precision, we chose 64 samples
per segment. Each model was approximately 5 kb in size.

4.5 Summary

This chapter developed a machine learning-based model on a Raspberry Pi to detect wind
turbine bearing faults in real time. The model was designed and trained on a desktop
computer due to its higher performance. Then, real-time implementation was achieved by
running the model on a Raspberry Pi for real-time wind turbine bearing fault detection.
The experimental results demonstrate that the model achieves a high accuracy and rapid
detection of faults within milliseconds of their occurrence. The model achieved an accuracy
rate of 99.8% and the testing time was 0.059 ms, indicating its effectiveness and precision
in detecting wind turbine bearing faults.

This chapter demonstrates the practical implications and potential applications of real-time
fault detection in wind turbines using a neural network model. The model provides significant
accuracy in quickly identifying bearing faults and providing immediate predictions during
fault detection, resulting in reduced maintenance costs, increased turbine availability, and
improved overall efficiency. By being able to identify faults during turbine operation in a
timely manner, the development of this neural network model facilitates early warning and
rapid response, minimizing downtime and associated maintenance costs. Ultimately, real-time
fault detection ensures reliable turbine operation and increased availability.

The findings of this chapter are significant for promoting renewable energy generation
and reducing reliance on fossil fuels. The model improves operational efficiency and
reliability by enabling the real-time detection of wind turbine bearing faults, minimizing
energy waste. This facilitates the wider adoption of renewable energy sources, reducing
dependence on finite fossil fuel resources and promoting sustainable energy development
and environmental protection.
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In the future, many works will require enhancement, and network design optimization
will be of paramount importance. This model can only be used on specific models of
wind turbines and is restricted to the generator bearings of these turbines. In different
environments, rather than fully retraining the model, only minor updates to classifier
parameters or thresholds may be sufficient, since core signal patterns remain stable. Future
work will investigate lightweight domain adaptation techniques (e.g., transfer learning,
incremental learning) to support cross-environment generalization without needing large
new datasets or retraining from scratch. Future research must establish a multi-channel,
multi-type, and multi-scenario detection model that can be further optimized to improve
the generalizability of models.

While the proposed system has demonstrated high accuracy under controlled conditions,
its performance may degrade in different operational environments due to variations in
noise characteristics, load conditions, and mechanical structures. In future work, model
retraining or adaptation will be explored to address domain shifts. Techniques such
as transfer learning, incremental learning, or domain adaptation will be considered to
enable the system to remain effective across different machinery and environments without
requiring complete re-training from scratch.
Continued innovation and improvement in this area will drive renewable energy generation,
reducing dependence on fossil fuels and paving the way for a cleaner, more sustainable
energy future.
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Chapter 5

Fault Detection of Wheelset Bearings

Through Vibration-Sound Fusion Data

Based on Grey Wolf Optimizer and

Support Vector Machine

While Chapter 4 presents a real-time monitoring system based on acoustic signals and
embedded deployment, it still suffers from limitations in signal diversity and environmental
robustness. Relying on a single signal source (sound) may lead to degraded performance
in noisy or variable conditions, which are common in industrial environments.

This chapter addresses these limitations by proposing a multimodal fault detection frame-
work that fuses both vibration and sound signals. A Grey Wolf Optimization (GWO)
algorithm is employed to tune the hyperparameters of Support Vector Machine (SVM)
classifiers. The goal is to enhance detection accuracy, repeatability, and adaptability across
different fault types and operating conditions.
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5.1 Introduction

Bearings play a crucial role in transportation, with their operational safety and reliability
directly impacting logistics efficiency and economic benefits. The wheelset bearings are
key components that bear significant loads and operate in complex environments. Over
extended periods of use, these bearings are prone to various faults. Therefore, timely
and effective detection of wheelset bearings faults is essential for ensuring the safety of
transportation.

The primary objective of bearing fault diagnostics is to detect probable defects by exam-
ining diverse data. Vibration data is a widely utilized technique for diagnosing bearing
failures, as these faults generally result in anomalous vibration characteristics. There are
three predominant analysis methods: time domain analysis, frequency domain analysis,
and time-frequency analysis. Time domain analysis involves the examination of the time
waveform to identify impact signals and periodic components. The statistical properties,
such as mean, variance, peak value, kurtosis, and skewness, can potentially reveal changes
in the vibration signal [169]. The analysis typically involves computing these features
from segmented windows of the vibration signal and monitoring their trends over time.
Substantial departures from baseline values can suggest the existence and intensity of
bearing faults [170–172]. Time domain analysis is a straightforward and efficient method
for detecting bearing faults; however, it may not offer as much comprehensive diagnostic
information as frequency domain techniques [170]. Frequency domain analysis involves
applying a Fourier transform to convert signals in the time domain into signals in the fre-
quency domain in order to identify and analyze certain frequency components [173]. Chen
et al. [174] introduced power function-based Gini indices II and III (PFGI2 and PFGI3),
and through mathematical derivation and experimental validation using envelope analysis
in the frequency domain, demonstrated their superior sparsity quantification capabilities
and fault feature characterization performance in bearing condition monitoring. Power
Spectral Density (PSD) is a measure of the power distribution of a signal over different
frequencies; it displays the amplitude of different frequency components and is commonly
used to detect specific defects in bearings, such as defects in the outer ring, inner ring, or
rolling elements [175]. Chen et al. [176] proposed two new blind deconvolution methods
using the modified smoothness index (MSI) in the time and frequency domains for squared
envelope applications, effectively enhancing sparse features for rolling bearing fault diag-
nosis and demonstrating excellent diagnostic performance and robustness in experiments.
Time-frequency analysis involves the application of techniques that incorporate both time
and frequency data, such as the Short-Time Fourier Transform (STFT) and Wavelet Trans-
form [177, 178]. These methods are able to capture the transitory properties of a signal
with more accuracy [179].
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Additionally, sound signal analysis is becoming more crucial in diagnosing bearing faults,
as variations in sound signals might indicate changes in the operating conditions of the
bearing. The conventional techniques used are analogous to the analysis of vibration
data, encompassing time domain analysis, frequency domain analysis, and time-frequency
domain analysis. Two more methods exist: sound pressure level (SPL) analysis and sound
signature recognition. SPL analysis is an effective technique for diagnosing bearing faults
by analyzing sound emissions from bearings. The main sources of bearing noise are vibra-
tions from the inner ring and rolling elements (balls or rollers) and as a bearing enters the
failure stage, there is a rise in SPL of 12–16 dB over the baseline level, accompanied by a
change in sound quality [180,181]. SPL analysis includes three techniques: time waveform
analysis, frequency spectrum analysis and time-frequency domain analysis [170, 181].
Sound signature recognition in bearing fault detection involves utilizing sound signal
analysis techniques to identify and diagnose bearing faults. This approach captures and
analyzes the sound signals generated by bearings during operation, identifying abnormal
patterns and features that indicate the bearing’s health status. Advanced signal processing
techniques such as FFT [125], Wavelet Transform [178], Empirical Mode Decomposi-
tion [182], and Hilbert Transform are commonly used to extract fault features from noisy
sound data [183–187].

Nevertheless, there are limitations when it comes to evaluating individual vibration signals
or sound signals. For example, the presence of machinery might influence vibrations, mak-
ing it difficult to discern certain defect features. In a similar manner, background noise has
the potential to disrupt signals by concealing important fault characteristics. In data fusion,
vibration and sound signals provide complementary information about machine condition,
and data fusion has the potential to greatly enhance the effectiveness and dependability
of bearing fault diagnosis systems, offering robust assistance for equipment preventative
maintenance and fault prediction [188–191].

To enhance the accuracy and reliability of bearing faults detection systems, research in-
vestigations highlight the significance of data fusion approaches, which involve merging
information from multiple sensors. Wan et al. [192] proposed a Fusion Multiscale Con-
volutional Neural Network (F-MSCNN) method that processes raw sound and vibration
signals to achieve high accuracy and stable fault diagnosis of rolling bearings under vary-
ing operating speeds. Shi et al. [193] proposed a two-stage sound-vibration signal fusion
algorithm that combines and weights fault features from multiple sound measurement
points, extracts features using empirical mode decomposition and kurtosis superposition,
and then unifies sampling frequencies to fuse sound and vibration signals again, achieving
weak fault detection in rolling bearings. This method significantly improves fault feature
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detection accuracy and signal-to-noise ratio, aiding in the status monitoring of bearing
systems. Duan et al. [194] provided a comprehensive review of multi-sensor informa-
tion fusion for rolling bearings, highlighting the significance of combining data from
diverse sensors for improved fault diagnosis capabilities. Wang et al. [195] conducted a
study on bearing fault diagnosis using vibro-sound data fusion and a 1D-CNN network,
demonstrating the benefits of integrating vibration and sound information for enhanced
fault detection. Gu et al. [196] introduced an enhanced SE-ResNet sound-vibration fusion
method for rolling bearing fault diagnosis, integrating various techniques to effectively
process sound-vibration signals. By integrating vibration and sound data, a comprehensive
method for detecting bearing faults is achieved. This approach combines the advantages of
both signal types, resulting in a more precise and detailed depiction of the system’s status.
Researchers have successfully built sophisticated models that incorporate vibration and
sound data using modern computational approaches such as deep learning, feature fusion,
and adaptive signal processing. These models are used for precise problem identification
in bearing systems. These studies highlight the significance of data fusion approaches in
utilizing the combined benefits of vibration and sound inputs to improve the accuracy and
effectiveness of bearing defect detection systems. However, these deep-learning-based
methods need large datasets for training and they are not easily implemented for real-time
detection.

In this chapter, I introduce a novel approach by integrating the GWO [197] with a
SVM [198] to optimize hyperparameters, specifically tailored for real-time analysis of
vibration-sound fusion data. Yan et al. proposed GWO-SVM for smart emotion recog-
nition, they used the Radial Basis Function (RBF) kernel of SVM and achieved high
accuracy in their research [199]. I extend their method with various SVM kernels and
provide rapid failure detection by preprocessing fusion data from vibrations and sounds.
Data segmentation facilitated analysis, enabling the model to generate predictions at a
remarkable speed of 0.0027 milliseconds per segment. In addition, the linear SVM model
that was fine-tuned using GWO achieved a testing accuracy of 98.3%, outperforming the
SVM and neural network models built in MATLAB. Furthermore, this model demonstrated
significant efficiency in runtime assessments, making it extremely suitable for real-world
settings. The proposed GWO-SVM model shows advantages in detecting defects in
wheelset bearings. The model’s capacity to generate real-time predictions and offer a
comprehensive evaluation of the bearing’s condition can greatly diminish maintenance
expenses and enhance the accessibility and effectiveness of wheelset bearings. This chapter
underscores the potential of integrating advanced optimization algorithms with machine
learning techniques to enhance fault detection capabilities, ultimately contributing to more
robust and efficient transportation systems.

87



Chapter 5. Fault Detection of Wheelset Bearings Through Vibration-Sound Fusion Data
Based on Grey Wolf Optimizer and Support Vector Machine

5.2 Related works

5.2.1 Overview of the proposed method

An overview of the proposed method is shown in Figure 5.1. The vibration signal is
collected by accelerometers, which are located on the axle box cover in the bearing area at
the end of the wheelset; and the sound signal is collected by microphone located on both
sides of the bearing. This data set offers vibration and sound data to efficiently identify
various bearing faults.

Figure 5.1a shows the wheelset bearing. As shown in Figure 5.1b,c, FFT is utilized for
analyzing vibration signals [125], whereas the MFCC is employed for analyzing sound
signals [74]; split the data into different segments and then combine and integrate the
characteristics of the two datasets by simply concatenating them; the model possesses the
ability to rapidly examine every individual segment. The final stage involved the trained
model making predictions for the score of each segment, as shown in Figure 5.1d.

Figure 5.1: Overview of the system: (a) wheelset; (b) modeling in python language; (c)
GWO-SVM model; and (d) predictions.

5.2.2 The description of the GWO-SVM model

SVM has been widely applied for fault detection and diagnosis of bearings in rotating
machinery. Pule et al. [200] proposed a method using PCA and SVM to achieve 97.4%
accuracy in diagnosing bearing faults under varying speeds using vibration analysis. Yang
et al. [201] introduced a triplet embedding-based method for classifying small sample
rolling bearing fault datasets, achieving superior performance in fault diagnosis by using
CNN for feature extraction and SVM for classification. Mo et al. [202] proposed a highly
accurate (95.3%) and efficient (11.1608-s training time) method for diagnosing petrochem-
ical rotating machinery bearing faults by combining ICEEMDAN-wavelet noise reduction,
mutual dimensionless metrics, and MPGA-SVM, with further validation showing 97.1%
accuracy on additional datasets.
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In this chapter, I adopted a fast detection GWO-SVM model by analyzing fusion data from
multiple models to assess bearing failure, as shown in Figure 5.2.

Step 1: Data preprocessing—Load the signals and extract their features and annotate their
label.

Step 2: Initialize Wolves—Randomly generate the initial positions for the wolf pack,
which are the candidate solutions for the SVM hyperparameters CSV M and γ , initialize the
maximum number of iterations L and the number of search agents n.

Step 3: Evaluate fitness—Evaluate accuracy for each candidate using cross-validation. If
i ≤ n:

a. Select the current candidate i: Choose the i-th wolf from the pack.

b. Train SVM model using current candidate: (1) Extract the SVM hyperparameters
CSV M and γ from the current candidate; (2) Initialize an SVM model with these
parameters; (3) Train the SVM model on the training dataset.

c. Evaluate the model on the validation set: (1) Use the validation dataset to predict
outcomes; (2) Calculate the accuracy of the predictions, which represents the fitness
of the current candidate
The accuracy is defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
(5.1)

where T P and T N are the true positives and true negatives, while FP and FN are
false positives and false negatives, respectively.

d. Record the fitness value of the current candidate: Save the fitness value for the
current candidate.

e. Increment the index i: Move to the next candidate (i = i+1).

f. Repeat Step 3: Continue evaluating the next candidate until all candidates are evaluated.

Step 4: Update αwol f , βwol f , and δwol f .—Based on the fitness values, select the top three
candidates as the αwol f , βwol f , and δwol f .

Step 5: Update Wolves positions—Update the positions of all wolves in the pack using the
positions of the αwol f , βwol f , and δwol f .
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Step 6: Main loop—Continue iterating through Steps 3 to 5 until the maximum number of
iterations L is reached or the algorithm converges.

Step 7: Final model training and testing—Use the best hyperparameters found during the
optimization to train the SVM model on the entire training dataset. Evaluate the trained
model on the test dataset.

Step 8: Format and display results—Format the evaluation results and print them. Save the
trained model and results to a file.

Step 9: Save model—Save the trained SVM model to a specified file path.

Step 10: Measure runtime—Calculate and print the total runtime and the testing time.

Figure 5.2: Proposed model, optimization is achieved by updating key parameters (e.g.,
Alpha, Beta, Delta) to enhance the model’s performance.
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Basic SVM formula

The decision function for SVM:

f (x) =
n

∑
i=1

αiyiK(xi,x)+b (5.2)

where αi is the Lagrange multiplier, yi is the label, xi is the support vector, K(xi,x) is the
kernel function, and b is the bias term.

GWO formulas

Updating parameter a:

a = 2−2
(

epoch
L

)2

(5.3)

where epoch is the current iteration and L is the maximum number of iterations.
Calculating coefficients A and Cwol f :

A = 2 ·a · rwol f 1−a

Cwol f = 2 · rwol f 2

(5.4)

where rwol f 1
and rwol f 2

are random numbers in the range [0,1].
Updating the positions of the wolves:

Dα = |Cwol f ·Xα −X |
Dβ = |Cwol f ·Xβ −X |
Dδ = |Cwol f ·Xδ −X |

X1 = Xα −A ·Dα

X2 = Xβ −A ·Dβ

X3 = Xδ −A ·Dδ

Xnew =
X1 +X2 +X3

3

(5.5)

Among them:

- D represents the distance between the current wolf and the αwol f , βwol f , and δwol f .

- Xα,β ,δ is the position of the αwol f , βwol f , and δwol f , representing the best solution
found so far.

91



Chapter 5. Fault Detection of Wheelset Bearings Through Vibration-Sound Fusion Data
Based on Grey Wolf Optimizer and Support Vector Machine

- Xnew is the updated position of the wolf, the elements in Xnew are essentially combi-
nations of SVM hyperparameters, optimized through the GWO process to find the
best parameter settings.

GWO algorithm steps

Linear Kernel function:
K(xi,x j) = xi · x j (5.6)

RBF Kernel function:
K(xi,x j) = exp

(
−γ∥xi − x j∥2) (5.7)

Polynomial Kernel function:

K(xi,x j) = (xi · x j + r)d (5.8)

Optimization objective:

min
w,b

1
2
∥w∥2 +CSV M

n

∑
i=1

ξi (5.9)

Among them:

- w is the weight vector that determines the hyperplane for classification.

- b is the bias term.

- ∥w∥2 is the square norm of the weight vector used to control the complexity of the
model.

- CSV M is a regularization parameter used to balance the misclassification of training
data and model complexity.

- ξi is a slack variable that allows certain samples to be misclassified.

The goal of this formula is to minimize the complexity and training error of the model,
thereby improving its generalization ability.

Here, the GWO algorithm is used to optimize the hyperparameters of SVM (such as CSV M

and γ) to improve the accuracy and efficiency of fault detection.

Steps for combining GWO:
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1. Initialize the positions of the wolves, for linear kernel, train the SVM with the linear
kernel using the wolf’s position parameter (CSV M); train the SVM with the RBF
kernel using the wolf’s position parameters (CSV M, γ), and train the SVM with the
Polynomial kernel using the wolf’s position parameters (CSV M) and coefficient term
(r), the degree of polynomial Kernel in this chapter is confirmed.

2. Evaluate the fitness of each wolf based on the classification accuracy of the SVM.

3. Update the positions of αwol f , βwol f , and δwol f .

4. Update the positions of the other wolves.

5. Repeat the above steps until the maximum number of iterations is reached.

Summary

The GWO algorithm is used to adjust the SVM hyperparameters CSV M, γ and coefficient
term r. These parameters significantly affect the model’s performance. The adjustments
are as follows:

- CSV M determines the balance between minimizing the error on the training data and
reducing the complexity of the model. A larger CSV M value tries to classify every
sample correctly, which may lead to overfitting, while a smaller CSV M value allows
some misclassifications, potentially improving generalization.

- γ controls the width of the Gaussian kernel. A larger γ value means higher sensitivity
to individual data points, making the model focus more on local patterns, while a
smaller γ value makes the model consider a broader range of data points.

- r adjusts the influence of higher-order terms in the polynomial kernel.

Using the GWO algorithm, I dynamically adjust the parameters CSV M, γ and coefficient
term r in the code to find the parameter combination that achieves the highest classification
accuracy on the validation set. The adjusted model is then evaluated on the test set to
assess its actual performance. Finally, the model is trained on the training set and validated
on the test set, completing the process.

5.3 Experiments

5.3.1 Experiment dataset and baseline

The experiment used MATLAB 2022b and Python 3.9.
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This fault detection has high accuracy and fast speed.
There are many sensors on the wheelset bearing. The data used in the experiment were the
signal of one of the acceleration sensors and microphone sensors. The data were collected
from the bearing in our laboratory. The data were collected at 25,600 samples/second.

Wheelset bearings are essential elements utilized in railway vehicles, including trains,
subways, and light rail systems. The axles and wheels are supported by them, carrying the
full weight of the vehicle. These bearings need to function consistently and dependably in
diverse and intricate circumstances. It is shown in Figure 5.3a.

In order to monitor the health of bearings, sensors are installed on the bearings. It is shown
in Figure 5.3b which is a cross-sectional view of Figure 5.3a, among them, 1 is tested
bearing, 2 is accelerometer, 3 is auxiliary bearing, 4 is microphone sensor, 5 is friction
wheel, 6 is motor, 7 is foundation. The height of the microphone sensor position is 300
mm, and the horizontal distance from the test bearing is 500 mm.

Figure 5.3: Data collection platform. (a) Wheelset bearings; (b) sensor installation
location.

Accelerometers are predominantly employed to capture the vibration signals emitted by
bearings. These signals can indicate the operating condition of the bearings, such as the
existence of wear, imbalance, misalignment, or other mechanical problems. Microphone
sensors are employed to capture the sound emissions generated by bearings during their
functioning. Various sorts of flaws produce unique sound characteristics, and by analyzing
these sounds, the state of the bearings can be initially evaluated. By integrating accelerom-
eters and microphone sensors, it is possible to monitor and diagnose the operational
condition of the bearings in a more comprehensive manner, enabling the quick identifica-
tion and treatment of potential problems, ensuring the smooth functioning of the equipment.
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Experiment 1

In this experiment, I tested the performance of each method with raw vibration data after
FFT. There are four different states: Normal, Outer raceway scoring (referring to damage
on the raceway surface where the rolling elements contact), Outer race scoring (a broader
term encompassing damage on any part of the outer race), and Outer raceway pitting
(referring to the pitting phenomenon on the raceway surface of the outer ring of a bearing).
Each state has 100 segments, the length of each segment for vibration data is: 2048, 1024,
256, 128, 64, 32. The details are shown in Figure 5.4.

Figure 5.4: Testing accuracy of different lengths in MATLAB Classification Learner.

In Figure 5.4 and Table ??, it can be observed that even with a length of 32, many classifi-
cation methods (especially SVM and neural network models) still maintain high accuracy.
For example, several SVM variants and neural networks achieve accuracies close to 96%
or higher. This indicates that even with shorter data, the models are able to effectively
capture key features and maintain strong accuracy levels.

Hence, choosing a length of 32 for the experiment allows for faster computation without
sacrificing accuracy, making it ideal for efficient testing and resource-constrained environ-
ments. Additionally, the results of the figure show that a length of 32 already meets the
high accuracy requirements for the experiment, making it an optimal choice for balancing
speed and precision.
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Table 5.1: Accuracy of different methods under varying segment lengths

Method Number of Data Points
2048 1024 256 128 64 32

Subspace Discriminant 100% 100% 93% 88% 84% 72%
Linear Discriminant 100% 100% 87% 86% 84% 71%
Linear SVM 100% 100% 100% 98% 98% 77%
Cubic SVM 100% 100% 100% 100% 99% 75%
Fine KNN 100% 99% 98% 98% 97% 77%
Medium KNN 99% 99% 96% 94% 94% 69%
Weighted KNN 99% 99% 96% 94% 94% 71%
Subspace KNN 100% 100% 98% 97% 96% 76%
Narrow Neural Network 100% 100% 99% 97% 97% 72%
Wide Neural Network 99% 100% 100% 100% 97% 73%
Quadratic SVM 100% 100% 100% 100% 98% 80%
Bagged Trees 98% 100% 100% 99% 95% 80%
Medium Neural Network 100% 100% 99% 100% 97% 75%
Coarse Gaussian SVM 100% 100% 100% 99% 99% 83%
Gaussian Naı̈ve Bayes 99% 100% 100% 97% 97% 82%
Medium Gaussian SVM 99% 100% 99% 99% 99% 76%
Cubic KNN 99% 98% 98% 92% 96% 68%
SVM Kernel 100% 100% 97% 97% 96% 75%
Kernel Naı̈ve Bayes 99% 100% 100% 98% 94% 84%
Cosine KNN 99% 98% 94% 92% 91% 73%
Trilayered Neural Network 100% 100% 100% 98% 96% 75%
Logistic Regression Kernel 100% 100% 100% 97% 97% 73%
Fine Gaussian SVM 96% 98% 95% 97% 92% 66%
Fine Tree 94% 95% 98% 96% 90% 80%
Medium Tree 94% 94% 95% 94% 92% 82%
Coarse Tree 94% 94% 98% 94% 89% 78%
Bilayered Neural Network 98% 100% 95% 96% 97% 67%
Coarse KNN 90% 85% 81% 71% 76% 52%
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Experiment 2

In this experiment, I tested the performance of each method with different noisy vibration
data after FFT and sound data after MFCC, four different states: Normal, Outer raceway
scoring, Outer race scoring, and Outer raceway pitting. Each state has 100 segments, and
the length of each segment was 32 for vibration data.

In Figure 5.5 and 5.6, we observe that as noise levels increase, many methods experi-
ence a significant decrease in precision. However, SVM, especially Quadratic SVM and
Medium Gaussian SVM, maintain relatively high accuracy even under higher noise levels
(e.g., Noise 0.5 and Noise 1.0). The SVM structure is well suited for high-dimensional
boundary separation, making it effective in noisy environments, particularly for non-linear
classification problems.

Figure 5.5: Testing accuracy of different noise levels for vibration data with 32 lengths in
MATLAB Classification Learner.
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Figure 5.6: Testing accuracy of different noise levels for sound data in MATLAB Classifi-
cation Learner.

Neural networks (such as narrow neural networks and wide neural networks) also show
resilience, maintaining reasonable accuracy under various noise levels. The nonlinear
architecture of neural networks allows them to capture complex patterns and extract deeper
features from noisy data.

Both SVM and neural networks demonstrate strong performance on both vibration and
sound data types. Sound data, in particular, often contains rich frequency-based fea-
tures, which SVM can classify effectively by finding optimal decision boundaries in
high-dimensional spaces, while neural networks can capture complex and hierarchical
features through their layered structures. Therefore, choosing SVM and neural networks
ensures that both vibration and sound data can be analyzed effectively, maximizing the
versatility of the classification models.

On noise-free data, SVM and neural networks achieve very high accuracy (often above
90%). While there is some drop in accuracy as noise increases, SVM and neural networks
generally experience a more controlled decrease compared to other methods, indicating
that they provide relatively stable performance in noisy environments. neural networks
(e.g., trilayered and wide neural networks) particularly benefit from their deeper network
structures, which can learn features that are more robust to noise in higher-noise conditions.

Both SVM and neural networks are highly configurable algorithms, allowing for further
parameter tuning to optimize performance for specific tasks. For instance, SVM kernel
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parameters can be adjusted to enhance classification capabilities, while the layers, learning
rates, and regularization parameters in neural networks can be fine-tuned to boost accuracy.
Choosing SVM and neural networks also provides flexibility for more advanced modelling
and tuning in the future, which can yield substantial performance gains, especially under
varying noise levels.

SVM and neural networks are suitable choices due to their stable performance in noisy
conditions, ability to handle diverse data types, adaptability to noise levels, and potential
for advanced tuning. These characteristics make them well-suited for robust classification
across different noise levels and data types in this context.

5.3.2 Experimental setup

Four different states are Normal, Outer raceway scoring (referring to damage on the
raceway surface where the rolling elements contact), Outer race scoring (a broader term
encompassing damage on any part of the outer race), and Outer raceway pitting (refers to
the pitting phenomenon on the raceway surface of the outer ring of a bearing). Each state
has 1000 segments, each vibration segment has 16 feature samples after FFT, and each
sound segment has 14 feature samples after MFCC, concatenating these features to form a
single data segment, hence each fusion segment has 30 feature samples.

The data in each state were evenly partitioned into 4 distinct groups with 250 segments
each. The validation was performed using a 4-fold cross-validation approach. The details
are shown in Table 5.2.

Table 5.2: Dataset was split into training and testing groups for the 4-fold cross-validation.

Training Group Testing Group

Validation 1 2, 3, 4 1
Validation 2 1, 3, 4 2
Validation 3 1, 2, 4 3
Validation 4 1, 2, 3 4

5.3.3 Data analysis

As shown in Figure 5.7a, the length of each sample of raw vibration data was 32, and then
the Gaussian white noise was added to the vibration data. The reason for adding different
levels of noise is that the data collected from our laboratory are too clear in comparison
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with the data from real-world applications. After FFT, the length of each segment is 16.
In Figure 5.7b, the length of each sample of raw sound data was 768 because the default
window length in MATLAB depends on the specified sample rate: round (e.g. the number
of frequency sampling × 0.03) and the frequency sampling is 25,600 samples/second, and
then the Gaussian white noise is added to the sound data. After MFCC, the length of each
segment is 14.

Figure 5.7: Data spectrum. (a) Vibration data; (b) sound data.

As shown in Figure 5.8, the length of each sample of fusion data was 30, and the difference
states at the peak value were obvious.
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Figure 5.8: Fusion data, is a combination of vibration data and sound data.

5.3.4 Experimental results

Comparison performance

In this part, the fusion data were trained and tested with a few neural network methods and
SVM methods [168]. In this section, the fusion data underwent training and testing using
several neural networks and SVM algorithms [168]. For neural network methods, the best
method was the trilayered neural network, whose accuracy was 97.8%. For SVM methods,
the best method was the Quadratic SVM, whose accuracy was 97.9%. The accuracy data
are shown in Figure 5.9. Among these 10 methods, the best result was demonstrated
by Quadratic SVM. Additionally, the model of SVM is simpler than the neural network.
This means SVM can achieve superior efficiency in data detection compared to neural
networks. Hence, the suggested approach opts for SVM and enhances its performance by
incorporating GWO.
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Figure 5.9: Comparison of accuracy of fusion data in Matlab classification learner.

5.4 Analysis

To create a functional model, it is necessary to achieve a high level of accuracy with
real-time capability.

5.4.1 Evaluation of different noise level

In this part, five SVM methods in MATLAB are used for different noise level, including
noise level 1 and noise level 0.5. The results are shown in Table 5.3.
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Table 5.3: Testing accuracy of different noise level.

SVM Method Data Types Noise Level
1 0.5

Linear
Vibration 59.6% 67.3%

Sound 94.1% 97.3%

Polynomial(Cubic)
Vibration 57.9% 64.7%

Sound 91.9% 96.9%

Polynomial(Quadratic)
Vibration 59.5% 67.2%

Sound 93.4% 97.2%

RBF
Vibration 59.3% 66.8%

Sound 93.6% 97.6%

As shown in the table, most SVM methods achieve higher testing accuracy at a noise
level of 0.5 for both Vibration and Sound data types. For example, Linear SVM reaches
97.325% on Sound data with a noise level of 0.5, compared to only 94.1% at a noise level
of 1. A noise level of 1 introduces excessive noise, which reduces the model’s accuracy.
A noise level of 1 introduces a significant amount of noise, making it difficult for the
model to identify meaningful features in the data, thus affecting classification performance.
In contrast, a noise level of 0.5 is moderate, allowing the model to better distinguish
useful information, particularly for Sound data. With a noise level of 0.5, the model can
maintain high accuracy across various SVM methods and data types, indicating more
stable performance during training and testing. Compared to a noise level of 1, a level
of 0.5 achieves consistency without sacrificing classification quality, thereby enhancing
model reliability.

While a noise level of 0.1 adds slight data perturbations to prevent overfitting, the low
noise level may not be enough for the model to learn robust features. In contrast, a noise
level of 0.5 provides sufficient perturbation to help the model handle real-world noise,
leading to more stable performance on diverse data.

In real-world scenarios, data often contains a moderate level of noise. A noise level of
0.5 better approximates these typical noise levels, while a noise level of 0.1 might be too
low to represent actual data conditions realistically. This makes a noise level of 0.5 more
suitable for training models intended for real-world deployment, enhancing reliability in
application.

A noise level of 0.5 offers a balanced level of perturbation that enhances data diversity
and distinguishability, preventing overfitting without introducing excessive interference.
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Compared to a noise level of 0.1, the level of 0.5 enriches the feature space, improving the
model’s generalization and adaptability.

In summary, a noise level of 0.5 strikes a balanced trade-off between accuracy, robustness,
and data distinguishability, making it a more reasonable choice.

5.4.2 Evaluation of proposed method performance

In this part, the GWO-SVM method initializes the number of wolves as n = 10 and the
number of iterations as L = 200; The software executes using a 4-fold cross-validation
approach, with each group being repeated 5 times. Following each iteration, the wolves
undergo a sorting process based on their fitness values, which allows for identifying the
three wolves with the greatest fitness levels. These wolves are referred to as the alpha, beta,
and delta wolves. The alpha wolf is prioritized due to its superior fitness. The ultimate
trained model exclusively utilizes the parameters of the alpha wolf.

Training loss

For the proposed method, the model output was used to classify tasks (using ‘SVM’). The
training loss exhibits a quick decline in the initial iterations and thereafter reaches a stable
state in the middle stages. This suggests that the process of training the model has achieved
a state of convergence after 200 iterations, as shown in Figure 5.10.

104



Chapter 5. Fault Detection of Wheelset Bearings Through Vibration-Sound Fusion Data
Based on Grey Wolf Optimizer and Support Vector Machine

Figure 5.10: The loss curve of changes with training progress in GWO-SVM model.

For both vibration and sound data, as shown in Table 5.4, the best result without GWO
was achieved by the RBF SVM, with accuracies of 68% and 97.6%, respectively. When
optimized using GWO, the RBF SVM slightly improved to 68.1% for vibration and 97.7%
for sound.

Table 5.4: Description of different kernels.

Kernel of SVM Training Model Accuracy

Vibration Sound Fusion

Linear
No GWO 67.6% 97.4% 97.8%

GWO 68% 97.6% 98.3%

Polynomial(Quadratic)
No GWO 67.4% 97.2% 97.9%

GWO 67.7% 97.3% 98%

Polynomial(Cubic)
No GWO 66.8% 95.5% 97.5%

GWO 66.8% 97.2% 97.7%

RBF
No GWO 68% 97.6% 97%

GWO 68.1% 97.7% 98.1%

Regarding the fusion data, a comparison was made between the baseline SVM and the
GWO-optimized SVM. As shown in Table 5.4, the best result without GWO was obtained
by the Quadratic SVM, achieving an accuracy of 97.9%. With GWO optimization, the
Quadratic SVM slightly improved to 98%. Notably, the highest accuracy across all
GWO-SVM configurations was achieved by the Linear kernel, reaching 98.3%.
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Overall, Table 5.4 demonstrates that the proposed GWO-SVM method consistently outper-
formed traditional SVM models across vibration, sound, and fusion data.

Fusion of Multimodal Inputs

In this study, both sound and vibration signals are used as input modalities to enhance
overall fault detection accuracy. The final prediction is calculated by applying a weighted
average to the output probabilities of individual SVM classifiers trained on each modality,
along with the output of a stacking ensemble model.

Pcombined =
ws ·Psound +wv ·Pvibration +Pstacking

2
(5.10)

where:

• ws and wv are the weights assigned to the sound and vibration classifiers, respectively;

• Psound, Pvibration, and Pstacking represent the predicted class probabilities from each
model.

In this implementation, we set ws = 0.9 and wv = 0.1, based on empirical observations
that sound-based models consistently outperform vibration-based models . The higher
signal-to-noise ratio (SNR) in acoustic signals led to more distinctive fault-related features,
particularly in early-stage bearing degradation.

The chosen weights were determined experimentally from validation performance [203],
but they may be fine-tuned automatically using methods such as entropy-based weighting,
attention mechanisms, or neural-network-based fusion in future work [192, 204].

Statistical Validation and Repeatability Analysis

To evaluate the stability and robustness of the proposed models, all experiments were con-
ducted using 4-fold cross-validation, where each fold represents an independent train–test
run with a different random split. The results for both baseline SVM classifiers (without
optimization) and GWO-optimized SVMs are reported in Table 5.5.

The results clearly demonstrate that the GWO-optimized classifiers consistently outperform
their non-optimized counterparts, both in average accuracy and variance reduction:
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Table 5.5: Comparison of Test Accuracy: SVM without vs with GWO (4-fold cross-
validation)

Cubic SVM RBF SVM Quadratic SVM Linear SVM
No GWO GWO No GWO GWO No GWO GWO No GWO GWO

Run1 97.5 98.28 97.8 99.0 97.9 98.6 98.4 98.84
Run2 97.2 97.4 96.9 98.6 97.82 97.82 97.6 98.2
Run3 97.8 98.0 97.1 98.2 97.7 97.7 97.9 98.04
Run4 97.6 97.2 96.3 98.2 97.7 97.7 97.2 98.12

Mean 97.525 97.72 97.025 98.5 97.9 97.955 97.775 98.3
Std. Dev 0.25 0.505 0.618 0.383 0 0.434 0.506 0.366

The RBF SVM improved from 97.025% to 98.5% with GWO optimization, while the Std.
Dev dropped from 0.618 to 0.383;

Similarly, the Linear SVM saw accuracy increase from 97.775% to 98.3%, and Std. Dev
reduced from 0.506 to 0.366.

These improvements confirm not only higher prediction accuracy but also better repeata-
bility and robustness of the models across different data splits. This reinforces the validity
and practical applicability of the proposed GWO-SVM framework for fault detection in
real-world settings.

5.4.3 Evaluation of testing speed

This experiment measures the total testing time for all 1000 testing segments and then
calculates its average for each segment.

In this part, as shown in Table 5.6, the testing time was tested with different SVM kernels in
Python: linear kernel, gaussian kernel (rbf kernel) and quadratic-cubic kernel (polynomial
kernel). The frequency sampling was 25,600 samples/second, the sampling time for each
segment of vibration data was 1.25 ms and the sampling time for each segment of sound
data was 30 ms; thus, the sampling time for each segment of fusion data was 31.25 ms.
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Table 5.6: Test results and time of fusion data.

Different
Kernel of

GWO-SVM

Accuracy Testing Time for Each Segment Sampling
Time

Linear SVM 98.3% 0.0027 ms

31.25 ms
Quadratic

SVM
98% 0.0034 ms

Cubic SVM 97.7% 0.0035 ms
Gaussian SVM 98.1% 0.016 ms

The proposed method demonstrates high efficiency in processing fusion data, enabling
rapid analysis and prediction with a remarkable speed of 0.0027 milliseconds per data
segment. The experimental results indicate that the model attains a 98.3% accuracy in
promptly recognizing wheelset bearing defects. The proposed method exhibited superior
performance in terms of both accuracy and execution time when compared to the compara-
tive model. The proposed method exhibited exceptional performance and is in line with
the specified requirements.

It should be mentioned here, this excellent experimental performance is based on this
single case only, where there are only three fault and normal situations under our limited
equipment conditions. However, it will be straightforward to extend our method to any
other scenarios where more fault and sensors can be used in real situations. Of course,
more evaluations are needed.

5.5 Summary

This work developed a GWO-SVM model for real-time identification of defects in wheelset
bearings. The model was developed and trained using the Python programming language.
Subsequently, the model was executed on a desktop computer to replicate fast wheelset
bearing fault detection for possible real-time implementation. The results of the experiment
show that the model achieves accuracy and quickly identifies faults within milliseconds of
their occurrence. It achieved an accuracy rate of 98.3% with a testing duration of 0.0027
ms proving its effectiveness and precision in detecting wheelset bearing defects.

This work demonstrates the practical ramifications as well as potential uses of real-time
identification of faults in wheelset bearings using a GWO-SVM model. The model demon-
strates remarkable precision in rapidly detecting bearing defects and promptly making
forecasts, leading to decreased maintenance expenses, enhanced bearing accessibility, and
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improved overall effectiveness. By promptly detecting malfunctions during the operation
of bearings, this model enables early detection and swift action, thereby reducing downtime
and decreasing maintenance expenses.

While this chapter has made notable progress, there remains a substantial amount of effort
to enhance the effectiveness and practicality of the suggested approach. Some guidelines
for future endeavors include the following: 1. Enhanced data sources: Subsequent studies
can explore the inclusion of other sensor data, such as temperature and pressure, to enhance
the comprehensiveness and precision of defect identification. 2. Adaptive Algorithm Opti-
mization: In real-world scenarios, researchers investigate adaptive optimization algorithms
that allow the model to autonomously modify parameters according to the environment and
operating conditions, thereby improving the model’s resilience. 3. Long-term Performance
Evaluation: Conduct long-term performance evaluations and maintenance cost analyses
to verify the economic benefits and sustainability of the proposed method in practical
operations. By exploring and improving these future work directions, it is expected that the
performance and application of the GWO-SVM method in bearing fault detection can be
further enhanced, providing a more reliable and efficient industrial maintenance solution.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this dissertation, I addressed the critical issue of bearing fault detection in three industrial
contexts: high-speed rail, wind turbines, and railway wheelsets. I proposed and validated
three innovative diagnostic methods that leverage frequency-domain signal processing,
machine learning, and optimization algorithms to achieve high accuracy and real-time
fault detection, contributing to the advancement of intelligent maintenance in industrial
equipment.

This thesis presented a progressive investigation into intelligent bearing fault detection,
structured in three stages. The first stage (Chapter 3) established a high-accuracy clas-
sification method using Bi-LSTM and frequency-domain features, but lacked real-time
deployability. To address this, the second stage (Chapter 4) developed a compact monitor-
ing system capable of running on embedded hardware, thus enabling real-time inference.
However, this implementation used only acoustic signals, which limited its robustness
under varying noise or operational conditions.

Consequently, the final stage (Chapter 5) introduced a multimodal framework that inte-
grates both vibration and acoustic data. This was paired with SVM classifiers enhanced by
Grey Wolf Optimization, significantly improving detection performance and adaptability.
Together, these stages form an integrated pathway from algorithm development to practical,
robust system deployment.

The main contributions of each method are summarized below:
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I developed a model combining FFT and Bi-LSTM to transform time-domain signals into
frequency-domain data and classify various fault types in high-speed rail bearings. The
method achieved a fault classification accuracy of 99.7%, significantly outperforming
traditional methods. This approach extends fault detection from the time domain to the
frequency domain, proving effective in recognizing complex fault patterns in high-speed
rail operations.

To meet the high-frequency diagnostic needs of wind turbine bearings, I designed and
implemented an embedded real-time monitoring system on Raspberry Pi using a simplified
neural network. This system can process each data segment within 0.06 milliseconds,
achieving an accuracy of 99.8%. This efficient, edge-computing system substantially
enhances the maintenance efficiency of wind turbines, demonstrating the potential of
lightweight, real-time monitoring solutions in complex environments.

To enhance fault detection accuracy in the complex environments of railway wheelsets, I
introduced a vibration and sound data fusion approach with GWO-optimized SVM param-
eters. The integration of multi-modal data improved the model’s fault detection accuracy
to 98.3%, with each segment processed in 0.0027 milliseconds, showcasing its significant
advantages in both real-time capability and precision.

This thesis demonstrates the potential of combining frequency-domain signal processing
and machine learning to overcome traditional limitations in data dimensionality, process-
ing efficiency, and real-time response in fault detection. In the future, I plan to further
explore multi-modal data fusion in additional industrial applications, as well as implement
advanced deep learning and optimization techniques to improve diagnostic accuracy and
adaptability. Furthermore, to meet the practical needs of industrial environments, future
research will focus on lightweight model design and distributed deployment, enabling
efficient, reliable monitoring and preventive maintenance in diverse industrial settings.

In conclusion, the three methods proposed in this dissertation offer novel solutions for
intelligent diagnostics in industrial equipment, providing a strong technological foundation
for future intelligent maintenance practices. These methods will support enhanced safety,
reliability, and efficiency across a wide range of industrial systems.
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6.2 Future works

Building on the contributions made in this thesis, several promising directions can be
pursued to enhance the effectiveness, versatility, and applicability of intelligent bearing
fault detection systems across industrial settings, the following are some future works.

While this thesis demonstrated the benefits of combining vibration and sound data, future
work could explore integrating additional sensory data, such as temperature, load, or
environmental factors, which could provide more comprehensive fault signatures. Incorpo-
rating multi-modal data from diverse sensor sources can potentially improve diagnostic
robustness and accuracy, especially in complex and variable operating environments.

Leveraging more sophisticated models, such as transformer-based architectures or hy-
brid networks combining convolutional layers with LSTMs, could enhance the capture
of temporal and spatial dependencies in fault patterns. Future work can also explore
transfer learning to adapt pre-trained models to specific industrial settings, minimizing
data requirements and improving model generalization across different types of equipment
and fault types.

Developing lightweight, energy-efficient models suitable for deployment on edge devices
is essential for real-time fault detection in remote or resource-constrained environments.
Techniques such as model quantization, pruning, and knowledge distillation could be
applied to reduce model complexity without compromising accuracy. This would enable
practical, low-latency diagnostics directly on-site, reducing reliance on cloud-based pro-
cessing and improving response times.

Future research could focus on adaptive monitoring systems that dynamically adjust diag-
nostic parameters based on real-time feedback from sensor data. By utilizing reinforcement
learning or adaptive thresholding techniques, these systems could refine their sensitivity
to emerging fault characteristics and optimize maintenance schedules, leading to more
proactive and precise maintenance strategies.

Industrial equipment often shares similar fault characteristics across domains (e.g., bear-
ings in rail, automotive, and aerospace applications). Future studies could aim to develop
cross-domain fault detection models using domain adaptation techniques, enabling a single
model to generalize across multiple applications. This could significantly reduce the time
and resources required to deploy intelligent diagnostics in new industrial contexts.

To advance research and standardize comparisons, establishing a comprehensive fault data
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repository that includes diverse types of faults and operational conditions would be valu-
able. This repository could facilitate benchmarking and model comparisons, accelerating
the development and validation of new fault detection techniques.

In summary, future work efforts aimed at advancing multi-modal, adaptive, and edge-
capable diagnostic systems will be instrumental in realizing the full potential of intelligent
maintenance. By addressing these areas, intelligent fault detection systems can become
even more responsive, efficient, and versatile, driving safer and more reliable operations
across a wide range of industrial sectors.
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Abstract—With the rapid development of the high-speed rail-
ways, the speed of trains is getting faster and faster, and the
dynamic load between the wheels and rails of the vehicle increases
accordingly. The rolling bearing is a key part of the high-
speed train transmission system. The train is subjected to high-
frequency vibration for a long time during operation, and the
bearing is prone to fatigue damage, which affects the safe opera-
tion of the train. Nowadays, many methods have been applied in
fault diagnosis like reinforcement learning, convolutional neural
networks and autoencoders. One of the typical methods is the
reinforcement neural architecture research method. It makes
neural network design automatic and eliminates the bottleneck
associated with choosing network architectural parameters. How-
ever, this method focuses on the time domain signal, and a
time domain signal cannot capture the particular properties of
a frequency domain signal. In order to solve these problems, we
propose a new method containing two Steps: Use FFT to convert
the time domain signal to the frequency domain and use Bi-
LSTM neural network model to recognize different faults. For
each fault, the time series signal has some correlation with some
specific frequencies. The frequency domain is more intuitive than
the time domain and describes different states of faulty types.
For recognition, LSTM is better at classifying sequence data than
other methods, and Bi-LSTM can predict the sequence from both
directions, achieving higher accuracy. Experiments on public data
sets demonstrate the efficiency of the proposed method.

Index Terms—Bi-LSTM, FFT, Bearing fault

I. INTRODUCTION

A few essential components ensure that the train operates
safely and efficiently, and the development of high-speed

rail has considerably improved traffic conditions in many
countries. The transmission system is one of them and is
crucial to the efficient running of high-speed trains. In the
majority of high-speed train transmission systems, the traction
motor serves as the power source and is a critical compo-
nent. Therefore, it is important to recognise traction motor
breakdowns. The most frequent type of motor failure is motor
bearing failure [1]. For instance, according to the research,
40% of motor failures are caused by motor bearing failures.
Fatigue spalling, which includes partial damage or fall-off on
the inner ring, outer ring, rolling element, and other bearing
surfaces, is one of the most common defects in motor bearings.
Fatigue stress from alternating loads is the main factor in
bearing fatigue spalling [2]. When a bearing experiences a
fatigue spalling failure, a particular frequency of shock pulse
will manifest. As a result, rolling bearing maintenance is
quite expensive and very important for every country. For
instance, the US spends hundreds of billions of dollars every
year on maintaining machinery and routinely replacing vital
components [3].
However, if the crucial components of the equipment are

not updated in a timely manner, catastrophic tragedies could
happen. For instance, on June 3, 1998, a high-speed train in
Germany’s elastic wheel burst due to prolonged use, resulting
in 101 fatalities and 194 serious injuries [4]. 72 people lost
their lives and 416 were hurt when 9 carriages of the NO.T195
train from Beijing to Qingdao derailed and crashed with the

72

2022 International Conference on Machine Learning, Control, and Robotics (MLCR)

978-1-6654-5459-9/22/$31.00 ©2022 IEEE
DOI 10.1109/MLCR57210.2022.00022

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 M

ac
hi

ne
 L

ea
rn

in
g,

 C
on

tr
ol

, a
nd

 R
ob

ot
ic

s (
M

LC
R)

 |
 9

78
-1

-6
65

4-
54

59
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
LC

R5
72

10
.2

02
2.

00
02

2

Authorized licensed use limited to: Brunel University. Downloaded on November 18,2024 at 16:54:43 UTC from IEEE Xplore.  Restrictions apply. 



NO.5034 train from Yantai to Xuzhou on April 28, 2008, in
China. [5].
Consequently, rolling bearing detection and recognition for

health monitoring has emerged as one of the key research fields
in order to lower the cost of rolling bearing maintenance and
maintain the safety of operation for high-speed trains. In recent
years, some laboratories used accelerometers located at the
driving end of the motor housing to adopt a significant amount
of vibration data. The sampling frequency is usually 12000
samples per second, 25600 samples per second and 48000
samples per second. These vibration data lengths are generally
more than 120000, and many subcategories of vibration signals
exist.
Hence, signal processing and status recognition have taken

centre stage in rolling bearings research. For signal processing,
Huang et al. [6] proposed a method of adaptively decomposing
non-stationary signals into a series of zero-mean intrinsic
modal functions (IMF), which was called empirical mode
decomposition (EMD). Saidi et al. [7] used EMD to dissect
the non-stationary signal into several IMFs according to the
local characteristic time scale of the signal. Ali et al. [8] used
the Intrinsic Mode Function (IMF) energy bribe generated
by empirical mode decomposition to describe seven different
bearing states. Dybała and Zimroz [9] proposed an early
damage detection method for rolling bearings based on EMD.
Wang et al. [10] proposed a new non-negative EMD manifold
(NEM) bearing failure feature extraction method. Popular
learning has been a more popular dimensionality reduction
method in recent years. It has been used in a wide variety
of fields of fault diagnosis. Among them, Arena et al. [11]
proposed Laplacian Eigenmaps (LE), He and Partha [12]
proposed Locality Preservation Projection (LPP), Roweis and
Saul [13] proposed Locally Linear (LLE), Zhang et al. [14]
proposed linear local tangent space alignment (LLTSA). He
[15] used LLE to extract the popular features of wavelet
packet energy and effectively distinguished bearing and gear
failures with different failure degrees. Li and Zhang [16] used
the supervised LLE algorithm to map the features from the
high-dimensional space to the embedding space and performed
bearing fault classification in the embedding space.
More importantly, status recognition achieves much success

as well. For instance, Shao et al. [17] proposed a Deep wavelet
auto-encoder (DWAE) with an extreme learning machine
(ELM). They used the wavelet function to design a wavelet
autoencoder, to get data features and improve the ability to
study unsupervised features. ELM is a classifier. The result is
95.2%. Shao et al. [18] proposed ensemble deep auto-encoders
(EDAEs). Use the Unsupervised feature learning from the raw
vibration data and design a strategy to ensure accuracy and
stability. The result is 97.18%. Tao et al. [19] proposed deep
belief networks (DBN). DBN can reduce energy loss between
the output and input vibration signals. The result is 96.67%.
Gan and Wang [20] proposed hierarchical diagnosis network
(HDN) can achieve 99.03%. Zhuang and Qin [21] proposed
a multi-scale deep CNN (MS-DCNN) model that can reach
99.27%. Guo et al. [22] constructed a hierarchical adaptive

deep convolutional neural network (ADCNN), the accuracy is
97.7%.
In these recognition methods, the ability to reinforce learn-

ing is the most similar to manually detection. Among them,
Wang et al. [23] proposed a reinforcement neural architecture
search method to achieve success. The article suggested and
validated the neural network architecture automatic search
method. The framework of the article includes two parts: the
controller model and the child model.
The controller model has 2 Nascell layers, and the output

of this model are convolutional kernel size and kernel number
and a pooling kernel size of each layer. They formed the
CNN [24]. The child models are CNNs. The model consists
of an input layer. The two groups of the same convolutional
layer, the pooling layer, take turns to each other. The complete
connection layer.
However, the time domain is the main emphasis of these

methods. The time domain analysis is unable to observe the
frequency-dependent signal properties for the vibration signal.
The frequency domain analysis is more succinct than the time
domain. Following the signal in the frequency domain provides
a deeper and more practical analysis of the issue.
This paper proposed feature extraction and recognition for

rolling bearing fault diagnosis based on frequency domain
and Long Short-Term Memory (LSTM) to overcome the
shortcomings mentioned before. In this method, uses Fast
Fourier Transform (FFT) to alter the bearing’s time-domain
signal before it is transmitted to the network. We only need
to fine-tune the maxepochs and hidden units in the process.

II. METHODOLOGY

A. Overview of system

The structure of the proposed method is shown in Fig. 1,
the vibration signal is collected by accelerometers which are
located drive end of the motor housing, and the signal is mea-
sured at 1750 RPM in each working state. Then the vibration
signal is divided into several overlapping samples, and each
sample is window processed and transformed with FFT. And
then input these data into networks, the neural network train
these data, gets outputs and calculates the accuracy. Adjust the
number of the hidden units and MaxEpochs until the result
reaches the best.
The layers in the neural network system include the input

layer, Bi-LSTM layer, fully connection layer, softmax Layer
and classification Layer.

B. Frequency domain analysis

The existence of FFT makes Discrete Fourier Transform
play a central role in algorithms in digital signal processing.
The calculation formula of Discrete Fourier Transform is [25]:

X(k) =
∑N−1

n=0 x(n)Wnk,(0≤ k ≤ N − 1)

X(k) = 1
N

∑N−1
n=0 x(n)W−nk,(0≤ k ≤ N − 1)

Where x stands a limited long sequence, X stands data after
Discrete Fourier transformation, N is sampled n points in a
sinusoidal cycle, and W = e

−j2p
N is the Fourier factor. For a
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Fig. 1: Overview of the system, (a) is raw data example from CWRU dataset [29], (b) is egmented data with 300 points, (c)
is segmented data using FFT, (d) is training data sent to the network and (e) is score of 12 classes.

discrete signal x, FFT will transform the signal in frequency
domain. Fig. 2 shows that the signal changes before and after
FFT.

Fig. 2: Signal transformed by FFT. Left part is raw data, each
of them have 300 points, right part is data with FFT, each of
them have 150 points. And (a) is an example of Normal signal,
(b) is an example of Roller Fault size 0.007 inches signal, (c)
is an example of Outer Fault size 0.007 inches signal.

C. Bi-LSTM

Long Short Term Memory (LSTM) is a special Recurrent
Neural Network (RNN) that can learn long-term dependencies
[26]. Vanishing and exploding gradient problems are hard
to avoid in traditional RNNs. LSTM learned the long-term
dependence on the network with passed these problems. The
hidden layer of traditional RNN is usually a tanh function or

ReLU. A typical LSTM unit will conclude 3 sigmoid layer
and 1 tanh layer.

Fig. 3: (a) is notwork structure of LSTM, (b) is LSTM unit.
The repetitive module in LSTM has four interaction layers,
three sigmoid and one tanh, and they interact in a unique
way.

LSTM consists of three gate variables: Input gate, Forgetting
Gate and Output gate.
A cell state C is applied in LSTM with only a few linear

operating on it, which could retain information easily. The first
gate in LSTM is forget gate, which decides what information
should be discarded. xt will be send to a sigmoid function with
ht−1 and get a value between 0 and 1 which multiplied with
the cell state Ct−1. The output of the sigmoid function will
decide how much information remains. Part of the information
in the last layer t−1 has been forgotten in the cell state Ct−1,
and the new information in the current layer will be added by
a tanh function and a sigmoid function. This sigmoid function
is called input gate and the output of it will multiply by a tanh
function. When the value of it is 0, the cell state doesn’t need
to update.
Then the last cell state Ct−1 multiply with forget gate ft to

discard part of information and update the information from
it×Ct. The output gate concludes the information in updated
cell state Ct and the output after a tanh function and a sigmoid
function. A brief figure of LSTM is shown in Fig. 3.
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TABLE I: Description of 12 states, one normal state and eleven failure states

Data no. Fault type Fault size/inches Motor speed (r/min) Sampling frequency (kHz) Size of training / testing samples
1 Normal 0 1750 12 350/50
2 Roller Fault 0.007 1750 12 350/50
3 Roller Fault 0.014 1750 12 350/50
4 Roller Fault 0.021 1750 12 350/50
5 Roller Fault 0.028 1750 12 350/50
6 Inner Race Fault 0.007 1750 12 350/50
7 Inner Race Fault 0.014 1750 12 350/50
8 Inner Race Fault 0.021 1750 12 350/50
9 Inner Race Fault 0.028 1750 12 350/50
10 Outer Race Fault-Center@6:00 0.007 1750 12 350/50
11 Outer Race Fault-Center@6:00 0.014 1750 12 350/50
12 Outer Race Fault-Center@6:00 0.021 1750 12 350/50

LSTM has the advantages of long-term trajectory memory
and short memory unification, simulation of selective brain
forgetting, and more accurate trajectory modelling. Therefore,
the multi-layer structure can be mixed to solve the efficiency
and stability problems of massive data training.
Bi-LSTM is an RNN with LSTM unit and will predict

the sequence from both directions [27]. It could perform
better in a sequence without directionality [28]. Actually
the sequences are sent to two LSTM unit indenpently with
different directions. The structure of Bi-LSTM is shown in
(a) of Fig. 4. In this paper, Bi-LSTM model was selected
instead of LSTM model because the input data is the FFT
of the vibration signals. In frequency domain, there is no
strong dependent relationship between current and previous
components. Bi-LSTM can model both relationship of the one
from low frequency to high frequency as well as the one from
high frequency to low frequency.

Fig. 4: Bi-LSTM networks. The LSTM framework is used to
merge the input sequence’s front and backward directions. The
two LSTM layers’ vectors can be added to, averaged out, or
connected.

III. EXPERIMENT

A. Dataset

The data are collected from the Electrical Engineering
Laboratory at Case Western Reserve University [29]. The data
was collected at 12,000 samples/second and has four different
fault inches: 0.007, 0.014, 0.021 and 0.028 inches.

B. Parameters

The parameter information is shown in Table 1. Twelve data
in different states include one normal state and eleven faults
states. Each of these has 400 samples. Among them, the first
350 samples are training samples, and the left 50 samples are
test samples, a totally of 4800 samples, and the length of each
sample is 300. The last vision of network Parameters in this
paper is in the following Table II.

TABLE II: Parameters of network

Name of Parameters Size of Parameters
Mini Batch-Size 20
Input Size 1
Number Hidden Units 100
Number Classes 12
Max Epochs 100

C. Experimental results

In this experiment, the experimental setting follows the same
one in paper [23] for a fair comparison. In this setting, the
subset data related to 12 faulty types are used, as shown in
Table 1. In [23], the result of the recognition accuracy is
98.47%, and the standard deviation obtained by reinforcement
neural architecture after 10 experiments are 0.61.
The average classification accuracy rate of proposed method

on raw data can reach 94.88%, and the accuracy standard
deviation after 10 experiments is 1.90 as shown in Table 3.
This paper’s average classification accuracy rate for data with
FFT can reach 99.70±0.23%, improved by 4.82%. Compared
with neural reinforcement architecture, enhanced by 1.23%,
the classification accuracy of test samples is summarized in
Table 3, which is better than reinforcement neural architecture.
Therefore, it can be considered that FFT data in Bi-LSTM has
better performance.

TABLE III: Results of comparison paper, Bi-LSTM for raw
data and FFT data

Method Average accuracy (%)
± standard deviation (%)

Reinforcement neural architecture 98.47 ± 0.61 [23]
Raw data/Bi-LSTM 94.88±1.90
FFT/Bi-LSTM 99.70±0.23
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And the 10 times of results show in table 4, the best result
for raw data is 97.83% and the worst is 92%. the best result
for data with FFT approached 100% and the worst is 99.33%,
which improved 2.17% and 7.33% respectively.

TABLE IV: Test results of Raw data and Data with FFT

NO. Times Raw data/Bi-LSTM % FFT/Bi-LSTM %
1 97.83 100
2 96.67 100
3 96 99.83
4 96.5 99.83
5 95.67 99.83
6 94 99.67
7 93.67 99.5
8 93.67 99.5
9 92.83 99.5
10 92 99.33

It is significantly better than the comparison network struc-
tures, it can be seen that the proposed method has better
performance. the diagnostic results are summarized in Fig. 5.

Fig. 5: Accuracy of the 10 times.The horizontal axis is the
number of iterations and Vertical axis is accuracy. The blue
folding line is the result of the raw signal combined with the
Bi-LSTM network, the orange folding line is the result of the
signal after FFT combined with the BI-LSTM network.

CONCLUSION

Even if the data from the time sequence is transferred to the
frequency domain after being processed by FFT, it remains a
continuous signal. It is equally applicable to engineering prac-
tice and produces positive outcomes. In the paper [30], [31],
[32], combination method of FFT and LSTM has achieved
good results.
As a result of comparisons between paper [23], the ex-

perimental procedures are completely consistent. Paper [23]
only uses training and testing sets, and there is no verification
set. Therefore, there is no verification set in the experiments
described in this paper.
Finally, deep learning methods, in particular, have become

increasingly popular in recent years. As a result, deep learning-
based automated recognition is now utilised in numerous new
sectors. The goal of increasingly more automatic recognition

systems is to simplify our lives. In this paper, the signal is
transformed from the time domain to the frequency domain
by fully using of the FFT. The best result, when combined
with BI-LSTM, is 100%, while the mean value over ten
times is 99.70±0.23 %. Future studies on the existing research
issue can include a variety of methods, including EMD.
Practical engineering challenges will be solved using some
methodologies that will be enhanced and employed in this
research.
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Abstract: Wind turbines are a crucial part of renewable energy generation, and their reliable and
efficient operation is paramount in ensuring clean energy availability. However, the bearings in wind
turbines are subjected to high stress and loads, resulting in faults that can lead to costly downtime
and repairs. Fault detection in real time is critical to minimize downtime and reduce maintenance
costs. In this work, a simple neural network model was designed and implemented on a Raspberry
Pi for the real-time detection of wind turbine bearing faults. The model was trained to accurately
identify complex patterns in raw sensor data of healthy and faulty bearings. By splitting the data
into smaller segments, the model can quickly analyze each segment and generate predictions at high
speed. Additionally, simplified algorithms were developed to analyze the segments with minimum
latency. The proposed system can efficiently process the sensor data and performs rapid analysis and
prediction within 0.06 milliseconds per data segment. The experimental results demonstrate that the
model achieves a 99.8% accuracy in detecting wind turbine bearing faults within milliseconds of their
occurrence. The model’s ability to generate real-time predictions and to provide an overall assessment
of the bearing’s health can significantly reduce maintenance costs and increase the availability and
efficiency of wind turbines.

Keywords: wind turbines; neural network; real-time implementation; bearing fault detection

1. Introduction

Wind energy has now become a component of the energy mix, significantly bolstering
its role in renewable energy sources. According to the International Energy Agency (IEA),
in 2020, the global installed capacity for wind power amounted to 721 GW [1]. Wind power
plays a role in minimizing impact and fostering the adoption of low carbon alternatives
over traditional fossil fuels. The growing demand for energy has driven the acceptance of
wind turbines as a pivotal technology for generating renewable energy, which is essential
for our worldwide shift towards cleaner and more sustainable energy sources. This tran-
sition is essential in reducing our reliance on fossil fuels, curbing carbon emissions and
promoting progress. The reliability of wind turbines largely determines the consistency
of the electricity supply. When wind turbines are operating, they experience loads and
stress in key components like bearings. Bearings are essential in converting wind energy
into power. However, these components are susceptible to wear and damage, especially
when exposed to conditions such as high winds, temperature fluctuations, or salty offshore
atmospheres. Any defects in the bearings possibly affect the performance of wind turbines
and may lead to unforeseen unexpected downtime and substantial maintenance costs. This
ultimately impacts the viability and overall energy output of wind farms.
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One of the most common reasons for wind turbine downtime is generator failure,
which accounts for 37% of all failure downtimes [2]. Real-time generator defect detection
can aid in preventing system shutdowns and mitigating their effects.

There are a number of defect detection systems for wind turbine generators. These
methods include spatiotemporal attention-based long short-term memory auto-encoder net-
works [2], marker-tracking for immediate rotational speed measurement [3], chaotic system
and extension neural network fault diagnostics [4], time-varying models with augmented
observers [5], deep learning approaches for sensor data prediction and fault diagnosis [6],
sensor selection algorithms for real-time fault detection [7], enhanced variational mode
algorithm fault diagnosis [8], image texture analysis for fault detection and classification [9],
and cost-sensitive algorithms for online fault detection [10].

Wind turbine bearings are one of the key components, and the performance and
lifespan of the device are significantly influenced by their normal operation. However,
wind turbine bearings frequently sustain damage and malfunction in long-term operation
due to high loads and harsh weather conditions. These flaws, which pose major risks to
the wind turbine’s ability to operate safely, may include rolling bead fatigue, insufficient
lubrication, and an unbalanced load [11].

For prompt maintenance actions, shorter stop times, and lower maintenance costs, the
real-time detection of wind turbine bearing failures is crucial. Preventive maintenance can
be accomplished through real-time monitoring, quickly and precisely detecting bearings,
preventing further degradation of faults, and correcting faults to maintain wind turbines’
continuous functioning and dependability.

Currently, the detection of bearing faults mainly relies on traditional vibration analysis
and oil analysis [11]. These techniques often involve processing amounts of raw data,
which makes real-time detection and prediction more complicated. Recently, deep learning
techniques such as convolutional neural networks (CNNs) and long short-term memory
networks (LSTMs) have also been used in bearing fault detection [12–14]. However, their
complex model structures and numerous parameters make it challenging to deploy them
in real time on edge devices. With variational mode decomposition with deep convolu-
tional neural networks (VMD-DCNNs) [15], it is possible to diagnose rolling bearing faults
that do not require manual labor or human experience. The performance variations of
existing approaches in various contexts and situations are obtained by extracting charac-
teristics from each inherent mode function (IMF). The multi-scale convolutional neural
network with bidirectional long short-term memory (MSCNN-BiLSTM) model [16], using
a weighted majority voting rule, enhance the intelligent fault diagnosis of bearings in
wind turbines under complex working and testing environments, achieving improved
diagnostic performance compared to existing methods. The deep bi-directional long short-
term memory (DB-LSTM) [17] method circumvents feature selection challenges, enhances
computational efficiency, and generates simulated data that closely resemble real-world
settings, hence improving the approach’s applicability. Supervisory Control And Data
Acquisition (SCADA) is ensemble method that consists of XGBoost [18], a framework based
on ensemble learning and genetic algorithms, utilizing SCADA data to detect faults in
wind turbines. The deep convolutional neural network (DCNN) and Synchro Squeezing
Transform (SST) [19], compared to traditional spectral analysis methods, can automatically
identify fault features, avoiding misdiagnosis and missed diagnosis that may be caused by
manual identification, and its excellent classification effect has been verified through exper-
iments. The Self-Adaptive Teaching-Learning-Based Optimization Multi-Layer Perceptron
(SATLBO-MLP) [20] is a data-based wind turbine bearing fault diagnosis method that is
applied to the SATLBO algorithm optimization MLP model. The related experimental
results demonstrate the effectiveness of the method.

Some studies have attempted to address this issue by training models in the cloud [21]
and then transferring them to edge devices. However, this method relies on a network
connection and has challenges in meeting real-time performance demands in practical
applications. Currently, research mostly concentrates on the impact of models, while giving
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less consideration to the practical viability of models, such as optimizing model size and
predictive latency. This aspect requires further enhancement.

Overall, real-time defect detection research on wind turbine bearing failure has not
been conducted, and most methods need to process raw data, which will cost time in
practical engineering applications, resulting in the inability to make strategic adjustments
and take appropriate measures in a timely manner, which may lead to irreparable losses. In
general, the existing approaches for detecting bearing faults still have limitations in terms
of real-time capability, user-friendliness, and other factors, making it challenging to fulfill
the requirements of real-time monitoring and prediction in industrial settings.

In spite of that, deep learning exhibits significant promise for utilization in wind
turbine health monitoring, particularly in the detection of bearing faults. Compared to
traditional machine learning techniques, the main benefits of deep learning include the
following: Unsupervised learning has the capacity to extract intricate and non-linear
patterns from data without the need for manual configuration, making it particularly well
suited for complicated datasets [22]. Deep learning acquires intricate functional connections
by utilizing multi-layer network architectures with strong fitting capabilities [23]. Finally, it
implements end-to-end learning, autonomously capturing the geographical and temporal
relationships within the data [24]. Due to the growing processing power and data volume,
performance is consistently enhancing and has surpassed manually built algorithms in
numerous tasks [25]. Furthermore, the operational data of bearings contain abundant
information in both the time and frequency domains. The neural network model has the
capability to automatically acquire these intricate characteristics by utilizing its multi-layer
network architecture. Furthermore, it can proficiently address the difficulties posed by
substantial data quantities and the fusion of multiple sensors. Thanks to advancements
in edge computing and mobile internet technology, the neural network model can now
be deployed in real time on edge devices. For example, the neural network model can be
deployed on the control box of a wind turbine [6], resulting in a significant improvement in
the response speed of bearing fault monitoring. In summary, neural networks have shown
huge application potential in the monitoring of wind turbine bearing failure monitoring.

In order to achieve the real-time detection of wind turbine bearing failure, this study
aimed to apply machine learning methods in a Raspberry Pi to achieve high-precision and
low-delay real-time monitoring with this portable device, which is of great significance
for improving the reliability and utilization rate of wind power equipment. Our model
can accurately identify patterns by training the physical characteristics of health and fault
bearings. The data were divided into smaller segments so that the model can quickly
analyze each segment and generate high-speed predictions. In addition, in order to achieve
a minimal delay treatment, high-efficiency algorithms were developed. The network was
trained and, subsequently, the NN algorithm was embedded into the Raspberry Pi. The
network has two fully connected layers, and the tested time was 0.06 milliseconds on the
Raspberry Pi. The results of this study indicate that the model can accurately detect wind
turbine bearing faults and provide real-time predictions within milliseconds of the fault
occurrence. This model possesses the capability to generate real-time predictions and assess
the holistic health condition of bearings, thereby substantially diminishing maintenance
expenses and enhancing the accessibility and efficacy of wind turbines. In essence, this
study demonstrates the potential of AI-driven solutions in optimizing the generation of
renewable energy and mitigating reliance on fossil fuels.

2. Methodology
2.1. Overview of the Proposed System

The overview of the proposed method is shown in Figure 1. The vibration signal is
collected by accelerometers, which are located at the non-drive end in the wind turbine.
Wind turbines are usually constructed in areas where wind energy is abundant, such as
coastlines, mountains, plains, and deserts.



Appl. Sci. 2024, 14, 3129 4 of 14

Figure 1a shows wind turbines constructed on grasslands. The data were trained in
the model, which was implemented in Python language on PC. The data were divided
into small segments; thus, the model can quickly analyze each segment without other
processing methods, as shown in Figure 1b,c. The trained neural model was embedded
in the Raspberry Pi, as is shown in Figure 1d. The last step was for the trained model to
predict each segment’s score, as is shown in Figure 1e.

Figure 1. Overview of the system: (a) wind turbine; (b) modeling in python language; (c) neural
network model; (d) Raspberry Pi implementation; and (e) predictions.

2.2. The Description of the Neural Network Model

Many research works use neural networks for fault detection or the monitoring of
bearings. Fu et al. [26] monitored wind turbines with deep learning. In their paper, CNN
and LSTM are used to analyze variables and monitor wind turbine gears. Gearbox bear-
ing temperature data are processed for AI monitoring and troubleshooting. Asmuth and
Korb [27] provide a basic three-dimensional CNN-based wake model to predict wind
turbine wake flow fields. The model accurately predicts wake flow characteristics, show-
ing its potential for wind turbine wake forecasts. Xie et al. [28] proposed an attention
mechanism-based CNN-LSTM wind turbine fault prediction model. The CNN extracts
features, LSTM captures time sequence correlations, and an attention algorithm gathers
fault-related target information from the ontology-annotated Semantic Sensor Network.
The model was shown to be precise and generalized.

In this paper, we adopted a real-time detection neural network model to assess wind
turbine bearing failure, as shown in Figure 2. The model adopts the architecture of a
Multi-Layer Perceptron (MLP) [29].

Figure 2. Proposed network.
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The neural network model contains two fully connected layers (FC1 and FC2), and the
second fully connected layer (FC2) acts as the output layer. The first full connected layer
(FC1) has 64 input features and 20 hidden units, which are used to learn complex features
in the input data. The output layer (FC2) is a layer that takes the 20 output features from
FC1 and reduces them to two output features, which are used to map the learned features
to faults and normal categories.

2.3. From Input Layer to Hidden Layer

The input vector x ∈ R64. The first fully connected layer has a weight matrix W1 ∈ R20×64

and a bias vector b1 ∈ R20. The operation performed by this layer can be expressed as:

h = W1 × x + b1 (1)

Then, the ReLU (Rectified Linear Unit) activation function is applied to h. The ReLU
function is defined as f (z) = max(0, z), which introduces non-linearity, allowing the model
to learn more complex functions:

h′ = max(0, h) (2)

In the hidden layer of the model, the ReLU (Rectified Linear Unit) [30] is used as the
activation function. The ReLU function can enhance the non-linear modeling capabilities
of the model and help capture the complex features of the input data.

2.4. From Hidden Layer to Output Layer

The vector h′ is then passed through the output layer (‘FC2‘), which transforms the
20-dimensional input into a 2-dimensional output suitable for binary classification. Let the
weight matrix of the output layer be W2 ∈ R2×20 and the bias vector be b2 ∈ R2. The final
output y can be expressed as:

y = W2 × h′ + b2 (3)

During the forward-direction of the model, the input data that first passed the first
full connection layer (FC1) and activated the function ReLU are applied to the output of
the hidden layer. Then, the final prediction result is output through the output layer (FC2).

In order to enable the model to accurately identify the mode of health and bearing
faults, the method of monitoring learning was adopted for the training of model parameters.
The labeling dataset was used for training and optimizing the weight and bias of the model
by minimizing the loss function, so that the prediction results of the model were as close to
the real label as possible.

The structure of neural network models is simple and effective, with less parameters and
computing complexity, and it can operate efficiently on edge equipment such as a Raspberry
Pi. Through this model, we can realize the real-time detection of wind turbine bearing faults
and provide fast and accurate predictive results to provide feasible solutions for reducing
maintenance costs and improving the availability and efficiency of wind turbines.

2.5. Acceleration Sensor and Data Logger

As shown in Figure 3a, the primary purpose of the acceleration sensor located on the
bearing is to monitor and assess the condition and functionality of the bearings. These
sensors offer an efficient means for detecting and preventing possible malfunctions by
monitoring the acceleration of the vibration in the bearing while it is in operation [31–33].

As shown in Figure 3b, the data logger obtains an analog signal from the acceleration
sensor at the bearing, and uses the A/D converter to convert it to a digital signal. Then, the
conversion signal is stored [34,35].



Appl. Sci. 2024, 14, 3129 6 of 14

Figure 3. (a) Acceleration sensor, (b) data logger, (c) Raspberry Pi board, and (d) performance
evaluation.

2.6. Raspberry Pi

With Eben Upton serving as the project manager, the “Raspberry Pi Charity Foun-
dation” was established in the UK. The world’s smallest desktop computer, sometimes
referred to as a card-type computer, was officially introduced in March 2012 by Emben
Apoton [36], a Cambridge University research lab.

In this paper, the network model was trained on the desktop and it was embedded into
a Raspberry Pi 4 [37]. It can be seen as a small computer and is easy to carry. In Figure 3c,
some parts are labeled and the touch screen is shown in Figure 3d.

3. Experiment
3.1. Dataset

There are many acceleration sensors on the generator bearing of a wind turbine. The
data used in the experiment were the signal of one of the acceleration sensors. The data
were collected from the turbine generator of a company. The vibration data were collected
at 25,600 samples/second and a collection time of 3 s.

The generator is a device that converts mechanical energy into electrical energy. It
usually consists of a rotor and a stator, where the rotor is supported by bearings rotating
on a shaft. The generator bearing is an important component that supports the rotor, and
its proper functioning is critical to the performance and reliability of the generator. It is
shown in Figure 4a.

In order to monitor the health of generator bearings, acceleration sensors are installed
on the bearings. An acceleration sensor is a device that measures the acceleration of an
object. When a generator is in operation, the bearings are subjected to a variety of forces
and vibrations that cause the bearings to change in acceleration. The acceleration sensor
senses and measures these changes and converts them into a digital signal. It is shown
in Figure 4b.

Important information about generator bearing vibration can be obtained by analyzing
the data collected by the acceleration sensor. Vibration data can include parameters such as
the vibration amplitude, the frequency, and the time variation. These data are critical for
monitoring the health of the bearing. Abnormal vibration data may indicate bearing failure
or wear, such as loose bearings, overheating, or damage. By detecting these problems in
time, the safety monitoring system can take appropriate repair and maintenance measures
to prevent further damage or failure from occurring.
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Figure 4. Data collection platform. (a) Wind turbine generator; (b) acceleration sensor.

Therefore, acceleration sensor data acquisition is crucial for generator bearing moni-
toring and maintenance. It provides valuable information to better manage and optimize
the generator system, ensuring its proper operation and extended service life.

Two different states are Normal and Fault. Each state has 9600 segments in testing,
2400 segments in training, and each segment has 64 samples; details are shown in Table 1.

Table 1. Description of data.

Fault Type Training Segments Testing Segments Samples in Each Segment

Normal 9600 2400 64
Fault 9600 2400 64

3.2. Experimental Setup
3.2.1. Data Analysis

As shown in Figure 5, the length of each sample of raw data was 64, and the raw
data produced irregular waveform diagrams. The difference in the amplitude value was
readily apparent. After FFT, the difference between health and faults at the peak value was
also obvious.

3.2.2. Data Groups

The parameter information is shown in Table 2. The data were evenly divided into
10 groups of data with different states, including five normal states (Group 1–5) and five
fault states (Group 6–10). In the experiment, in order to validate the performance of
the methodology, comparison models were introduced, i.e., a Medium Neural Network,
Wide Neural Network, Bi-layer Neural Network, Tri-layer Neural Network, and Narrow
Neural Network. The validation of the method accuracy was determined under 5-fold
cross-validation.

Table 2. Dataset was split into training and testing subsets.

Training Group Testing Group

Subset 1 2, 7, 3, 8, 4, 9, 5, 10 Subset 1 1, 6
Subset 2 1, 6, 3, 8, 4, 9, 5, 10 Subset 2 2, 7
Subset 3 1, 6, 2, 7, 4, 9, 5, 10 Subset 3 3, 8
Subset 4 1, 6, 2, 7, 3, 8, 5, 10 Subset 4 4, 9
Subset 5 1, 6, 2, 7, 3, 8, 4, 9 Subset 5 5, 10
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Figure 5. Data spectrum.

3.3. Experimental Results

In this experiment, to verify the performance, five comparison networks were intro-
duced. The first was used to confirm the accuracy of each method and the second was used
to confirm the testing time of each method.

3.3.1. Comparison Performance

In this part, the raw data were trained and tested with a few neural network meth-
ods [38]. For testing the comparison methods, the best method was the Medium Neural
Network, whose accuracy was 99.0%. The poorest one was the Narrow Neural Network,
whose accuracy was 98.6%. For the proposed method, the accuracy achieved was 99.8%.
The accuracy data are shown in Figure 6.

For proposed method, the network output was used to classify tasks (using ‘CrossEn-
tropLoss’). The loss curve of changes with training progress shows that the training
converged, as is shown in Figure 7.

3.3.2. Speed

In this part, the tested times are shown in Figure 8. From the five comparison methods,
the fastest was the Narrow Neural Network, whose testing time was 0.72 ms. The slowest
was the Wide Neural Network, whose testing time was 3.67 ms. For the proposed method,
the testing time achieved was 0.06 ms.
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Figure 6. Comparison of accuracy of raw data.

Figure 7. The loss curve of changes with training progress.

For the compared methods, they had a similar accuracy at around 99.0%. However,
the testing time of the Wide Neural Network was greater than that of the other methods at
3.67 ms. The main reason for this is that this network has a wide layer. The fastest
comparison method was the Narrow Neural Network because of its narrow layer. The
average accuracy of the proposed method was 99.8% and the testing time was within
0.06 ms under 5-fold cross-validation. Compared with the other methods, these values
represent improvements of 0.8% and 0.66 ms, respectively. It is obvious from the Figure 8
that the proposed method had a better performance than the other methods.
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Figure 8. Comparison of testing time of raw data.

4. Discussion

Achieving a practical model requires a small model, with a high accuracy that can
function in real time.

4.1. Effect of Different Segments and Epochs

There are four types of segments: the first kind of segment has 8 samples, the second
segment has 16 samples, the third segment has 32 samples, and the last segment has
64 samples. In this experiment, different epochs were tested: 20 epochs, 200 epochs,
1000 epochs, 2000 epochs, and 3000 epochs. In addition, the layer size in this experiment
was 10. The results are shown in Figure 9.

From Figure 9, the best performance was observed for 32 sample segments and
64 sample segments. Among them, the best results were seen at 3000 epochs. For 32 sample
segments, the result was 96.8% and, for 64 sample segments, it was 98.5%. Hence, the
segments of 32 and 64 samples at 3000 epochs were tested in the next experiment.

Figure 9. Accuracy of different samples in each segment.
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4.2. Effect of Different Number of Nodes

For testing the effect of a different number of nodes in the network, two ablation
experiments were introduced. Details are shown in Table 3.

Table 3. Description of different segments.

Samples in Each Segment Fault Type Training Segments Testing Segments

32 Normal 19,200 4800
Fault 19,200 4800

64 Normal 9600 2400
Fault 9600 2400

In the first experiment, each of these had 2400 segments, and each segment had
32 samples. Among them, 5-fold cross-validation was applied. Moreover, 19,200 segments
were training segments, and the remaining 4800 segments were test segments.

For the second experiment, each of these had 1200 segments, and each segment had
64 samples. Among them, 5-fold cross-validation was applied. Moreover, 9600 segments
were training segments, and the remaining 2400 segments were test segments.

In this part, testing was performed with different numbers of nodes, i.e., 5, 10, 15,
and 20, in the fully connected layer and at 3000 epochs to validate the model. There were
five groups. The final model was obtained through training data and was tested with the
remaining data from this model.

As shown in Figure 10, the best performance was obtained for a 20-layer ANN, which
achieved 99.8% for 32 samples and 99.7% for 64 samples with a model size of around 5 kb.
Therefore, the next step was to confirm the testing time so that the experiment could achieve
real-time detection.

Figure 10. Accuracy under different numbers of nodes in the fully connected layer.

4.3. Experiment of Speed

In this part, the length of the layer was 20 and the epoch was 3000. The testing time
was tested on different devices: a desktop computer and the Raspberry Pi. The results are
shown in Table 4.

Table 4. Test results and time of raw data on Raspberry Pi and desktop computer.

Samples of Segment Devices Accuracy Testing Time Sampling Time

32 Desktop 99.8% 0.009 ms 2.5 msRaspberry Pi 99.8% 0.059 ms

64 Desktop 99.7% 0.005 ms 1.25 msRaspberry Pi 99.7% 0.028 ms
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On the Raspberry Pi, for 64 samples of segments, the testing data were divided into
2400 segments, and each segment had 64 points.

The proposed system can efficiently process the sensor data and performs rapid
analysis and prediction within 0.059 milliseconds per data segment. The experimental
results demonstrate that the model achieves a 99.8% accuracy in detecting wind turbine
bearing faults within milliseconds of their occurrence.

Regarding the 32 samples per segment, the testing dataset was divided into 4800 in-
dividual segments, with each segment consisting of 32 samples. In terms of system per-
formance, the proposed approach exhibits efficient data processing capabilities, enabling
swift analysis and prediction within a remarkable timeframe of 0.028 milliseconds per
data segment. The experimental findings underscore the model’s exceptional accuracy,
with a reported 99.7% detection rate for wind turbine bearing faults within milliseconds of
their manifestation.

On the desktop, for 64 samples of segments, the testing data were divided into 2400 seg-
ments, and each segment had 64 samples.

The proposed system can efficiently process the sensor data and performs rapid
analysis and prediction within 0.009 milliseconds per data segment. The experimental
results demonstrate that the model achieves a 99.8% accuracy in detecting wind turbine
bearing faults within milliseconds of their occurrence.

In the case of segments consisting of samples, the testing dataset was partitioned into
4800 individual segments, with each segment containing 32 samples. The proposed system
demonstrates notable efficiency in processing sensor data, facilitating swift analysis and
prediction within an impressive timeframe of 0.005 milliseconds per data segment. The
experimental results substantiate the model’s remarkable performance, yielding a detec-
tion accuracy of 99.7% in identifying wind turbine bearing faults within milliseconds of
their manifestation.

Both the Raspberry Pi and the desktop achieved identical outcomes by utilizing the
proposed method. However, the testing times varied. The Raspberry Pi was significantly
slower than the PC when it came to test speeds. The proposed method was significantly
better, with respect to accuracy and execution time, compared to the comparison networks.
The proposed method demonstrated superior performance and aligns with the specific
requirements. Multiple models were chosen based on our requirements, i.e., for rapid
speed, we selected 32 samples per segment, and for high precision, we chose 64 samples
per segment. Each model was approximately 5 kb in size.

5. Conclusions

This study developed a machine learning-based model on a Raspberry Pi to detect
wind turbine bearing faults in real time. The model was designed and trained on a desktop
computer due to its higher performance. Then, real-time implementation was achieved by
running the model on a Raspberry Pi for real-time wind turbine bearing fault detection.
The experimental results demonstrate that the model achieves a high accuracy and rapid
detection of faults within milliseconds of their occurrence. The model achieved an accuracy
rate of 99.8% and the testing time was 0.059 ms, indicating its effectiveness and precision in
detecting wind turbine bearing faults.

This study demonstrates the practical implications and potential applications of real-time
fault detection in wind turbines using a neural network model. The model provides significant
accuracy in quickly identifying bearing faults and providing immediate predictions during
fault detection, resulting in reduced maintenance costs, increased turbine availability, and
improved overall efficiency. By being able to identify faults during turbine operation in a
timely manner, the development of this neural network model facilitates early warning and
rapid response, minimizing downtime and associated maintenance costs. Ultimately, real-time
fault detection ensures reliable turbine operation and increased availability.

The findings of this study are significant for promoting renewable energy generation
and reducing reliance on fossil fuels. The model improves operational efficiency and
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reliability by enabling the real-time detection of wind turbine bearing faults, minimizing
energy waste. This facilitates the wider adoption of renewable energy sources, reducing
dependence on finite fossil fuel resources and promoting sustainable energy development
and environmental protection.

In the future, many works will require enhancement, and network design optimization
will be of paramount importance. This model can only be used on specific models of wind
turbines and is restricted to the generator bearings of these turbines. Future research
must establish a multi-channel, multi-type, and multi-scenario detection model that can be
further optimized to improve the generalizability of models.

Continued innovation and improvement in this area will drive renewable energy
generation, reducing dependence on fossil fuels and paving the way for a cleaner, more
sustainable energy future.
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Abstract: This study aims to detect faults in wheelset bearings by analyzing vibration-sound fu-
sion data, proposing a novel method based on Grey Wolf Optimizer (GWO) and Support Vector
Machine (SVM). Wheelset bearings play a vital role in transportation. However, malfunctions in
the bearing might result in extensive periods of inactivity and maintenance, disrupting supply
chains, increasing operational costs, and causing delays that affect both businesses and consumers.
Fast fault identification is crucial for minimizing maintenance expenses. In this paper, we pro-
posed a new integration of GWO for optimizing SVM hyperparameters, specifically tailored for
handling sound-vibration signals in fault detection. We have developed a new fault detection
method that efficiently processes fusion data and performs rapid analysis and prediction within
0.0027 milliseconds per data segment, achieving a test accuracy of 98.3%. Compared to the SVM and
neural network models built in MATLAB, the proposed method demonstrates superior detection
performance. Overall, the GWO-SVM-based method proposed in this study shows significant advan-
tages in fault detection of wheelset bearing vibrations, providing an efficient and reliable solution
that is expected to reduce maintenance costs and improve the operational efficiency and reliability
of equipment.

Keywords: support vector machine; grey wolf optimizer; bearing fault detection; fusion data

1. Introduction

Bearings play a crucial role in transportation, with their operational safety and reliabil-
ity directly impacting logistics efficiency and economic benefits. The wheelset bearings are
key components that bear significant loads and operate in complex environments. Over
extended periods of use, these bearings are prone to various faults. Therefore, timely
and effective detection of wheelset bearings faults is essential for ensuring the safety
of transportation.

The primary objective of bearing fault diagnostics is to detect probable defects by
examining diverse data. Vibration data is a widely utilized technique for diagnosing
bearing failures, as these faults generally result in anomalous vibration characteristics.
There are three predominant analysis methods: time domain analysis, frequency domain
analysis, and time-frequency analysis. Time domain analysis involves the examination
of the time waveform to identify impact signals and periodic components. The statistical
properties, such as mean, variance, peak value, kurtosis, and skewness, can potentially
reveal changes in the vibration signal [1]. The analysis typically involves computing these
features from segmented windows of the vibration signal and monitoring their trends over
time. Substantial departures from baseline values can suggest the existence and intensity
of bearing faults [2–4]. Time domain analysis is a straightforward and efficient method
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for detecting bearing faults; however, it may not offer as much comprehensive diagnostic
information as frequency domain techniques [2]. Frequency domain analysis involves
applying a Fourier transform to convert signals in the time domain into signals in the
frequency domain in order to identify and analyze certain frequency components [5]. Chen
et al. [6] introduced power function-based Gini indices II and III (PFGI2 and PFGI3), and
through mathematical derivation and experimental validation using envelope analysis
in the frequency domain, demonstrated their superior sparsity quantification capabilities
and fault feature characterization performance in bearing condition monitoring. Power
Spectral Density (PSD) is a measure of the power distribution of a signal over different
frequencies; it displays the amplitude of different frequency components and is commonly
used to detect specific defects in bearings, such as defects in the outer ring, inner ring,
or rolling elements [7]. Chen et al. [8] proposed two new blind deconvolution methods
using the modified smoothness index (MSI) in the time and frequency domains for squared
envelope applications, effectively enhancing sparse features for rolling bearing fault diag-
nosis and demonstrating excellent diagnostic performance and robustness in experiments.
Time-frequency analysis involves the application of techniques that incorporate both time
and frequency data, such as the Short-Time Fourier Transform (STFT) and Wavelet Trans-
form [9,10]. These methods are able to capture the transitory properties of a signal with more
accuracy [11].

Additionally, sound signal analysis is becoming more crucial in diagnosing bearing
faults, as variations in sound signals might indicate changes in the operating conditions of
the bearing. The conventional techniques used are analogous to the analysis of vibration
data, encompassing time domain analysis, frequency domain analysis, and time-frequency
domain analysis. Two more methods exist: sound pressure level (SPL) analysis and sound
signature recognition. SPL analysis is an effective technique for diagnosing bearing faults by
analyzing sound emissions from bearings. The main sources of bearing noise are vibrations
from the inner ring and rolling elements (balls or rollers) and as a bearing enters the failure
stage, there is a rise in SPL of 12–16 dB over the baseline level, accompanied by a change
in sound quality [12,13]. SPL analysis includes three techniques: time waveform analysis,
frequency spectrum analysis and time-frequency domain analysis [2,13]. Sound signature
recognition in bearing fault detection involves utilizing sound signal analysis techniques to
identify and diagnose bearing faults. This approach captures and analyzes the sound signals
generated by bearings during operation, identifying abnormal patterns and features that
indicate the bearing’s health status. Advanced signal processing techniques such as Fast
Fourier Transform (FFT) [14], Wavelet Transform [10], Empirical Mode Decomposition [15],
and Hilbert Transform are commonly used to extract fault features from noisy sound
data [16–20].

Nevertheless, there are limitations when it comes to evaluating individual vibration
signals or sound signals. For example, the presence of machinery might influence vibrations,
making it difficult to discern certain defect features. In a similar manner, background noise
has the potential to disrupt signals by concealing important fault characteristics. In data
fusion, vibration and sound signals provide complementary information about machine
condition, and data fusion has the potential to greatly enhance the effectiveness and
dependability of bearing fault diagnosis systems, offering robust assistance for equipment
preventative maintenance and fault prediction [21–24].

To enhance the accuracy and reliability of bearing faults detection systems, research
investigations highlight the significance of data fusion approaches, which involve merging
information from multiple sensors. Wan et al. [25] proposed a fusion multiscale convolu-
tional neural network (F-MSCNN) method that processes raw sound and vibration signals
to achieve high accuracy and stable fault diagnosis of rolling bearings under varying oper-
ating speeds. Shi et al. [26] proposed a two-stage sound-vibration signal fusion algorithm
that combines and weights fault features from multiple sound measurement points, extracts
features using empirical mode decomposition and kurtosis superposition, and then unifies
sampling frequencies to fuse sound and vibration signals again, achieving weak fault detec-
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tion in rolling bearings. This method significantly improves fault feature detection accuracy
and signal-to-noise ratio, aiding in the status monitoring of bearing systems. Duan et al. [27]
provided a comprehensive review of multi-sensor information fusion for rolling bearings,
highlighting the significance of combining data from diverse sensors for improved fault
diagnosis capabilities. Wang et al. [28] conducted a study on bearing fault diagnosis using
vibro-sound data fusion and a 1D-CNN network, demonstrating the benefits of integrating
vibration and sound information for enhanced fault detection. Gu et al. [29] introduced an
enhanced SE-ResNet sound-vibration fusion method for rolling bearing fault diagnosis,
integrating various techniques to effectively process sound-vibration signals. By integrating
vibration and sound data, a comprehensive method for detecting bearing faults is achieved.
This approach combines the advantages of both signal types, resulting in a more precise and
detailed depiction of the system’s status. Researchers have successfully built sophisticated
models that incorporate vibration and sound data using modern computational approaches
such as deep learning, feature fusion, and adaptive signal processing. These models are
used for precise problem identification in bearing systems. These studies highlight the
significance of data fusion approaches in utilizing the combined benefits of vibration and
sound inputs to improve the accuracy and effectiveness of bearing defect detection systems.
However, these deep-learning-based methods need large datasets for training and they are
not easily implemented for real-time detection.

In this study, we introduce a novel approach by integrating the Grey Wolf Optimizer
(GWO) [30] with a Support Vector Machine (SVM) [31] to optimize hyperparameters, specif-
ically tailored for real-time analysis of vibration-sound fusion data. Yan et al. proposed
GWO-SVM for smart emotion recognition, they used the Radial Basis Function (RBF) kernel
of SVM and achieved high accuracy in their research [32]. We extend their method with
various SVM kernels and provide rapid failure detection by preprocessing fusion data
from vibrations and sounds. Data segmentation facilitated analysis, enabling the model to
generate predictions at a remarkable speed of 0.0027 milliseconds per segment. In addition,
the linear SVM model that was fine-tuned using GWO achieved a testing accuracy of 98.3%,
outperforming the SVM and neural network models built in MATLAB. Furthermore, this
model demonstrated significant efficiency in runtime assessments, making it extremely
suitable for real-world settings. The proposed GWO-SVM model shows advantages in
detecting defects in wheelset bearings. The model’s capacity to generate real-time predic-
tions and offer a comprehensive evaluation of the bearing’s condition can greatly diminish
maintenance expenses and enhance the accessibility and effectiveness of wheelset bearings.
This study underscores the potential of integrating advanced optimization algorithms with
machine learning techniques to enhance fault detection capabilities, ultimately contributing
to more robust and efficient transportation systems.

2. Methodology

The list of abbreviations are shown in Table 1:

Table 1. Description of abbreviations.

Abbreviations Description

CNN Convolutional Neural Network
FFT Fast Fourier Transform

GWO Grey Wolf Optimizer
MFCC Mel-Frequency Cepstral Coefficients
PCA Principal Component Analysis
PSD Power Spectral Density
RBF Radial Basis Function
SPL Sound Pressure Level

STFT Short-Time Fourier Transform
SVM Support Vector Machine
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2.1. Overview of the Proposed Method

An overview of the proposed method is shown in Figure 1. The vibration signal is
collected by accelerometers, which are located on the axle box cover in the bearing area at
the end of the wheelset; and the sound signal is collected by microphone located on both
sides of the bearing. This data set offers the vibration and sound data to efficiently identify
bearing various faults.

Figure 1a shows the wheelset bearing. As shown in Figure 1b,c, FFT is utilized for
analyzing vibration signals [14], whereas the Mel-Frequency Cepstral Coefficients (MFCC)
are employed for analyzing sound signals [33]; split the data into different segments and
then combine and integrate the characteristics of the two datasets by simply concatenating
them; the model possesses the ability to rapidly examine every individual segment. The
final stage involved the trained model making predictions for the score of each segment, as
shown in Figure 1d.

Figure 1. Overview of the system: (a) wheelset; (b) modeling in python language; (c) GWO-SVM
model; and (d) predictions.

2.2. The Description of the GWO-SVM Model

SVM have been widely applied for fault detection and diagnosis of bearings in rotating
machinery. Pule et al. [34] proposed a method using principal component analysis (PCA)
and SVM to achieve 97.4% accuracy in diagnosing bearing faults under varying speeds
using vibration analysis. Yang et al. [35] introduced a triplet embedding-based method
for classifying small sample rolling bearing fault datasets, achieving superior performance
in fault diagnosis by using CNN for feature extraction and SVM for classification. Mo
et al. [36] proposed a highly accurate (95.3%) and efficient (11.1608-s training time) method
for diagnosing petrochemical rotating machinery bearing faults by combining ICEEMDAN-
wavelet noise reduction, mutual dimensionless metrics, and MPGA-SVM, with further
validation showing 97.1% accuracy on additional datasets.

In this paper, we adopted a fast detection GWO-SVM model by analyzing fusion data
from multiple models to assess bearing failure, as shown in Figure 2

Step 1: Data preprocessing—Load the signals and extract their features and annotate
their label.

Step 2: Initialize Wolves—Randomly generate the initial positions for the wolf pack,
which are the candidate solutions for the SVM hyperparameters CSVM and γ, initialize the
maximum number of iterations L and the number of search agents n.

Step 3: Evaluate fitness—Evaluate accuracy for each candidate using cross-validation.
If i ≤ n:

a. Select the current candidate i: Choose the i-th wolf from the pack.
b. Train SVM model using current candidate: (1) Extract the SVM hyperparameters CSVM

and γ from the current candidate; (2) Initialize an SVM model with these parameters;
(3) Train the SVM model on the training dataset.

c. Evaluate the model on the validation set: (1) Use the validation dataset to predict
outcomes; (2) Calculate the accuracy of the predictions, which represents the fitness
of the current candidate

d. Record the fitness value of the current candidate: Save the fitness value for the
current candidate.
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e. Increment the index i: Move to the next candidate (i = i + 1).
f. Repeat Step 3: Continue evaluating the next candidate until all candidates are evaluated.

Step 4: Update αwol f , βwol f , and δwol f .—Based on the fitness values, select the top three
candidates as the αwol f , βwol f , and δwol f .

Step 5: Update Wolves positions—Update the positions of all wolves in the pack using
the positions of the αwol f , βwol f , and δwol f .

Step 6: Main loop—Continue iterating through Steps 3 to 5 until the maximum number
of iterations L is reached or the algorithm converges.

Step 7: Final model training and testing—Use the best hyperparameters found during
the optimization to train the SVM model on the entire training dataset. Evaluate the trained
model on the test dataset.

Step 8: Format and display results—Format the evaluation results and print them.
Save the trained model and results to a file.

Step 9: Save model—Save the trained SVM model to a specified file path.
Step 10: Measure runtime—Calculate and print the total runtime and the testing time.

Figure 2. Proposed model.

2.2.1. Basic SVM Formula

The decision function for SVM:

f (x) =
n

∑
i=1

αiyiK(xi, x) + b (1)

where αi is the Lagrange multiplier, yi is the label, xi is the support vector, K(xi, x) is the
kernel function, and b is the bias term.

2.2.2. GWO Formulas

Updating parameter a:

a = 2 − 2
(

epoch
L

)2
(2)



Technologies 2024, 12, 144 6 of 14

where epoch is the current iteration and L is the maximum number of iterations.
Calculating coefficients A and Cwol f :

A = 2 · a · rwol f 1−a

Cwol f = 2 · rwol f 2

(3)

where rwol f 1
and rwol f 2

are random numbers in the range [0, 1].
Updating the positions of the wolves:

Dα = |Cwol f · Xα − X|
Dβ = |Cwol f · Xβ − X|
Dδ = |Cwol f · Xδ − X|

X1 = Xα − A · Dα

X2 = Xβ − A · Dβ

X3 = Xδ − A · Dδ

Xnew =
X1 + X2 + X3

3

(4)

Among them:

- D represents the distance between the current wolf and the αwol f , βwol f , and δwol f .
- Xα,β,δ is the position of the αwol f , βwol f , and δwol f , representing the best solution found

so far.
- Xnew is the updated position of the wolf, the elements in Xnew are essentially combi-

nations of SVM hyperparameters, optimized through the GWO process to find the
best parameter settings.

2.2.3. GWO Algorithm Steps

Linear Kernel function:
K(xi, xj) = xi · xj (5)

RBF Kernel function:

K(xi, xj) = exp
(
−γ∥xi − xj∥2

)
(6)

Polynomial Kernel function:

K(xi, xj) = (xi · xj + r)d (7)

Optimization objective:

min
w,b

1
2
∥w∥2 + CSVM

n

∑
i=1

ξi (8)

Among them:

- w is the weight vector that determines the hyperplane for classification.
- b is the bias term.
- ∥w∥2 is the square norm of the weight vector used to control the complexity of

the model.
- CSVM is a regularization parameter used to balance the misclassification of training

data and model complexity.
- ξi is a slack variable that allows certain samples to be misclassified.
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The goal of this formula is to minimize the complexity and training error of the model,
thereby improving its generalization ability.

Here, the GWO algorithm is used to optimize the hyperparameters of SVM (such as
CSVM and γ) to improve the accuracy and efficiency of fault detection.

Steps for combining GWO:

1. Initialize the positions of the wolves, for linear kernel, train the SVM with the linear
kernel using the wolf’s position parameter (CSVM); train the SVM with the RBF
kernel using the wolf’s position parameters (CSVM, γ), and train the SVM with the
Polynomial kernel using the wolf’s position parameters (CSVM) and coefficient term
(r), the degree of polynomial Kernel in this study is confirmed.

2. Evaluate the fitness of each wolf based on the classification accuracy of the SVM.
3. Update the positions of αwol f , βwol f , and δwol f .
4. Update the positions of the other wolves.
5. Repeat the above steps until the maximum number of iterations is reached.

2.2.4. Summary

The GWO algorithm is used to adjust the SVM hyperparameters CSVM, γ and co-
efficient term r. These parameters significantly affect the model’s performance. The
adjustments are as follows:

- CSVM determines the balance between minimizing the error on the training data and
reducing the complexity of the model. A larger CSVM value tries to classify every
sample correctly, which may lead to overfitting, while a smaller CSVM value allows
some misclassifications, potentially improving generalization.

- γ controls the width of the Gaussian kernel. A larger γ value means higher sensitivity
to individual data points, making the model focus more on local patterns, while a
smaller γ value makes the model consider a broader range of data points.

- r adjusts the influence of higher-order terms in the polynomial kernel.

Using the GWO algorithm, we dynamically adjust the parameters CSVM, γ and co-
efficient term r in the code to find the parameter combination that achieves the highest
classification accuracy on the validation set. The adjusted model is then evaluated on the
test set to assess its actual performance. Finally, the model is trained on the training set and
validated on the test set, completing the process.

3. Experimental Section
3.1. Experimental Setup and Dataset

The experiment used MATLAB 2022b and Python 3.9.
This fault detection has high accuracy and fast speed.
There are many sensors on the wheelset bearing. The data used in the experiment

were the signal of one of the acceleration sensors and microphone sensors. The data
were collected from the bearing in our laboratory. The data were collected at 25,600 sam-
ples/second.

Wheelset bearings are essential elements utilized in railway vehicles, including trains,
subways, and light rail systems. The axles and wheels are supported by them, carrying the
full weight of the vehicle. These bearings need to function consistently and dependably in
diverse and intricate circumstances. It is shown in Figure 3a.

In order to monitor the health of bearings, sensors are installed on the bearings. It is
shown in Figure 3b which is a cross-sectional view of Figure 3a, among them, 1 is tested
bearing, 2 is accelerometer, 3 is auxiliary bearing, 4 is microphone sensor, 5 is friction wheel,
6 is motor, 7 is foundation. The height of the microphone sensor position is 300 mm, and
the horizontal distance from the test bearing is 500 mm.
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Figure 3. Data collection platform. (a) Wheelset bearings; (b) sensor installation location.

Accelerometers are predominantly employed to capture the vibration signals emitted
by bearings. These signals can indicate the operating condition of the bearings, such as
the existence of wear, imbalance, misalignment, or other mechanical problems. Micro-
phone sensors are employed to capture the sound emissions generated by bearings during
their functioning. Various sorts of flaws produce unique sound characteristics, and by
analyzing these sounds, the state of the bearings can be initially evaluated. By integrat-
ing accelerometers and microphone sensors, it is possible to monitor and diagnose the
operational condition of the bearings in a more comprehensive manner, enabling the quick
identification and treatment of potential problems, ensuring the smooth functioning of
the equipment.

Four different states are Normal, Outer raceway scoring (referring to damage on the
raceway surface where the rolling elements contact), Outer race scoring (a broader term
encompassing damage on any part of the outer race), and Outer raceway pitting (refers
to the pitting phenomenon on the raceway surface of the outer ring of a bearing). Each
state has 1000 segments, each vibration segment has 16 feature samples after FFT, and each
sound segment has 14 feature samples after MFCC, concatenating these features to form a
single data segment, hence each fusion segment has 30 feature samples.

The data in each state were evenly partitioned into 4 distinct groups with 250 segments
each. The validation was performed using a 4-fold cross-validation approach. The details
are shown in Table 2.

Table 2. Dataset was split into training and testing groups for the 4-fold cross-validation.

Training Group Testing Group

Validation 1 2, 3, 4 1
Validation 2 1, 3, 4 2
Validation 3 1, 2, 4 3
Validation 4 1, 2, 3 4

3.2. Data Analysis

As shown in Figure 4a, the length of each sample of raw vibration data was 32, and then
the Gaussian white noise was added to the vibration data. The reason for adding different
levels of noise is that the data collected from our laboratory are too clear in comparison
with the data from real-world applications. After FFT, the length of each segment is 16.
In Figure 4b, the length of each sample of raw sound data was 768 because the default
window length in MATLAB depends on the specified sample rate: round (e.g., the number
of frequency sampling × 0.03) and the frequency sampling is 25,600 samples/second, and
then the Gaussian white noise is added to the sound data. After MFCC, the length of each
segment is 14.
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Figure 4. Data spectrum. (a) vibration data; (b) sound data.

As shown in Figure 5, the length of each sample of fusion data was 30, the difference
states at the peak value were obvious.

Figure 5. Fusion data.

3.3. Experimental Results

In this experiment, ten comparative networks were introduced to validate the perfor-
mance and confirm the accuracy of each method. To validate the performance of the method-
ology, the Neural Network and SVM comparison models in MATLAB were introduced.

3.3.1. Comparison Performance

In this part, the fusion data were trained and tested with a few neural network methods
and SVM methods [37]. In this section, the fusion data underwent training and testing using
several neural network and SVM algorithms [37]. For neural network methods, the best
method was the Trilayered Neural Network, whose accuracy was 97.8%. For SVM methods,
the best method was the Quadratic SVM, whose accuracy was 97.9%. The accuracy data are



Technologies 2024, 12, 144 10 of 14

shown in Figure 6. Among these 10 methods, the best result was demonstrated by Quadratic
SVM. Additionally, the model of SVM is simpler than neural network. This means SVM
can achieve superior efficiency in data detection compared to neural networks. Hence, the
suggested approach opts for SVM and enhances its performance by incorporating GWO.

Figure 6. Comparison of accuracy of fusion data in Matlab classification learner.

3.3.2. Training Loss

For the proposed method, the model output was used to classify tasks (using ‘SVM’).
The training loss exhibits a quick decline in the initial iterations and thereafter reaches a
stable state in the middle stages. This suggests that the process of training the model has
achieved a state of convergence after 200 iterations, as is shown in Figure 7.

Figure 7. The loss curve of changes with training progress.
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4. Discussion

To create a functional model, it is necessary to achieve a high level of accuracy with
real-time capability.

4.1. Evaluation of Different Lengths in Each Segment

In this part, five SVM methods in MATLAB are used for different lengths of testing in
each segment, including lengths of 256, 128, 64, and 32. The results are shown in Table 3,
for the length of 32, the best accuracy achieved is 98% which shows that the length of 32 in
each segment contains enough characteristic information.

Table 3. Testing accuracy of different lengths in each segment.

SVM Method Data Types Length
256 128 64 32

Linear SVM Vibration 100% 98% 98% 97%
Sound 99% 100% 99% 97%

Cubic SVM Vibration 100% 100% 99% 98%
Sound 99% 100% 98% 97%

Quadratic SVM Vibration 100% 100% 98% 98%
Sound 99% 100% 98% 97%

Coarse Guassian SVM Vibration 100% 99% 99% 97%
Sound 99% 100% 97% 93%

Medium Gaussian SVM Vibration 99% 99% 99% 96%
Sound 99% 100% 100% 98%

4.2. Evaluation of Proposed Method Performance

In this part, the GWO-SVM method initializes the number of wolves as n = 10 and
the number of iterations as L = 200; The software executes using a 4-fold cross-validation
approach, with each group being repeated 5 times. Following each iteration, the wolves
undergo a sorting process based on their fitness values, which allows for the identification
of the three wolves with the greatest fitness levels. These wolves are referred to as the
alpha, beta, and delta wolves. The alpha wolf is prioritized due to its superior fitness. The
ultimate trained model exclusively utilizes the parameters of the alpha wolf.

For vibration data and sound data, as shown in Table 4, the best result in Matlab was
Medium Gaussian SVM, whose accuracy was 68% in vibration data and 97.6% in sound
data, respectively. The result obtained by the GWO-SVM model using Medium Gaussian
SVM was 68.1% and 97.7%, respectively.

Table 4. Description of different segments.

Kernel of SVM Training
Model Vibration Accuracy Sound

Accuracy Fusion Accuracy

Linear SVM Matlab 67.6% 97.4% 97.8%
GWO-SVM 68% 97.6% 98.3%

Quadratic SVM Matlab 67.4% 97.2% 97.9%
GWO-SVM 67.7% 97.3% 98%

Cubic SVM Matlab 66.8% 95.5% 97.5%
GWO-SVM 66.8% 97.2% 97.7%

Gaussian SVM

Matlab-
Medium

Gaussian SVM
68% 97.6% 97%

Matlab-Coarse
Gaussian SVM 67.9% 95.2% 94.3%

GWO-SVM 68.1% 97.7% 98.1%
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For fusion data, a comparison was made between the GWO-SVM in Python and
the SVM method in MATLAB. As shown in Table 4, the best result in MATLAB was
Quadratic SVM, whose accuracy was 97.9%; The result obtained by the GWO-SVM model
using Quadratic SVM was 98%. Additionally, the best result in GWO-SVM was Linear
GWO-SVM, whose accuracy was 98.3%.

It is obvious from Table 4 that the proposed method had a better performance than the
traditional SVM methods in both vibration, sound and fusion data.

4.3. Evaluation of Testing Speed

This experiment measures the total testing time for all 1000 testing segments and then
calculates its average for each segment.

In this part, as shown in Table 5, the testing time was tested with different SVM
kernels in Python: linear kernel, gaussian kernel (rbf kernel) and quadratic-cubic kernel
(polynomial kernel). The frequency sampling was 25,600 samples/second, the sampling
time for each segment of vibration data was 1.25 ms and the sampling time for each segment
of sound data was 30 ms; thus, the sampling time for each segment of fusion data was
31.25 ms.

Table 5. Test results and time of fusion data.

Different Kernel
of GWO-SVM Accuracy Testing Time for Each Segment Sampling Time

Linear SVM 98.3% 0.0027 ms

31.25 msQuadratic SVM 98% 0.0034 ms
Cubic SVM 97.7% 0.0035 ms

Gaussian SVM 98.1% 0.016 ms

The proposed method demonstrates high efficiency in processing fusion data, enabling
rapid analysis and prediction with a remarkable speed of 0.0027 milliseconds per data
segment. The experimental results indicate that the model attains a 98.3% accuracy in
promptly recognizing wheelset bearing defects. The proposed method exhibited superior
performance in terms of both accuracy and execution time when compared to the compara-
tive model. The proposed method exhibited exceptional performance and is in line with
the specified requirements.

It should be mentioned here, this excellent experimental performance is based on this
single case only, where there are only three fault and normal situations under our limited
equipment conditions. However, it will be straightforward to extend our method to any
other scenarios where more fault and sensors can be used in real situations. Of course,
more evaluations are needed.

5. Conclusions

This work developed a GWO-SVM model for real-time identification of defects in
wheelset bearings. The model was developed and trained using the Python programming
language. Subsequently, the model was executed on a desktop computer to replicate
fast wheelset bearing fault detection for possible real-time implementation. The results
of the experiment show that the model achieves accuracy and quickly identifies faults
within milliseconds of their occurrence. It achieved an accuracy rate of 98.3% with a
testing duration of 0.0027 ms proving its effectiveness and precision in detecting wheelset
bearing defects.

This work demonstrates the practical ramifications as well as potential uses of real-
time identification of faults in wheelset bearings using a GWO-SVM model. The model
demonstrates remarkable precision in rapidly detecting bearing defects and promptly
making forecasts, leading to decreased maintenance expenses, enhanced bearing accessibil-
ity, and improved overall effectiveness. By promptly detecting malfunctions during the
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operation of bearings, this model enables early detection and swift action, thereby reducing
downtime and decreasing maintenance expenses.

While this study has made notable progress, there remains a substantial amount of
effort to enhance the effectiveness and practicality of the suggested approach. Some guide-
lines for future endeavors include the following: 1. Enhanced data sources: Subsequent
studies can explore the inclusion of other sensor data, such as temperature and pressure,
to enhance the comprehensiveness and precision of defect identification. 2. Adaptive
Algorithm Optimization: In real-world scenarios, researchers investigate adaptive opti-
mization algorithms that allow the model to autonomously modify parameters according
to the environment and operating conditions, thereby improving the model’s resilience.
3. Long-term Performance Evaluation: Conduct long-term performance evaluations and
maintenance cost analyses to verify the economic benefits and sustainability of the pro-
posed method in practical operations. By exploring and improving these future work
directions, it is expected that the performance and application of the GWO-SVM method
in bearing fault detection can be further enhanced, providing a more reliable and efficient
industrial maintenance solution.
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