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 A B S T R A C T

Accurate and robust estimation of the vehicle sideslip angle is crucial for maintaining safety 
under extreme and variable driving conditions. In this paper, we first propose a reinforcement 
learning-based framework for estimator fusion in vehicle sideslip angle estimation, where the 
estimator is constructed using physically guided neural networks incorporating gated recurrent 
unit (GRU) and self-attention mechanisms. First, the physical knowledge of vehicle kinematics 
and dynamics is analyzed to design the input configuration of the dynamically and kinematically 
guided neural network estimators. Second, a GRU-based neural network with self-attention is 
developed to capture both instantaneous and long-range dependencies in time-series signals, 
serving as the employed neural network estimator. Third, a reinforcement learning-based 
estimator fusion framework is proposed to integrate the dynamically and kinematically guided 
neural network estimators. The estimator fusion is modeled as a Markov decision process (MDP) 
and implemented using soft actor–critic with auto-entropy, extending reinforcement learning to 
estimation scenarios where actions do not affect state transitions. Finally, the accuracy and 
robustness of sideslip angle estimation, as well as the generalizability and adaptability of the 
reinforcement learning-based estimator fusion framework, are validated through diverse real 
vehicle experiments using both self-collected and public datasets under normal and extreme 
maneuvers.

. Introduction

Autonomous driving and collaborative autonomous driving technologies help reduce traffic congestion, improve vehicle safety, 
nd optimize energy efficiency, paving the way for safer, more efficient, and sustainable intelligent transportation systems [1,2]. 
he effectiveness of these advanced technologies relies on an accurate vehicle state. The vehicle sideslip angle, as a key indicator 
f lateral stability, is critical for maintaining the vehicle’s stability boundaries within active safety control and autonomous driving 
ystems, particularly in collaborative autonomous driving under complex and varying driving scenarios [3,4].
However, due to the cost limitation of mass production vehicles, it is often infeasible to equip additional sensors that can directly 

nd accurately measure sideslip angle. As a result, estimating sideslip angle using measurement signals from on-board sensors 
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has become a practical solution [5]. In parallel, combining multiple estimators via fusion methods has emerged as a promising 
approach in state estimation – not limited to sideslip angle estimation – offering improved robustness and generalization under 
varying conditions, and proving valuable in safety-critical applications such as sideslip angle estimation.

1.1. Related work

Accordingly, related work is discussed in two areas: vehicle sideslip angle estimation and estimator fusion methods.

1.1.1. Vehicle sideslip angle estimation
Current sideslip angle estimation methods are categorized into model-based, data-driven, and hybrid approaches.
Model-based methods are further divided into dynamics-based, kinematics-based, and combined-model approaches in terms of 

physical knowledge [1,6]. Dynamics-based methods integrate vehicle dynamics and tire models with advanced observers or filters 
to achieve high estimation accuracy under strong dynamic conditions [7,8]. Since filter parameters significantly affect estimation, 
adaptive filters have been proposed [3,9,10]. However, their strong dependence on accurate vehicle and road parameters, and 
the computational burden of nonlinear models limits real-time performance. Kinematics-based approaches use vehicle motion 
relationships, decoupling inherent vehicle parameters [11]. However, they are prone to drift and require reset strategy to limit 
cumulative errors. Global navigation satellite systems (GNSS)-assisted methods have been introduced to correct accumulated 
errors [12,13] with event-trigger mechanism [14]. Kinematics-based approaches are less accurate under aggressive maneuvers, while 
GNSS signals are easily affected by obstacles and have low update rates. To address the limitations of single model, some researchers 
have combined dynamics- and kinematics-based approaches [15–18]. A fuzzy logic-based approach integrating a velocity Kalman 
filter (KF) from kinematics and an augmented KF from dynamics was proposed [19]. However, the combined-model approaches 
largely depends on the fusion strategy, current strategies struggle to adaptively adjust weights in time-varying driving conditions, 
reducing estimation accuracy. A detailed discussion of fusion strategies is given in the next subsection.

Data-driven methods have gain attention for the ability to capture complex nonlinear relationships and overcome the limitations 
of model-based approaches [20]. Sun applied long short-term memory (LSTM) and bidirectional LSTM (BiLSTM) networks with 
particle swarm optimization for hyperparameter tuning [21]. Polzleitner proposed an recurrent neural network (RNN)-based method 
incorporating feature importance, uncertainty prediction, and Monte Carlo dropout for confidence interval estimation [22]. Novotny 
developed a hybrid neural network combining convolutional neural network (CNN) with GRU for snowy roads [23]. However, 
existing methods like LSTM, RNN, and GRU excel at capturing short-term correlations, they struggle with long-term temporal 
dependencies, limiting adaptability to varying driving conditions. Moreover, most methods use all available measurements as inputs 
without selection, introducing irrelevant or redundant information. As the importance of each signal varies with driving conditions, 
these overload inputs reduce estimation accuracy and increase computational cost.

Hybrid methods combine model-based and data-driven approaches to take advantage of both physical modeling and learning 
flexibility [2,3,24,25]. Bertipaglia proposed a CNN-assisted unscented Kalman filter (UKF), using CNN output as a pseudo-
measurement for sideslip angle estimation, but parameter sensitivity and model mismatch across vehicles and scenarios hinder 
accuracy [26]. Lio introduced a neural network-based lateral velocity estimator with modular design and nonlinear feedback, but 
reliance on kinematic assumptions limits performance under dynamic conditions, while sensor noise causes long-term drift [27]. 
Most hybrid methods rely on a single physical model, supplemented by the neural network, and thus inherit the limitations of the 
single model. For instance, dynamic-model-based hybrid method ensures accuracy when the dynamic equations are applicable [26], 
while kinematic model-based hybrid methods accumulate errors under aggressive conditions [27]. When real-world scenarios deviate 
from single-model assumptions, neural network is forced to learn under incorrect physical constraints, ultimately reducing estimation 
accuracy, making it insufficient to rely solely on a single physical model.

To achieve accurate and robust sideslip angle estimation across various driving scenarios, a fusion framework that integrates 
multiple physical knowledge estimators is needed by adaptively assigning weights. By fusing estimators based on different physical 
principles (e.g., dynamics-based and kinematics-based models) or sensors at the decision level [28], reliance on any single source 
is effectively reduced, and fault tolerance is improved, making it an indispensable component of safety-critical applications.

1.1.2. Estimator fusion methods
Beyond vehicle sideslip angle estimation, estimator fusion has been adopted in a broad applications. With the increasing 

complexity of modern engineering systems and the need for precise control under various conditions, estimator fusion has been 
widely applied in industrial devices [28,29], power systems [30,31], and autonomous driving technologies [32,33]. Thus, developing 
a flexible and adaptive estimator fusion framework is essential for both vehicle state estimation and general estimation tasks.

Existing estimator fusion can be divided into rule-based, Bayesian-based, and data-driven methods [28,31,34].
Rule-based methods usually assign estimator weights using predefined logic from expert knowledge. Common strategies include 

fuzzy logic [19,35,36], error weighting [37–39], entropy weighting [40,41], and custom-designed indicators [42]. These methods are 
usually concise and straightforward, but performance is limited in dynamically uncertain environments. Chen proposed a fuzzy logic-
based fusion strategy for sideslip angle estimation, using vehicle speed, tire sideslip angle, and slip ratio to optimize weights [43]. 
A matrix-weighted fusion strategy with confidence and error covariance was proposed to combine multiple parallel estimators and 
mitigate errors caused by non-line-of-sight (NLOS) conditions [38]. However, these strategies are based on predefined static or 
semi-static rules, making them lack robustness in dynamically changing scenarios.
2 
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Bayesian-based methods assign estimator weights through probabilistic modeling [33,44], typically using Kalman filters and 
their extensions [15,24]. Park proposed an interacting multiple model (IMM) Kalman filter to adjust weights based on real-time 
vehicle states [15]. But performance is highly dependent on hyperparameters (e.g., process and measurement noise), and suffer 
from computational complexity in nonlinear modeling.

Data-driven methods learn fusion strategies from datasets, exhibiting strong adaptability and the ability to capture nonlinear 
relationships, where machine learning (ML) and deep learning (DL) techniques are typically implemented [29,32,45]. Lee proposed 
a feed-forward neural network to adaptively determine weights of two finite memory estimator (FME) estimators based on vehicle 
dynamics and kinematics [45]. A light gradient boosting machine (LightGBM)-based fusion method was employed to estimate 
instantaneous energy consumption by fusing the outputs from multiple regression algorithms [32]. Despite their flexibility, these 
supervised data-driven models often lack generalizability across varying environments and require large amounts of high-quality 
training data to maintain robustness.Reinforcement learning (RL) has recently emerged as a promising method for estimator fusion, 
as its exploration-based mechanism suits dynamic scenarios well. It has shown excellent results in fields such as agriculture [46] and 
simultaneous localization and mapping (SLAM) [47]. Sharma proposed a deep Q-network (DQN)-based estimator fusion method to 
select the best baseline model for estimating reference evapotranspiration in water management.

However, existing RL-based fusion strategy still has limitations. For example, Sharma’s single-model voting method is difficult 
to fully exploit model complementarity. Furthermore, DQN tends to overestimate, leading to reduced estimation robustness and 
accuracy [46]. Wong proposed a proximal policy optimization (PPO)-based multi-sensor fusion method in SLAM, adjusting weights 
based on environment and anomaly detection, but its limited exploration and sensitivity to input noise weaken robustness [47]. In 
general, present RL-based estimator fusion methods face challenges such as overestimation, limited exploration, and sensitivity to 
noise. Moreover, to the best of the author’s knowledge, there is an absence of methodical mathematical framework for applying 
RL theory to estimator fusion. Unlike classical RL-based control problems, the state transition probability distribution in estimator 
fusion is independent of the agent’s actions. This key difference complicates the direct implementation of classical RL framework to 
estimator fusion and highlights the need for theoretical reformulation to expand the applicability of RL theory.

Therefore, the main gaps to be bridged in the literature are summarized as follows:
(1) Data-driven methods for vehicle sideslip angle estimation often ignore the long-term temporal dependencies and most 

available measurements are used as inputs without proper guidance from vehicle physical knowledge. While some studies 
incorporate either kinematic or dynamic information, the fusion of both remains largely unexplored, resulting in reduced 
accuracy and robustness.

(2) Current estimator fusion methods lack flexibility and adaptability, while existing reinforcement learning-based methods rarely 
derive a methodical mathematical formulation for the key distinction that the environment’s state transition probability 
function is independent of the agent’s actions. They also struggle to effectively address challenges such as overestimation, 
limited exploration, and noise sensitivity.

1.2. Contributions

To address the above challenges, this paper proposes a reinforcement learning-based fusion framework for vehicle sideslip angle 
estimation. The framework integrates dynamically and kinematically guided neural networks built on GRU and self-attention as 
complementary estimators to enhance accuracy and robustness under diverse driving conditions. The main highlights of this paper 
are summarized as follows:
(1) A novel physically guided neural network is proposed for vehicle sideslip angle estimation. Vehicle dynamics and kinematics 

guide the dynamics-based and kinematics-based neural network estimators, the neural network captures transient and 
long-term dependencies in time-series signals by combining GRU and self-attention mechanisms.

(2) A new reinforcement learning-based estimator fusion framework is developed using the soft actor–critic algorithm with auto-
entropy, along with sound mathematical formulation. The fusion process is modeled as a Markov decision process, explicitly 
accounting for the independence of state transitions from agent actions. This framework extends RL beyond control-oriented 
problems to estimator fusion tasks with theoretical clarity.

(3) An innovative sideslip angle estimator is presented by integrating dynamically and kinematically guided neural network esti-
mators within the proposed RL-based fusion framework. Experiments on two different real vehicle datasets verify estimation 
accuracy and robustness of the GRU-based neural network estimator with self-attention, along with the generalizability and 
adaptability of RL-based fusion framework. The potential deployability of the proposed estimator in production vehicles is 
also discussed.

The remainder of this paper is organized as follows. Section 2 introduces the proposed methodology, including the guidance from 
vehicle dynamics and kinematics for the neural network sideslip angle estimator, the GRU and self-attention architecture, and the 
reinforcement learning-based estimator fusion framework. The experimental results on both self-collected and public real-vehicle 
datasets are analyzed in Section 3. The conclusion is provided in Section 4.

2. Methodology

The structure of the vehicle sideslip angle estimation method is shown in Fig.  1. The guidance of vehicle dynamic and kinematic 
for neural network sideslip angle estimator are introduced in Section 2.1. The GRU-based neural network with self-attention for 
sideslip angle estimation is built in Section 2.2. The reinforcement learning-based estimator fusion framework using soft actor–critic 
algorithm with detailed mathematical implementation is proposed in Section 2.3.
3 
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Fig. 1. Structure of sideslip angle estimation method within the reinforcement learning-based fusion framework using dynamically and kinematically guided 
neural network estimators.

2.1. Guidance of vehicle dynamic and kinematic for physical neural network estimators

Production vehicles are typically equipped with inertial measurement unit to measure longitudinal acceleration 𝑎𝑥, lateral 
acceleration 𝑎𝑦, and yaw rate 𝜙̇𝑧, the wheel speed sensor for longitudinal velocity 𝑣𝑥 indirectly, and the steering wheel angle sensor 
for the front wheel steering angle 𝛿𝑓 . Common data-driven methods for sideslip angle estimation use all these measurements as 
inputs. While this approach aims to capture the full vehicle information, it may introduce irrelevant or redundant information, as 
signal importance varies across diving condition. For example, during high-speed cornering, 𝑎𝑦 and 𝜙̇𝑧 are critical for accurately 
estimating sideslip angle, while 𝑎𝑥 has minimal impact. In contrast, during straight-line acceleration or braking, 𝑎𝑥 becomes 
more relevant, while 𝑎𝑦 and 𝜙̇𝑧 contribute little useful information. Including all measurements without accounting for varying 
importance of each signal under driving conditions may lead to increased noise and estimation error. Therefore, the physical 
mechanisms underlying the vehicle kinematic and dynamic perspectives are analyzed in the following to construct kinematics-based 
and dynamics-based neural network estimators.

2.1.1. Guidance for kinematics-based neural network estimator
The sideslip angle 𝛽 is the angle between the vehicle’s longitudinal axis and its actual motion direction, defined by the 

longitudinal velocity 𝑣𝑥 and the combined velocity 𝑣 at the center of gravity (CG), as shown in Fig.  2(a). For small angles (in 
radians), the approximation applies: 

𝛽 = arctan
( 𝑣𝑦
𝑣𝑥

)

≈
𝑣𝑦
𝑣𝑥

. (1)

In a non-inertial reference frame attached to the vehicle body, the longitudinal and lateral accelerations satisfy: 
𝑎𝑦 = 𝑣̇𝑦 + 𝜙̇𝑧 𝑣𝑥, 𝑎𝑥 = 𝑣̇𝑥 − 𝜙̇𝑧 𝑣𝑦, (2)

where 𝑣̇𝑥 and 𝑣̇𝑦 are the derivatives of the longitudinal and lateral velocities. The time derivative 𝛽̇ can be further expanded as: 

𝛽̇(𝑡) =
𝑎𝑦(𝑡)
𝑣𝑥(𝑡)

− 𝜙̇𝑧(𝑡) −
𝑎𝑥(𝑡)
𝑣𝑥(𝑡)

𝛽(𝑡) − 𝜙̇𝑧(𝑡) 𝛽2(𝑡), (3)

where 𝛽̇ follows an ordinary differential equation (ODE), numerical methods like Euler or Runge–Kutta iteratively integrate the ODE 
to compute 𝛽𝑘(𝑡). 

𝛽𝑘(𝑡) = 𝛽(0) + ∫

𝑡

0
𝛽̇(𝜏) 𝑑𝜏. (4)

where 𝛽(0) represents the initial condition. Thus, the kinematics-based method relies on measurable signals {𝑎𝑥, 𝑎𝑦, 𝑣𝑥, 𝜙̇𝑧} and applies 
universally across vehicle types. However, as 𝛽̇ follows an ODE requiring numerical integration, its accuracy depends on robust 
integration rules for starting and resetting, as well as filtering and backward integration techniques to mitigate drift and cumulative 
errors.
4 
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2.1.2. Guidance for dynamics-based neural network estimator
The 3-DOF vehicle dynamics model is adopted, as shown in Fig.  2(a), with the following assumptions:

(1) The vehicle’s degrees of freedom are lateral, longitudinal, and yaw motion.
(2) The front wheel steering angle 𝛿𝑓  is small (less than 8 degrees), with cos 𝛿𝑓 ≈ 1, under an error of 1%.
(3) The vehicle is rear-wheel drive (RWD), and the front-wheel longitudinal force (𝐹𝑥𝑓 ) is neglected in the lateral dynamics 

equation.

𝐹𝑦𝑓  and 𝐹𝑦𝑟 are the lateral tire forces on the front and rear axles, respectively. 𝑚 is the vehicle mass, 𝑙𝑓  and 𝑙𝑟 are the distances 
from the CG to the front and rear axles, respectively. 𝛿𝑓  is given by 𝛿𝑓 = 𝛿𝑠𝑤∕𝑖𝑠𝑤, where 𝛿𝑠𝑤 is the steering wheel angle and 𝑖𝑠𝑤 is 
the steering gear ratio.

Linear tire model has limitations under large tire sideslip angles. To more accurately describe nonlinear tire behavior, the 
nonlinear cornering stiffness 𝐶𝑦 derived from the UniTire model is adopted: 

𝐶𝑦 = 𝐾𝑦(𝑆𝑥 − 1)𝐹𝛷−1, (5)

where 𝑆𝑥 is longitudinal slip ratio, 𝐾𝑦 is lateral slip stiffness, 𝐹  denotes normalized resultant tire force, and 𝛷 accounts for the 
combined slip ratio, more details can be found in [19]. 𝐶𝑦𝑓  and 𝐶𝑦𝑟 are the cornering stiffnesses of the front and rear axles, 
respectively. Therefore, the equivalent lateral tire forces are expressed using the above nonlinear tire model: 

𝐹𝑦𝑓 = 𝐶𝑦𝑓

(

𝛿𝑓 − 𝛽 −
𝑙𝑓 𝜙̇𝑧

𝑣𝑥

)

, 𝐹𝑦𝑟 = 𝐶𝑦𝑟

(

−𝛽 +
𝑙𝑟𝜙̇𝑧
𝑣𝑥

)

. (6)

The lateral dynamics equation is expressed as: 

𝑚(𝑣𝑥𝛽̇ + 𝑣̇𝑥𝛽 + 𝑣𝑥𝜙̇𝑧) = 𝐶𝑦𝑓

(

𝛿𝑓 − 𝛽 −
𝑙𝑓 𝜙̇𝑧

𝑣𝑥

)

+ 𝐶𝑦𝑟

(

−𝛽 +
𝑙𝑟𝜙̇𝑧
𝑣𝑥

)

. (7)

The sideslip angle can be calculated using first-order Euler approximation : 

𝛽𝑑 (𝑡) = 𝛽(𝑡 − 𝛥𝑡) + 𝛥𝑡
𝑚𝑣𝑥(𝑡 − 𝛥𝑡)

[

𝐶𝑦𝑓 (𝑡 − 𝛥𝑡) ⋅ 𝛿𝑓 (𝑡 − 𝛥𝑡)

−
(

𝐶𝑦𝑓 (𝑡 − 𝛥𝑡) + 𝐶𝑦𝑟(𝑡 − 𝛥𝑡) + 𝑚𝑣̇𝑥(𝑡 − 𝛥𝑡)
)

⋅ 𝛽𝑑 (𝑡 − 𝛥𝑡)

+
(

−𝐶𝑦𝑓 (𝑡 − 𝛥𝑡)𝑙𝑓 + 𝐶𝑦𝑟(𝑡 − 𝛥𝑡)𝑙𝑟 − 𝑚𝑣2𝑥(𝑡 − 𝛥𝑡)
)

⋅
𝜙̇𝑧(𝑡 − 𝛥𝑡)
𝑣𝑥(𝑡 − 𝛥𝑡)

]

.

(8)

From the above formulations, it is found that 𝛽𝑑 is derived from the dynamics-based method using measurable signals {𝑣𝑥, 𝜙̇𝑧, 𝛿𝑓 }
and vehicle parameters {𝐶𝑦𝑓 , 𝐶𝑦𝑟, 𝑙𝑓 , 𝑙𝑟, 𝑚}. The dynamics-based method suits rapid lane changes or emergency maneuvers. But its 
reliance on precise vehicle modeling and accurate nonlinear tire characteristics, the need for comprehensive parameter calibration 
raises the threshold for practical deployment. Otherwise, inappropriate parameter settings may lead to degraded estimation accuracy.

2.2. GRU-based neural network with self-attention for sideslip angle estimator

The GRU holds the ability to capture instantaneous and continuous correlations through its gating mechanism, effectively 
modeling short-range dependencies [48,49]. In contrast, the self-attention layer complements this by providing a global contextual 
understanding, thereby addressing long-range dependencies [50]. The fully-connected layer integrates these features seamlessly, 
ensuring they are compatible for subsequent processing. The illustration of the GRU-based network with self-attention is shown in 
Fig.  2(b). The network architecture consists of six layers: an input layer incorporating guidance from vehicle physics, a GRU layer, 
a fully connected layer, a self-attention layer, and two subsequent fully connected output layers, following the data processing 
sequence. It effectively combines the strengths of both sequential and global dependency modeling in vehicle sideslip angle 
estimation.

Given the input time-series data 𝑿 =
{

𝒙1,𝒙2,… ,𝒙𝑡
}

, where 𝒙𝑡 ∈ R𝑑×𝑛𝑤 , where 𝑑 is the dimension of input features, 𝑡 represents 
the current time step in the sequence, and 𝑛𝑤 denotes the length of the temporal input window. Thus 𝒙𝑡 represents the input signals 
over the consecutive time steps from 𝑡 to 𝑡 + 𝑛𝑤 − 1, where 𝑡 ≥ 1. The output is given as 𝒀 =

{

𝜷𝑛𝑤 , 𝜷1+𝑛𝑤 ,… , 𝜷𝑡+𝑛𝑤−1

}

.
Specifically, for the dynamics-based estimator, 𝒙𝑡 = {𝑣𝑥, 𝜙̇𝑧, 𝛿𝑓 }; for the kinematics-based estimator, 𝒙𝑡 = {𝑎𝑥, 𝑎𝑦, 𝑣𝑥, 𝜙̇𝑧}; and for 

the all-input estimator, 𝒙𝑡 = {𝑎𝑥, 𝑎𝑦, 𝜙̇𝑧, 𝛿𝑓 , 𝑣𝑥}. The neural network architecture remains consistent across configurations. The GRU 
layer processes the sequence as follows:

The reset gate 𝒓𝑡 is designed to regulate the extent to which the previous hidden state 𝒉𝑡−1 is forgotten: 

𝒓𝑡 = 𝜎
(

𝑾 𝑟𝒙𝑡 + 𝑼 𝑟𝒉𝑡−1 + 𝒃𝑟
)

. (9)

The update gate 𝒛𝑡 is employed to control the degree to which the previous hidden state 𝒉𝑡−1 is updated with the new input 𝒙𝑡: 

𝒛𝑡 = 𝜎
(

𝑾 𝑧𝒙𝑡 + 𝑼 𝑧𝒉𝑡−1 + 𝒃𝑧
)

. (10)
5 
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Fig. 2. Illustration of vehicle model (left) and GRU-based neural network with self-attention (right).

The candidate hidden state 𝒉̃𝑡 is computed as: 

𝒉̃𝑡 = tanh
(

𝑾 ℎ𝒙𝑡 + 𝒓𝑡 ⊙
(

𝑼ℎ𝒉𝑡−1
)

+ 𝒃ℎ
)

. (11)

The final hidden state 𝒉𝑡 is derived as: 

𝒉𝑡 =
(

1 − 𝒛𝑡
)

⊙ 𝒉𝑡−1 + 𝒛𝑡 ⊙ 𝒉̃𝑡. (12)

The vectors 𝒓𝑡, 𝒛𝑡, 𝒉̃𝑡,𝒉𝑡 ∈ R𝑚 represent the reset gate, update gate, candidate hidden state, and final hidden state at time step 
𝑡, where 𝑚 is the hidden state size (number of GRU units). The weight matrices 𝑾 𝑟,𝑾 𝑧,𝑾 ℎ ∈ R𝑚×𝑑 map input features to the 
hidden state space, while 𝑼 𝑟,𝑼 𝑧,𝑼ℎ ∈ R𝑚×𝑚 perform hidden-to-hidden transformations. The bias vectors 𝒃𝑟, 𝒃𝑧, 𝒃ℎ ∈ R𝑚 refine the 
reset gate, update gate, and candidate hidden state computations. Here, ⊙ denotes element-wise multiplication, 𝜎(⋅) is the sigmoid 
activation function, and tanh(⋅) refers to the hyperbolic tangent activation function.

For each time step 𝑡, the fully connected layer computes the output 𝒈𝑡 incrementally as: 

𝒈𝑡 = 𝑾 g𝒉𝑡 + 𝒃g, (13)

where 𝒈𝑡 ∈ R𝑚, 𝑾 g ∈ R𝑚×𝑚 is the weight matrix, and 𝒃g ∈ R𝑚 is the bias vector. The collection of outputs from the fully connected 
layer up to time step 𝑡 forms the sequence 𝑮𝑡 =

{

𝒈1, 𝒈2,… , 𝒈𝑡
}

, where 𝑮𝑡 ∈ R𝑡×𝑚. This sequence is then fed into the self-attention 
mechanism, with the queries 𝑸𝑡, keys 𝑲 𝑡, and values 𝑽 𝑡 computed as: 

𝑸𝒕 = 𝑮𝒕𝑾 𝑄, 𝑲 𝒕 = 𝑮𝒕𝑾 𝐾 , 𝑽 𝒕 = 𝑮𝒕𝑾 𝑉 , (14)

where 𝑸𝒕,𝑲 𝒕,𝑽 𝒕 ∈ R𝑡×𝑑𝑘, 𝑾 𝑄,𝑾 𝐾 ,𝑾 𝑉 ∈ R𝑚×𝑑𝑘  are the weight matrices, and 𝑑𝑘 is the head dimension.
The scaled dot-product attention is computed at time 𝑡: 

𝒁 𝑡 =
𝑸𝑡𝑲𝑇

𝑡
√

𝑑𝑘
. (15)

To enforce causality, a mask matrix 𝑴 ∈ R𝑡×𝑡 is applied: 

𝒁̃ 𝑡 = 𝒁 𝑡 +𝑴 , 𝑴 𝑖𝑗 =

{

0, if 𝑖 ≥ 𝑗,
−∞, if 𝑖 < 𝑗.

(16)

The masked attention scores 𝑬𝑡 are normalized using the softmax function: 

𝑬𝑡 = sof tmax(𝒁̃ 𝑡). (17)
6 
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The attention output for each head 𝑨(𝑖)
𝑡 ∈ R𝑡×𝑑𝑘  is calculated as: 

𝑨(𝑖)
𝑡 = 𝑬𝑡𝑽 𝑡. (18)

The concatenated output 𝑨𝑡 ∈ R𝑡×𝑛𝑑𝑘  from all attention heads is given as follows: 
𝑨𝑡 = Concat(𝑨(1)

𝑡 ,𝑨(2)
𝑡 ,… ,𝑨(𝑛)

𝑡 ), (19)

where 𝑛 is the number of head, 𝑨𝑡 is then passed through the first fully connected layer, producing the intermediate output 𝑶𝑡: 
𝑶𝑡 = 𝑨𝑡𝑾 𝑂 + 𝒃𝑂 , (20)

where 𝑾 𝑂 ∈ R𝑛𝑑𝑘×𝑚, 𝒃𝑂 ∈ R𝑚, and 𝑶𝑡 ∈ R𝑡×𝑚.
Finally, the second fully connected layer computes the predicted sideslip angle 𝜷̂𝑡: 

𝜷̂𝑡 = 𝑶𝑡𝑾 𝛽 + 𝒃𝛽 , (21)

where 𝑾 𝛽 ∈ R𝑚, 𝒃𝛽 ∈ R, and 𝜷̂𝑡 ∈ R𝑡.
The above parameters are automatically learned via backpropagation, and key hyperparameters are tuned using Bayesian 

optimization to ensure training efficiency and robustness.

2.3. Reinforcement learning-based estimator fusion framework with soft actor–critic

A reinforcement learning-based framework with soft actor–critic is proposed for estimator fusion. Reinforcement learning is 
extended to scenarios where the agent’s actions do not affect the environment’s state transition probability function. The soft 
actor–critic with auto-entropy algorithm is employed within the reinforcement learning-based framework to derive the detailed 
mathematical formulation. The kinematics-based and dynamics-based neural network estimators are integrated into the proposed 
reinforcement learning-based framework for sideslip angle fusion estimation.

2.3.1. Formulation of reinforcement learning-based estimator fusion framework
For a bank of 𝑁 parallel estimation models {𝒙̂1(𝑡), 𝒙̂2(𝑡),… , 𝒙̂𝑁 (𝑡)} with the weights {𝑤1(𝑡), 𝑤2(𝑡),… , 𝑤𝑁 (𝑡)}⊤, the objective 

function is to minimize the fusion estimation error : 

 =
𝑇
∑

𝑡=1

‖

‖

‖

‖

𝒙𝑔(𝑡) − 𝒙̂fusion(𝑡)
‖

‖

‖

‖

2
, 𝒙̂fusion(𝑡) =

𝑁
∑

𝑖=1
𝑤𝑖(𝑡)𝒙̂𝑖(𝑡), (22)

where 𝒙𝑔(𝑡) represents the ground truth, and the weights {𝑤𝑖(𝑡)} satisfy the constraint: 
𝑁
∑

𝑖=1
𝑤𝑖(𝑡) = 1, 𝑤𝑖(𝑡) ≥ 0, ∀𝑖. (23)

The optimal weights {𝑤⋆
𝑖 (𝑡)} are determined by solving: 

min
{𝑤𝑖(𝑡)}

𝑇
∑

𝑡=1
(𝑡), subject to 

𝑁
∑

𝑖=1
𝑤𝑖(𝑡) = 1, 𝑤𝑖(𝑡) ≥ 0, ∀𝑡. (24)

The goal of fusion estimation is to derive the optimal global estimate 𝒙̂fused(𝑡) by effectively combining the estimates from 
parallel models, addressing the challenge of achieving accuracy and robustness in varying and uncertain environments with high 
dimensionality and nonlinearity.

Reinforcement learning provides an exploration-based framework for adaptively determining the optimal fusion weights through 
interaction with the environment, minimizing the expected estimation error and offering a robust, flexible solution for multi-model 
fusion in complex and uncertain scenarios. As the foundation of RL, MDP provides a mathematical representation for modeling 
sequential decision-making problems [51], which is defined as: 

 = ( , , 𝑃 , 𝑟), (25)

where  is the state space,  is the action space, 𝑃  is the state transition probability function, and 𝑟 is the reward function. The 
next state 𝑠𝑡+1 depends on both the current state 𝑠𝑡 and the action 𝑎𝑡. The state transition function can be written as: 

𝑃
(

𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡
)

= Pr
(

𝑆𝑡+1 = 𝑠𝑡+1
|

|

|

𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡
)

. (26)

It is worth mentioning that the state of environment is unaffected by the actions and only the existing state is observed in 
estimation scenario. Although actions in RL do not have a direct impact on state evolution, the state still evolves according to its 
inherent laws or defined dynamics. In this context, a reinforcement learning-based estimator fusion framework is proposed, where 
the state transition 𝑃𝑝 is given by 

𝑃𝑝
(

𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡
)

= 𝑃
(

𝑠𝑡+1 ∣ 𝑠𝑡
)

, (27)

where 𝑎 = {𝑤 (𝑡), 𝑤 (𝑡),… , 𝑤 (𝑡)}⊤, 𝑤 (𝑡) ≥ 0 and ∑𝑁 𝑤 (𝑡) = 1.
𝑡 1 2 𝑁 𝑖 𝑖=1 𝑖
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The return at time step 𝑡 for an infinite-horizon task is defined as the discounted sum of future rewards: 

𝑅𝑡 = 𝑟𝑡 + 𝛾 𝑟𝑡+1 + 𝛾2 𝑟𝑡+2 +⋯ =
∞
∑

𝑘=0
𝛾𝑘 𝑟𝑡+𝑘, 𝑟(𝑡) = 

(

𝒙𝑔(𝑡), 𝒙̂fusion(𝑡)
)

, (28)

where 𝑘 represents the future step relative to 𝑡, the discount factor 𝛾 ∈ (0, 1] controls the impact of future rewards, and  is the 
reward function about estimation error.

The RL agent determines 𝑎𝑡 at each time step to optimize the fusion process, the state transition 𝑃𝑝 is influenced by the current 
state 𝑠𝑡, independent of the action 𝑎𝑡, but it does affect the reward 𝑟𝑡. The objective of reinforcement learning-based estimator fusion 
framework is to maximize the expected return: 

E𝜋 [𝑅𝑡] = E

[ ∞
∑

𝑘=0
𝛾𝑘 𝑟

(

𝑠𝑡+𝑘, 𝑎𝑡+𝑘
)

|

|

|

𝜋

]

, 𝑠𝑡+1 ∼ 𝑃𝑝
(

⋅ ∣ 𝑠𝑡
)

, 𝑎𝑡 ∼ 𝜋
(

⋅ ∣ 𝑠𝑡
)

. (29)

Where 𝜋(𝑎|𝑠) is the policy, specifies how an agent chooses actions 𝑎𝑡 ∼ 𝜋(⋅|𝑠𝑡) in different states.

2.3.2. Implementation of reinforcement learning-based estimator fusion framework with soft actor–critic
The reinforcement learning-based estimator fusion framework can be implemented using various RL algorithms. The choice of 

algorithm depends on the comprehensive consideration of the environment’s complexity, sample efficiency, stability and compu-
tational constraints. SAC is particularly suitable for fusion estimation problems, because the introduction of entropy maximization 
allows SAC to encourage exploration while stabilizing policy update [52,53]. In addition, SAC optimizes one policy and two Q-value 
networks simultaneously, reducing variance in value estimates and preventing policy crashes. Moreover, SAC with auto-entropy 
algorithm further adjusts the temperature parameter, enhancing SAC’s exploration and stability.

Given a sampled transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from replay buffer . Two Q-networks, 𝑄𝜃1  and 𝑄𝜃2 , are employed in SAC with the 
minimization method to reduce overestimation bias and improve stability. 𝜋𝜙 is a stochastic policy parameterized by 𝜙, and 𝑄𝜃̄ is 
a target network with parameters 𝜃̄ updated via soft update to stabilize training.

The loss function 𝐽𝑄(𝜃) for the soft Bellman residual is expressed as: 

𝐽𝑄(𝜃) =
1
2
E(𝑠𝑡 ,𝑎𝑡)∼

[

(

𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) − 𝛾 E𝑠𝑡+1∼𝑃𝑝(⋅∣𝑠𝑡)
[

𝑉𝜃̄(𝑠𝑡+1)
])2

]

, (30)

the gradient of 𝐽𝑄(𝜃) is expressed as follows: 

∇̂𝜃𝐽𝑄(𝜃) = E(𝑠𝑡 ,𝑎𝑡)∼

[

∇𝜃𝑄𝜃(𝑠𝑡, 𝑎𝑡)
(

𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) − 𝛾
(

𝑄𝜃̄(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log𝜋𝜙(𝑎𝑡+1 ∣ 𝑠𝑡+1)
))]

, (31)

where ∇𝜃𝑄𝜃(𝑠𝑡, 𝑎𝑡) is the gradient of the Q-function with respect to its parameters 𝜃.
The policy objective 𝐽𝜋 (𝜑) is expressed as: 

𝐽𝜋 (𝜑) = E𝑠𝑡∼, 𝜖𝑡∼
[

𝛼 log𝜋𝜑
(

𝑓𝜑(𝜖𝑡; 𝑠𝑡) ∣ 𝑠𝑡
)

−𝑄𝜃
(

𝑠𝑡, 𝑓𝜑(𝜖𝑡; 𝑠𝑡)
)]

, (32)

where 𝜖𝑡 is noise sampled from a Gaussian distribution  .
The gradient of 𝐽𝜋 (𝜑) can be derived through the chain rule, as shown below: 

∇̂𝜑𝐽𝜋 (𝜑) = E𝑠𝑡∼,𝜖𝑡∼

[

∇𝜑
(

𝛼 log𝜋𝜑(𝑓𝜑(𝜖𝑡; 𝑠𝑡) ∣ 𝑠𝑡)
)

+
(

∇𝑎𝑡𝛼 log𝜋𝜑(𝑎𝑡 ∣ 𝑠𝑡) − ∇𝑎𝑡𝑄𝜃(𝑠𝑡, 𝑎𝑡)
)

∇𝜑𝑓𝜑(𝜖𝑡; 𝑠𝑡)
]

, (33)

where 𝑎𝑡 = 𝑓𝜑(𝜖𝑡; 𝑠𝑡) is produced by the reparameterization function of policy, the gradient of the Q-function with respect to the 
action 𝑎𝑡 is denoted by ∇𝑎𝑡𝑄𝜃(𝑠𝑡, 𝑎𝑡), and the dependence of the action on the policy parameters 𝜑 is captured by ∇𝜑𝑓𝜑(𝜖𝑡; 𝑠𝑡).

The temperature parameter 𝛼 in SAC algorithm is optimized to match a target entropy , defining the desired level of randomness 
in the policy. The objective for 𝛼 is formulated as follows: 

𝐽 (𝛼) = E𝑎𝑡∼𝜋𝜑(⋅∣𝑠𝑡)
[

−𝛼 log𝜋𝜑(𝑎𝑡 ∣ 𝑠𝑡) − 𝛼
]

, (34)

and the gradient of 𝐽 (𝛼) is computed as: 
∇̂𝛼𝐽 (𝛼) = E𝑎𝑡∼𝜋𝜑(⋅∣𝑠𝑡)

[

− log𝜋𝜑(𝑎𝑡 ∣ 𝑠𝑡) −
]

. (35)

To avoid overly complex detailed derivations affecting the readability of the core content, the complete formulations are given 
in Appendix.

2.3.3. Application on sideslip angle estimator under RL-based fusion framework with soft actor–critic
The reinforcement learning-based estimator fusion framework with SAC is applied to adaptively fuse estimates from kinematics- 

and dynamics-based estimators to obtain an accurate fusion estimation 𝛽𝑓 . The schematic diagram of sideslip angle under 
reinforcement learning-based estimator fusion framework with SAC is shown in Fig.  3.

The state is defined as: 
𝑠𝑡 =

(

𝑎𝑥, 𝑎𝑦, 𝜙̇𝑧, 𝛿𝑓 , 𝑣𝑥
)

, (36)

which consists of measurable signals available on production vehicles, used to observe the motion state of the vehicle.
8 
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Fig. 3. Diagram of sideslip angle estimator under reinforcement learning-based fusion framework with soft actor–critic.

The action is expressed as the fusion weight assigned to the kinematics-based estimator: 
𝑎𝑡 = 𝜔𝑘𝑡 , 0 ≤ 𝜔𝑘𝑡 ≤ 1, (37)

and complementary fusion weight for dynamics-based estimator is (1 − 𝑎𝑡).
The state transition is determined by the vehicle dynamics and sensor noise, with no dependence of fusion weights 𝑎𝑡 and (1−𝑎𝑡). 

The fused sideslip angle estimation is computed as: 
𝛽𝑓 = 𝜔𝑘𝑡𝛽𝑘 + (1 − 𝜔𝑘𝑡 )𝛽𝑑 , (38)

where 𝛽𝑑 and 𝛽𝑘 represent the estimate from dynamics- and kinematics-based estimators, respectively.
Considering practical constraints in computational resources, the fusion weights are not updated at every high-frequency signal 

sampling time of 𝑇𝑠. A longer adjustment duration of 𝑇ℎ is used as the interval for updating the fusion weights to improve 
computational efficiency.

The reward is represented as a piecewise function, with error weights adjusted according to varying conditions: 

𝑟(𝑠𝑡, 𝑎𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−𝑤1
|

|

|

𝛽𝑔 − 𝛽𝑓
|

|

|

, if |𝛽𝑔| > 𝛽th and |𝛽𝑔 − 𝛽𝑓 | > 𝑒th,

−𝑤2
|

|

|

𝛽𝑔 − 𝛽𝑓
|

|

|

, if |𝛽𝑔| > 𝛽th and |𝛽𝑔 − 𝛽𝑓 | ≤ 𝑒th,

−𝑤3
|

|

|

𝛽𝑔 − 𝛽𝑓
|

|

|

, if |𝛽𝑔| ≤ 𝛽th and |𝛽𝑔 − 𝛽𝑓 | > 𝑒th,

−𝑤4
|

|

|

𝛽𝑔 − 𝛽𝑓
|

|

|

, if |𝛽𝑔| ≤ 𝛽th and |𝛽𝑔 − 𝛽𝑓 | ≤ 𝑒th,

(39)

where 𝛽th is the sideslip angle threshold, 𝑒th is the error threshold, and the error weights follow the relationship: 𝑤1 > 𝑤2 = 𝑤3 > 𝑤4. 
This weight hierarchy is designed to prioritize large errors in high-risk scenarios while reducing focus on minor errors in stable 
conditions.

Subsequently, the update interval 𝑇ℎ is designed as a moving window to accumulate rewards and periodically reset cumulative 
rewards 𝑟𝑇ℎ . The return 𝑅 is calculated as the sum of cumulative rewards over all 𝑇ℎ intervals. 

𝑟𝑇ℎ =
𝑡0+𝑇ℎ∕𝑇𝑠
∑

𝑡=𝑡0

𝑟(𝑠𝑡, 𝑎𝑡), 𝑅 =
𝑇0+𝑇𝑎∕𝑇ℎ

∑

𝑡=𝑇0

𝑟𝑇ℎ . (40)

Where 𝑡0 indicates the starting time during the current 𝑇ℎ interval, the cumulative reward is reset at the end of each 𝑇ℎ, and the 
process begins anew for the next 𝑇ℎ interval. 𝑇0 indicates the starting time of the overall period 𝑇𝑎.

3. Experimental results and discussion

The results of the GRU-based neural network with self-attention estimator for sideslip angle and the reinforcement learning-based 
estimator fusion framework with soft actor–critic were analyzed alongside other baseline methods using two different real vehicle 
datasets to demonstrate the applicability and robustness of the proposed methods.
9 
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Fig. 4. Experimental platform and test scenario for self-collected dataset.

Table 1
Dataset partitions for self-collected and public datasets.

(a) Self-collected dataset
 Set Rounds Samples Proportion (%) 
 Training A, B, E 23261 59.61  
 Validation C 7900 20.25  
 Testing D 7860 20.14  

(b) Public dataset
 Set Rounds Samples Proportion (%) 
 Training A, B, D 24572 56.06  
 Validation C 9600 21.90  
 Testing E 9660 22.04  

3.1. Experimental setup and data preparation

The self-collected experiments were conducted on the dry handling track of the Applus IDIADA Proving Ground [54]. The SAIC 
Volkswagen ID.4 served as the test vehicle, equipped with a Kistler Correvit S-Motion DTI for measuring the true sideslip angle, 
velocity, acceleration, angular rate, and position, as well as a Kistler MSW DTI for recording the steering wheel angle, as shown 
in Fig.  4. The public dataset is from the REVS vehicle dynamics database [55], collected from experiments carried out at Palm 
Beach International Raceway using a 1965 Ferrari 250 LM Berlinetta GT, and more details can be found in [56]. All signals in both 
datasets were sampled at 100 Hz. Multiple consecutive laps of the test were completed on the closed driving course, and each lap 
was considered a separate experiment in this paper. The two real vehicle datasets differ in terms of sensors, vehicle parameters, and 
sensor mounting locations.

The set partition for training the neural network estimator is introduced. Five rounds (A-E) were selected in the self-collected 
and public datasets. The true sideslip angles of the two datasets are shown in Fig.  5. Kernel density estimation (KDE) was used to 
analyze the sideslip angle distributions and guide the partition of training, validation, and testing subsets [57]. The KDE results 
are presented in Fig.  6. The KDE of the self-collected dataset shows that rounds C and D have similar distributions, making them 
suitable for consistent validation and testing. Meanwhile, rounds A, B, and E feature diverse scenarios, ensuring that the training 
set captures a wide range of conditions for robust model training. Thus, rounds A, B, and E were assigned to the training set, round 
C to the validation set, and round D to the testing set. For the public dataset, comparable distributions between rounds C and E 
support reliable evaluation, while rounds A, B, and D provide greater variability to improve the network’s generalization. Therefore, 
rounds A, B, and D were used for the training set, round C for the validation set, and round E for the testing set.

The detailed partition is shown in Table  1. For the self-collected dataset, the training set constitutes 59.61% of the total dataset, 
providing sufficient data diversity. The validation and testing sets represent 20.25% and 20.14% of the data, respectively, ensuring 
a balanced evaluation. Similarly, for the public dataset, the training set comprises 56.06% of the total data, while the validation and 
testing sets account for 21.90% and 22.04%, respectively. These proportions provide adequately sized and balanced subsets. The 
true sideslip angles in geodetic coordinates are presented in Fig.  7. Large sideslip angles mainly occur near high-curvature bends, 
with the self-collected dataset exhibiting greater sideslip angles, reaching nearly 7 degrees.

As for the evaluation metrics of sideslip angle estimation, root mean squared error (RMSE), mean absolute error (MAE), maximum 
error (MaxError), relative RMSE, relative MAE, and relative MaxError are used [60], as shown in Table  2. Here, 𝛽𝑔 represents the 
ground truth, 𝛽 is the estimate, 𝛽𝑔 is the mean of the ground truth, and 𝑛 is the total number of samples. Smaller values of RMSE, 
MAE, MaxError Additionally, for relative RMSE, relative MAE, and relative MaxError, a larger negative percentage indicates a greater 
improvement in performance of the proposed method compared to the baseline method. These metrics provide a comprehensive 
framework for evaluation and comparison.
10 
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Fig. 5. True sideslip angles for self-collected and public datasets.

Fig. 6. KDE results for self-collected and public datasets.

Fig. 7. True sideslip angles under geodetic coordinate for self-collected and public datasets.
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Table 2
Evaluation metrics.
 Metric Name Meaning Formula  
 RMSE The average estimation error.

√

1
𝑛

∑𝑛
𝑖=1

(

𝛽𝑖 − 𝛽𝑔,𝑖
)2  

 MAE The average absolute estimation error. 1
𝑛

∑𝑛
𝑖=1

|

|

|

𝛽𝑖 − 𝛽𝑔,𝑖
|

|

|

 
 MaxError The largest estimation error. max𝑛𝑖=1

|

|

|

𝛽𝑖 − 𝛽𝑔,𝑖
|

|

|

 
 Relative RMSE RMSE relative to baseline. RMSEproposed−RMSEbaseline

RMSEbaseline
× 100%  

  Relative MAE MAE relative to baseline. MAEproposed−MAEbaseline
MAEbaseline

× 100%  
 Relative MaxError MaxError relative to baseline. MaxErrorproposed−MaxErrorbaseline

MaxErrorbaseline
× 100% 

Table 3
Comparison of estimation in public dataset.
 Methods RMSE 

(deg)
Relative 
RMSE 
(%)

 

 Factor graph (baseline) [58] 0.57 −48.07  
 Kalman filter (baseline) [58] 0.87 −65.98  
 Parametric approach (baseline) [59] 0.539 −45.08  
 Luenberger (baseline) [27] 0.73 −59.45  
 GRU (baseline) [27] 0.57 −48.07  
 LSTM (baseline) [27] 0.52 −43.08  
 KS-NN (baseline) [27] 0.40 −26.00  
 GRU-based with self-attention (proposed) 0.296 /  

3.2. Evaluation of GRU-based neural network with self-attention for sideslip angle estimator

The training sets for the neural network estimator were as follows: the all-input configuration was applied uniformly to the input 
layer, the optimizer was Adam, the batch size was 128, and the initial learning rate was 0.01, which was reduced by a factor of 0.5 
every 30 epochs. Additionally, a gradient threshold of 10 was applied to prevent gradient explosion during training. The length of 
temporal input window 𝑛𝑤 = 10 (0.1 s) was adopted for the sideslip angle estimator based on the vehicle dynamics time scale. This 
trade-off setting was chosen to capture short-term dynamics while avoiding long-term dependencies that could lead to overfitting.

As for the public dataset, the results of various estimation methods, including the factor graph [58], Kalman filter [58], parametric 
approaches [59], Luenberger observer [27], GRU [27], LSTM [27], KS-NN [27], and the proposed GRU-based neural network with 
self-attention estimator in this paper, are compared in Table  3. It can be seen that the estimation performance of traditional model-
based methods like the KF and observer is poor, with RMSE ranging from 0.7 to 0.8 degrees. The GRU and LSTM neural networks 
improve accuracy, reducing RMSE to 0.52–0.57 degrees. The factor graph and parametric approach perform similarly to neural 
networks. KS-NN, a neural network estimator based on physical knowledge, achieves a lower RMSE of 0.4 degrees. In contrast, 
the proposed GRU-based neural network with self-attention estimator demonstrates the best estimation performance among all the 
above methods, reaching the lowest RMSE of 0.296 degrees, which was reduced by 26% compared to KS-NN, highlighting the 
superiority of the proposed estimator. Its unique architecture effectively captures long-term and transient time-series features to 
achieve accurate estimation.

To better evaluate the effectiveness of the GRU-based neural network with self-attention in sideslip angle estimation, comparisons 
were also made with two baseline models: one using a GRU layer, referred to as the GRU-only neural network model, and the other 
employing a self-attention layer, referred to as the self-attention-only neural network model. This comparison is an ablation study 
to evaluate sole contribution of the main module. GRU, widely used in time-series tasks such as vehicle state prediction, serves as 
a strong baseline in this study. While self-attention excels at capturing long-range dependencies (e.g., in machine translation), it is 
not well-suited for transient dynamics modeling. So the self-attention-only model is not a competitive benchmark in this paper, but 
rather a means to evaluate the role of the self-attention mechanism. Bayesian optimization was employed to tune hyperparameters to 
ensure that each model was evaluated under conditions that maximized its performance. The hyperparameters included the number 
of GRU units, attention heads, and training epochs. A maximum of 100 evaluations was performed using an acquisition function 
based on expected improvement to minimize RMSE on the validation dataset.

The comparative results are shown in Table  4, the similar performance between the GRU-only model (strong baseline) and 
the proposed model on the training and validation sets indicates that these models have been adequately trained to their optimal 
configurations. This ensures a fair comparison on the testing set based on models’ best performance to reflect models’ true 
generalization ability, and detailed sideslip angle estimation on the testing sets is provided in Fig.  8.

For self-collected dataset, the estimate of testing set is shown in Fig.  8(a). The self-attention-only neural network estimator 
had the worst estimation accuracy, with RMSE exceeding 0.3 degrees and maximum error approaching 2 degrees. The GRU-only 
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Table 4
Comparison of GRU-based neural network with self-attention for sideslip angle estimation.

(a) Results of self-collected dataset.
 Datasets Methods RMSE 

(deg)
Relative RMSE 
(%)

MAE 
(deg)

Relative MAE 
(%)

MaxError 
(deg)

Relative MaxError 
(%)

 

 Training 
Set

GRU-only 0.158 −5.70 0.112 −6.25 1.206 5.89  
 Self-attention-only 0.312 −52.24 0.231 −54.55 1.825 −30.03  
 GRU-based with self-attention 0.149 / 0.105 / 1.277 /  
 Validation
Set

GRU-only 0.147 −2.72 0.101 −0.99 0.972 −10.49  
 Self-attention-only 0.350 −59.14 0.237 −57.81 1.912 −54.50  
 GRU-based with self-attention 0.143 / 0.100 / 0.870 /  
 Testing
Set

GRU-only 0.174 −8.62 0.108 −2.78 1.610 −9.25  
 Self-attention-only 0.332 −52.11 0.230 −54.35 2.012 −27.39  
 GRU-based with self-attention 0.159 / 0.105 / 1.461 /  

(b) Results of public dataset.
 Datasets Methods RMSE 

(deg)
Relative RMSE 
(%)

MAE 
(deg)

Relative MAE 
(%)

MaxError 
(deg)

Relative MaxError 
(%)

 

 Training
Set

GRU-only 0.320 −7.50 0.230 −8.70 1.927 −3.94  
 Self-attention-only 0.439 −32.57 0.336 −37.50 1.900 −2.58  
 GRU-based with self-attention 0.296 / 0.210 / 1.851 /  

neural network estimator performed better, achieving RMSE of 0.174 degrees, with maximum error of 1.610 degrees. The proposed 
estimator achieved the lowest RMSE among the three models, with only 0.159 degrees, which is reduced by 8.62% and 52.11% 
compared to the GRU-only and self-attention-only neural network estimators, respectively. Its Maximum error is 1.461 degrees, 
which is 9.25% smaller than that of the GRU-only neural network estimator. Its MAE remained around 0.100 degrees, which is 
also the smallest among the three models. It is observed that the proposed estimator maintains stable and accurate estimation even 
under extreme dynamic conditions, such as in regions I and II. In contrast, the self-attention-only neural network estimator failed to 
capture sideslip angle trend, with its maximum error reaching 2 degrees in regions I. The GRU-only neural network estimator could 
estimate the sideslip angle trend but exhibits larger errors compared to the GRU-based neural network with self-attention estimator. 
For normal driving conditions, such as in region III, estimation errors of all estimators were relatively smaller. In addition, all three 
estimators exhibited some degree of estimation ahead of the ground truth, particularly during transitions from zero to positive. The 
self-attention-only neural network estimator showed the most pronounced early estimate, while the proposed estimator was only 
slightly ahead.

For public dataset, testing set results are presented in Table  4 due to space constraints. Overall estimation errors were larger than 
those in self-collected dataset, but differences among the three estimators were reduced. The GRU-based neural network with self-
attention estimator achieved the lowest RMSE of 0.296 degrees, and the smallest maximum error of 1.851 degrees among the three 
estimators, demonstrating the best estimation performance. The self-attention-only neural network estimator had the highest RMSE 
of 0.439 degrees, which is 32.57% higher than that of the proposed method. The GRU-only neural network estimator exhibited 
moderate performance, with RMSE of 0.320 degrees and MAE of 0.230 degrees, with most estimation errors remaining within 
±1 degrees. However, its RMSE, MAE, and maximum error were 7.50%, 8.70%, and 3.94% larger, respectively, compared to the 
proposed model. The estimation results for testing set are shown in Fig.  8(b). It can be observed that the self-attention-only neural 
network estimator cannot estimate trend of sideslip angle accurately, leading to large errors in high-curvature bends, such as in 
region I, while the proposed estimator had smaller estimation errors. For region II, a sharp transient sideslip state induced by 
sudden steering, the GRU-only model showed larger estimation errors between 34.5–35.7 s, whereas the GRU-based model with 
self-attention more accurately captured the transient dynamics due to the enhanced estimation robustness from the self-attention 
layer. For region III, a high positive sideslip angle condition, the GRU-only model exhibited larger errors between 67.5–79 s. In 
contrast, the proposed estimator provided more accurate and smoother peak estimating, indicating improved generalization under 
sustained high dynamic conditions.

In summary, the GRU-based neural network with self-attention estimator accurately estimates sideslip angles across various 
driving conditions, as evidenced by the improvements in quantitative relative results. In severe transient dynamic scenarios, it 
effectively estimates the varying trend while minimizing oscillations. While the GRU-only estimator performs well in moderate 
scenarios, it shows significant performance degradation under rapid maneuvers, particularly regarding maximum error and local 
transient accuracy. The self-attention-only neural network estimator, although not as effective as a strong estimator, is beneficial 
when combined with GRU by capturing extended temporal patterns and sharp local features, thereby mitigating GRU’s limitations 
in handling transient dynamics. The above analysis demonstrates that the proposed GRU-based neural network with self-attention 
is able to integrate the GRU unit’s ability to capture instantaneous dependencies with the strength of self-attention in extracting 
long-term correlations.

3.3. Evaluation of RL-based fusion framework with soft actor–critic for sideslip angle estimator

Based on the guidance from vehicle dynamics and kinematics for the neural network estimator in Section 2.1, dynamics-based 
and kinematics-based neural network estimators for sideslip angle were developed to integrate with the reinforcement learning-
based estimator fusion framework. Specifically, the kinematics-based and dynamics-based estimators were constructed using the 
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Fig. 8. Results of GRU-based neural network with self-attention for sideslip angle estimation on self-collected and public datasets.

proposed GRU-based neural network with self-attention architecture. The kinematics-based estimator utilized the measurable signals 
{𝑎𝑥, 𝑎𝑦, 𝑣𝑥, 𝜙̇𝑧} as input, while the dynamics-based estimator used {𝑣𝑥, 𝜙̇𝑧, 𝛿𝑓 }.

Additional real-vehicle data with different tire configurations were collected on the same testing ground for the self-collected 
dataset. For the public dataset, an independent real-vehicle dataset, distinct from the training dataset but under the same driving 
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Fig. 9. Results of dynamics-based and kinematics-based estimators for sideslip angle on independent datasets of self-collected and public datasets.

conditions, was selected. These datasets were used to comprehensively evaluate the reinforcement learning-based estimator fusion 
framework employing dynamically and kinematically guided neural network estimators. To distinguish between them, the testing set 
from the training dataset is referred to as the trained dataset testing set, while the additional test dataset is termed the independent 
dataset testing set.

The quantitative results of the kinematics-based and dynamics-based neural network estimators are shown in Table  5. The 
detailed sideslip angle estimates of dynamics-based and kinematics-based estimators on independent datasets of self-collected and 
public datasets as shown in Fig.  9. It is observed that the kinematics-based estimator performed better in most driving scenarios. The 
use of more inputs and simpler integration in the kinematics-based estimator enables easier learning and results in higher accuracy. 
Although the dynamics-based estimator had lower overall accuracy, it relies on a compact input set with greater model nonlinearity 
and complexity, which increases learning difficulty and potentially reducing accuracy. Its maximum estimation error under normal 
driving conditions was smaller, as observed in independent dataset of self-collected dataset. Specifically, in Region I of the self-
collected dataset, the sideslip angle showed a sharp transient increase. The dynamics-based estimator closely estimated the ground 
truth with minimal estimation error, while the kinematics-based estimator exhibited noticeable overestimation. In the small-angle 
Region II, the dynamics-based estimator again outperformed the kinematics-based estimator, whereas the latter displayed a certain 
degree of delay and overestimation. In the straight-line Region III, the dynamics-based estimator provided slightly smoother and 
more stable results. Similarly, in Regions I, II, and III of the public dataset, the dynamics-based estimator better estimated small-
amplitude transients with reduced fluctuation compared to the kinematics-based estimator. These results highlight the robustness 
and superior performance of the dynamics-based estimator, particularly under transient and rapidly changing conditions. While 
kinematics-based estimator may suffer from larger errors during rapid transients due to weakened motion relevance and input 
redundancy, dynamics-based estimator showed more stable performance.

Despite the absence of some input signals in kinematics- and dynamics-based estimators, their estimation performance remains 
acceptable within an acceptable error range, with the RMSE of estimation error usually around 0.5 degrees. Analysis of the above 
results shows that kinematics-based and dynamics-based estimators each excel in specific estimation scenarios. Accordingly, a 
reinforcement learning-based estimator fusion framework with soft actor–critic algorithm is proposed to integrate kinematics-based 
and dynamics-based estimators. This enables adaptive fusion for optimal sideslip angle estimation, thereby improving accuracy and 
robustness under various driving conditions.

The RL training settings were as follows: the optimizer was Adam with a learning rate of 3 × 10−4, the discount factor was 
0.99, the replay buffer size was 106, the batch size was 256, and the entropy target was −1. The policy network consisted of three 
fully connected layers with ReLU activations. The critic network included a fully connected layer, a ReLU activation layer, and an 
output layer. The target critic network was stabilized based on Polyak averaging. To demonstrate robustness, training was performed 
using three different random seeds. The solid line represents the mean return over three trials and the shaded area indicates the 
95% confidence interval, as shown in Fig.  10. Convergence was observed in both datasets, with the self-collected dataset exhibiting 
greater fluctuations compared to the public dataset. This is primarily attributed to the similar estimation accuracy of the kinematics-
based and dynamics-based estimators in the self-collected dataset, which required more training episodes to achieve optimal weight 
assignment.

For comparison, a fuzzy logic-based estimator fusion approach was adopted, where weight allocation was determined by vehicle 
lateral excitation dynamics, such as lateral acceleration, yaw rate, and steering wheel angle, more details can be found in [19]. For 
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Fig. 10. Return plots with episodes under reinforcement learning-based estimator fusion framework with soft actor–critic.

Table 5
Results of three neural network estimators for sideslip angle estimation on multiple testing sets.

(a) Results for self-collected dataset.
 Dataset Methods RMSE 

(deg)
MAE 
(deg)

MaxError
(deg)

 

 Trained 
dataset

Kinematics-based 0.160 0.112 1.393  
 Dynamics-based 0.269 0.171 1.845  
 Independent 
dataset

Kinematics-based 0.241 0.177 1.186  
 Dynamics-based 0.271 0.203 0.939  

(b) Results for public dataset.
 Dataset Methods RMSE 

(deg)
MAE 
(deg)

MaxError
(deg)

 

 Trained 
dataset

Kinematics-based 0.297 0.217 1.616  
 Dynamics-based 0.469 0.346 1.746  
 Independent 
dataset

Kinematics-based 0.294 0.231 1.389  
 Dynamics-based 0.449 0.333 1.479  

simplicity, this method is referred to as the fuzzy-fusion estimator, while the proposed reinforcement learning-based estimator fusion 
framework with soft actor–critic is abbreviated as the RL-fusion estimator. From the perspective of input information utilization, 
the all-input neural network estimator incorporating {𝑎𝑥, 𝑎𝑦, 𝜙̇𝑧, 𝛿𝑓 , 𝑣𝑥} was also constructed for comparison.

Fig.  11 shows the specific estimation results and corresponding weight allocation for the kinematics-based neural network 
estimator over time, along with the vehicle geodetic coordinates on both the self-collected and public datasets. For the self-collected 
dataset, the all-input neural network estimator, fuzzy-fusion estimator, and RL-fusion estimator all demonstrated good estimation 
performance under most conditions, with estimation errors within 0.5 degrees in linear dynamic conditions (blue zone in Fig.  11(a)). 
However, in large sideslip angle regions (purple zone), estimation accuracy decreased. The fuzzy-fusion estimator performed poorly 
between 30–33 s, whereas the RL-fusion estimator maintained higher accuracy. In moderate sideslip angle region (green zone), the 
fuzzy-fusion estimator exhibited fluctuations and failed to assign appropriate weights, while the RL-fusion estimator dynamically 
adjusted weights and maintained stable estimation. In terms of weight for the kinematics-based neural network estimator, although 
both fusion methods prioritized the kinematics-based estimator in large sideslip angle scenarios, the fuzzy-fusion estimator struggled 
to adapt well under moderate sideslip conditions, such as Bend II in Fig.  11(b). Thus, these observations indicate that the RL-fusion 
estimator is more flexible in adapting to varying driving conditions compared to the fuzzy-fusion estimator.

For the public dataset, the estimation errors under large sideslip angle conditions (purple zone in Fig.  11(d)) were similar, 
with both fusion methods assigning close to 1 to the kinematics-based estimator to fully perform its advantage. However, weight 
assignments differed in moderate and small sideslip angle conditions (green and blue zones). The smaller estimation errors of the RL-
fusion estimator indicate that it achieved more appropriate weight allocations, while the fuzzy-fusion estimator was likely influenced 
by irrelevant information, leading to suboptimal weighting decisions. For straight driving conditions, such as during 45–60 s, 
the fuzzy-fusion estimator consistently assigned lower weights to the kinematics-based estimator. In comparison, the RL-fusion 
estimator selectively decreased the weight of the kinematics-based estimator only under specific conditions, thereby maintaining 
lower estimation errors.

To further validate the generalization and robustness of the proposed method, the results on independent datasets from the 
self-collected and public datasets were compared, as shown in Figs.  12(a) and 12(b), respectively. In addition, a slalom driving 
condition from a self-collected real-vehicle experiment was employed for comprehensive verification. This is referred to as the 
extended dataset, with the results shown in Fig.  12(c). The evaluation metrics for these datasets are summarized in Table  6.
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Fig. 11. Comparison of testing set with weight and geodetic coordinates for sideslip angle estimation from trained dataset.

For the self-collected dataset, it is observed that the RL-fusion estimator reduced the RMSE of the estimation error by 3.14%, 
5.60%, and 16.55% compared to the all-input estimator on the trained, independent, and extended datasets, respectively. Moreover, 
the RL-fusion estimator exhibited the smallest maximum estimation error among these three estimators across all datasets. In 
contrast, the fuzzy-fusion estimator had the largest RMSE among the three datasets, which was 7.23%, 9.50% and 47.27% larger 
than the proposed RL-fusion method, respectively, indicating inferior estimation performance. For the public dataset, although the 
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Fig. 12. Estimation comparison with weight for kinematics-based estimator under multiple testing sets.

RMSE of the RL-fusion estimator was not significantly smaller than that of the all-input estimator, its maximum estimation error 
was substantially decreased, with reductions of 13.12% and 17.33% in the trained and independent datasets, respectively. While the 
maximum estimation error of the fuzzy-fusion estimator was approximately the same as that of the RL-fusion estimator, its RMSE 
18 
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Table 6
Results of different fusion models for sideslip angle estimation.

(a) Self-collected dataset.
 Datasets Methods RMSE 

(deg)
Relative RMSE 
(%)

MAE 
(deg)

Relative MAE 
(%)

MaxError 
(deg)

Relative MaxError 
(%)

 

 Trained 
dataset

All-input estimator 0.159 −3.14 0.105 0.95 1.464 −4.78  
 Fuzzy-fusion estimator 0.166 −7.23 0.118 −10.17 1.394 0.00  
 RL-fusion estimator 0.154 / 0.106 / 1.394 /  
 Independent 
dataset

All-input estimator 0.232 −5.60 0.170 −2.94 1.078 −4.36  
 Fuzzy-fusion estimator 0.242 −9.50 0.179 −7.82 1.182 −12.77  
 RL-fusion estimator 0.219 / 0.165 / 1.031 /  
 Extended 
dataset

All-input estimator 0.139 −16.55 0.112 −23.21 0.561 −9.98  
 Fuzzy-fusion estimator 0.220 −47.27 0.159 −45.91 0.974 −48.15  
 RL-fusion estimator 0.116 / 0.086 / 0.505 /  

(b) Public dataset.
 Datasets Methods RMSE 

(deg)
Relative RMSE 
(%)

MAE 
(deg)

Relative MAE 
(%)

MaxError 
(deg)

Relative MaxError 
(%)

 

 Trained 
dataset

All-input estimator 0.296 −0.34 0.210 1.90 1.851 −13.13  
 Fuzzy-fusion estimator 0.327 −9.79 0.244 −12.30 1.614 −0.37  
 RL-fusion estimator 0.295 / 0.214 / 1.608 /  
 Independent 
dataset

All-input estimator 0.287 −0.35 0.217 0.46 1.650 −17.33  
 Fuzzy-fusion estimator 0.300 −4.67 0.233 −6.44 1.371 −0.51  
 RL-fusion estimator 0.286 / 0.218 / 1.364 /  

Fig. 13. Comprehensive relative comparison of different estimators on self-collected and public datasets.

was larger, being 9.79% and 4.67% higher than that of the proposed RL-fusion estimator on the trained and independent datasets, 
respectively.

Fig.  13 presents the comprehensive relative estimation results using normalized RMSE and maximum error across multiple 
datasets. The normalized RMSE is defined as the ratio of the absolute RMSE to the maximum absolute value of the sideslip angle, and 
the normalized maximum error follows the same definition. The arrows indicate the direction of improved performance (lower RMSE 
and Max Error), and the dashed ellipses group results by dataset for comparison. From the previous results, it is evident that the 
overall estimation accuracy of the dynamics-based estimator is poor, so this method is not included in the figure for consistency in 
presentation. It is clear that the proposed RL-fusion estimator demonstrates the best estimation performance, achieving the smallest 
normalized RMSE and the lowest maximum error among the four estimators under transient maneuvers and steady-state conditions. 
It effectively integrates kinematics-based and dynamics-based estimators, dynamically adjusting weights based on driving conditions 
to ensure high accuracy and stability under various driving conditions.

To evaluate the practical applicability of the proposed method, its compatibility with production-level ECUs was examined. The 
proposed estimator relies solely on standard on-board signals, which are accessible via common vehicle protocols. On a desktop 
CPU, it achieves an inference time of approximately 4.47 ms per step, averaged over ten independent trials across five datasets. The 
proposed estimator also demonstrated stable performance across repeated trials, confirming its strong potential for deployment in 
production vehicles.

In summary, the above results demonstrate the excellent performance of GRU-based neural network with self-attention in sideslip 
angle estimation. The reinforcement learning-based estimator fusion framework with soft actor–critic provides accurate and stable 
sideslip angle estimation on different real-vehicle platforms under diverse driving conditions. The generalization and robustness of 
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the proposed fusion framework are validated on both self-collected and public real-vehicle datasets. The engineering significance of 
the proposed estimator’s high potential for practical deployment in production vehicles is analyzed.

4. Conclusions

This paper proposes a reinforcement learning-based fusion framework with soft actor–critic for vehicle sideslip angle estimation, 
integrating dynamically and kinematically guided neural network estimators to improve estimation accuracy and robustness under 
diverse driving conditions across different vehicle configurations. The main contributions of this paper are summarized as follows:

(1) A novel physically guided neural network estimator is proposed for vehicle sideslip angle estimation. The physical knowledge 
of vehicle dynamics and kinematics guides the input configurations of the neural network estimator. The architecture of the 
GRU-based neural network estimator with self-attention excels in capturing both transient and long-term dependencies.

(2) A new reinforcement learning-based estimator fusion framework with soft actor–critic is proposed, along with a sound 
mathematical implementation. The estimator fusion process is formulated as a Markov decision process, considering the state 
transition’s independence from agent actions, thereby extending reinforcement learning to estimation tasks beyond control 
problems.

(3) An innovative vehicle sideslip angle estimator within the reinforcement learning-based fusion framework, integrating 
dynamically and kinematically guided neural network estimators, is presented. The accuracy and robustness of sideslip angle 
estimation, as well as the generalizability and adaptability of the reinforcement learning-based estimator fusion framework, 
were validated on self-collected and public real vehicle datasets under normal and extreme driving conditions . The high 
potential deployability of the proposed estimator in production vehicles is also discussed.

This paper has thoroughly discussed vehicle sideslip angle estimation and the estimator fusion method in general applications, 
while future research could focus on real vehicle experimental validation on wet and icy road conditions and the accurate estimation 
of tire forces. Additionally, it is essential to validate the effectiveness of the proposed reinforcement learning-based estimator fusion 
framework with soft actor–critic in broader critical fields, such as industrial instrumentation and aerospace. Moreover, we also plan 
to reduce the complexity of the proposed estimator, including optimizing the tuning process and pruning, to facilitate its deployment 
in real-world embedded systems in production vehicles.
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Appendix. Detailed formulations for RL-based estimator fusion framework with SAC

The soft Bellman operator  𝜋 in RL-based fusion estimation framework is defined as: 
 𝜋𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑃𝑝(⋅∣𝑠𝑡)

[

𝑉 (𝑠𝑡+1)
]

, (41)

where 
𝑉 (𝑠𝑡+1) = E𝑎𝑡+1∼𝜋(⋅∣𝑠𝑡+1)

[

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log𝜋(𝑎𝑡+1 ∣ 𝑠𝑡+1)
]

. (42)

This operator is a contraction under a suitable norm due to the discount factor 𝛾 < 1. As a result, the fixed-point iteration 
𝑄𝑘+1 =  𝜋𝑄𝑘 converges to the unique fixed point 𝑄𝜋 , representing the soft Q-function of the policy 𝜋.

The soft Q-function quantifies the expected return and is represented using a neural network in practice, with 𝑄𝜃 parameterized 
by 𝜃.

The soft Bellman backup target 𝑦 is defined as: 
𝑦 = 𝑟(𝑠 , 𝑎 ) + 𝛾E

[

𝑉 (𝑠 )
]

, (43)
𝑡 𝑡 𝑠𝑡+1∼𝑃𝑝(⋅∣𝑠𝑡) 𝜃̄ 𝑡+1
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where 
𝑉𝜃̄(𝑠𝑡+1) = E𝑎𝑡+1∼𝜋𝜙(⋅∣𝑠𝑡+1)

[

𝑄𝜃̄(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log𝜋𝜙(𝑎𝑡+1 ∣ 𝑠𝑡+1)
]

. (44)

The policy update in SAC is guided by minimizing the Kullback–Leibler (KL) divergence between the current policy 𝜋𝜙 and the 
Boltzmann distribution 𝜋𝐵 ; the latter is described as the target action probabilities for a given state 𝑠𝑡: 

𝜋𝐵(𝑎 ∣ 𝑠𝑡) =
exp

(

1
𝛼𝑄𝜋 (𝑠𝑡, 𝑎)

)

𝑍𝜋 (𝑠𝑡)
, (45)

where 

𝑍𝜋 (𝑠𝑡) = ∫ exp
(

1
𝛼𝑄𝜋 (𝑠𝑡, 𝑎)

)

𝑑𝑎. (46)

The policy objective based on minimizing the KL divergence is expressed as: 

𝜋new = arg min
𝜋′∈𝛱

DKL
(

𝜋′(⋅ ∣ 𝑠𝑡)
‖

‖

‖

𝜋𝐵(𝑎 ∣ 𝑠𝑡)
)

= arg min
𝜋′∈𝛱

E𝑎𝑡∼𝜋′(⋅∣𝑠𝑡)

[

log𝜋′(𝑎𝑡 ∣ 𝑠𝑡) −
(

1
𝛼
𝑄𝜋 (𝑠𝑡, 𝑎𝑡) − log𝑍𝜋 (𝑠𝑡)

)

]

= arg min
𝜋′∈𝛱

E𝑎𝑡∼𝜋′(⋅∣𝑠𝑡)

[

log𝜋′(𝑎𝑡 ∣ 𝑠𝑡) −
1
𝛼
𝑄𝜋 (𝑠𝑡, 𝑎𝑡)

]

,

(47)

where the constant term log𝑍𝜋 (𝑠𝑡) is independent of 𝜋′ and can be ignored during optimization, 𝜋new represents the optimized 
policy, 𝜋′ denotes a candidate policy within the policy space 𝛱 .

The gradient of 𝐽𝜋 (𝜑) can be derived through the chain rule, as shown below: 

∇̂𝜑𝐽𝜋 (𝜑) = E𝑠𝑡∼,𝜖𝑡∼

[

∇𝜑
(

𝛼 log𝜋𝜑(𝑓𝜑(𝜖𝑡; 𝑠𝑡) ∣ 𝑠𝑡)
)

− ∇𝜑𝑄𝜃(𝑠𝑡, 𝑓𝜑(𝜖𝑡; 𝑠𝑡))
]

= E𝑠𝑡∼,𝜖𝑡∼

[

∇𝜑
(

𝛼 log𝜋𝜑(𝑓𝜑(𝜖𝑡; 𝑠𝑡) ∣ 𝑠𝑡)
)

−
(

∇𝑎𝑡𝑄𝜃(𝑠𝑡, 𝑎𝑡)∇𝜑𝑓𝜙(𝜖𝑡; 𝑠𝑡)
)

]

= E𝑠𝑡∼,𝜖𝑡∼

[

∇𝜑
(

𝛼 log𝜋𝜑(𝑓𝜑(𝜖𝑡; 𝑠𝑡) ∣ 𝑠𝑡)
)

+
(

∇𝑎𝑡𝛼 log𝜋𝜑(𝑎𝑡 ∣ 𝑠𝑡) − ∇𝑎𝑡𝑄𝜃(𝑠𝑡, 𝑎𝑡)
)

∇𝜑𝑓𝜑(𝜖𝑡; 𝑠𝑡)
]

.

(48)
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