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Abstract—Industrial robots have been widely used in various 

industrial scenarios due to their flexibility and expandability. 

However, robots are susceptible to instability at high speeds and 

load conditions due to their low stiffness and dynamic 

characteristics variation with posture. Enhancing the processing 

stability of industrial robots through data-driven modeling and 

physical modeling approaches suffers from different drawbacks, 

such as solution complexity and weak interpretability. With the 

emergence of physics-informed neural networks (PINNs), new 

methodologies can be developed to enhance the self-aware 

processing of robots. In this paper, typical industry application 

scenarios and dynamics of robotics as well as PINNs are 

introduced and analyzed, and a framework and method based on 

PINNs are proposed to enhance the self-aware operation of 

industrial robots. This framework and methodology contribute to 

the researcher's efforts to apply PINNs more intensively to robot 

operation in the future to improve the stability and intelligence of 

robot operation.  
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I. INTRODUCTION

In modern manufacturing, robots have become a driving 
force for enhancing productivity, precision, and flexibility 
across various industries [1, 2]. The integration of robotic 
systems in processes such as milling, grinding, and drilling has 
demonstrated remarkable efficiency and flexibility advantages, 
particularly in handling complex and large-scale components [3, 
4]. However, industrial robots with an open-architecture design 
exhibit low stiffness and dynamic nonlinear time-varying 
characteristics, leading to unpredictability in the operation 
process [5, 6]. By integrating the robot's spatial static and 
dynamic information with the operational parameter system, the 
robot's self-awareness and operational capabilities would be 
enhanced. 

The Physics-Informed Neural Networks (PINNs) were 
proposed by a research group from Brown University's Applied 
Mathematics Department [7]. These PINNs can learn the 
distribution patterns of training data samples just like traditional 
neural networks, while also learning the physical laws described 
by mathematical equations, enabling the model to learn more 
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generalized pat1terns with fewer data samples [8]. PINNs have 
been applied to industrial scenarios such as condition 
monitoring and stability analysis [9, 10]. However, the nonlinear 
time-varying characteristics of the dynamics and the posture-
dependent characteristics of the static parameters of the robotic 
operating system make modeling and solving its work processes 
difficult.  

This paper analyzes the spatial information and parameter 
flow of the robot operation process and the self-awareness 
modeling process. A solution and learning framework are 
proposed for PINNs with robot self-awareness enhancement. 
This framework enables researchers to apply PINNs to the robot 
operation modeling and physics-solving process, which is 
conducive to enhancing the robot's self-perception operation 
capability. 

II. ROBOTIC OPERATION FLOW AND INHERENT

CHARACTERISTICS 

A. Robot systems and operating procedures

With the improvement of robot load capacity and control
algorithms, robots have been widely used in various fields of 
manufacturing processes. Typical application scenarios for 
industrial robots include welding, drilling, grinding and milling, 
etc. These different tasks require auxiliary end-effector 
equipment and control codes. The operational flow of a task-
oriented industrial robot is shown in Fig. 1(a). The first step is 
to design and plan the robot path according to the task, design 
the robot motion parameters based on empirics, then generate 
the robot control code through offline programming tools, verify 
and debug the robot operation through the simulation 
environment, and finally import the debugged control program 
into the robot control system to perform the task. In the above 
process, the robot's task execution process is open-ended and 
lacks self-awareness of the machining process. Therefore, the 
robot is weak in controlling unexpected situations and non-
stable phenomena, and it is difficult to ensure the stability of the 
machining process. The instability in the machining process, 
especially vibrations, may lead to the deterioration of the 
workpiece surface quality, rapid tool wear, and even damage to 
the robot's structure. 
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Fig. 1. Typical robot application scenarios, operational processes, and inherent characteristics. 

B. Inherent characteristics of robotic machining

As shown in Fig. 1(b), there are differences in the
characteristics of robots and CNC machine tools, mainly as 

follows： (Ⅰ ) Due to the articulated tandem structure, the 

dynamic and static stiffness of the robot is spatially variable and 

much lower than that of the machine tool. (Ⅱ) A robot's modal 

characteristic parameters (such as modal mass, modal damping, 
modal stiffness, modal frequency, etc.) exhibit nonlinear 

variation with pose. Therefore, it is necessary to consider the 
inherent characteristics of robots in the process of improving 
their self-awareness operation capabilities.  

C. Robot operation modeling and self-awareness process

Robot self-awareness mainly consists of advance prediction
before operation and online monitoring during operation. 
Advance prediction consists of establishing the motion 
characteristic equations of the robot for a stable domain solution.

Fig. 2. Robotic operation of self-aware information flow and research dimensions. 
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However, the main difficulty of this issue is the continuous 
variation of the robot's spatial dynamics parameters. As shown 
in Fig. 2, online monitoring recognizes the status of the robot by 
collecting internal signals ( such as current, joint torque, etc.) 
and external signals (such as vibration acceleration, end force, 
sound, etc.), which are susceptible to changes in signal 
characteristics due to changes in posture. It is crucial to obtain 
parametric characterization of robot spatial dynamics and 
operation object information to improve the self-awareness of 
robot operation. 

III. PHYSICS-INFORMED NEURAL NETWORKS

As shown in Fig. 3, the PINNs integrate the advantages of 
both data-driven models and physics models, which could 
enhance neural network interpretability and lack of data. Its 
superiority over traditional data-driven models and physical 
methods is mainly in the following aspects. 

A. Data generation

Traditional data-driven learning methods need to rely on a
great deal of labeled information for training. They are 

unsuitable for cross-work situations where data do not satisfy 
the same distribution. Physical information-based models can 
generate datasets for data model training and reduce the 
distributional differences between simulation data and actual 
operating conditions. This model can minimize the error effects 
on self-awareness due to differences in data distribution across 
different industrial robots and robot postures. 

Fig. 3. Characterization between different models and methods for robot self-
awareness applications. 

Fig. 4. The proposed framework for robot self-aware machining based on PINNs.

B. Physical constraint

Traditional data-driven machine learning approaches are
interpretable and may produce results that exceed physical 
meaning and limitations. In the PINNs, physical knowledge is 
used as a regularization term to constrain the space for solutions 
for machine learning. The solution of the partial differential 

equation is represented as a neural network, and the partial 
differential equation and its initial and boundary conditions are 
constructed as part of the loss function of the neural network, 
thus constraining the solution space of the parameters of the 
neural network. Automatic differentiation techniques are used to 
differentiate the input coordinates and model parameters of the 

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/ICMCR64890.2025.10962807, 2025 3rd International Conference on Mechatronics, Control and Robotics (ICMCR)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



neural network so that the neural network adheres to any 
symmetry, invariance, or conservation principle.  

C. Equation solving

The PINNs are a new class of general-purpose functional
approximators capable of encoding any of the fundamental laws 
of physics that govern a given dataset and can be described by 
partial differential equations. Two different algorithms are 
designed: continuous-time models and discrete-time models. 
The first type of model forms a new family of data-efficient 
spatio-temporal function approximators. The latter type allows 
the use of arbitrarily accurate implicit Runge-Kutta time-
stepping schemes with infinite stages. 

IV. THE FRAMEWORK FOR ROBOT SELF-AWARENESS

It is feasible and potentially valuable to use the fusion of 
physics and data to enhance the self-aware operation of robots. 
The framework for robot self-awareness is shown in Fig. 4, and 
PINNs could be mainly applied to solve real industrial robotics 
problems in the following aspects.  

A. Stability domain prediction

The stabilization domain must be established for parameter
guidance before robot machining. Stability domain 
establishment requires obtaining the robot modal parameters to 
solve the motion characteristic equations, but the modal 
parameters are nonlinearly varying for different robots and 
different postures. It is time-consuming and difficult to obtain 
the modal parameters of the robot under different poses. It is 
necessary to establish the nonlinear time-delay equation and 
solve it, so as to establish the three-dimensional stability domain 
diagram of the robot machining. The learning model 
incorporating physical information can be used to establish an 
algorithm for updating the modal parameters of the robot, and 
its solving algorithm for differential equations can be used to 
establish the stability domain map. 

B. Stiffness modeling and deformation sensing

Robots have low joint and end-effector stiffness especially
in open series articulated structures. Besides, the dynamic and 
static stiffness of the robot changes with the change of spatial 
poses and with a nonlinear characteristics. The deformation of 
the robot's end-effector under high loads and speed is an 
essential factor affecting operational accuracy. To improve the 
accuracy of robot end-effector positioning and machining 
accuracy, it is necessary to sense the end-effector deformation 
of the robot under various loads and then compensate for the 
error in its positioning. It is necessary to establish the 
relationship between the deformation of each joint of the robot 
and the deformation of the end-effector through stiffness 
modeling, so as to obtain the deformation of the end-effector 
under different loads and spatial variation poses. A physical 
fusion data learning model approach can be used to model the 
robot end stiffness and establish the deformation compensation 
mechanism under different working loads. 

C. Status detection

Robotic machining processes are subject to variable loads
and changes in dynamic parameters, causing unavoidable 
instabilities. The instability phenomenon may lead to surface 

deterioration of components, tool wear, and even damage to the 
robot's structural framework. Therefore, it is necessary to 
monitor the machining status of the robot online and make 
timely adjustments to the machining parameters and operating 
status. To improve the feasibility and practicality of the method, 
the status detection process requires the model to have strong 
physical interpretability and rely less on labeled data. Adoption 
of data-driven and fusion of physical knowledge to build a state 
recognition model for robots, which can improve robots' self-
awareness and self-adjustment ability. 

V. CONCLUSION

This paper presents a PINN-based methodology and 
framework to enhance robot self-awareness machining ability. 
Enhancing the self-aware operation of robots can be achieved 
through offline stabilization domain establishment, end-stiffness 
deformation prediction, and online recognition of states in which 
PINNs are introduced. This method and framework can improve 
the self-awareness ability of the robot during operation while 
increasing the interpretability of the algorithm and reducing the 
dependence on a great deal of labeling information. This method 
and framework will help robots be applied in high-load and 
high-speed machining scenarios, such as the machining (e.g., 
milling and grinding) of large components. Based on this 
framework, further research would focus on an autonomous 
approach to obtain the PINN-based models of robotic machining 
systems. 
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