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Abstract—Genetic programming has been positioned as a fit-
for-purpose approach for symbolic regression. Researchers tend
to select algorithms that produce a model with low complex-
ity and high accuracy. Multi-objective genetic programming
(MOGP) is a promising approach for finding appropriate models
by considering tradeoffs between accuracy and complexity. The
MOGSRP has gained significant attention for non-dominated sorting
genetic algorithm II (NSGA-II). However, NSGA-II tends to
excessively select individuals of lower complexity, making NSGA-
II inefficient in r eal world a pplications. SD can be a strategy to
promote the evolutionary process by adapting selection pressures
for individuals of various size. It deals with the excessive
tendency to select low complexity individuals in NSGA-II.We
also introduce a practical industrial case of defect detection for
dispensing machines. By modeling the dispensing volume of the
fluid d ispensing s ystems, d efects i n t he d ispensing m achine can
be detected under different external environmental factors.For
the validation of SD, other MOGP algorithms are compared
with the improved NSGA-II algorithm, NSGA-II with SD. By
comparing multi-objective optimization methods tested on seven
general datasets and an industrial case about defect prediction,
the experimental results show that performance of the proposed
approach is superior or same to other models in terms of
accuracy. In terms of complexity, performance of the proposed
approach is satisfactory.

Index Terms—Genetic Programming, symbolic regression,
Multi-Objective, Non-dominated Sorting, fluid d ispensing sys-
tems.
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ENETIC Programming [1] is an effective approach for

Symbolic Regression. It can produce some solutions
whose fitness can be accuracy. However, the GP tends to
generate models with redundancy. This phenomenon is known
as bloat, making solutions uninterpretable [2], [3].

In order to deal with the bloat problem, multi-objective
GP (MOGP) is universally utilized to eliminate the bloat
[1], [4].Furthermore , MOGP , whose objectives are accuracy
(MSE) and complexity (size) , can produce a set of non-
dominated solutions with trade-off between accuracy and
complexity.The second version of the non-dominated sorting
genetic algorithm(NSGA-II) [5] is a widely applied kind
of MOGP framework.As some researches show, NSGA-II,
where the first and second objective are MSE and individual’s
size separately, is extremely inefficient. The reason is the
over-replication of low complexity models [6]. The complex
and accurate models cannot be found. This results in the
evolutionary process getting stuck within the local optimum.
A similar concept is called objective selection bias issue [7].

We propose an algorithm called size diversity (SD) to deal
with the the population collapse [8], [9] problem in NSGA-II.
Specifically, the second objective (size) of MOGP is replaced
by SD. MOGP with SD makes the entire population occupied
with individuals of different sizes. The proposed algorithm
adjusts the selection pressure of MOGP on individuals of
different sizes, so that MOGP does not excessively tend to
select low complexity individuals.

Eventually, we propose a practicable workflow of NSGA-II
with SD. In addition, the algorithm proposed in this paper is
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used to solve the actual engineering case, the defect prediction
of dispensing machine. In addition, the proposed algorithm is
compared with other evolutionary algorithms in terms of the
complexity and accuracy of the output model.

II. RELATED WORK

MOGTP effectively addresses the bloat problem by setting
accuracy and complexity as two objectives [10]. Accuracy
is measured by MSE or RMSE, while complexity can be
defined by tree depth [11], number of nodes [12], or semantic
measures [13]. By considering complexity during selection
process, MOGP can reduce model bloat. In this paper, we
define complexity as the number of nodes (i.e., GP tree size).

A. NSGA-II

NSGA-II [5] is a widely used multi-objective evolution-
ary algorithm (MOEA). Therefore, the MOGP algorithm we
mainly research is NSGA-IL.The framework of NSGA-II is
shown in the figure 1.
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Fig. 1. Workflow of NSGA-II

However, some studies have shown a problem that the entire
population converges to copies of single solution in NSGA-
IT with the objectives,accuracy and size. This phenomenon is
called population collapse [8], [9] or evolvability degeneration
[6].In addition, a concept similar to population collapse is
mentioned, which refers to a phenomenon that ineffective (usu-
ally small) solutions instead of effective ones(usually large) are
more likely to be selected. This is called the objective selection
bias issue [7].

III. S1ZE DIVERSITY

Size Diversity (SD) is a strategy to advance the evolutionary
process by adapting selection pressures for individuals of
various sizes. The goal of adopting SD is to address the
issue of over-replication of small individuals in NSGA-IL.
The reason given rise to this issue is the over-replication of
small individuals in NSGA-II [6]. Furthermore,modification to
selection pressure is a way to solve evolutionary stagnant or
popluation collpase. SD determine selection pressure depend-
ing on proportion of size in the population.

A. Implementation of Size Diversity

Implementation of SD is obtained by counting the number
of individuals of the size and the number of individuals of a
nearby size (determined by [).The calculated SD is assigned
to all individuals of that size as a second objective (fitness).As
the figure 2 and eqution 1 shows, the blue block is the size

to be calculated, and the red colour is the individuals in the
vicinity of the blue. If [ = 1 and the centre size=24, only the
1 block(red block) around the centre size is considered. [ is a
hyperparameter.

N(23) + N(24) + N(25) X
2 +1 M

Where 2] + 1 = 3. N(23) is the number of individuals
of size 23.The aim of SD is to control the selection pressure
depending on proportion of size in the population. If the sum
of number of centre size and the vicinity is too large, it gives
rise to a decline in the selection pressure on all individuals
of this size, which can overcome an issue that population
convergence to copies of small size individuals. The detailed
calculation method of SD is shown as follows.

size_diversity =

20 | 21 |22 | 23 | 24 | 25 | 26 [ 27 | 28

Fig. 2. SD Calculation for 1=1,s=24

As the expression 2 and 3 shows,

S N(s+1i)
A

Where [ is a hyperparameter and N (s) means the number
of individuals of size s in the population. A is number of
considered sizes ,including centre size and the vicinity. For

example, [ = 1,s = 25, the SD for individuals of size 25 is
N(25)+N(24)+N(26) 4 _ o 11

2

size_diversity(s,l) =

i N(s+1i)
20+1
B. Implementation of MOGP with Size Diversity

The figure 3 shows a practical workflow of NSGA-II with
SD, after evaluating all the offspring, the second objective
(size) for all individuals are modified to SD. Taking NSGA-
IT as an example of a multi-objective algorithm framework,
an adjustment module (SD module) is added to the original
multi-objective algorithm framework as is shown in figure
3. MOGP with SD utilizes proposed SD in workflow of
NSGA-II.Complex and accurate models can be maintained
due to the use of SD algorithm, which deal with evolutionary
stagnation.In this way, the models produced by MOGP with
SD achieves the performance of low complexity and high
accuracy.
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Fig. 3. The workflow of MOGP with Size Diversity
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TABLE I
EXPERIMENTAL SETUP FOR GENERALIZED DATASET TESTING

General Parameter Values
Population size 500
Tournament size 2

Generation 1000
Crossover-mutation proportion 0.9-0.1
Initialization Ramped half-&-half (2-6)
Maximum individual size 100

Function set
Terminal set
l

{+7 — X, +*7a2}
Constant U Features
{
2

C. Experimental Setup and Performance Evaluation

In this paper, symbolic regression datasets includes Airfoil,
Boston, Concrete, Dow Chemical, Energy (cooling/heating),
and Yacht. Each dataset is randomly split into 80% training
and 20% testing, and normalized to zero mean and unit
variance.We record the most accurate individuals in the last
generation of the population and their size. In addition, NSGA-
I, NSGA-II with adaptive alpha dominance (a-dom.) [7], GP
and SPEA-II are considered for comparison.

The specific experimental parameters for each algorithm are
shown in Table I, where the random constants are in the range
of (-5,5). +* means that the division is a protected division, i.e.
the function returns 1 if the denominator is 0. MSE of the most
accurate individual was averaged for evaluating performance
of these algorithms (for 30 runs).

1) Performance of Population Distribution: To verify the
effectiveness of the SD strategy for solving objective selection
bias issue [7], we run 30 experiments on these datasets to
evaluate the performance of NSGA-II with SD and conven-
tional NSGA-IL.The figure 4, 5 reveals the distributions of
size in population of NSGA-II with SD and original NSGA-
IL. In population of NSGA-IL the distributions show that there
exists population collapse problem. However,in population
of NSGA-II with SD, there is no population collapse or
population convergence to copies of several specific individu-
als,which means that the population collapse is solved by SD
algorithm.

trend of sizeT
trend of sizeF

Fig. 4. Distribution of NSGA-II ls:i)g 5. Distribution of NSGA-II with

2) Performance of Accuracy and Complexity: We utilize
the average mean of MSE as the performance (accuracy)
measure. If some solution produced by some run is great
different from the one from other runs, we should remove
these outliers. Results where MSE is larger than 1 are treated

as outliers. The table II reveals accuracy(MSE) performance
of these algorithms, including NSGA-II with SD, Adaptive
a-dominance, NSGA-II , and SPEA-II and Standard (Single
Objective) GP. The table III conveys mean of complexity(size).

TABLE I
ACCURACY FOR TEST SET

Dataset SD a-dom. NSGA-II SPEA-II GP
Airfoil 0.280 0.301 0.574 0.430 0.363
Boston 0.225 0.252 0.451 0.321 0.234
Concrete 0.206 0.225 0.508 0.389 0.272
Dow chemical 0.449 0.445 0.871 0.794 0.458
Energy:Cooling  0.106 0.176 0.175 0.143 0.244
Energy:Heating  0.064 0.153 0.194 0.129 0.228
Yacht 0.052 0.0814 0.347 0.216 0.107
TABLE III
COMPLEXITY FOR TEST SET
Dataset SD  a-dom. NSGA-II SPEA-II GP
Airfoil 90.3 97.5 8.7 20.0 98.2
Boston 85.1 91.4 5.0 13.1 82.2
Concrete 92.5 97.2 8.3 21.3 96.7
Dow chemical 73.3 85.0 3.1 5.8 95.8
Energy: cooling  61.7 88.8 7.2 13.4 90.3
Energy: heating  61.6 96.6 6.0 13.9 88.4
Yacht 75.8 94.5 6.0 9.9 94.7

As is shown in tables IT and III, in terms of accuracy (MSE),
the model generated by NSGA-II with SD is the best model,
except for the Dow Chemical dataset. In the Dow Chemi-
cal dataset, it is almost equal to the adaptive c-dominance
model in accuracy. Except for the proposed algorithm NSGA-
II with SD, performance of the adaptive a-dominance is
best,compared to Standard GP, NSGA-II, and SPEA-II. Due
to population collapse, the evolutionary process of NSGA-II
almost stall at the end stage of evolution, which causes that
performance of NSGA-II is worst.From the complexity (size)
point of view, the proposed algorithm produces solutions of
lower complexity than Adaptive c-dominance and Standard
GP. Both NSGA-II and SPEA-II are able to produce solutions
of lower complexity.For example, in terms of accuracy, MSE
of the proposed algorithm and the adaptive a-dominance are
seperately 0.052 and 0.0814 in Yacht dataset. In terms of
complexity, size of the proposed algorithm is 75.8 better than
that of the the adaptive a-dominance ,94.5. Therefore, in Yacht
dataset, the proposed algorithm is better than the adaptive a-
dominance in both of accuracy and complexity. Overall, the
algorithm proposed in this paper, NSGA-II with SD, generates
a model with the best accuracy, and its complexity is better
than other algorithms but NSGA-II and SPEA-II.

IV. AN INDUSTRIAL CASE STUDY

Silicon chips are attached to circuit boards using conductive
adhesive dispensed precisely by a system. The bonding head
places the die into the adhesive to a controlled height. Two
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common dispensing failures(insufficient or excessive glue) can
damage components and lead to rejection. Poor control over
glue shape and volume affects component functionality.

A study [14] identifies several factors influencing dispensing
machine defects, including glue temperature and level, glue
and air pressure, glue fillet threshold, room temperature,
machine calibration decay, and needle age. These factors affect
both the sensitivity of glue output and the positioning of the
glue droplet center.

The proposed MOGP with SD algorithm is used to predict
the glue volume in order to generate a low-complexity model
while ensuring model accuracy. Then the model generated by
the algorithm is used to predict whether samples in datasets
are defects or not. In order to obtain reliable results, we run 10
experiments. The generation of algorithms is 100, and the rest
of the experimental parameters are the same as Section III-C.
Table IV shows the performance of evolutionary algorithms in
an industrial case on predicting defects.

In terms of accuracy, our proposed NSGA-II algorithm with
SD achieves 0 error detection which outperforms compared
algorithms. In addition, the accuracy (MSE) of the symbolic
regression model produced by our proposed algorithm outper-
forms the other compared algorithms. Adap. a-dom. performs
better than NSGA-II and Standard GP.

In terms of the average runtime performance of the algo-
rithm, the average runtime of the algorithm proposed is close
to that of Adap. a-dom.

In terms of complexity (Size), the NSGA-II algorithm pro-
duces the lowest complexity model due to population collapse.

In Section III-C, we take the pareto front generated by the
last generation of populations from the last experiment in the
Airfoil dataset and compute the Hypervolume (HV) in order to
judge the algorithm’s ability to produce a high-quality Pareto
front, where the reference point is set to (1.1, 110). NSGA-II
with SD outperforms the comparison algorithm in this respect.

Overall, our proposed algorithm is a promising approach
to provide low-complexity, high-accuracy symbolic regression
models that have achieved satisfactory performance in real-
world engineering cases.

TABLE IV
DEFECT PREDICTION ACCURACY AND MODEL COMPLEXITY

Algorithms Errors  Size  Runtime MSE HV(Airfoil)
NSGA-II (SD) 0(+) 81.2 314.73s  3.88¢-06 745.40
Adap.a-dom. 1(-) 777  289.36s  6.07e-06 7.54
NSGA-II 5(-) 8.7 102.64s  1.64e-05 29.80
GP 5(-) 789  22641s  1.61e-05 0.00

V. CONCLUSION AND FUTURE WORKS

The major objective of this work is to find accurate and low
complexity models for symbolic regression. We propose SD
to deal with evolutionary stagnation caused by the inefficiency
of NSGA-II. To apply SD strategy, we propose a algoirthm
framework for MOGP with SD.In terms of accuracy,we found
that the model of the proposed algorithm that performs the

best. In terms of model complexity, the performance of the
model was just inferior to NSGA-II and SPEA-II.Overall, the
proposed algorithm is more promising. In the future, we will
continue to explore SD, such as application of SD in Gene
Expression Programming.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 12411530119 and
U21A20447.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[2] S. Luke and L. Panait,“A comparison of bloat control methods for
genetic programming,”’Evolutionary Computation,vol. 14, no. 3, pp.
309-344, 2006.

[3] E.D.deJong, R. A. Watson, and J. B. Pollack, “Reducing bloat and pro-
moting diversity using multi-objective methods,’in Proceedings of the
3rd Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, p. 11-18.

[4] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, "Multiobjective genetic
programming: reducing bloat using SPEA2,” in Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No.01TH8546),
vol. 1, 2001, pp. 536-543 vol. 1.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[6] D. Liu, M. Virgolin, T. Alderliesten, and P. A. N. Bosman,
“Evolvability degeneration in multi-objective genetic programming for
symbolic regression,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 973-981. [Online].
Available: https://doi.org/10.1145/3512290.3528787

[7]1 S. Wang, Y. Mei, and M. Zhang, “A multi-objective genetic program-
ming algorithm with oo dominance and archive for uncertain capacitated
arc routing problem,” IEEE Transactions on Evolutionary Computation,
pp. 1-1, 2022.

[8] K. M. S. Badran and P. I. Rockett, “The roles of diversity preservation
and mutation in preventing population collapse in multiobjective
genetic programming,” in Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO *07. New York,
NY, USA: Association for Computing Machinery, 2007, p. 1551-1558.
[Online]. Available: https://doi.org/10.1145/1276958.1277272

[9]1 E. D. De Jong and J. B. Pollack, “Multi-objective methods for tree
size control,” Genetic Programming and Evolvable Machines, vol. 4,
pp. 211-233, 2003.

[10] M. Kommenda, G. Kronberger, M. Affenzeller, S. M. Winkler, and
B. Burlacu, “Evolving simple symbolic regression models by multi-
objective genetic programming,” Genetic Programming Theory and
Practice XIII, pp. 1-19, 2016.

[11] A. Rafig, E. Naredo, M. Kshirsagar, and C. Ryan, “On the effect of
embedding hierarchy within multi-objective optimization for evolving
symbolic regression models,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, 2022, pp. 594-597.

[12] M. Virgolin, A. De Lorenzo, E. Medvet, and F. Randone, “Learn-
ing a formula of interpretability to learn interpretable formulas,” in
Parallel Problem Solving from Nature—PPSN XVI: 16th International
Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020,
Proceedings, Part Il 16. Springer, 2020, pp. 79-93.

[13] M. Kommenda, A. Beham, M. Affenzeller, and G. Kronberger, “Com-
plexity measures for multi-objective symbolic regression,” in Computer
Aided Systems Theory — EUROCAST 2015, R. Moreno-Diaz, F. Pichler,
and A. Quesada-Arencibia, Eds. Cham: Springer International Publish-
ing, 2015, pp. 409-416.

[14] Danishvar, M., Mousavi, A. & Danishvar, S. The Genomics of Industrial
Process Through the Qualia of Markovian Behavior. IEEE Transactions
On Systems, Man, And Cybernetics: Systems. 52, 7173-7184 (2022)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https:/journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).





