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ABSTRACT 

 

Crime significantly challenges socio-economic development, hindering societal progress and 

stability. This PhD Thesis focuses on training and comparing YOLOv4 with SSD models for 

classifying high-risk perpetrators. The annotated training dataset comprises approximately 3,118 

images, including common weapons such as shotguns, handguns, rifles, and knives. It was 

sourced from the UCF and the NIST criminal databases. The secondary sources are trusted, 

compliant with data privacy laws, and personal identifiable information was anonymized before 

used for training. The models’ validation shows effective object detection, with YOLOv4 achieving 

a mean Average Precision (mAP) of 90.58%. It achieves a 75.99 % precision for identifying persons 

of interest between 4,000 and 10,000 epochs. This model excelled most at detecting knives, 

achieving a precision of 96.11% with 80 instances predicted correctly (TP) with 2 incorrect 

prediction (FP). The recall rate of 74.5% for YOLOv4 indicates the model identified about 74.5% 

of actual positive instances.  Moreover, with an F1 score of 77.2%, our findings highlight a balance 

between precision and recall. However, there is room for improvement due to 259 (FN) missed 

objects out of the 1205 total predictions. In contrast, the SSD model achieved 66.5% precision 

for persons, with its highest precision for handguns at 81.42 %. But adjusting configuration 

variables (hyperparameter tuning) improved the model’s mAP to 84.19%, indicating better 

generalization and prediction across classes. Both architectures performed well by reducing 

misclassification including maintaining relatively high true positive and low false positive rates 

across all classes. To enhance pre-crime analysis, the YOLOv4 model was integrated with the 

Deep-SORT tracker to maintain object identities over time and improved the model's ability to 

identify weapon sub-objects on individuals and categorize potential perpetrator as high-risk.  



13 
 

CHAPTER ONE 

Introduction 
 

The recent rise in global security has become a major concern for stakeholders, 

especially in the context of global governance. Criminal groups are constantly coming up 

with new strategies that security forces struggle to curtail all over the world. Yearly, 

governments, corporations, independent groups, and military forces expend vast 

amounts of resources to fight against the universal threat to peace and harmony. But 

there is a downside to using antiquated methodologies. Fig 1.0 shows the recently 

released 2024 world crime index and ranks, and we can see how Venezuela occupies 

the highest crime index of 81.2 and with low safety index of 18.8. By contrast, Jamaica 

has a crime index of 68.1 and a safety index of 31.9. Every country in the world has 

varying degree of crime indices. This implies no country in the world that is without 

security issues. 

 

Figure 1.0. Top 10 Crime Index [1] 
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According to Agaga in [2], while developed countries are deploying technologies such as 

facial recognition and intruder detection systems to detect crimes, there remains a need 

for systems that utilize machine learning and computer vision to predict crimes before 

they occur. As a result, researchers are making efforts to develop innovative technologies 

that can enable society to effectively combat the rising wave of crime all over the world. 

With the rapid advancements in artificial intelligence, this area of research has significant 

promise applications prospect.  

1.1 . The Transformative Power of Artificial Intelligence in Crime 
Prediction 

 

Artificial intelligence (AI) is an ever-growing field looking to mimic the human brain. It is 

a field that thinks rationally and acts radically on notions of problem solving and 

innovation. Artificial intelligence (AI) is among the leading trends of modern technology, 

whose goal is to replicate human brain cognitive functions. With AI growing in 

remarkable pace, its impact is felt across many sectors; from manufacturing and 

communication technologies, to education, business and agriculture, as well as social 

media, health and national security. One of the growing areas of study at present is the 

potential of AI to predict crime before it happens. Through the application of machine 

learning, computer vision, and deep learning methods we can analyze, detect and 

predict possible criminal behaviors in the society. Figure 1.1 depicts the fundamental 

elements that define the components of artificial intelligence. 
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Figure 1.1. Spectrum of Artificial Intelligence [3] 

Computer vision is concerned with machine interpretation and understanding of visual 

information. Object recognition, scene analysis, and anomaly detection are techniques 

employed in this field. AI systems can process images and videos for relevant patterns 

by these means. Deep learning, on the other hand, means training algorithms to tackle 

substantial amounts of data, enabling them to learn from experience and therefore make 

intelligent choices. The combined effect of these technologies delivers the ability of 

machines to perform such tasks as image retrieval, object tracking and behaviour 

classification, all of which are essential for accurate crime prediction.  

In crime prediction, AI systems process big datasets to detect patterns and correlations 

that suggest criminal behaviour, this is the term referred to as Machine Learning. For 

example, machine learning-based algorithms may exploit historical crimes, social media 

posts, and environmental data to anticipate where crimes and criminals will emerge. 

Through such techniques as pattern recognition and binary classification, these 

algorithms are able to differentiate between normal from abnormal behaviours. This 

knowledge is an essential intelligence to law enforcement agencies. Feature extraction 

is a key part of Machine Vision applications. It involves the identification and isolation of 

image attributes that are important for decision making. These attributes may be low-
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level one such as edges and corners. It could also be a high-level, one in which domain-

specific knowledge related to the objects and activities analysis is necessary.  

Therefore, the performance of image-processing and machine learning algorithms 

evaluated with metrics such as mean average precision (mAP), a measure that shows 

the accuracy of crime predictions. Within AI and computer vision research, one of the 

most established areas is that which concerns Convolutional Neural Networks (CNNs). 

Unlike traditional binary classification methods, CNNs can process temporally dynamic 

spatial data like video information from surveillance cameras. It is this feature which 

makes it possible to understand an object's movement and interaction over time, giving 

more precise predictions for criminal behaviour. Consequently, AIs entry into crime 

prediction could be beneficial in the public safety technology- By combining machine-

learning with computer vision, law enforcement agencies can predict impending 

felonies, assign resources more efficiently and essentially make neighborhoods more 

secure. As AI technology advances, crime prediction will increasingly become an 

integral component of its capabilities.  

1.2.  The Effects of Machine Vision on Crime Prediction and Public 
Safety 
 
Today, machine vision is one of the arms of artificial intelligence that could improve crime 

prediction and enhance public safety. It integrates the concepts of advanced computer 

vision, deep and machine learning with neural network  technologies to recognize and 

predict crime in crime scenes. In the context of this research, the system uses the 

capabilities of HD (High-Definition video) and real-time crime video of surveillance 

networks as input datasets. As shown in Figure 1.2, the process begins with image 

capturing from camera, image preprocessing, feature extraction, pattern recognition and 
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decision making. Machine Vision can recognize crime weapon on human subjects in pre-

crime video or real-life scenario. Also, it has the potential to study behavior, discern 

anomalies and predict criminals in the environment. 

 

Figure 1.2. Machine Vision for  Crime Prediction 

1.2.1  The Advanced Analytic Functions of Machine Vision 

 

Machine vision advanced systems utilize machine learning algorithms to analyze visual 

information and detect objects of interest, such as suspicious human movement,  crime 

weapons in the pre-crime video. This technology can allow law enforcement agencies to 

improve their coverage of high-risk networks and thus improve operational efficiency. 

Additionally, with combining it with predictive analytics, machine vision systems find 

application in prediction analytics and criminal hot spots, helping to monitor crime in 

those areas from resources and interventions. 
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1.2.2    Adaptation and Lifelong Learning through Machine Learning 
Algorithm 

 
In furtherance, the complete implementation of machine learning in computer vision 

enhances the accuracy and robustness of machine vision instrument. These algorithms 

evolve when exposed to a new dataset, so that they appropriately adapt to predict new 

patterns of crime. It is this ongoing learning curve that  keeps  security agencies ahead 

of future crimes-constantly adjusting to the new landscape of criminal activity. Figure 

1.3 depicts the machine learning pipeline that illustrates visual design of the predictive 

instrument. The diagram shows  key stages involved in developing a Machine Learning 

Model, capable of predicting crime in the surroundings. 

 

Figure 1.3. Simplified Machine Learning Pipeline for Crime Prediction 

 

1.3 Research Background 
 
Data from research conducted by Jha in [4] demonstrates that economies and 

populations grow crime rates are likely to increase in geometric progression, reinforcing 

the need for initiative-taking crime prediction systems. The rising crime rates, particularly 

in technologically advancing economies, have long made analytical pre-crime modelling 
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a subject of interest. However, predicting every crime actor accurately using computer 

vision remains a significant challenge.  

The implementation of these technologies has the potential to reduce damage from 

terrorism and crime. The Millennium Development Goals highlight the need for innovative 

technologies to secure lives, including AI-based forecasting systems. These systems aim 

to provide early crime warnings used in global perspectives. Countries such as the U.S., 

U.K., Germany, and Switzerland have adopted crime control measures supported by 

advanced technologies [5]. This development reduces dependency on traditional 

policing. While law enforcement traditionally relied on historical data, the emergence of 

analytical and predictive modelling has revolutionized crime mapping.  

The first attempt at using computer vision for crime prediction dates to 1998, but early 

systems limited by computational power. With modern high-performance computing, 

Computer Vision with deep machine learning systems can now detect, recognize, and 

forecast criminal activities more effectively.  

As illustrated in Fig. 1.1, the field of computer vision is a subdomain of artificial 

intelligence. It is concerned with enabling machines to interpret, analyze, and 

understand visual information from the world, simulating aspects of human vision [6]. 

Rooted in early research on image processing and pattern recognition in the 1960s and 

1970s, the theoretical foundations of computer vision build upon mathematical models 

of image formation, filtering, segmentation, and feature extraction [7]. Fundamental 

techniques such as edge detection, corner detection, and region-based segmentation 

derived from signal processing and linear systems theory. 
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Object detection, a core problem within computer vision, involves not only recognizing 

the presence of objects but also determining their precise locations within images or 

video streams. Researchers like Lowe in [8] and Dalal in [9] demonstrated in their 

respective studies, how traditional methods for object recognition often relied on 

handcrafted features. Notable among these are the Scale-Invariant Feature Transform 

(SIFT) and Histogram of Oriented Gradients (HOG), which extract key local features 

invariant to changes in scale and illumination. These techniques laid the groundwork for 

machine learning-based classifiers such as Support Vector Machines (SVMs) and 

Random Forests, which widely used in early detection pipelines. 

The change in basic assumptions came with the rise of deep learning, particularly 

Convolutional Neural Networks (CNNs), which automate hierarchical feature extraction 

and significantly outperform traditional approaches in image classification and detection 

tasks as demonstrated by Krizhevsky in [10]. 

CNNs leverage spatial locality through convolutional layers, allowing for scalable and 

end-to-end learning of visual representations. Architectures like Region-Based CNN (R-

CNN), YOLO (You Only Look Once), and SSD (Single Shot Multibox Detector) further 

extended CNN capabilities by enabling real-time object detection and localization, as 

evident in the work published by the authors in [11], [12] and [13] respectively. 

These advances have led to the integration of computer vision and object detection 

across various domains such as autonomous driving, facial recognition, medical 

diagnostics, and surveillance systems, where robust visual interpretation is critical [14]. 

Theoretical frameworks from statistical learning theory, information theory, and Bayesian 

inference continue to underpin modern developments in this field. 
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1.3.1  Artificial Neural Network Paradigm 

 

Yasar in [15] describes neural networks as a computational system inspired by how 

biological networks operate. It is a term sometimes related to neurons according to the 

paper published by Zhang in [16].  The study by Ou in [17], refers to neuron computing as 

the computing systems that attempt to function like the human brain. The brain’s 

essential functions, such as pattern algorithm, motor control, and ability to perceive 

objects, flexibility in inference, insightfulness, and judgment in any circumstance 

outlined to replicate in the design of such a neuro-computing system. To achieve those 

goals, neuro-computing adopts various algorithms that help analyze problems, learn 

from experience, and make decisions based on the data gained from the environment. 

Artificial neural network (ANNs) developed to solve problems in pattern recognition, 

prediction, optimization, and memory associative problems.  

1.3.2 The Purpose of Artificial Neural Network 

 

Learning regarding artificial neural networks includes updating network connection 

weights to allow a network to function as designed. The network saddled with learning 

effectively and sufficiently for the model to generalize on unseen dataset. It must learn 

with sufficient weight to map the  input-output relationships for the new scenario. This 

primes the neural network over the conventional learning processes. Since the networks 

do not biologically engineer therefore, all neural networks in the field of artificial 

intelligence regarded in a broader context as artificial neural networks. 

The artificial neural network has successfully helped scientists and researchers to 

achieve computational and prediction challenges. They are volume parallelism, 

Adaptivity, Generalization capabilities, Object learning, Large-volume information 
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processing, and Fault tolerance consumption of lower energy. Parallelism has aided 

modern-day computer systems to compete with the human brain [18].  

1.3.3  The Deep Learning Revolution 

 

The rise of deep learning in the early 2010s and its ascent to dominance in AI can be seen 

as a paradigm change in modern computing history. There had only been theoretical hints 

of such networks for many years, instantiated for the first time into a set of applications 

for Automatic Speech Recognition (ASR). As shown by [19], DNNs reached record-

breaking ACC in ASR tasks, and DNNs have promptly become the new standard in both 

academic and industry research [20]. 

The notable change was achieved when [10] introduced AlexNet, a CNN with multiple 

layers that achieved good performances on the ImageNet classification challenge. The 

pair's efforts had a good impact - they were able to bring down error rate from 26% to 

16% in a year, far surpassing the previous annual reduction rate of 2%. This discovery was 

globally recognized and the catalyst for the deep learning revolution. 

The rapid acceptance of DNNs was facilitated by the main technological breakthroughs. 

The transformation also occurred with the reuse of Graphic Processing Units (GPUs) that 

were initially architected for game graphics. These parallel computers were able to speed 

up the matrixial calculations that are essential to the training of neural networks, making 

practical what before was heavily time consuming, and ideally quite impossible. Equally 

important was the emergence of large, annotated datasets like ImageNet's 1.3 million 

images. According to Russakovsky in their work, the datasets provided the essential 

training for these models [21]. 
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It was these pieces fitting together that created a market shift across the industry. 

Acknowledging the empirical success of DNNs, large technology companies made 

significant investment into the field. The advances presented by Abadi, Paszke, and Chen 

in in their distinct papers show how this improvement contributed to the rise of open-

source frameworks, such as TensorFlow[22], PyTorch[23], and MXNet[24], which 

abstracted much of the additional layers of complexity away with features such as 

automatic differentiation, and scalable optimization. The culmination of these two 

advances have spawned a cycle of innovation significant to the advancement of artificial 

intelligence and computer vision projects to this day. 

1.3.4  Deep Neural Networks in Structured Data 

Deep Neural Network (DNN) is a generic class of architecture, which includes Differential 

Function Networks (DFNs) with generalized DAG connectivity structure. Such a 

formalized arrangement used to map inputs to their corresponding outputs, providing a 

framework for various learning tasks. One of the ways to increase the flexibility of linear 

models is to apply a feature transformation, substituting the input x with a transformed 

version 𝜑(𝑥). For example, in one dimension (1d), we could use a polynomial expansion 

as shown in equation 1.0 

 𝜑(𝑥)  =  [1, 𝑥, 𝑥², 𝑥³, … ]                 (1.0) 

Bishop in his published work referred to this equation as the basic function 

expansion [25].  The resulting model gives:  

  𝑓(𝑥;  𝜃)  =  𝑊φ (𝑥)  +  𝑏                  (1.1)     
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As shown above, the equation (1.1) remains linear in parameters 𝜃 =  (𝑊, 𝑏), preserving 

convexity in optimization as described by Goodfellow in [14]. However, manually 

designing φ(x) is restrictive. It may be worth noting that 𝜃 in this respect represents the 

feature index for each class and the corresponding parameters threshold values. 

A more powerful approach is for the system to learn the feature transformation by 

introducing other parameters like θ₂: In this regard, the function becomes.  

𝑓(𝑥;  𝜃)  =  𝑊φ(𝑥;  𝜃₂)  +  𝑏                  (1.2) 

Here, w and b are learnable parameters and θ = (θ₁, θ₂) and θ₁ = (W, b). By recursively 

stacking such transformations, we obtain increasingly complex functions.  

If we compose 𝐿 (the loss function over a region) 

 We derive equation 1.3 as follows: 

 𝑓(𝑥;  𝜃)  =  𝑓𝐿 (𝑓𝐿−1 (…𝑓1 (𝑥)… ))                     (1.3) 

Where each 𝑓ℓ(x) = f (x; 𝜃ℓ) is a layer of the model. This is the essence of deep neural 

networks (DNNs), which this research builds on to achieve the object detection in the 

video datasets used. 

The term DNN encompasses models where differentiable functions are composed into 

any directed acyclic graph (DAG) [14].  

Murphy in 2022, in their book published on probabilistic Machine Learning describes 

equation (1.2) as the simplest case chain-structured DAG known as a feedforward neural 

network (FFNN) or multilayer perceptron (MLP) [26].  
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DNN structure has the capacity to forward data layer by layer in nested nodes. The 

simplest illustration of this given in equation (1.0), where the DAG is just a linear chain. 

This architecture is typically known as a Feedforward Neural Network (FFNN) or 

Multilayer Perceptron (MLP). This type of MLP assumes a fixed-dimensional input in the 

form of x ∈ ℝᴰ, referred to as single layer. The downside of it is its limitation to structured 

data alone. It typically stored in an N × D matrix according to Bishop in [25]. 

Here, D= the dimensionality of the vector, equivalent to the number of the input features, 

X = The input x is the feature covariates, sometimes called the predictors. In this research, 

it could be the height, weight of an objects of a class person, shotguns, long gun, knife or 

rifle as depicted in equation 1.4. 

N = The data sample sizes. 

Mathematically; 

𝑓(𝑥;  𝜃)  =  𝐼(𝑤ᵀ𝑥 +  𝑏 ≥  0)  =  𝐻(𝑤ᵀ𝑥 +  𝑏)                                      (1.4) 

Where:  

• H is the Heaviside step function.  

• w and b are learnable parameters. 

1.3.5  Multilayer Perceptron (MLPs) 

 

From equation (1.4) we can see that Perceptron considered as a deterministic variant of 

logistic regression, defined as: 

𝑓(𝑥;  𝜃)  =  𝐼(𝑤ᵀ𝑥 +  𝑏 ≥  0)  =  𝐻(𝑤ᵀ𝑥 +  𝑏)                              (1.5)         



26 
 

 Where: 

• H is the Heaviside step function (a linear threshold function), 

• w and b are learnable parameters. 

Unfortunately, this linear model has limitations in data science as it cannot predict 

output for nonlinear cases like detecting static and motion objects. This makes it not 

effective for our research. 

To make the equation applicable to our research, we introduced hidden layers between 

input and output, allowing the network to learn nonlinear decision boundaries, as 

depicted in the study conducted by Bishop in [25]. By stacking perceptron with nonlinear 

activation functions (e.g., sigmoid, ReLU), MLPs can approximate arbitrary functions [27] 

and [28]. This mostly achieved in practice by using a differentiable MLP, which makes our 

model training easier. But there is still a potential problem since the Heaviside function 

has zero gradient. Such models in practice are difficult to train, limiting their practical use 

as demonstrated by [14]. To enable gradient-based optimization in the research, we 

replace H with a differentiable activation function 𝜑 ∶  ℝ →  ℝ. This allows the network 

to learn via backpropagation [29]. 

At each layer l, the hidden units 𝑧1 computed as: 

𝑧1 = 𝑓1 (𝑧1−1 ) = 𝜑1(𝑏1 + 𝑊1 𝑧1−1 )                  (1.6) 

In scalar form, the 𝑘′th neuron in layer l given by: 

𝑧𝑘1 = 𝜑1 (𝑧1 + ∑ 𝑊𝑗𝑘𝑙𝑧𝑗𝑙−1
𝑧1−1
𝑗=1 )                                             (1.7) 

where: 
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• 𝑾𝟏 is the weight matrix at layer l, 

• 𝑳 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟 

• 𝒃𝟏 is the bias vector, 

• 𝝋𝟏 is the activation function (in this research, we choose sigmoid activation 

function. 

The pre-activation (weighted input) now represented as: 

𝑎1 = 𝑏1 + 𝑊1 𝑧1−1                     (1.8) 

Also, the activation achieved by applying 𝜑1  

𝑧1  =  𝜑1(𝑎1)                            (1.9) 

Today, the term "MLP" always refers to this differentiable version, trained with 

backpropagation, rather than the original non-differentiable perceptron model.. 

1.3.6  MLP for Image Classification 

 

The evolution of neural networks tailored for image processing has transitioned from 

multilayer perception to advanced convolutional neural networks (CNNs) utilized today. 

As demonstrated by LeCun in [30], MLPs proved effective for image classification tasks 

by processing flattened versions of two-dimensional images across fully connected 

layers series leading up to remarkable accuracy rates exceeding 97% on NIST datasets. 

However, this approach faced other fundamental limitations regarding visual data 

handling since transforming images into one-dimensional vectors resulted in loss of 

essential spatial relationships among pixels that delineate visual patterns. 
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This architectural choice not only hampered parameter efficiency but also obstructed 

capturing hierarchical features present within visuals from simple edges up towards 

complex object representations. The breakthrough emerged with CNN development first 

presented by LeCun, specifically focusing on backpropagation applied toward 

handwritten zip code recognition tasks which retained two-dimensional structuring 

through specialized convolutional operations unlike their MLP predecessors. 

As articulated in Goodfellow et al.'s comprehensive text on deep learning published 

in 2016, CNN architecture leverages three key principles. They considered good choices 

in enhancing suitability for visual tasks: local receptive fields scanning features; shared 

weights which reduce parameter counts and spatial subsampling, fostering translation 

invariance. 

This progression from MLP architecture towards CNN signifies more than incremental 

enhancement. It indicates substantial shifts concerning how neural networks process 

visual information collectively and converging toward achieving human-level 

performance against challenging image recognition benchmark. Following this 

development, this research fully utilizes Convolutional Neural Network for the Model 

developments. 

1.3.7 The Convolutional Neural Networks Mechanics 

 

The models that solve object detection and image classifications often use 

Convolutional Neural Networks these days. CNN manipulates high-dimensional inputs 

and inputs with number of features. Therefore, the research adopts CNN framework 

comparing the performances of two detectors, YOLOv4 and Single Shot Multi-Box 

Detection (SDD) Models. 
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The Convolutional Neural Network consists of the convolutional layer, the pooling layer, 

the activation layer, and fully connected layers. The first layer takes the image of the input 

and convolves it with multiple learned parameters that will give rise to new 2-D feature 

maps. In this work, the learned parameters referred to as the threshold and weight, 

sometimes called the kernels or filter. Each of the resulting kernels is a 2-D matrix and 

smaller in size than the image it applied. The filter comprises values equivalent to the 

learned weight. The pooling layer sandwiched between the successive Convolutional 

Neural Network (ConvNet) layers. It aims at reducing map resolutions, improving spatial 

invariances to minor shifts, and lowering the memory requirements during execution. 

Popular pooling techniques are maximum pooling, mean pooling, mixed pooling, and 

spatial pyramid pooling.  

Another crucial element of CNN is the activation function (As seen in equation 1.9). The 

activation function simply helps state the output of a node from a given input or series of 

input values. It is like the binary action of the neuron to propagate or stop a potential 

output. Typically, examples are jump functions, sigmoid, and Rectilinear Linear Unit 

(ReLU). For image classification tasks, Sigmoid and Jump are better while ReLU used 

where unlimited output required. But this work has utilized Sigmoid for its advantage in 

model training and development.  

The last layer referred to as the fully connected. Here, all the feature maps and filters have 

now become 1*1 as shown in Figure 1.4. 
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Figure 1.4. The Convolutional Neural Network Components [3] 

 

1.3.7.1 The Key Components of Convolutional Neural Network 

 

1. Convolutional Layer: The convolutional layers are responsible for applying 

learned filters (kernels) to the input image. This process helps detect important 

features like edges, corners, and textures. Each convolution operation involves 
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computing the dot product between the filter and a local region of the image .The 

result of this operation is a feature map in equation 1.9 

The equation for the convolution operation is as follows: 

𝑌 (𝑖, 𝑗) = ( 𝑋 ∗ 𝐾)(𝑖, 𝑗) =   ∑ ∑ 𝑋 (𝑖 + 𝑚, 𝑗 + 𝑛). 𝐾(𝑚, 𝑛)𝑛𝑚                (1.10) 

Where: 𝑌 (𝑖, 𝑗) = is the output value at position (𝑖, 𝑗), 𝑋  is the input image or 

feature map, K is the kernel or the filter. Also, * denotes the convolution, 

∑ ∑ : is the summation over the kernel dimensions.𝑛𝑚  And the (𝑖 + 𝑚, 𝑗 + 𝑛) 

represents the indexing account for flipping in convolution.  

1. Pooling Layer: Due to the equivariance phenomenon, Convolution would often 

preserve the information about the positions of input features. For instance, in this 

study, it is of interest to know if a combination of unacceptable behaviours of an 

actor is present anywhere in the video images. Pooling Max is one way to achieve 

this. It is a concept that helps to compute the maximum over its incoming values. 

A similar result reached with average pooling. Average pooling accomplishes the 

task by replacing the max with the mean value. In any case, the output neuron has 

a similar response no matter the positions of the input pattern occurrence within 

the receptive field as demonstrated by Murphy in [26]. Averaging this over all the 

locations in a feature map termed the global averaging pooling. Invariably, it 

passed the feature map of the image into a 1*1*D dimensional feature map, 

reshaped to a D-dimensional vector, passed its output to a fully connected layer 

that mapped it to C- C-dimensional, and finally passed the result to a SoftMax 

output. In this design, CNN created by alternating convolutional layers with max 
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pooling layers. The result followed by a linear classification layer at the end as 

shown in Fig. 1.4 

2. SoftMax Activation function used in the design: The activation function used in 

the CNN Model design called the Softmask function. This is because as 

represented in the convolutional operation, equation 1.9, SoftMax  takes a vector 

m of K real number and normalize to probability distribution proportional to m 

exponent such that each component sums to 1 or is in interval of (0,1) without any 

negative numbers.  

3. The Normalization Layers: This is an extra layer added to CNN in this design to 

scale up models against vanishing or exploding gradients. The extra layers help to 

standardize the statistics of the hidden units. Batch normalization is the most 

popular normalization layer and was used in the system model training. 

4. Batch Normalization: Batch normalization (BN) helps to ensure the distribution 

of all the activations within a layer is zero mean and unit variance. In this study, 

frozen batches of norm layers combined with the preceding layers to increase 

speed. One of the known advantages of using BN in the work is smoother 

optimization landscapes, which enhances the overall accuracy of our model. 

1.3.7.2      Backpropagation Algorithm  

 

Back propagation, an iterative algorithm used in deep learning training, especially in feed 

forward method. When assumed that the computation graph is a simple linear chain of 

layers, as in a Multi-Layer Perceptron (MLP). Backpropagation in this case is the repeated 

application of the chain rule of calculus. The method extends to more complex 

architecture, including arbitrary directed acyclic graphs as seen in equations 1.1, 1.2 and 
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1.3). This general procedure, often referred to as automatic differentiation, is the 

backbone of machine learning algorithms. 

In this research, it helps us to compute the loss function gradient of the output network 

relative to the design parameter used in each of the convolutional layer [26] .The 

phenomenon minimized lost function. In addition, back propagation helps to pass down 

the gradient of the model loss function to the optimization algorithm where the values of 

the hyperparameters adjusted at the best weight, learning rate and biases to improve the 

performance of the model at validation. 

Back propagation uses two processes, the pass forward and pass back. Based on 

equations 1.1, 1.2, and 1.4, we consider the inputs to the neural network as (a, b, c and 

d). It utilizes a specified activation function and a predefined hidden layer. Figure 1.5 

illustrates back propagation process with diagram. 

 

Figure 1.5. Backward Propagation Principle [31] 
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1.3.7.3   Forward vs Reverse Mode Differentiation 

 

Forward mode differentiation efficiently computes derivatives by propagating tangent 

values during the forward pass, ideal for scenarios with fewer inputs than outputs. 

Conversely, reverse mode differentiation, used in backpropagation, calculates gradients 

by moving errors backward, optimizing neural networks by enabling effective weight 

updates based on gradients. 

If we consider a function o = f(x), where x ∈ ℝⁿ and o ∈ ℝᵐ. We can assume that f defined 

as a composition of functions f = f₄ ∘ f₃ ∘ f₂ ∘ f₁           (1.11) 

Where each fᵢ is a function that maps from one vector space to another. 

Where 𝑓₁ ∶  ℝⁿ →  ℝᵐ¹, 𝑓₂ ∶  ℝᵐ¹ →  ℝᵐ², 𝑓₃ ∶  ℝᵐ² →  ℝᵐ³, 𝑎𝑛𝑑 𝑓₄ ∶  ℝᵐ³ →  ℝᵐ. The 

intermediate steps needed to compute 

 𝑜 =  𝑓(𝑥) 𝑎𝑟𝑒 𝑥₂ =  𝑓₁(𝑥), 𝑥₃ =  𝑓₂(𝑥₂), 𝑥₄ =  𝑓₃(𝑥₃), 𝑎𝑛𝑑 𝑜 =  𝑓₄(𝑥₄).         (1.12)     

We can compute the Jacobian 𝐽𝑓(𝑥) =  
𝜕𝑜

𝜕𝑥𝑇
∈  ℝᵐˣⁿ using the chain rule method in 

calculus: 

𝜕𝑜 

𝜕𝑥
= 

𝜕𝑜

𝜕𝑥₄
 
𝜕𝑥₄

𝜕𝑥₃
 
𝜕𝑥₃

𝜕𝑥₂
 
𝜕𝑥₂

𝜕𝑥
 =  

𝜕𝑓₄(𝑥₄)

𝜕𝑥₄
 
𝜕𝑓₃(𝑥₃)

𝜕𝑥₃
 
𝜕𝑓₂(𝑥₂)

𝜕𝑥₂
 
𝜕𝑓₁(𝑥)

𝜕𝑥
        

= 𝐽𝑓4(𝑥₄) 𝐽𝑓3(𝑥₃) 𝐽𝑓2(𝑥₂) 𝐽𝑓1(𝑥)                           (1.13)

            

To compute the Jacobian 𝐽𝑓(𝑥) efficiently.  

We could recall from mathematical function that 
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      𝐽𝑓(𝑥)  =  
𝜕𝑓(𝑥)

𝜕𝑥
 =  

(

 

𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
…

𝜕𝑓𝑚

𝜕𝑥𝑛)

   = (
𝛻𝑓1(𝑥)

𝑇

⋮
𝛻𝑓𝑚(𝑥)

𝑇
)  = ( 𝜕𝑓

𝜕𝑥1
, ⋯ ,

𝜕𝑓

𝜕𝑥1
 )  = ∈  ℝ𝑚×𝑛   (1.14) 

Where 𝛻𝑓ᵢ(𝑥)𝑇  ∈  ℝ1 𝑥 𝑛 is the 𝑖ᵗʰ row (for 𝑖 =  1 ∶  𝑚) and 𝜕𝑓
𝜕𝑥ⱼ
 ∈  ℝ𝑚 is the 𝑗ᵗʰ column (for 

𝑗 =  1 ∶  𝑛). 

Note that, in our notation, when 𝑚 =  1, the gradient, denoted 𝛻𝑓(𝑥), has the same 

shape as 𝑥. It is therefore a column vector, while 𝐽𝑓(𝑥) is a row vector. In this case, we 

therefore technically have           

 𝛻𝑓(𝑥)  =  𝐽𝑓(𝑥)𝑇                 (1.15) 

We can extract the 𝑖ᵗʰ row from 𝐽𝑓(𝑥) by using a vector Jacobian product (VJP) of the form 

𝑒𝑖
𝑇 𝐽𝑓(𝑥) , where 𝑒ᵢ ∈  ℝ𝑚  is the unit basis vector. Similarly, we can extract the 𝑗ᵗʰ column 

from 𝐽𝑓(𝑥) by using a Jacobian vector product (JVP) of the form 𝐽𝑓(𝑥) 𝑒ᵢ, where 𝑒ᵢ ∈  ℝ𝑛. 

This shows that the computation of 𝐽𝑓(𝑥) reduces to either n JVPs or m VJPs. If 𝑛 <  𝑚, it 

is more efficient to compute 𝐽𝑓(𝑥) for each column 𝑗 =  1 ∶  𝑛 by using JVPs in a right-to-

left manner. The right multiplication with a column vector 𝑣 gives:  

 𝐽𝑓(𝑥) 𝑣 =  𝐽𝑓4(𝑥₄)⏟        𝐽𝑓3(𝑥₃) ⏟            𝐽𝑓2(𝑥₂)⏟            𝐽𝑓1(𝑥₁)⏟          𝑣 ⏟                  (1.16)         

          𝑚 × 𝑚₃     𝑚₃ × 𝑚₂      𝑚₂ × 𝑚₁      𝑚₁ × 𝑛    𝑛 × 1                      

 
This can be computed using forward mode differentiation;  

Also, we assume 𝑚 =  1 and 𝑛 =  𝑚₁ =  𝑚₂ =  𝑚₃, the cost of computing 𝐽𝑓(𝑥) is 𝑂(𝑛³)  

as highlighted by the Bishop in [26]. 

This results in the creation of multiple Jacobian matrices, each representing the partial 

derivatives of a function with respect to its input video dataset. The Jacobian matrix is 

crucial for understanding how the function (f), which indicates the model classifier's 

output operation across the five distinct classes in the criminal dataset. It varies based 
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on the detected class from the input video data. The understanding is fundamental for 

optimization and gradient-based learning approaches used in for the parameter tuning of 

the SDD Model in this research. 

 

1.3.7.4    Model Fitting in Convolutional Neural Network 

 

CNN model fitting consists of the training of a convolutional neural network on labelled 

data where data feature parameters are learned in order to minimize errors in prediction 

on images and make system to generalise well on unseen datasets. 

 Typically, we build up the tree one node at a time. The loss function ℒ(𝜃) in equation 

1.16 needed minimised to achieve this objective. 

ℒ(𝜃) =  ∑ ℓ(𝑦1, 𝑓(𝑥𝑛;  𝜃)) =  ∑ ∑ ℓ(𝑦𝑖, 𝑤𝑗)𝑥𝑛 𝜖 𝑅𝑖
𝐽
𝑗=1

𝑁
𝑛=1                (1.17) 

Here is the walkthrough,  

Suppose we loop at node 𝑖 and let 

 𝐷𝑖 = {(𝑥𝑛, 𝑦𝑛)  ∈  𝑁𝑖}                                 (1.18) 

Be the collection of input samples that arrive at node 𝑖. Based on a selected feature 𝑗 

and threshold 𝑡, we define the left and right splits of these samples as follows: 

𝐷𝑖
𝐿 (𝑗, 𝑡) = {(𝑥𝑛, 𝑦𝑛)} ∈  𝑁𝑖,𝑗 ≤ 𝑡}                (1.19) 

𝐷𝑖
𝑅 (𝑗, 𝑡) = {(𝑥𝑛, 𝑦𝑛)} ∈  𝑁𝑖,𝑗 > 𝑡}              (1.20) 

We then select the best features 𝑗𝑖 and corresponding threshold 𝑡𝑖 that optimally splits 

the data using a chosen impurity measures (e.g. Gini index, information gain, or mean 

squared error) as represented in equation 1.21 
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(𝑗𝑖, 𝑡𝑖) = arg
𝑚𝑖𝑛

𝑗 𝜖 {1, … , 𝐷}
 
𝑚𝑖𝑛
𝑡 𝜖𝑇𝑗

 
|𝐷𝑖
𝐿 (𝑗,𝑡)|

|𝐷|
𝑐(𝐷𝑖

𝐿 (𝑗, 𝑡)) + 
|𝐷𝑖
𝑅 (𝑗,𝑡)|

|𝐷|
 𝑐(𝐷𝑖

𝑅 (𝑗, 𝑡))          (1.21) 

The set of possible thresholds, 𝑇𝑖 for feature 𝑗 can be obtained by sorting the unique 

values of {𝑥𝑛𝑗  

Overfitting and underfitting are two issues considered when we trained our model in this 

research so that the model achieved is generalizable.  Overfitting occurs when a model 

not only learns the underlying structure in the training set but also the noise in the data 

causing it to perform poorly on unseen video dataset [14]. It is a scenario that arises 

when models are too complex compared to the size of their training set or when 

training goes on for too many epochs. On the other hand, underfitting occurs when the 

model is too simple to capture the underlying structure of the data, which results from 

weakly-regularized neural networks [32].  

Many methods have been developed to solve these issues. Regularization methods like 

L1 (Lasso) (Least Absolute Shrinkage and Selection Operator) and L2 (Ridge) curtail large 

coefficients for overfitting, further shrinking model complexity. Dropout, another form of 

regularization in deep learning, introduces randomness by randomly turning off neurons 

at learning time, which prevents the model from over-relying on some features [33]. 

Cross-validation is another key tool to test and prevent overfitting by testing on multiple 

subsets of data as demonstrated by the author in [34]. To address underfitting, more 

expressive model more features or deeper networks, can be used along with more 

training time. The research conducted by Zheng in [35]  demonstrated how feature 

engineering contributes to model expressiveness and bias reduction .Finally, both bias 

and variance need to be balanced, frequently referred as bias-variance tradeoff, to 

obtain optimal model performance. Handling overfitting and underfitting is essential in 
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practical deployment of machine learning models, which often require it to be as 

accurate as possible and to generalize well. 

In training this model, reverse mode differentiation (backpropagation) is employed for 

both YOLOv4 and SSD models. This method is effective due to the vast number of input 

features, like image pixels, versus fewer output classes. Backpropagation efficiently 

calculates gradients for model weight updates, making it ideal for complex neural 

networks in image processing tasks. Also, measures are taken during data acquisition, 

preparation and training that ensure our CNN model do not underfit or overfit. This shall 

be discussed in the subsequent chapters. 

 

1.4 Aim of the Study 
 
The proposed system aims to leverage Machine Learning, Deep Learning, and Computer 

Vision concepts to detect and recognize common weapons on person, thereby predicting 

potential perpetrators in pre-crime scenarios. 

1.5 Study Objectives 
 

 The following are the specific objectives of the proposed system: 

1. To acquire crime dataset, implement data annotation with Darknet/labelImg to 

label large crime video containing person, shotgun, handgun, riffle and knife 

classes. 

2. To design Custom SDD and Yolov4 Convolutional Neural Network Models. 

3.  Develop Python scripts that trains and validate custom YOLOv4 and SDD 

Convolutional Neural Network Models. 
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4. Optimize Yolov4 and SDD CNN Models for enhanced performance and detection 

accuracy where necessary. 

5. Compare the mean average precisions and performance of SDD with Yolov4 

detectors for high-risk behavior classifier system. 

6. Develop high-risk python scripts for high risk behavioral classification. 

7. Develop an AI model capable of tracking the trajectory movement of person of 

interest in pre-crime scene using Deep-Sort algorithm, with bounding boxes over 

the person of interest and the detected weapon. 

8. Develop a functional and scalable cloud-based AI Safety Software with high mean 

average precision (mAP), high recalling and high confidence scores. 

To achieve the objectives and give the research global visibility, at a point, sections of the 

research findings presented in international conference or published in academic 

journal. They are:  

1. Akinmuyisitan T.M., and Cosmas John (2024), Convolutional Neural Network 

Paradigm: Comparison of VGG16 and Resnet50 in Criminal Face Prediction, 

World Academic of Science and Engineering Technology Conference, Oct 

2023,Vol18(1) available at: https://publications.waset.org/10013462/advanced-

convolutional-neural-network-paradigms-comparison-of-vgg16-with-resnet50-

in-crime-detection 

2. Akinmuyisitan T. M., and Cosmas John. Enhanced Crime Prediction with 

Computer Vision - YOLOv4 Approach. Global Journal of Computing and 

Technology, USA, Vol. 24 No. D1 (2024): GJCST-D Neural & AI: Volume 24 Issue D1 

DOI: https://doi.org/10.34257/GJCSTDVOL24IS1PG55  

https://computerresearch.org/index.php/computer/issue/view/100873
https://doi.org/10.34257/GJCSTDVOL24IS1PG55
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3. Akinmuyisitan T.M., and Cosmas John Advancing Real-Time Detection and High-

Risk Person Classification in Pre-Crime Scenes: A Comprehensive Machine 

Vision Approach Utilizing SSD Detector Technology, USA, Vol. 24 No. D1 (2025): 

GJCST-D Neural & AI: Volume 25 Issue D1 

DOI: https://doi.org/10.34257/GJCSTDVOL25IS1PG51  

4. Akinmuyisitan T. M and Cosmas John Deep Neural Network: Predicting Future 

Prices of Cryptocurrency Using LSTM and GRU (Paper Accepted at Elsevier 

Journal) 

1.6 Research Question 
 
This study answers the research question of how we could develop an AI system that can 

analyze persons of interest and predict potential criminal in a precrime video or real world 

scenario. 

1.7  Contribution to Knowledge in Artificial Intelligence and 
Computer Vision 
 

This thesis presents significant contributions to the fields of artificial intelligence and 

computer vision, serving as a valuable resource for scholars and future research. The 

specific contributions to the existing literature are outlined as follows: 

A. Comprehensive Framework for Data Acquisition and Pre-processing: This 

research provides a detailed methodology for acquiring large-scale criminal 

video datasets from secondary sources, including the UCF database, NIST via 

Kaggle. It outlines essential data pre-processing techniques for scrubbing data 

sourced from the internet, which is crucial for training deep learning models. The 

https://computerresearch.org/index.php/computer/issue/view/100873
https://computerresearch.org/index.php/computer/issue/view/100873
https://doi.org/10.34257/GJCSTDVOL25IS1PG51


41 
 

thesis explicitly details data augmentation and annotation processes for both 

static and motion videos, utilizing tools such as labelImg . Additionally, it 

includes a conversion process for transforming image datasets from the YOLO 

format (.TXT) to Pascal VOC (XML format), facilitating SDD data training. These 

contributions are intended to assist academics and researchers in the field  of 

computer vision and deep learning. 

 

B. Development of a SDD Neural Network Model for Weapon Detection: The 

thesis details the training and development of a Single Shot Detector (SSD) 

neural network model utilizing a criminal dataset to detect weapons. This aspect 

of the research serves as a reference for future studies focused on weapon 

detection applications. Furthermore, the hyperparameter tuning process that 

enhanced the model's performance to achieve a mean average precision of 

84.19% is documented, providing valuable insights for practitioners in the field. 

 

C. Implementation of the YOLOv4 Model for Crime Prediction: The research 

includes the training and development of a YOLOv4 model using a criminal 

dataset to detect common weapons and classify potential perpetrators as high-

risk within a controlled environment. This contribution highlights the practical 

applications of advanced machine learning  and computer vision  techniques in 

enhancing security measures. 
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 1.8 Thesis Structure Overview 

The rest of the PhD Thesis structure organized as follows; Chapter Two provides the 

synthesis of the existing literature and further gives the definitions of related terms in the 

field of Computer Vision, Machine Learning, and Deep Learning. Chapter Three presents 

the methodology on data acquisition and pre-processing for the two methods used. In 

Chapter Four, the research expounds Single shot Multi Detection Method of weapon and 

person of interest detection. The results and interpretation of the finding was also 

included in the chapter. Chapter Five contains the YOLOv4 Technique and, the 

development steps, results and interpretation. Finally, Chapter Six provides the 

conclusion, Recommendation and Future direction for the research 
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CHAPTER TWO 

Literature Review 

  

2.0 Introduction 
 

This section reviews the related work on topics of artificial intelligence, computer vision, 

machine learning, deep learning, and related fields. Synthesizing prior work, it logically 

integrates these collections of research and the overall dearth of similar works on the 

topic. The synthesis helps place the research in the larger context of the existing literature 

in crime prediction with computer vision. Additionally, the chapter describes theories 

and terminologies related to the technologies to further help the audience understand 

in an uncomplicated way. 

The rest of this chapter organized as follows: 

• The Evolution of Crime Prediction Technology 

• Traditional Crime Prediction Methods 

• The Roles of Machine Learning in Crime Prediction 

• Overview of Computer Vision 

• Computer Vision Algorithms and Framework 

• Applications of Computer Vision in System Security and Surveillance  

• Advancement  in the Convolutional Neural  

• The Roles of Compute 

• Challenges and Limitations in the Literature- technical and ethical challenges 

• Identifying Research Gaps 
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• Conclusion of the Literature Review 

2.1. The Evolution of Crime Prediction Technologies 
 

Crime prediction evolved from its traditional observation-oriented methods to the 

advanced algorithm-based models of today. Crime prediction and prevention were 

formerly founded on traditional criminological paradigms, including Chicago School 

ecological approaches and Cesare Beccaria's deterrence theory. The research by 

Sampson in [36] assert that these models focused on routine activity, social disorder, and 

rational criminal decision-making. To forecast criminal behavior, law enforcement 

agencies relied on local experience, intuition, and crime mapping. The past methods may 

have lacked forecasting and data precision necessary in real-time intervention. 

Crime prediction started to depend more on data in the mid-1900s with the advent of 

computers and geographic information systems (GIS). The use of crime mapping tools 

enabled the spatial analysis of crime hotspots, which led to the development of 

predictive policing. Theories such as environmental criminology and the broken windows 

theory [37], which postulated that outward manifestations of disorder incite additional 

criminal activity, had a major impact on this change. Methods like CompStat, created in 

New York City in the 1990s, showed quantifiable effects on reducing crime by using 

historical crime data to more efficiently allocate police resources [38]. 

The development of artificial intelligence (AI) and machine learning has been the key 

drivers behind modern crime prediction. Such technologies process vast amounts of 

data, such as demographic data, crime reports, social media posts and weather 

patterns, to more accurately forecast possible criminal activity. Predictive policing 

software such as PredPol and Hunch-Lab that predict future crime hotspots from historic 
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crime report data used to assist law enforcement in taking preventive actions [39]. 

According to the study conducted by Richardson, while these systems are capable of 

increasing efficiency at a greater scale, they have drawn criticism for amplifying racial 

prejudices due to the over policing of minority communities contained within the data 

they rely on [40]. 

Another developing element is the use of real-time data feeds and surveillance tools, like 

social network analysis, gunshot detection and facial-recognition systems, to predict 

crime scenes. These emerging innovations are part of the set of changes commonly 

referred to by academics as "predictive surveillance," in which "law enforcement 

practices that merge predictive, data analytics and criminalizing technologies" [41]. 

While promising, this raises ethical concerns regarding civil rights, consent, and privacy. 

Balancing the rights of the individual against the public good is a central issue when it 

comes to the application of predictive technologies.  

To conclude this section, the evolution of crime prediction from criminological models 

to AI-based systems accords with wider technological and social trends. Before the 

widespread availability of such tools, compile-time checks were used to enforce such 

invariants, but are still not able to verify code with fairness guarantees and ethical 

requirements for policing. These approaches was perceived as validation, logistic 

regression models predicts [42] and also as a mandatory prerequisite for the future of 

crime forecasts. It could build on transparency, accountability and community 

engagement that will assure the fairness of outcomes and reliability of policing that are 

necessary for public trust in surveillance [43]. This research gives priority to individual 

right, privacy and minimize model biasness in its developments. 
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2.2 Traditional Crime Prediction Methods 
 

Traditional crime prediction techniques established the foundation for current crime 

detection method. The systems used simple statistical models to track patterns and 

predict criminal behavior. One such method which has been used for well over a century 

is regression analysis. This technique analyses the relationship between one or more 

independent variables (such as unemployment, education, or population density) and 

the rate of recorded crime as the dependent. Linear regression is widely used to predict 

the likelihood of crimes depending on the geographical areas. As demonstrated in by 

Braga, these procedures gave policy makers and law enforcement the tools to target 

resources according to their own statistical evidence [44].  

Another important crime prediction technique is hot spot analysis. This has the 

potential to identify areas of high rates of crime in the society. The mapping and 

visualization of crime patterns using spatial data, often with analysis of nearest neighbor 

or kernel density estimation to detect clusters, became possible for law enforcement 

agencies. This approach became increasing popular in the 1990s in high-crime cities 

and resulted in tactical responses such as community policing efforts and hot-spot 

policing initiatives [45]. The advantages of hot spot analysis include its user-friendliness 

and visualization, which may help the police to make decisions.  

The traditional methods were effective, but they had their limitations because regression 

predictions often relied on finite, static data, they had limited capability to adapt to 

dynamic patterns of crime. Hot spot mapping technology, while successful in identifying 

clusters of crime, also had methodological limitations. It tended to concentrate in 

certain neighborhoods, but not suitable to address the root causes of crime or account 
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for displacement (e.g. when criminal activity spreads to nearby neighborhoods when 

enforcement is increased).  The study by Brantingham in [46] emphasized that the the 

slate of prior usage can also serve to perpetuate systemic bias, with historical high crime 

areas that have been over-policed continuing to be represented as high-risk locations 

even if they no longer currently carry that distinction. This risked branding communities, 

and it added to public distrust of police approaches.  

Moreover, real-time processing and adaptability were usually missing in traditional crime 

prediction systems. The later were mostly updated only once per year or month in some 

cases, so they are not appropriate for short-term crime monitoring or rapidly evolving 

environments. They were  inadequate and could not reflect broader societal or situational 

conditions likely to influence offending perpetrators, as they were insulated from other 

potential data sources, including weather, traffic, social media, or emergency calls [47]. 

This constrained their suitability for preventive crime monitoring. As a result, despite the 

fact that traditional crime prediction techniques such as regression analysis and hot spot 

mapping provided a basic knowledge of patterns in crime, they were constrained by their 

static nature, over focusing on the simplification of complex variables, and tendency to 

confirm existing biases. 

2.3  The Role of Machine Learning in Crime Prediction  
 
Crime prediction has been revolutionized by machine learning (ML), which enables the 

analysis of big datasets. It is widely accepted that although traditional statistical 

methods can describe the global crime trends and patterns, machine learning (ML) 

algorithms such as support vector machines (SVMs), decision trees, random forests, 
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and neural networks, have the capability of revealing latent patterns and nonlinear 

relations in crime data. 

By analyzing both structured and unstructured data, these models offer deeper insights 

into criminal behaviour. Brantingham in their study established that in order to forecast 

crime hotspots and increase law enforcement efficiency, predictive policing systems 

now incorporate geospatial analytics and real-time data feeds [46]. However, high-

quality data and careful algorithmic design to prevent reinforcing preexisting biases are 

necessary for these models to be effective.  

Support vector machines (SVMs) can handle high-dimensional data, hence, they have 

shown particular efficacy in identifying high-risk crime areas. SVMs performed better 

than conventional hotspot mapping methods in the mapping of violent crime hotspots in 

the United Kingdom in 2024, as shown by Chainey and Tompson in their research [47]. 

SVMs were used more recently by [48], to predict burglary patterns in urban settings, with 

an accuracy rate of 89%. However, SVMs' "black-box"(inexplainable logic of the model in 

a simple way to users) nature can make them difficult to interpret, which is a major 

disadvantage in policing situations where openness is essential. According to Johnson in 

his published paper in 2024, SVMs may also require careful feature selection and 

parameter tuning [49]. 

Analyzing time-series and spatiotemporal crime data has made neural networks in 

particular, deep learning models more popular. Neural networks outperformed linear 

regression in predicting crime trends in Canadian cities, according to the author in [10]. 

Identifying long-term dependencies in crime patterns, the recent research conducted by 

Wang in [50] reveals the current developments like transformer-based architectures, 
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which have further increased forecasting accuracy. But the instrument comes with 

notable disadvantages. In addition, the model are computationally intensive and 

operates on large historical databases, despite the ability to accurately predict 

forecasted events. Moreover, there remains a risk of algorithmic bias as a neural network 

based on biased historical arrest data could inadvertently entrench policing disparities, 

as was highlighted by Ferguson in [51]. 

Early machine learning approaches to crime prediction focused on pattern recognition 

and clustering. For example, the Apiah in [52] introduced k-means clustering model for 

classifying crimes into five classes which are murder, theft, rape, kidnapping and burglary by 

adopting data from NCRB. Although it was claimed that the model reached 95% accuracy, this 

approach could not effectively deal with nonlinear and multimodal data and hence did not 

capture and train on non-linear dataset.  This highlights the need for more robust models 

capable of capturing intricate feature like images and video data input interactions, 

especially in heterogeneous urban settings. 

In contrast, the author in [53] introduced a feature-level data fusion approach leveraging 

Deep Neural Networks (DNN) with four learned layers: spatial, temporal, environmental 

context, and joint representation. This model integrated environmental data ( Google 

Street View images processed via AlexNet) to demonstrate a correlation between urban 

disorganization and crime likelihood. Although promising, the model's dependence on 

image-derived environmental features raises scalability and generalizability concerns in 

dynamic urban environments. 
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2.3.1  Classification of Machine Learning Algorithms  

 

The Figure 2.1 shows the broad divisions of machine learning. Supervised, 

Unsupervised, Semi supervised and Reinforcement learning. 

 

 

 

 

 

 

 

Figure 2.1. Machine Learning Division [3] 

 

2.3.1.1  Supervised Machine Learning 

 
In supervised learning, each input is paired with its corresponding output, and the model 

is trained on labelled data. In order to make precise predictions on unseen data, the 

model learns a mapping from inputs to outputs [14].  As shown in Figure 2.1,  this 

paradigm includes Support Vector Machines (SVMs), Decision Trees, and Logistic 

Regression. In addition, Neural networks such as YOLO, SDD are example of supervised 

learning as they require labelled data to map input-output. They are better defined as 

model architectures trained using optimisation techniques like gradient descent and 

backpropagation, even though some of these are stand-alone algorithms [25].  The work 

of Sohn in [54] reveals that Supervised learning has demonstrated success across 

diverse domains. The number and quality of annotations directly affect model 
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performance. Large labelled datasets are perfect for supervised learning. But overfitting, 

class imbalance, and label noise still exist, calling for regularization method and data 

augmentation [55].  Our research adopts this class of ML techniques and perform Data 

augmentation technique to increase the instances of the weapons and person classes 

in the training dataset. 

2.3.1.2 Unsupervised Machine Learning 

 
Unsupervised machine learning incline on approaches that analyze unlabeled data in 

order to discover hidden patterns or structures in data without having a prior knowledge 

about the output [54]. This approach is particularly effective in exploratory data analysis 

because the model works to uncover inherent correlations within complex statistical 

data, rather than predict results. Two commonly used approaches are dimensionality 

reduction and clustering techniques. With accelerated variants,  large-scale datasets, K-

means clustering is frequently used to separate data into discrete groups based on 

similarity. Hierarchical clustering is particularly effective for multi-level cluster analysis 

in fields such as the social sciences and biology [56]. Principal component analysis (PCA) 

is still crucial for dimensionality reduction in terms of eliminating noise and removing 

important features, even though advanced methods such as t-SNE and UMAP offer 

powerful tools for visualizing high-dimensional data [57].  

Among the many notable applications of unsupervised learning are genomics analysis, 

anomaly detection, and customer segmentation. Retailers, for instance, use clustering 

to identify patterns in the purchases made by their customers, and anomaly detection 

techniques are essential for thwarting fraud and guaranteeing cybersecurity [58]. In 

genomics, unsupervised methods facilitate the analysis of single-cell RNA sequencing 

data. Unsupervised learning has drawbacks, including scalability problems when 
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working with high-dimensional data and the continuous discussion about the optimal 

evaluation metrics for clustering outcomes. These difficulties show how much more 

research is required to improve the efficacy and efficiency of unsupervised learning 

strategies. 

2.3.1.3 Semi-Supervised Machine Learning 

 
According to Belkin in [59], by combining a small amount of labelled data with a much 

larger pool of unlabeled data, semi-supervised learning builds upon the principles of 

unsupervised learning and capitalizes on the benefits of both methodologies This 

approach is particularly useful in domains such as medical imaging, where expert 

annotations demand substantial resources, where labelled data is scarce or expensive 

to acquire. Semi-supervised approaches can attain performance levels comparable to 

fully supervised models by first learning from the large unlabeled dataset and then 

refining with the few labelled examples, while significantly minimizing the need for 

manual labelling [60]. 

In a number of fields, semi-supervised learning has shown impressive results. Models 

trained with a large amount of unlabeled data and a small number of labelled MRI scans 

have demonstrated medical diagnosis accuracy comparable to fully supervised systems 

for tasks such as tumor detection [61]. Even with little labelled data, natural language 

processing techniques like MixText have produced better text classification results [62]. 

The combination of labelled and unlabeled satellite imagery has improved the accuracy 

of land-cover classification, which has also benefited remote sensing applications [63]. 

There are still issues associated with semi supervised. A few are class imbalance within 

the labelled subset and confirmation bias brought by inaccurate pseudo-labels [54]. To 

solve these problems and improve the dependability of semi-supervised models, recent 
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developments have been made, such as the incorporation of active learning strategies 

and consistency regularization techniques like FixMatch. 

2.3.1.4 Reinforcement Learning 

 

This method of machine learning is not supervised in that it does not require labeling of 

input-output pairs; the quality of learned models can even improve with propagation 

strength. In reinforcement-learning (RL), an agent learns by interacting with its 

environment and receiving feedback in the form of rewards or punishments. Over time, 

the agent can learn the optimal decision making strategies, known as policies by 

performing this process. Contrast this with unsupervised learning which infers patterns 

in data from a fixed dataset, and reinforcement learning which is constantly evolving 

since the agent must always react and learn from its actions. This is why RL is ideal for 

setting where the agent must react to real-time data and feedback from the environment, 

like autonomous driving, robotics, and gaming (AlphaGo for example). RL is more 

advanced and purpose-oriented than unsupervised learning as it specifically tries to 

optimize long-term combined rewards. This is illustrated in Figure 2.2 

 

Figure 2.2. Reinforcement Learning 

Instead of looking for hidden structures in a set of data, reinforcement learning aims to 

maximize the most yielding reward signals. This is different from supervised machine 
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learning. Reinforcement learning is the third category of the machine learning paradigm, 

according to some authors. In addition to supervised and unsupervised learning 

approaches, reinforcement was taken into consideration as a learning style in their 

published book on reinforcement learning.  

A computational process for comprehending goal-directed learning and decision-

making is called reinforcement learning. An agent establishes a direct relationship with 

the environment through reinforcement learning. The state, agent, action, and signal 

reward are all defined. RL is a system that makes decisions based on the most lucrative 

outcomes in its surroundings and extrapolates from experience. Research in this crucial 

area of artificial intelligence has grown over time. Its wide interdisciplinary applicability 

in engineering, neuroscience, psychology, and other scientific domains may be the 

cause of this. A branch of artificial intelligence and machine learning, reinforcement 

learning has broad uses in optimisation, statistics, and other fields. 

2.3.2 Ethical and Practical Challenges of Machine Learning 

 

ML-based crime prediction models present serious ethical issues in spite of their 

benefits. Because models trained on historically skewed policing data may 

disproportionately target marginalized communities, algorithmic bias is still a serious 

problem. According to recent studies conducted by Emily and their team in 2023, over 

policing in minority neighborhoods has been strengthened by predictive policing tools in 

the United States [64]. Furthermore, the research by Rudin in [65] has previously justified 

how model accountability is complicated by the opaque nature of many machine 

learning models, which makes it challenging for law enforcement to defend predicted 

results. 
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Study conducted by Bauer in [66], supports fairness-aware machine learning, which 

integrates bias mitigation strategies and encourages algorithmic transparency, as a 

solution.  While machine learning has effective crime prediction tools, its utilization 

guided by ethics, openness and ongoing review. Machine learning (ML) can be a tool for 

successful and fair law enforcement provided that it has access to diverse training data, 

that it is interpretable, and that fairness considerations are included. Our research 

prioritize on the development of transparent AI models.  

2.4  Overview of Computer Vision 
 
Computer vision is an area of artificial intelligence (AI) that helps machines interpret and 

understand the visual world, which is comprised of images and videos. It applies 

mathematical algorithms to reconstruct the three-dimensional (3-D) geometry, texture, 

and motion of objects in the scene, rendering computer systems capable of processing, 

rendering, and interpreting 3D models of objects embedded in space. Szeliski, in their 

research in [67], ascertain that this aspect of AI is complex because it is full of inverse 

problems. It tends to deduce hidden features from partial cross-sections of the visual 

world. This problem is challenging because visual data is typically noisy, ambiguous, and 

partial, which makes accurate discovery of object configurations hard. 

Computer vision usually adopts the interplay of physics-based methods, probability 

models, machine learning and so on to solve problems. Forward models take into 

account the principles of radiometry, optics physics and sensor models and are used to 

simulate how light interacts with objects, as well as how images are created [68]. These 

models aims to take physical properties of the scene, such as shapes, textures, lighting 

conditions, etc., which are implicitly influenced in input images or videos. Machine 
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Learning approaches, particularly deep learning, have also transformed computer vision, 

where the system is trained to learn representations of objects from large datasets and 

to disambiguate among possible solutions by observing the patterns in the data. 

Computer vision aims to 'understand' the world by recovering object properties - 

shapes, color attributes - from imagery. That forms the perceptual side of AI [7]. 

Computer vision develops due to the growth of both computational capacity and 

algorithmic techniques, demonstrating problem-solving capacities ranging from 

autonomous driving to medical imaging. 

2.4.1  Computer Vision Applications in Security and Surveillance  

 

Computer vision is fast becoming an invaluable asset in today’s security and surveillance 

systems, with the ability to automatically and in real time monitor, detect, and interpret 

visual information.  

The objective of computer vision in artificial intelligence (AI) is to provide machines with 

the ability to understand and interpret visual data captured by cameras placed in the 

real world. This includes images and videos. It allows computer systems to process, 

view and interpret 3D models of objects in space using mathematical methods for 

estimating location, appearance, and motion [67]. It often involves inverse problems 

where the computer infers unknowns about a scene from incomplete or uncertain 

explanations of static or dynamic objects that have been recreated in a virtual 

environment. 

Computer vision systems is applicable in various fields. For example it is used to 

recognize suspects via facial recognition to be able to pick out suspicious behaviors and 

to analyze video to get evidence for law enforcement and public safety. It can be applied 
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in assembly line quality control, and defect detection in industrial environments. Other 

intrinsic advantages of applications of computer vision is its potential to handle and 

understand large-scale data.  

According to the research conducted by LeCun, the recent advancements in deep 

learning, particularly in convolutional neural networks (CNNs), have enabled computer 

vision systems to achieve remarkable progress on tasks such as object detection and 

image classification [68]. These capabilities are critical for applications such as 

autonomous driving, medical diagnosis, and surveillance of criminal activities in which 

rapid analysis of visual data achieved with minimum error. Thus, in the intersection of 

machine learning, image processing and pattern recognition, the computer vision 

provides disruptive potential in multiple sectors. The role of computer vision in image 

description predominant by extracting, analyzing, and respond to visual data. Computer 

vision strives to impact the world by inferring object properties, shapes, and color 

properties from images. Its algorithms have demonstrated great promise in various 

application fields such as medical imaging and autonomous driving. This literature 

considers its applications in the area of system security as applicable to our research.  

A growing trend in the literature of this domain is the fusion of computer vision modalities 

such as activity recognition, object detection, and facial recognition, which is key for 

improving public safety and crime prevention and increasing the efficiency of 

investigations. Due to these applications, conventional surveillance has developed into 

a more intelligent system. 
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2.4.1.1    Facial recognition Application 

 

This is among the most extensively researched and used security-related computer 

vision applications. It involves using a person's facial features to automatically identify or 

verify them. Zhao in [69] states that facial recognition systems compare captured images 

to databases of known people using feature extraction and pattern matching techniques. 

This computer vision applications systems are used for threat detection and identity 

verification in border control, airports, and public gatherings. However, ongoing 

discussions and research into equitable and responsible implementation spurred by 

concerns about accuracy in different lighting and pose conditions, as well as ethical 

concerns about privacy and mass surveillance [70]. 

2.4.1.2    Object detection  

 
Object detection is a common term in machine vision. It is a process that describes how 

the instance of real time objects found in static or motion images. The object detected 

often labelled with a class name and put in bounding box with its correspondence 

confidence value. The object in view is both recognized and localized. These days, we use 

different object detectors like YOLO, Single Shot Multi-Detector (SDD), Mask R-CNN and 

so on, for object detection tasks. Some of the commonest challenges faced by machine 

vision researchers in solving object detection tasks are varying object distance from 

camera and object in motion. There is Possibility of object shape changing in time.  In 

addition, the Object in motion poses blurriness. This is called Occlusion- state of an 

object in obscurity. It can be because of its cluttered background and Shallowness. Other 

advanced applications of machine learning network used for the behavioral 
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classification exercise in this research are Semantic segmentation, Image diagnosing, 

Depth and motion estimation, deep sorting and Instant segmentation  

2.4.1.2.1  Semantic Segmentation 

 

In computer vision, Semantic segmentation has an important task that involves the 

classifications of each image pixel into a predefined category which enables a detailed 

understanding of scene. It is applicable and widely used in autonomous driving, satellite 

image analysis and in medical imaging.  In the research conducted by Long in [71] and 

Raijpurka in [72], Fully Convolutional Networks (FCNs) and U-Net architectures 

techniques improves segmentation accuracy significantly by leveraging hierarchical 

features extracted from convolutional layers  

2.4.1.2.2  Image Diagnosing 

 

Image diagnosing refers to the use of image analysis, specifically in the medical field, 

where deep learning models are used to identify conditions like diabetic retinopathy, 

pneumonia, and tumors from medical scans. For example, in detecting pneumonia, 

CheXNet, a deep convolutional neural network trained on chest X-rays, has shown 

performance on with radiologists [73].  

 

2.4.1.2.3  Depth and motion estimation  

Depth and motion estimation is an important technique performed in object detection. It 

is applicable in augmented reality, robotic navigation, and 3D reconstruction. While 

motion estimation (optical flow) monitors pixel displacements over time to comprehend 

object and camera movement, depth estimation seeks to predict the distance of objects 
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from a single or stereo image. In order to improve scalability, recent methods use self-

supervised learning to estimate motion and depth without labelled data [74]. 

2.4.1.2.4  Instant Segmentation 

Instance segmentation distinguishes individual object instances within a class instead 

of just labelling pixels, combining object detection and semantic segmentation. This field 

has advanced t and often used by neural networks models like Mask R-CNN, which 

produce object masks for every instance that is detected, enabling accurate 

classification and localization [75]. Together, these methods aid in the creation of 

intelligent systems for robotics, autonomous vehicles, healthcare, and surveillance. 

With this computer vision techniques, real-time object detection is now feasible even in 

crowded and complex scenes [76]. Rapid object detection frameworks were first 

presented by Viola in [77]. The methods have later evolved into deep learning methods 

which significantly improve both the speed and the performance of the detection system. 

These technologies are deployed to monitor potential threats and anomalies in locations 

ranging from government buildings to retail centers to and transportation. 

2.4.1.3  Activity recognition with Computer Vision 

 
Analyzing human movement patterns to find patterns that might point to suspicious or 

criminal activity is part of surveillance application of computer vision. For instance, using 

datasets and models that assist in training systems to distinguish between normal and 

abnormal behavior. The Researchers in [78] classified human actions into simple 

gestures and complex interactions. Activity recognition is particularly useful for 

identifying theft, fighting, loitering, and unauthorized entry in secured areas 
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Deep neural models such as RNNs, LSTMs,YOLO  improves the temporal modelling of 

these activities making the systems able to predict events before they further deteriorate. 

The development of intelligent predictive systems that include activity-based monitoring, 

object-directed analysis, facial recognition and more are all related to the integration of 

these technologies through converged surveillance solutions. They enable faster 

responses, reduce human monitoring fatigue and generate real-time alerts. However, 

scholars have also warned of the risk of bias and over-generalization, particularly in non-

homogenous populations, by which misclassification can trigger false arrests and over-

policed neighborhoods [79]. Such system need a robust algorithmic fairness and 

transparency to gain public trusts. The instruments also need additional human 

observations to overwrite prediction when error occur in operations. Therefore, due to 

advances in facial recognition, object detection, and activity recognition, the application 

field of computer vision in security and surveillance has been broadened. 

To maintain credibility and trust in their use, these technologies may be adopted while 

taking ethical concerns, data security, and public accountability into the design 

consideration. This research considers the gaps in knowledge and account for them at 

planning and design. It aims to develop robust, fair, unbiased, transparent and 

unprejudiced predictive instrument, the proposed instrument planned to be proactive 

and preventive, detecting weapons in pre-crime scenario before casualties happen in 

real- life 
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2.5  Computer Vision Algorithms and Frameworks for Crime 
Predictions 
 
Recent research explores the integration of machine learning and computer vision for 

crime prediction. For example, Wang in [80] conceptualized an AI-based crime 

forecasting system combining neural networks, heuristic engines, and computer vision 

techniques. Though largely theoretical, the study emphasized the importance of fusing 

multiple features, including spatial-temporal data and human behavior analytics, to 

predict criminal activities. Another research conducted  by Yan  in 2024 [81] , applied 

computer vision to public health with a system designed for multi-human fall detection 

using YOLO combined with temporal classification.  

The method showed success using RGB images alone, improving accessibility compared 

to systems requiring RGB-D or sensor data. Kalman filtering was utilized to track each 

subject over time, enhancing visibility in crowded scenes. Further, Kulbacki in their study 

in [82], presented a human motion analysis framework using computer vision 

techniques, focusing on body part segmentation, joint localization, and action 

recognition in both 2D and 3D video streams. Such methods hold potential for 

recognizing abnormal behaviour indicative of criminal activity, though the study lacks 

specificity for detecting crime-related gestures or concealed objects. 

Findings from the research of Kounaldi in [83], explores the integration of computer 

vision into crime forecasting, representing a change in thinking in  policing and public 

safety. Traditional methods relying on statistical crime reports and historical data now 

augmented by AI-driven visual analytics. Modern systems leverage real-time 

surveillance footage to assess behavioral and environmental cues predictive of criminal 
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activity. For instance, the research by Bappee in [84] demonstrated how recurrent 

vandalism patterns or unauthorized intrusions can be identified through spatiotemporal 

feature extraction. This enables law enforcement to deploy preventive measures.  

Several research on intelligent surveillance systems that can identify and stop criminal 

activity have been developed with computer vision in response to the rising incidence of 

violent crimes in both public and private settings [51]. These computer vision crime 

detective instruments use machine learning, deep learning, and image processing 

concepts to automatically identify guns, knives, and other dangerous objects in real-time 

video feeds [85]. According to Alpaydin, 2020 in [86], human monitoring is a major 

component of traditional security systems, but it can be limited in scope and prone to 

errors.  On the other hand, automated weapon detection with computer vision provides 

more accurate analysis of vast amounts of video data, faster reaction times, and all-

round watchfulness. The ability of deep learning models to identify weapons from CCTV 

footage has been shown in a number of studies [68]. For example, Convolutional Neural 

Networks (CNNs) have demonstrated exceptional ability to extract spatial features from 

video frames in order to differentiate between various objects [87].  

In another research conducted by Deqi in [88], a YOLOv3-based model was trained to 

identify handguns in school settings. The test scenarios showed an accuracy of 90%. This 

accuracy is acceptable but higher precision is possible as error loss needed to be 

narrowed because of the sensitivity of the application in security.  In a similar research 

conducted in 2023 by Goudah in [89], a modified ResNet-50 architecture was used to 

detect knives in tube stations that were visible and hidden. These empirical results 

demonstrate how computer vision may serve as an early warning system in areas where 

crime is a problem [90]. However, these works constraints to detection of only one class 
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of weapon, which could have been expansive to other common weapons. To make such 

devices robust, there may be need to include ‘persons’ to the dataset and train the model 

to recognize this class and classify perpetrators based on illegal harms possessions. This 

is the gap that this research fills in the field of computer vision. 

Furthermore, in the use of computer vision in crime detections, research demonstrates 

the efficiencies of other real-time object detection frameworks like SSD (Single Shot 

Multibox Detector), higher YOLO families (YOLOv4, YOLOv5), and Faster R-CNN. This 

higher precision frameworks have emerged as key instruments in weapon detection. For 

example, these higher YOLO series is popular for trading the speed and accuracy with 

cut-off streaming capacity as needed in surveillance systems. The fast and precise 

counting and detection of the number of people in specific areas are essential for crowd 

management, security inspection and also public safety on certain events. In dynamic 

environments, traditional methods frequently fail to produce precise and timely results. 

To fill this void, Suguna in [91], investigated how to integrate YOLOv5 with alarm and 

motion tracking systems, revealing a remarkable 85% decrease in false positives during 

public security trials. Their work investigates the application of YOLOv5 for people 

counting and detection in crowded scenes. This state-of-the art object detection 

framework is famous for its efficiency, accuracy, and real-time application performance, 

and can substantially transform how people were observed at a given location, these 

tools are essential for law enforcement response because they can track suspects 

across frames in addition to detecting weapons. This mAP is high but needed to 

significantly improve for the instruments to be recommended for public use. In addition, 

the research needed to be expanded to pre-empt crime before the weapons used to 

perpetrate criminal acts.  
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Therefore, for a more accurate precision, there are obstacles to overcome before weapon 

detection systems implemented in practical environments [14]. The high degree of 

variation in lighting, occlusion, and camera angles is one significant problem that 

impacts detection models' accuracy. Furthermore, identifying partially hidden weapons 

or distinguishing between real and unreal weapons continue to be major challenges in 

the existing literature [92]. Additionally, the authors in [93] and [79] emphasized in their 

papers that the training datasets frequently lack diversity in terms of object types and 

backgrounds, which results in incomplete or biassed model performance  

According to Zubboff in his published work on social theory in 2023, automated weapon 

detection systems' ethical and legal ramifications need considered in addition to their 

technical aspects [94]. Concerns regarding data security, privacy, and abuse is 

continuous with using surveillance technologies [95]. For instance, misuse of weapon 

detection software by unauthorized individuals or states can lead to unjust 

discrimination or unwarranted surveillance. Promoting transparency, accountability and 

the mitigation of bias in these systems, Wengi in their paper published in 2025 called for 

regulatory frameworks that ensure the responsible use of AI in public security [96]. 

Therefore, we could say that, when all these shortfalls accounted during system planning 

and developments, computer vision-based weapon detection is a promising area in 

crime prevention and public safety as supported in the paper published by Brundage and 

their team in [97]. The capacity to identify and address criminal threats enhanced by 

combining real-time surveillance systems with deep learning [98]. This is the 

improvement that this research aims to advance relative to the existing works in crime 

prediction. Researchers and legislators must work together to address the difficulties 

and moral issues that come with implementing the technology as it develops further [99]. 
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We align with Tegmark in their paper on “Being human in the age of artificial intelligence”. 

The researcher revealed that as AI and computing power continue to advance, we 

anticipate that future weapon detection systems will become more precise, flexible, and 

socially acceptable, further solidifying their position as crucial instruments in 

contemporary law enforcement [100]. 

Further to these studies, in recent years, the increasing availability of surveillance 

footage, computing power, and deep learning advancements have made the integration 

of computer vision (CV) techniques with crime prediction a prominent area of study. 

Numerous studies have shown how well CV-based models work to predict or stop 

criminal activity, especially in the areas of object detection, facial recognition, and 

behavior analysis. For example, in their groundbreaking study "Real-world Anomaly 

Detection in Surveillance Videos," Sultani, Chen, and Shah (2018) concentrated on 

identifying anomalous activity in continuous video feeds. Their method made use of a 

deep learning model built on a deep multiple instances ranking framework, which was 

created especially for spotting anomalous activity in security footage. Notably, a sizable 

dataset comprising both commonplace scenes and unusual events like fights, thefts, 

and accidents was used to train the system. They were able to spot questionable trends 

using this approach without the need for in-depth frame-level annotations. 

With an average frame-level AUC of 75.4% on the UCF-Crime dataset, the study's results 

were impressive. Compared to traditional models that employed handcrafted features, 

this performance was noticeably better. Their approach was particularly suited for 

dynamic and changing environments because it placed a strong emphasis on temporal 

localization or determining the exact moment of criminal acts through weakly supervised 

learning. The system's low need for human annotation stood out among its advantages, 
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providing a workable answer for real-world uses like public transportation hubs, 

shopping malls, and urban surveillance. The study did, however, acknowledge certain 

limitations. For instance, a person falling could just be an accident rather than a 

suspicious act; not all anomalies in video data necessarily point to criminal intent. 

Furthermore, the poor quality of the video dataset and model training design had a direct 

impact on the model generalization.  

According to Redmon in [85], they presented a research conducted with YOLOv3. An 

Incremental Improvement, a noteworthy advancement in real-time object detection that 

has been widely applied to surveillance tasks like detecting loitering people or identifying 

weapons, despite not being specifically created for crime detection. Their approach 

used a fully convolutional neural network with residual blocks and up sampling layers, 

which improved the network's speed and accuracy in identifying objects in changing 

environments.  

YOLOv3 achieved an 80.2% recall and a mean Average Precision of 57.9% on COCO 

dataset. Its performance was good with multiple object detection and at 45 frames per 

second on GPU, and it balanced detection quality with the speed, which demonstrated 

its abilities in the real-time detection. Thus, YOLOv3 is suitable for applications such as 

automated monitoring systems and public security/surveillance systems, for which it is 

necessary to perform real-time accurate detection. However, YOLOv3 also has its 

drawbacks. It tends to struggle with small or occluded objects, which is especially 

challenging in occluded or cluttered scenes. Furthermore, YOLOv3 requires additional 

modules or behavior analysis (BA) adaptations to be applicable in criminal surveillance 

as it has not been designed for the detection of abnormal activities. 
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 Nonetheless, it is a useful tool for public CCTV systems due to its resilience to changes 

in scale and illumination as well as its quick detection speed, particularly when it comes 

to tasks like spotting weapons or illegal intrusions. Due to this shortfall, this research has 

adopted the use of YOLOv4 methods, which can be an improvement to the findings of 

Redmon in the detection task. 

By examining spatiotemporal motion templates without complete video decoding, Kang 

in [101] presented a reconstruction-free method for action inference in compressed 

surveillance footage. With a 78.2% F1-score on the PETS2007 dataset and over 90% 

accuracy for high-contrast abnormal actions like sprinting, their approach showed good 

performance in detecting suspicious activities like running or trespassing. The main 

advantage of the system is that it operates directly on the motion vectors in compressed 

video streams and is thus suitable for low complexity surveillance system. However, the 

sensitivity to camera-angles, backgrounds, and background noise, and its lack of ability 

to cover subtle and complex behaviors will limit its application to more complex 

surveillance situations. 

In their work "Multi-Level Recurrent Residual Networks for Crime Forecasting," by Li et al 

in [102] developed a hybrid system that leverages the computer vision for object and 

person detection as well as RNNs for understanding spatiotemporal crime patterns. 

Through a thorough examination of crime logs and surveillance footage, the model was 

able to predict probable future crimes by integrating these data sources. With a reported 

recall of 85.1%, precision of 82.6%, and F1-score of 83.8%, the method showed good 

performance. This system's strength is its ability to combine historical crime trends with 

visual data to provide a thorough prediction framework that is effective at predicting 

reoccurring patterns of criminal activity. However, the precision could be optimised 
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through advanced hyper parameter tuning for higher accuracy. This research adopts 

advanced optimisation techniques to ensure high true positives (correct detections of 

instances) and low false positives (incorrect detections). 

Section Summary 

From anomaly detection to real-time object recognition and behavioral forecasting, the 

application of computer vision to crime prediction has shown promise in a number of 

fields. Compared to conventional techniques, these systems offer greater automation, 

quicker reaction times, and wider coverage. But model generalizability, ethical use, and 

diversity of datasets also are often requirements for effectiveness. To ensure fair and 

responsible usage in law enforcement, more emphasis placed on explainability, bias 

reduction, and data privacy as technology develops in this work.  

2.6  Real-life Applications of Computer Vision Models  
 

This section takes a look at literatures and real life scenario where the computer vision 

model has been used to identify weapons and crime scenes linked to the violent crime 

in real time situation.  

In the research by Sultani, the University of Central Florida's UCF-Crime Dataset Project 

significantly advances crime recognition in video analysis with over 1,900 real-world 

CCTV clips annotated for 13 criminal activities, such as fighting, robbery, and vandalism. 

This dataset has been used by researchers to train deep neural networks with weakly 

supervised learning, which enables anomaly detection without requiring annotations at 

the frame level. Studies using Multiple Instance Learning (MIL) frameworks and 3D 

convolutional networks have produced encouraging frame-level anomaly detection 
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AUCs of up to 75.4% [103], indicating the dataset's great potential to improve real-world 

surveillance applications. Its real-world footage contributes to generalizability and 

model relevance, but it also has limitations due to limited camera angles and scene 

diversity, which can degrade its performance when there are new scenes. In addition, 

since the dataset contains only anomalous patterns, other behaviours that are not 

criminal might be confused with crime, such as dancing. This further indicates the need 

for models to be able to have a better knowledge of context (the ability to differentiate 

between when someone is committing crime and when someone is just behaving 

normally). 

To conclude this section, using Computer Vision Model, there is the possibility to pre-

empt crimes and threats proactively. This could accelerate preparedness responses, 

and train predictive algorithms to explore the potential of strong machine learning based 

CCTV video analytics models.  Each of the existing research, however,  highlights 

important drawbacks like algorithmic bias, data privacy, and infrastructure requirements 

problems that was resolved for the implementation of this research. 

2.7  Advancements in the Convolutional Neural Network Framework 
 

Convolutional Neural Networks (CNNs) are a subset of deep learning models created 

especially for processing and analyzing visual data, including pictures and videos. In 

order to closely resemble the human visual system, their architecture uses layered 

operations that are excellent at capturing spatial hierarchies in data [104]. CNNs are now 

the basis for contemporary computer vision applications, such as object detection, 

facial recognition, and activity recognition in security systems as suggested by Lin in 

[105]. Convolutional, pooling, and fully connected layers make up a typical CNN 
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architecture, and each one contributes differently to learning. Based on the visual input, 

these layers conduct classification or regression tasks, sequentially extract features, and 

reduce the dimensionality of the data. 

The convolutional layer is the main part of a CNN. It applies learnable filters, also called 

kernels, to the input image or feature map to find local patterns such as edges, textures, 

or shapes. Each filter performs an element-wise multiplication and a summation on the 

input data to produce a feature map. This operation enables the network to detect spatial 

hierarchies and maintain the spatial relationship between pixels, making it ideal for 

image analysis.  

The pooling layer pools the features maps to small size, which can reduce computation 

complexity and avoid overfitting in CNN. Popular pooling methods are the max pooling, 

taking the maximum activation in a region, and the average pooling, averaging the values 

in pools, respectively [106]. For instance, a 2×2 max pooling operation with stride of 2 

effectively cuts the input feature map's width and height in half, preserving the most 

noticeable features while eliminating the less significant CNNs usually contain one or 

more fully connected layers, also known as dense layers, following a convolutional and 

pooling layer [107].  

This section highlights how CNNs have evolved significantly over time, with deeper and 

more effective architectures emerging that have enhanced object detection and image 

classification capabilities. 

2.7.1  AlexNet (2012) 

 

Developed by [10], AlexNet demonstrated the efficacy of deep CNNs by winning the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It brought GPU-based 
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training, dropout for regularization, and ReLU activation. It is used for image classification 

with notable improvements over earlier models. However, the framework  overfits without 

dropout. Also, the computational cost is high. 

2.7.2  VGGNet (2014) 

 

According to Simonya in  [108] , the framework was created by Visual Geometry Group 

(VGG), this architecture used tiny 3x3 convolutional filters to increase depth (up to 19 

layers). It is suitable in transfer learning, feature extraction, and classification. The 

feature extraction for VGGNet is simple and efficient. However, the detector has low 

inference time when used to train model. 

2.7.3  ResNet (2015) 

 

Introduced by He et al in [109] ResNet employed residual learning to overcome vanishing 

gradients, enabling the training of very deep networks (up to 152 layers). It is used for 

Image classification, object detection (e.g., in Faster R-CNN). The detector is scalable 

and excellent in generalization. But it is computationally expensive.  

2.7.4  The Single Shot Multibox Detector (SSD) Architecture 

 

Unlike previous methods and like R-CNN, which required multiple processing stages for 

detection, SSD (Single Shot MultiBox Detector) is a well-known object detection 

framework that predicts object classes and their corresponding bounding boxes in a 

single pass through the network, enabling significantly faster performance . SSD's 

efficiency and real-time performance have made it a preferred choice in applications 
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that require accurate and fast object detection, especially in edge computing scenarios 

[110].  

A base convolutional neural network (like VGG16) combined with additional 

convolutional layers intended for object localization in the SSD architecture. The network 

can produce feature maps at various scales. This makes it possible to detect objects of 

variable sizes [61]. SSD is especially well-suited for real-time applications since it uses 

multi-scale feature maps to strike the ideal balance between speed and accuracy [111]. 

However, recent studies show that SSD's built-in feature extraction may not be able to 

manage highly occluded objects, which is why attention mechanisms have been added 

to enhance detection performance [112]. Zhang in [113] reveals that despite SDD 

benefits, it has some disadvantages. For small objects, its detection accuracy is lower 

than that of region proposal techniques such as Faster R-CNN.  

Furthermore, compared to more recent object detectors like YOLOv4, SSD's mean 

average precision (mAP) is typically lower [50]. Further research into more sophisticated 

architectures that preserve real-time performance while enhancing detection accuracy. 

This is the case especially for small and obscured objects. Because of this shortcomings, 

the detector draws attention to the trade-off between speed and precision that [61]. 

Recent study in 2024 by Liu in [112], reveal improvements of SSD such as SSD-Edge for 

optimized edge deployment and multi-scale context aggregation [61]. This demonstrate 

ongoing efforts to enhance SSD’s capabilities.  

The author in [12] emphasizes that SSD and YOLOv4 leverage convolutional neural 

network architecture, an advancement in computer vision for image classification tasks. 
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In single-shot detection, the CNN base network truncated before the classification 

layers, enabling the extraction of crucial features from input layers.  

 

Figure 2.3. SSD Network Architecture [113] 

 

Components of SDD Neural Network 

(a) Multiscale Feature Maps 

SSD uses a base convolutional neural network (CNN), often pre-trained on a large 

dataset for image classification (like VGG, ResNet, or MobileNet), there are however 

additional CNN layers added to reduce spatial dimensions whilst increasing the number 

of channels. This base network modified to extract feature maps at different scales. 

These feature maps capture information at various levels of abstraction. 

(b) Default Boxes (Anchor Boxes) 

Instead of using a fixed set of anchor boxes for the entire image, SSD utilizes default boxes 

that are associated with specific feature map locations. Each default box has a set of 

predicted offsets for refining its position and dimensions, making the detector more 

flexible in handling objects of varied sizes and aspect ratios [111]. 
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Figure 2.4. Anchor Boxes [111] 

 

(c) Aspect Ratios and Multiple Feature Maps 

SSD utilizes default boxes with varying aspect ratios, employing them across multiple 

feature maps at different resolutions. This strategy effectively captures a diverse range of 

potential object shapes and sizes. In contrast to alternative models, SSD forgoes the 

reliance on an intermediate fully connected layer for predictions and instead utilizes 

convolutional filters directly. To improve the representation of smaller objects, SSD 

combines feature maps from multiple scales. The algorithm fuses information from 

different layers to ensure that the detector can effectively capture objects of diverse sizes 

2.7.5  The YOLO Algorithms 

 

YOLO is a popularly used computer vision algorithm for object detection. The most well-

known series of YOLO are YOLOV2, YOLOV3, YOLOV4, YOLOV5, YOLOV6, YOLOV7, 

YOLOv8, YOLOv9 and YOLOV10, which were released in late 2024. 

YOLO is well known in deep learning for its molecular sizes; fast speed computations; 

incredible main average precisions (MAP) and efficient object detections. Originally, it 
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contained 24 convolutional layers and two fully connected. YOLO processes images fast 

because it only puts frames into the network to get its output. YOLO is well-grounded in 

real-time video object detection and classification. The model identifies classes with 

bounding boxes around the object region.  

2.7.5.1  The YOLOv4 Architecture 

 

Study by Bochovskiy in [114] reveals how the introduction of YOLOv4 marks a major 

advancement in the YOLO family of real-time object detection algorithms. Through 

integrating further advanced features in its previous architecture, this version was 

designed to maintain real-time performance with high accuracy. It was designed to 

provide better detection accuracy and speed while also making tradeoffs to reduce the 

deficiencies from the previous YOLO models. 

From the paper published by Redmon 2016. We can say that YOLO, in a single glance, 

takes the entire image and predict the bounding box coordinates and class probabilities 

[76]. YOLO's most significant advantage is its fast pace in detection. it is speedy, and it 

can manage an average of  forty-five (45) frames per second. Among the earliest versions 

of YOLO, version 4 is one of the fastest and most accurate in detecting objects. But with 

optimization and hardware acceleration mechanisms, higher rate possible, the 

proposed algorithm as shown in fig 2.5 consists of fifty-three (53) convolution layers.  

The architecture comprises of three different layer forms. Firstly, the residual layer 

formed when the activation easily forwarded to an inner layer neural network. In a 

residual setup, the result of layer one summed to the output of layer two. The second is 

the detection layer which performs detection at three different scales or stages. The size 

of the grids increased for detection. The third is the up-sampling layer which increases 
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the spatial resolution. Here the image up sampled before scaled. Also, the concatenation 

operation used to concatenate the outputs of the previous layer to the presentation layer. 

The addition operation used to add previous layers.  

In the YOLOv4 object detection module used in this research, the YOLO takes input 

frames first, and these frames divided into grids, say 3 x 3, and on every grid, image 

classification and localization applied. 

 

Figure 2.5. YOLOv4 computer vision architecture [76] 

The bounding boxes and their equivalent class probabilities for objects are predicted. We 

then filter out the specific classes as required human, handgun, riffle, short gun, and 

knife instances in the input dataset. Meanwhile, there are more than 80 classes of the 

objects present in the COCO dataset used for the research hence, the need for class 

filtering.  

To understand the YOLO algorithm, it is crucial to determine what we currently expect. It 

varies from the majority of the neural network models because it uses a single 

convolutional network that predicts bounding boxes and the resulting class probabilities. 

The bounding boxes weighted by the probabilities, and the model makes their detection 

dependent on the final weights. Thus, the end-to-end output of the model maximized, 
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and, as a result, images can be produced and processed at a rapid pace as demonstrated 

by the author in [76].  

The main benefits of YOLOv4 are its well-balanced performance, which offers high 

accuracy and real-time speed, making it applicable to a variety of real-world 

applications. It also makes use of several advanced training enhancements that 

improves learning outcomes, such as the activation function Freebies (like Drop Block 

regularizations and Mosaic augmentation). YOLOv4 demands high GPUs to be trained 

and if not further modified, its complexity is not friendly for running on edge devices with 

limited computing resources. This transition is clearly visible in the development from 

AlexNet to YOLOv4, moving from an accuracy-oriented classification towards real-time 

object detection with large trade-off between speed and complexity. Deep networks such 

as ResNet are still necessary in cases with high requirements on accuracy rather than 

speed.  

The YOLO family of real-time object detection algorithms aims to simplify prediction 

tasks [76]. YOLO splits an image into a grid and predicts bounding boxes and class 

probabilities straight from the entire image, in contrast to conventional methods that 

need steps to identify objects [114]. Research conducted by Wang in [115] shows that by 

taking a comprehensive approach, the network can simultaneously analyze the entire 

image context, leading to significantly faster detection speeds while preserving 

competitive accuracy.  

A key advantage of YOLO is its extremely fast inference speed, which makes it ideal for 

real-time applications like video surveillance and driverless cars [116]. Because YOLO 

learns to comprehend the global structure of images, it is also resilient to changes in 
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object appearance and positioning, which contributes to its remarkable ability to 

generalize to new domains [117]. These characteristics makes it widely used in dynamic 

contexts, such as augmented reality and robotics [118].  

Despite its benefits, YOLO has some disadvantages, particularly in its early versions. 

When detecting small or overlapping objects, the single-stage prediction approach may 

miss subtle details [119]. Furthermore, because the early YOLO models trade off 

accuracy for speed, the precision was lower than that of more advanced detectors like 

Faster R-CNN. These restrictions have been addressed by recent developments like 

YOLOv10. By optimising different YOLO components from the standpoints of accuracy 

and efficiency, YOLOv10 presents a comprehensive efficiency-accuracy driven model 

design approach. This method improves the model's capability and drastically lowers 

computational overhead, which improves the detection of small and overlapping objects 

[119]. Effective model scaling for edge device deployment [120]. According to recent 

research, YOLO continues to dominate real-time detection. It benchmarks to 

demonstrate better speed-accuracy trade-offs than SSD and RetinaNet [121]. Ongoing 

research into hybrid architectures is necessary because handling extreme occlusions 

and extremely cluttered scenes continues to present difficulties [118].  

2.8  Challenges and Limitations of CNNs 
 

In this section, we have discussed a few particular aspects which may involve technical 

difficulties for training CNNs: 
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2.8.1  Technical Challenges 

 

While Convolutional Neural Networks (CNNs) performs well in various computer vision 

tasks, a number of technical challenges should be sought in order to adapt them in 

realistic crime prediction and surveillance.  

One of their main limitations is the high computational power required for training and 

deploying of deep CNN models. CNNs are computationally expensive, and the 

computation is typically offloaded onto specialized hardware such as a high-performing 

GPU or TPU (Tensor Processing Unit). This is more particularly the case on modern 

architectures like YOLOv4, VGG, ResNet. For instance, YOLOv4 runs inference in real-

time but consumes a lot of GPU while training [114]. This presents a major problem for 

low resource settings such as government departments in developing countries that have 

insufficient infrastructure to run sophisticated AI models. 

Another major issue it faces is that CNNs require large, good quality, labelled datasets to 

be effectively trained. Most CNNs are trained by supervised learning which is costly to 

obtain a large amount of labeled data for generalization performance. In crime 

prediction scenarios, it is hard and even ethically challenging to collect labeled videos or 

images of crimes surveillance. Most of the existing datasets suffer from a lack of 

diversity in crimes, environments, and cultural diversity, or are generated artificially, or 

are limited. As a consequence, some of these models work well in an artificial 

environment as they were trained in, but worse in a more random and unpredictable 

natural environment. 

The problem of data imbalance makes training models even more challenging. Video 

footage shows that the criminal events, especially violent crime or bizarre events, only 
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occasionally take place as compared to daily occurrences. If CNNs tend to overfit to 

common non-criminal activities, such an imbalance causes less sensitivity to criminal 

activities detections. Strategies, such as cost-sensitive learning, oversampling, and 

teaming are often employed to address this. However, these introduce further 

complications, and may not capture realistic variations. 

Lastly, explainability is still a technical challenge. It is difficult to interpret and justify CNN 

predictions since CNN predictions are black-box models. In sensitive domains like fraud 

prediction, where these decisions might have legal consequences the inability of 

explaining in human language a prediction is a huge drawback. Investigation into 

interpretable CNNs and explainable AI (XAI) is still under way. 

 Finally, despite achieving state-of-the-art performance in visual recognition tasks, CNNs 

are limited for crime prediction due to data scarcity, robustness challenges, 

explainability drawbacks, and high computational complexity. Addressing these 

technical problems are necessary to build scalable, ethical, and effective AI based crime 

detection systems. 

2.8.2  Ethical and Social Implications 

 

Privacy, bias and algorithmic accountability are among the ethical and societal concerns 

of CNN-based models when applied to computer vision and crime prediction. Given the 

impact upon civil rights and public trust in law enforcement systems, the convergence of 

these problems is gaining increasing prominence in academic and policy literature. 

Invasion of privacy is one of the main issues. Real-time surveillance analytics, CCTV 

monitoring, and facial recognition systems are frequently used extensively without the 

public's knowledge or consent. Because American law enforcement agencies have used 



82 
 

facial recognition technology with little regulatory oversight, there is a higher likelihood 

of mass surveillance, highlighted by Garvie in [70].  Secondly, algorithmic bias is a big 

ethical issue, as it is generated from inequalities present on the training data. Systemic 

bias could be reinforced by CNNs trained on biased datasets, resulting to prejudice. 

For example, findings from the research conducted by Buolamwini in [79] showed that 

commercial facial recognition systems identified Black and female faces with much 

higher error rates than white male faces. Because the distributions of crimes in training 

datasets may not conform to the real world, such a system may also disproportionately 

single out specific areas or groups of people in predictive policing, resulting in excessive 

police presence and social bias. Another matter of ethical concern is that of transparency 

and accountability in algorithmic decision-making. Researchers have also highlighted 

the way pervasive surveillance can discourage freedom of speech and expression. As 

reported by Wang in [115], people’s behavior can be modified due to a perception of 

constantly being watched. 

According to studies, algorithmic policing systems frequently suggest heightened 

surveillance in areas where social and economic disadvantages are already present. Jie 

in [116] noted that rather than reflecting objective measures of crime, predictive policing 

tools trained on arrest data typically reflect the racial and socioeconomic biases of the 

criminal justice system.  

2.9  Identifying Research Gaps from the Literature 
 

According to the reviewed literature, computer vision especially when driven by 

Convolutional Neural Networks (CNNs) has significantly improved surveillance and 

crime prediction. Important developments like YOLOv4, SSD, and ResNet have enabled 



83 
 

real-time object detection and anomaly recognition. These technologies have been 

incorporated into security frameworks in a variety of urban environments. Machine 

learning has the potential to enhance law enforcement operations, as evidenced by 

studies that have demonstrated moderate to high levels of accuracy (with mAP > 57%).  

However, despite these advances, several gaps and limitations persist in the synthesized 

literature: 

I. Understudied Areas: To predict crimes before they happen, only a few studies 

from the literature have combined real-time visual data (such as live CCTV) with 

predictive temporal models. There persists a gap in predictive modeling that 

connects visual surveillance and crime forecasting because the majority of 

researchers developed models that mainly concentrate on either detection or 

post-event classification. 

II. Methodological Flaws: Model adaptability is limited by a strong reliance on 

supervised learning. Small or biased datasets cause underfitting or overfitting in 

many models, particularly those with little variation in lighting, setting, ethnicity, 

and behavior variability. 

III. Bias and Generalizability: It can be challenging to extrapolate results to diverse 

cultural or urban contexts, such as developing nations where crime dynamics and 

surveillance infrastructure differ greatly, because many datasets are 

demographically and geographically limited  

IV. Ethical Oversight: Although privacy and fairness issues are commonly 

recognized, the majority of empirical research does not include community-
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based validation of AI tools in law enforcement settings or embedded ethical 

auditing frameworks. 

V. Model Efficiency: The mAP(see table 2.0) achieved for weapon and person 

predictions in the crime videos is comparatively low in the existing literature. There 

is gap in knowledge of model optimization and advanced hyper parameter tuning 

in the studies reviewed. 

VI.  Restricted Training Methodology: The training processes limited to only one 

detector algorithm in most of the literature. There is need to train models with 

different algorithms and build the classifier on the best performing relative to the 

dataset used. 

These voids are the gaps that this research aims to fill in the broader socio economic 

context. 

2.10  Justification for the Research 
 

This research seeks to fill the identified gap in knowledge as enumerated in section 2.9 

above. This will be achieved by developing an integrated computer vision model that 

trains real-time visual surveillance crime video from trusted sources using computer 

vision and machine learning-based prediction techniques. The pre-crime predictive AI 

model has the potential to recognize criminal activities in video, detect weapon, 

anomalies, and classify perpetrators as high risk in real time. This is an advancement to 

the existing models that is mostly passive and concentrate on either detection or 

historical crime analysis. 
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Additionally, the study uses a localized, diverse dataset produced from public CCTV 

systems and manually annotated video clips set in an evolving urban setting. This large 

training criminal video dataset enhances model generalizability and tackles the problem 

of dataset inadequacies in model training. 

To evaluate possible bias and promote transparency in our model, it incorporates ethical 

auditing practices, such as training procedures that consider fairness, transparency, 

accountability and community feedback systems. The study proposes a scalable, 

context-sensitive, and ethical framework for improving security through AI-driven crime 

prediction by filling in the methodological and ethical gaps in the existing literature. The 

expected results encourages safer, more equitable urban areas. It has the potential to 

lessen the need for reactive policing, and assist law enforcement in making informed 

decisions. 
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Table 2. Summary of Literature Review 

Reference Detection 
Methods 

Application Strength Limitation Accuracy/
Precision(
%) 

[116] Token gradient 
alignment in 
transformer-
based object 
detection 

Efficient 
visual 
detection in 
real-time 
applications 

High 
detection 
accuracy and 
computationa
l efficiency 

Requires 
extensive 
computationa
l resources 

ODS F-
measure = 
82.4% 
OIS F-
measure = 
84.2% 

[117] End-to-end 
real-time 
object 
detection with 
YOLOv10 
architecture 

Real-time 
object 
detection 

Highly 
optimized for 
real-time 
applications 

Benchmark-
specific 
performance, 
lacks broad 
generalization 

mAP 89% 

[118] Trainable bag-
of-freebies 
architecture 
for real-time 
detection 

Real-time 
object 
detection 

Real-time 
performance 
with state-of-
the-art 
accuracy 

May overfit on 
certain 
datasets 

56.8% 

[119] Compressed 
domain action 
detection in 
surveillance 
video 

Action 
detection in 
compressed 
video data 

Efficient 
processing of 
compressed 
data 

Limited to 
surveillance 
video 
contexts 

78.2% 
On 
PETS2007 
dataset. 
Other 
Dataset -
=90%  

[120] CP-CNN 
architecture 
with core-
periphery 
principle 

Core-
periphery 
CNN 
applications 

Improves 
CNN feature 
extraction 

Limited to 
specific core-
periphery 
datasets 

79.8% to 
80.5%) 

[121] 
 

OVR-XGBoost: 
One Vs Rest 
OVO-XGBoost: 
One Vs One. 
The primary 
difference is 
based on how 
the dataset is 
organized for 
classification.  

XGBoost 
based 
algorithms 

The study 
successfully 
addresses 
class 
imbalance in 
theft case 
prediction by 
introducing 
improved 
XGBoost-
based models 
and utilising 
SMOTENN. 

Only theft 
cases from a 
single city 
were included 
in the 
analysis, 
which might 
limit how 
broadly the 
results can be 
applied. 

85% 
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[122] Applying 
particle swarm 
optimization-
based 
classifier and a 
rules engine to 
classify crime 
reports.  

Multiple 
classificatio
n algorithms 

  79% 

[123] 17 
spatiotempora
l variables 
were used to 
train and test 
the XGBoost 
algorithm, and 
then SHAP is 
used to 
explain the 
model 
predictions.  

XGboost 
model 

  89% 

[124] Prediction of 
crime in 
neighborhood
s of New York 
city using 
spatial data 
analysis. 

XGBOOST, 
RF and SVM 

  52% 

[125] EADT 
approach is 
used for 
Interpretable 
and Accurate 
Crime 
Prediction. 

Decision 
Tree (DT) 

  Aggregate 
Accurracy
=77.6% 
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2.11  Conclusion of the Literature Review 

 
From early statistical methods such as regression analysis and hot spot mapping to the 

adoption of machine learning, and in more recent times, computer vision technologies, 

these review findings illustrate how crime prediction evolves with the integration of CNNs 

and computer vision technologies.  

Deep learning architectures (AlexNet, VGG, ResNet, SSD and YOLO) have demonstrated 

promising results in automating the detection and classification of visual crime scenes. 

They are largely fast to detect objects from video.  

However there are technical and ethical issues identified from the research reviewed that 

must be addressed in future studies. Critical issues such as scarcity of real time crime 

dataset, high computational cost and sensitivity to variation in camera views and lighting 

conditions are addressed in our research.  

Accordingly, our research takes steps to narrow some of the identified technical and 

ethical concerns. We ensured that the models trained on large criminal dataset from 

trusted sources, with data privacy law in place through the experimentation. This aids 

system fairness, transparency, accountability and also generalizability of the instrument 

on unseen data. 
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CHAPTER THREE 

Research methodology- data collection 
 

3.0  Introduction 
 
This section outlines the data collection and pre-processing techniques employed to 

optimize crime predictive s system developed in this research. The datasets for the work 

contain a large database of real-time videos of criminals. The systematic nature of this 

approach improves the generalizability of the AI models.  In addition, the data acquisition 

and data training processes with personal data handled in line with the ethical practices 

of the UK General Data Protection Regulations (UK GDPR) Policies. 

3.1  The Data Sources  
 

For our research, the dataset used for its implementations carefully selected from 

trusted, royalty-free open sources, ranging from reliable institutional databases and 

dataset repository, such as UCF, NIST, Data World, Kaggle and Google Source. The crime 

video dataset comprises online sources to provide extensive data for the implementation 

of the research. They are originally mug shots of about 18000 images of person, weapons 

and other unintended objects like cars, tree, computers and so on. However, through 

observational method, irrelevant images carefully filtered and deleted to avoid the model 

rain on noises and classes that will not contribute to detection weight.  Consequently, 

only about 3118 crime images related to the five classes needed in our research 

advanced to data pre-processing stage.  These data are crucial to training, testing and 

validating the model so that the system can accurately detect and classify criminal 

activities across various scenarios. The following are the sources of data for the work. 
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3.1.1  University of Central Florida Criminal Database  

 
To enrich the training dataset, data obtained from the University of Central Florida (UCF). 

UCF is a widely recognized and royalty-free source of crime-related video content. Based 

on the report published in 2023 by the National Science Foundation on higher education 

research and development survey, UCF is committed to high-quality research and data 

her data security has made it a trusted repository for academic use. The database 

consistently ranked high in research by Homeland Security, with the National Science 

Foundation (NSF) ranking it among the top universities for innovation and research 

excellence [126]. 

 This made UCF forms one of the major sources of our criminal footages datasets utilized 

to train our models. The UCF Crime Dataset consists of surveillance footage and frames, 

including incidents where the perpetrators have already found guilty of violent crimes and 

convicted by the law. This dataset is accessed via Kaggle, which hosts a curated version 

of the UCF Crime Dataset under a Creative Commons license. The platform provides 

structured metadata and preview features that facilitate the easier selection and 

download of relevant files with license agreements.  

The Fig 3.0 provides the screenshot of the anomaly video from the UCF data source. 

  

Figure 3.0. UCF  Anomaly Video Dataset  Download 
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3.1.2  National Institute of Standards and Technology (NIST) Special 
Database 18 Mug shots 

 
In addition to UCF data, the (NIST) Mugshot Database was included in the dataset to 

improve the model's discriminative power for criminal identification and classification. 

This database contains mugshots of weapons, and suspects aiding, in the enhancement 

of the system to Identify and match subjects engaged in criminal activities [136]. The 

NIST Special Database 18 is one of the primary resources accessed for research 

institutions, containing high-quality crime images that are used in computer vision 

research into facial recognition, surveillance systems and exercising criminal 

identification. 

Dealing with crime data often involve ethical, privacy, and legal issues. To obtain a 

weapon and criminal image dataset, from NIST we took the following steps: 

1. Go to NIST Website: Begin by visiting the NIST official website or the datasets 

section. NIST Research frequently provides data in a range of formats. 

2. Find Files and Folders with Respect to Crime and Police: Find files and directories 

containing files on crime and police. 

3. Check for Data Usage Policies: We make sure to read data usages policy of the 

data for any restrictions, or permission for usage of the data. 

4. Data Licensing: Ticked the box and agreed to their licencing terms. Because we 

are in a sensitive domain of dealing with sensitive criminal activity, we carefully 

follow restrictions in licensing and ethical guidelines of the data.   
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However, we were given a download link of the data in the mail after given access to use 

the SD18 Data (1.7GB). The consent that kept us bound to the terms and conditions for 

the use is presented in Figure 3.1 

 

Figure 3.1 Permission to utilize NST Special Database 18 for Education and Research. 

 

3.1.3  Scraped Internet Data  

 
Data was also retrieved with the process of scraping the internet. The information on the 

four weapon categories for criminal activity sourced from royalty free websites includes: 

Shotguns, Rifles, Knives and Handgun. This is a scraped data that was used to augment 

the training dataset with more context about crime weapons. The model was made 

aware through various images and descriptions on these weapons, to improve detection 

and generalization in real crime incidents. Moreover, images of individuals without a 

history of a crime are available in the training dataset through this sources also. This was 

done in line with online privacy policies as applicable in the UK data protection policies. 

Google download all was used and we ensure that the content owns the legal right to the 

repository. This additional data enables the systems to learn about the features of non-

criminals as well. Thus, enabling the AI Model to distinguish between someone who is 

acting with a criminal intent and someone else who is going about their lawful business. 

Such actions are important to enhance the robustness of the system and its capability to 

accurately predict the commissioning of crime activities based on the detection of 
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weapons and suspicious behaviors of the perpetrator. Table 3.1 gives the summary of the 

key data sources used. 

3.1.4  The Real-time Criminal Video 

 
Although the model training for this work exclusively utilized secondary dataset, the 

system has the potential to evaluate and predict crimes in real time. Feeding the model 

with real-time videos such as live captures from external webcam, Rasbery Pi or JASON 

NANO can validate its real-time generalization. This allows for experimentation with real-

world data and validating the system's ability to respond dynamically to criminal 

activities as they unfold in real world scenarios.  
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Table 3.0. Data Sources Summary 

Data 

Source 

Description  Data Size 

(GB/MB) 

UCF  

Anomaly 

videos 

Data Format: CCTV and Surveillance Crime 

video  footages  of  Street  crimes theft, 

burglary, arson, fighting, shooting 

shoplifting, stealing, vandalism, normal 

video, assaults, abuse, robbery and  arrests. 

Usage: The data was converted to 

.PNG/JPEG file,  cleaned and annotated  for 

SDD and YOLO model trainings. It forms 

about 70% of the data training. 

6.20 GB 

NIST Images (.PNG Format). It comprises mug 

shots of  Gun, Knife, Person etc. Downloaded 

after receiving licence agreement. 

1.7 GB 

Google 

“downloa

d all” 

These are additional PNG/JPEG format files 

downloaded from google Knife, , Shotgun, 

Handgun, Riffles, non-Criminal persons 

800MB 

 

 

3.2 Ethical Considerations on Personal Data Collection 
 
Yee in [127] demonstrated how previous works by AI researchers and developers have 

raised serious public ethical concerns. The papers cited example of how the algorithms 

used for cropping images in Twitter (now X) favored light-skinned than dark-skinned 
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users. According to the study, the instrument also showed gender biasness towards 

female. In another research conducted by Birhane in [128], the author demonstrates how 

COMPAS, an instrument of AI, has sparked a national debate in the United States on 

racial bias, when proposed for the prediction of Recidivism (RVI). These are cases of 

ethical concerns about AI data collections and model training that are considered in the 

data collection and model training in this study.  Building an AI system without setting 

stages for ethical issues is a prejudice. It raises ethical concerns related to data privacy, 

fairness issues, transparency, and accountability.  

This section focuses on how ethical issues related to data acquisition and training 

process addressed. The research duly puts into consideration personal data of people 

(names, addresses). We took steps to make certain that the personal data was used 

fairly, lawfully, and transparently. The personal information used was anonymized or 

pseudonymized before introduced into the dataset. Moreover, the data acquired not used 

for any further reasons than stated in the agreement with the usage terms and conditions 

from the sources. Throughout the system development and documentation, the data 

shared were accurate and limited to what is necessary in relation to the research 

purpose. The data remains for as long as required in accordance with the Brunel 

University of London data retention policy. In addition, the information processed with 

security procedures in place to guard against unauthorized processing and against 

accidental loss, damage or destruction of personal data, as prescribed under the UK 

GDPR to protect both the process and the privacy of the data [129]. This section 

addresses the following fundamental ethical concerns. 
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3.2.1  Data Privacy and Consent 

 
Firstly, we ensured the data sources are from trusted and legally permissible repositories. 

To guarantee sources reliability, we only engaged credible open resource criminal 

databases such as the UCF Crime Dataset and the National Institute of Standards and 

Technology (NIST) Mugshot Databases.  Also, all necessary consents were agreed with 

the authorized body, where applicable.  We kept to the agreement and ensure any 

personally identifiable data (PII), or sensitive information included in the datasets is 

anonymized or aggregated in compliance with privacy laws. Additionally, all sensitive 

personal data pseudonymized before being integrated into the training datasets. Data 

Pseudonymization is a privacy enhancing methodology for data protection. It is the 

substitution of personally identifiable information of records in a dataset with fake 

identifiers, or pseudonyms. This step enables tasks performed over the data without 

knowing the exact profile of the person owning the data. All data privacy was conducted 

in accordance with the UK General Data Protection Regulation (GDPR) and other relevant 

data protection frameworks worldwide. 

3.2.2  Bias and Fairness 

 
Bias is a critical concern in the development of machine learning models, especially in 

sensitive domains such as crime prediction. Mavrogiorgos and their team describe bias 

as discriminatory behavior of a computer vision when Model trained on erroneous data, 

promoting prejudice [130]. This could be specification bias, measurement bias, sampling 

bias, annotation bias and inherited bias. However, the bias that is most relevant to this 

research is Sampling Bias.  
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3.2.2.1   Sampling Bias  
 

In the context of this work, Sample bias is when a particular population sample is 

overrepresented or underrepresented in the dataset. According to the study conducted 

by Alex in [131] and Alexandra in [132], such cases, known as self-selection bias or 

population bias, are common in machine learning training. This work took practical steps 

through observation method to ensure that each instances of the classes are fairly 

represented without prejudice. For example, Figure 3.2 shows the cross section of the 

dataset for a person, highlighting gender equality and fairness in the representation of 

males and female genders in the dataset. This shows fairness in the demographic 

distribution of the training dataset. 

 

 
Figure 3.2(a). Male Instances in Dataset 
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Figure 3.2(b). Female Instances in Dataset Samples 

 

From figure 3.2(a) and 3.2(b), the datasets used for the model training are diverse and 

representative of various demographic and racial groups as required. For instance, we 

took steps to ensure that the data is not unproportionally representative of certain 

ethnicities, genders, socioeconomic status, etc. Additionally, we addressed the danger 

of tainted predictions with regard to harmful stereotypes by using fairness aware 

algorithms and performing regular audits of our model's predictions to ensure fairness to 

all members of the population. 

3.2.3  Transparency and Accountability 

 
The use of AI systems in criminal justice requires important levels of transparency and 

accountability, especially when such systems have the potential to impact individuals’ 

lives. This research prioritizes the transparency of the model's decision-making process 

by implementing explainability techniques known as Local Interpretable Model-agnostic 

Explanations (LIME is a reference model-agnostic algorithm that explains the predictions 

of any machine learning classifier in an interpretable fashion) [133]. The algorithm helps 

provide insight into how predictions are made. Additionally, we ensured accountability by 
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maintaining logs of all model decisions and actions, which will allow for the auditing of 

the system’s performance and behavior in real-world scenarios. 

3.3  Ethical Use of Data Scraping 
 
In the process of scraping internet data related to crime-associated weapons, ethical 

concerns about the reliability of data and its potential to perpetuate misinformation are 

addressed. We scrutinized data acquired from all sources, knowing that data from 

unverified sources may introduce inaccuracies or biases, which can adversely affect the 

performance of the crime forecasting system. To mitigate these risks, only data from 

reputable and verified sources included in the training process. Also, appropriate 

measures taken to validate the accuracy and credibility of the internet-scraped data. The 

images of the classes extracted from the Google website using the extension “ download 

all” feature. Moreover, the online data collection process is performed with consideration 

for intellectual property rights and does not infringe upon the rights of creators. 

3.4   Data Collection Techniques 
 
The quality and relevance of the crime forecasting intelligence system depend on the 

quality, relevance and the diversity of the data used for training and testing the system 

models. For this purpose, the data collection was performed in a way that considers 

observational and automated methods in order to gather a representative set of crime-

related scenarios and items. The considered technique are divided into: 

3.4.1. Observational Data Collection 

 
This research employs observational study techniques, a data collection method 

whereby data is gathered from an existing crime database, containing video footage that 

captures real-life crime scenarios from sources. The observational nature of the data 
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ensures authenticity and relevance to real-world crime detection tasks. The technique 

helped achieved the categories of dataset shown in figures 3.3(a-g) as follows: 

 
Figure 3.3. UCF Data Folder Structure 

 

 
Figure 3.3(a). Assault 

 
Figure 3.3(b) Abuse 
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Figure 3.3(c). Arrest 

 

 
Figure 3.3(d) Burglary 

 
Figure 3.3(e). Explosion 
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Figure 3.3(f). Street Fighting 

 
Figure 3.3(g). Robbery 

 

After data acquisition, the combined dataset organized into a designated folder for 

further pre-processing. 

3.5 Data Preparation 
 
The preparation of data for machine learning and computer vision applications in crime 

prediction is a multi-layered process. It involves data cleaning, transformation, 

annotation, and ethical governance. This section is divided into three subsections: data 
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cleaning and transformation, annotation and augmentation, and ethical considerations 

in data handling. The figure 3.4 gives the data preparation workflow for the system. It 

includes image standardization, augmentation and annotation processes as well.  

 

Figure 3.4. Data Preparation Workflow 

 

3.5.1  Data Cleaning and Transformation 

 
As discussed in section 3. 1, the raw data utilized in this research came from diverse 

sources, including crime surveillance videos, mugshots, and internet scraped weapon 

imagery. These sources varied significantly in quality, format, and resolution. 

Consequently, the first step in the data preparation pipeline involved data cleaning and 

standardization. 

3.5.1.1 Data Cleaning and Standardization 

 
Effective data cleaning is essential to prepare visual content for deep learning-based 

crime prediction. The goal is to eliminate noise, ensure consistency, and optimize the 

visual clarity of images before training the predictive neural model. The following five-step 

preprocessing workflow applied to the datasets: 
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a.  Removing Redundant Images: During the frame extraction phase, multiple 

identical or identical frames were generated due to the nature of static video scenes. 

These redundant images were identified and removed using perceptual hashing 

(perpetual hashing updates the presentation of the data constantly, making easier 

treatment of dynamic data sets and a self-evolving performance of the model over time). 

Unlike traditional hashing, which changes drastically with minor input variations, 

perpetual hashing generates a hash based on an image’s visual features, such as 

brightness and structure. In plain language, perpetual hashing works like a visual 

fingerprint if two images “look” the same to the human eye, they will have similar hashes. 

This prevents the model from “memorizing” the same scene multiple times, thereby 

improving generalization and reducing the risk of overfitting. 

b.  Image Resizing: The default input size for YOLO format is 416 x 416 pixels. But 

YOLOv4 is flexible and can work with custom input sizes (320, 512 or 608). The size of 

the collected crime video dataset varies greatly due to different factors such as 

resolution, frame rate, codec, and duration. The following are some of the popular 

formats: 

• 480p (Standard Definition) - [640x480 Pixels], 

• 720p (HD): 1280x720 pixels, 

• 1080p (Full HD): 1920x1080 pixels 

• 1440p (2K): 2560x1440 pixels 

• 2160p (4K): 3840x2160 pixels 

In this research, all image frames were resized to 416*416 pixels, the standard input 

resolution required by the YOLOv4 architecture [114]. This resizing ensured uniformity 

across datasets and reduces computational load during training. In this work, a Python 
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OpenCV code snippet used to resize each image. The block of codes is as shown in Figure 

3.3 

import cv2 

# Load the image 

image = cv2.imread("input.jpg")  

# Resize the image to 416x416 

resized_image = cv2.resize(image, (416, 416)) 

# Save or display the resized image 

cv2.imwrite("resized.jpg", resized_image)  # Optional: save to file 

# cv2.imshow("Resized", resized_image) 

# cv2.waitKey(0) 

# cv2.destroyAllWindows() 
 

 

 

 

 

 

 

 

c. Frame Extraction or Image Grabbing: Video footage was converted into frame 

sequences using MPEG, with an optimized sampling rate of 1 frame every 2 seconds. This 

approach captured relevant motion and object interactions while avoiding oversampling.  

 

Figure 3.5. Image Resizing with OpenCV, 416*416 Pixel 
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3.5.2 Data Augmentation 

 
The data augmentation process provides substantial benefits to the AI Model.. The data 

augmentation process can be interpreted as means to algorithmically inject prior 

knowledge [134]. 

Here, we considered data augmentation as replacing the empirical distribution with the 

algorithmically smoothed distribution as follows: 

𝑝𝐷 (𝑥, 𝑦|𝐴) =  
1

𝑁
∑ 𝑝(𝑥|𝑥𝑛,𝐴)𝛿(𝑦 − 𝑦𝑛)
𝑁
𝑛=1                   (3.0) 

From equation 3.0, we can consider 𝐴 as the data augmentation algorithm, which 

produced a video sample 𝑥 from a training point 𝑥𝑛, such that the label is unchanged. 𝑝𝐷 

is the empirical distribution of the crime video dataset. 

3.5.2   Translational Method  

 
To enhance the robustness of the proposed model and reduce overfitting, translational 

data augmentation specifically applied to the training dataset. This technique involves 

shifting objects horizontally and/or vertically within the image frame without altering the 

object class or scale, thereby simulating positional variability commonly encountered in 

real-world scenarios [55]. 

Each image in the training dataset was randomly translated within a specified pixel range 

along the x- and y-axes. The corresponding bounding box annotations were updated to 

match the new object locations. The translations were carefully constrained to ensure 

that the shifted bounding boxes remained within image bounds. This augmentation 

technique does not alter object shape, scale, or class label, and is particularly useful for 

models like YOLO and SDD, which directly regress bounding box coordinates [114]. 
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Figure 3.5(a). Handgun 

Figure 3.5(b). Knife 

Figure 3.5(c). Rifle Figure 3.5(d). Shotgun 

Figures 3.5(a), 3.5(b), 3.5(c), 3.5(d) are pictorial representations of the classes in the 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Translational augmentation was implemented using OpenCV. For each original image, 

new training samples generated by shifting the image content along the x-axis (horizontal) 

and y-axis (vertical) by a random number of pixels within a predefined range. Bounding 

box coordinates adjusted accordingly to preserve the accuracy of object annotations. 

The augmented images and corresponding YOLO-formatted annotation files were added 

to the training set. This effectively doubled the size of the dataset and increased the 



108 
 

model's exposure to positional variability. Data augmentation was applied before each 

training epoch, in line with best practices recommended for object detection models 

[135]. 

3.6  Data Annotation 
 
After the data was cleaned and standardized, and a translational method applied, the 

data was annotated using manual labeling tools such as LabelImg. At this stage, the five 

key object classes tagged: person, knife, handgun, shotgun, and rifle. Annotations are 

performed in a YOLO-compatible format.  

Each bounding box is mapped to its corresponding class label. This ensured that object 

localization (identifying and locating objects in images) and class identification precisely 

interpreted by the detection model during both training and inference. Table 3.1 shows 

the five classes of interest in the dataset with their corresponding class code. 

Additionally, Figure 3.6 shows the corresponding data in the labelimg annotation tool. For 

the rest of the data, the name of the class was inferred directly from the folder structure 

and or what was used to describe each instance of the object as illustrated in Table 3.1. 

Table 3.1. The Fine Annotated Classes and Codes 

Class Code      Class Name 
001 Person 
002 Handgun 
003 Riffle 
004 Knife 
005 Shotgun 
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Figure 3.6(a). Shotgun Annotated Data 

 

 
Figure 3.6(b). Riffle Annotated Data 

 
Figure 3.6(c). Knife Annotated Data 
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Yolo, just like other architecture or detection methods, used a specific annotation format; for 

this research, the annotation format is defined in figure 3.6 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: YOLO Annotation Format 

 

During data annotation with labelimg, the  object center ordinates in x, (Xmin), object 

center coordinates in y, (Ymin), object width (Xmax), object height (Ymax) automatically 

derived when an object is annotated and subsequently saved in a text file (.txt). Each data 

annotated has its corresponding .txt file saved with the data name and kept in the same 

• Class Number 

• Object center coordinates in x =  𝐶𝑒𝑛𝑡𝑒𝑟 𝑋
𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ  

• Object center coordinates in y =  
𝐶𝑒𝑛𝑡𝑒𝑟 𝑦

𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡  

• Object width =   
𝑂𝑏𝑗𝑒𝑐𝑡𝑊𝑖𝑑𝑡ℎ

𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ  

Object Height = 
𝑂𝑏𝑗𝑒𝑐𝑡𝐻𝑒𝑖𝑔ℎ𝑡

𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡  

 (Person) 

 

 

                                  X, Y    Object Height 

 

 

                          Object Width 
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directory or stored differently. In this design, both the data and its annotation file were 

saved in the same directory. The representations is detailed in Figure 3.8;    

  

Figure 3.8(a). Image File    Figure 3.8(b).  Annotation File 

 

 

3.7 Ethical Considerations Summary for Data Handling 
 
Consistent with the best practices for responsibility in AI research the data was handled 

under strict ethical principles. These includes its use of mugshots and video surveillance 

footage, both of which contained visual data of people. The data sets anonymized or 

pseudonymized to reduce the risk of infringement of privacy before we used them.  

This was consistent with UCF and NIST PII privacy practices [136] and [137]. Data storage 

was protected through encrypted local drives and organizational cloud services, which 

are compliant with the research ethics policy at Brunel University London and the Data 

Protection Act 2018. 

In addition, a balanced collection of training data is used in order to minimize the 

algorithmic bias. Images depicting a range of skin tones, genders, and backgrounds 

were also incorporated to mitigate demographic bias in the testing data, an effect that 

has been widely described in facial identification software [79]. 
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This ethical steps aim to help build model that is fair and inclusive across different 

populations, and also generalize well on unseen data. Plans for future deployment also 

included audit mechanisms to detect and correct model bias in real-world applications. 

3.8   Limitations of the Data Collection 
 

Challenges were encountered during the data collection phase of this research, which 

may affect the interpretation and generalization of the findings. A major limitation was 

the restricted access to authentic, high-resolution crime video data due to legal, ethical, 

and privacy concerns. Most crime-related footage is not publicly available, leading to a 

reliance on secondary sources such as the UCF Crime Dataset, web-scraped videos, and 

open-access repositories. While these datasets were useful, they lacked uniformity in 

quality, annotation, and contextual detail. 

Another challenge was class imbalance. Certain crime-related objects, like handguns 

and knives, were more frequently available in open datasets compared to less common 

weapons such as shotguns and rifles. This sample bias can introduce bias in model 

training and reduce accuracy in underrepresented categories. Despite the use of 

augmentation techniques to mitigate this issue, natural class diversity remains limited. 
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CHAPTER FOUR 

The single shot multi-box detection methodology 
 

4.0  Introduction 
 
This section presents the design, implementation  and the results obtained when SSD 

was trained as the detector for the predictive model. The training process based on the 

data collecting strategy introduced in Chapter Three. The data was converted from YOLO 

annotated format (.txt) to Pascal VOC (XML), the data format recognized by SSD method. 

Moreover, the section includes optimization process that improves the model 

performance from 74.7% to 84.19%. This was achieved through advanced 

hyperparameter tuning technique. The chapter presents the class by class precisions 

with the analysis and interpretations of the results. Finally, comparison with the findings 

of the literature was included to evaluate the competitiveness of the model. 

4.1 Exploring Single Shot Multi-Box Detection Method (SSD) 
 
Object detection methodologies have seen a significant evolution with the advent of 

Single Shot Multi-Box Detection (SSD) technology. The task of object detection usually 

consists of multiple non-linear steps. This includes the generation of bounding boxes, the 

resampling of feature pixels implementing a high-quality classifier [138]. Although these 

types of approaches have demonstrated strong accuracy, they have also been limited by 

their computational expense, and thus their real-time feasibility. SSD development 

represents a ground-breaking advancement in deep learning-based object detection.  
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As demonstrated by the author in [139], SSD just like YOLOv4 are detection algorithms 

that involve convolutional neural network architecture. The SDD detector stands out 

as a popular algorithm for object detection, aiming to detect objects efficiently in 

images in a single pass. The core concept of SSD lies in conducting object 

detection within a single forward pass through the neural network, d istinguishing 

it from traditional two-stage detectors like Faster R-CNN. 

By removing the need for pixel or feature resampling during bounding box proposal, SSD 

preserves high accuracy  and also improves detection speed. As noted by Liu and their 

research team in [139], SSD presents a novel method that simultaneously maximizes 

accuracy and efficiency by using compact convolutional filters on feature maps to 

directly predict object categories and bounding box offsets in real-time applications, 

where speed is crucial, SSD's effectiveness is especially noticeable. In another 

researcher conducted by Li in [140], the author reported that single-shot detection has 

speed advantage. By avoiding computationally demanding steps, SSD expedites the 

detection process and guarantees quick and precise object recognition. 

For image classification tasks, Zhang in [141] highlights that SSD and YOLOv4 make use 

of convolutional neural network architecture, a fundamental component in computer 

vision. The CNN base network truncated before the classification layers in single-shot 

detection, making it possible to extract important features from the input layers.  

4.2  Justification for using SDD Method for Crime Prediction 
 
The Single Shot Multi-Box Detector (SSD) approach, which makes use of Convolutional 

Neural Networks (CNNs), is a suitable framework for predicting criminal activity and 

improving public safety. Table 4.0 offers a thorough explanation for this choice. 
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Table 4.0.  Justification for Using SDD Method 

Factor  Justification 

Real-Time 
Detection 

 Ability to recognize multiple objects of interest from crime video 
footage and respond instantly to suspicious activities in real time 

Accuracy  The SSD algorithm provides high accuracy in detecting various 
objects, which is crucial for identifying potential criminals or 
threats. 

Ability to detect various objects with high accuracy, which is 
important for finding of suspicious persons and weapon 
possession or threats in real time. 

Multi-Object 
Detection 

 It also enables the detection of multiple objects at once humans, 
and weapons leading to a rounded situational awareness 

Speed 

and Efficiency 

 SSD is specialized for speed of processing and is ideal in 

applications needing fast analysis of video streams or images.  

Integration with 
CNNs 

 SSD is built upon Convolutional Neural Networks (CNNs), thus its 
ability of extracting features is highly improved to enhance 
detection capability. 

Scalability  Its scalable and adapt easily to different surveillance system  

Robustness  SSD is invariant to illumination, occlusion and scale that can be 

occurred in real-world surveillance applications 

Low Latency   The architecture of SSD is capable of low latency performance 
that is very important for its target applications that consists of 
missions demanding timely action 

Contextual 
Analysis 

  Through detecting the scene at which an object is located (e.g., 
suspicious action, group of people, etc.), SSD can assist in the 
identification of crime-related events. 

Data-Driven 
Insights 

 The knowledge obtained from SSD can be a law enforcement tool 
and lead to community safety enhancing crime prevention work. 

 

 By combining accuracy, speed, and efficiency, SSD sets standard for object detection 

methodologies, promising enhanced performance, and applicability across various 

domains.  
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4.3 SSD Dataset Preparation  
 

The Single Shot Detection (SSD) method requires that its dataset be prepared in the 

Pascal Visual Object Classes (VOC) format. The labelling tools used earlier in this work 

for the YOLO format data preparation also support this VOC format.  

 

 

  

 

The annotation is a full representation of the object under consideration and describes: 

a. The object metadata (filename) 

b. The bounding box coordinates 

For SSD to identify the weapons and categorize perpetrator as high risk, precise data 

labelling is essential for deep learning training, according to Lin  [142]. Screenshots of the 

SDD annotation in.XML format are shown in Figure 4.1b. As shown below, the annotation 

process entails providing the file path and information, the folder name where images are 

kept, the file name that represents the image, and the path to the image folder. 

Figure 4.1 Sample Training Dataset for SSD 
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Figure 4.2  SDD Annotation file (.XML) for Class 001 

 

For readers understanding, the following are the interpretations and values assumed for 

the annotation technique. 

The Image Dimension 

a. Width: The image width 

b. Height: Image Height 

c. Depth: The depth of the image is simply the channel. For a colored image like our 

dataset, 3 was assumed as it is an (RGB) color image. 
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The Object metadata  

a. Name: The class label 

b. Pose: object orientation 

c. Truncated: Indicating whether the object is outside the image. The value will be 1 

if located within the image region but 0 if located partially outside it. 

d. Difficult: 1 if it’s difficult to recognize, and 0 if object is located easily by the 

system. 

The Bounding Box Information 

a. Xmin: Distance in pixels from left edge to left side 

b. Ymin: Top edge to top side 

c. Xmax: left edge to the right side 

d. Ymax: top edge to bottom (Distance in pixel 

4.4  Training Configuration  
 

To prepare the dataset for training, we created a folder titled "SSD Custom", and 

within this folder there were three subfolders: 

a. Annotations 

b. Imageset 

c. JPEGImages 

The "JPEGImages" folder contained all of the images that had been labelled with the 

labelImg. An XML-formatted annotation file is included with every image and is stored in 

the "Annotations" folder. The dataset is contained in three (3).txt files in the "Imageset" 
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folder. A Python script was then used to split the dataset into training and test portions. 

We used a 70:30 train-test split. (check Appendix D for the training script and 

implementation commands). The training assumed the following parameters: 

• Batch Size: To balance memory constraints and model convergence, a small 

batch size of 32 used. 

• Epochs: To monitor model performance and prevent overfitting, the model is 

calibrated to 500 epochs, with validation carried out at each epoch. 

• Save and Restore: To make it easier to recover the optimal model, model saving 

and restoration are carried out at each snapshot checkpoint. 

• Optimisation: To speed up model convergence, the stochastic gradient descent 

(SGD) technique was applied to the model's implementation. 

• Learning Rate: A modest 0.001 learning rate was applied. Despite the longer 

training time, this aids in model convergence and fine-tuning. 

• We set a confidence level of 0.25; in order to identify an object, it must have 

crossed a 25% detection threshold. For instance, if a scene contains the class 

"Shotgun," the model must have identified the object's class by 25%. To 

guarantee a high rate of accurate detection, "low confidence" predictions are 

filtered out. 

4.5 SDD Algorithm Implementation 
 

We used vgg16 as the backbone for the SDD implementation. Its depth, which includes 

16 convolutional layers to learn intricate and hierarchical features in our training dataset, 

is the reason for this [143]. Additionally, vgg16 has maintained high accuracy over image 

classification and demonstrated impressive performance in a variety of image 
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recognition tasks [144]. We used Multibox loss in this study, which combines regression 

and classification loss. While classification estimates the model's quality across classes, 

regression loss assesses the bounding box's quality. 

Although there are several frameworks to perform single-shot detection (SSD), the 

following are the most popular: 

• Pytorch 

• TensorFlow 

This section focusses on using SSD with TensorFlow, which uses Keras as the backend. 

The open-source neural network library Keras first became famous for its user-friendly 

modular design. Keras, a high-level neural networks API, written in Python and capable 

of running on top of TensorFlow. It helps to minimize the amount of code written to build 

a graph, provided the model with the least amount of performance degradation. 

The following programming environments and technologies used in the model 

development: 

Python 3.9  

On October 5, 2020, Python 3.9 was released [145]. Most of the deep learning 

frameworks like Tensorflow, PyTorch, Keras use Python 3.9 and other programming 

languages.  Python is widely used in object detection models such as SSD and YOLO. 

Additionally, the Python support of the system environment makes it possible to use 

computer vision libraries like OpenCV, which facilitate image processing, feature 

extraction, and object detection. During experimentation, Python 3.9 aids the training 

and implementation of the model.  
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CUDA 10.1:  

Study by Rakhimov in [147] reveals that Nvidia developed the parallel computing platform 

and application programming interface (API) model known as CUDA (Compute Unified 

Device Architecture). The GPU used for the project's image computation tasks is 

accessible through the infrastructure. 

CuDNN 7.5:  

In another research conducted by Yi in [148], the author reported that Nvidia created the 

GPU-accelerated deep neural network library known as CuDNN (CUDA Deep Neural 

Network library). This infrastructure was utilized in this work for implementations of the 

deep learning system. Using Nvidia GPUs, CuDNN easily integrates with the CUDA 

platform to speed up deep neural network training and inference. 

TensorFlow 1.15.0:  

With TensorFlow 1.15.0, models development is simplified. It is an open source machine 

learning library developed by Google [149]. This versatile tool is fully utilized in numerous 

domains, including natural language processing, speech recognition, and image 

processing.  TensorFlow 1.15.0, the version used in this study, has multiple other higher-

order improvements, bug fixes and new features over earlier iterations. This is the stable 

release version of TensorFlow that developers and researchers mostly used. 

4.5.1  Model Loss functions 

 

Prior to optimising the weight in our neural network, we first define a loss function that 

minimizes over the training epoch. As the learning weight rises, the model's loss function 

gradually falls. Since the output is meant to be class probabilities that add up to 1 for 
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optimal accuracy, computing the loss function with cross entropy loss may be a best 

practice in computer vision. Thus, the multi-class cross-entropy loss for our model can 

be estimated as: 

𝐸(𝑊) =  ∑ 𝐸𝑛(𝑤) =  −∑ log 𝑝𝑛𝑡𝑛𝑛𝑛           (4.1) 

Where 𝑡𝑛 is the integer indicating the correct class, 𝑝𝑛k is the network's current estimate 

of the probability of class 𝑘 for sample 𝑛, and 𝑊 is the vector of all weights, biases, and 

other model parameters.  

4.5.2  Optimization Method 

 
In computer vision and machine learning tasks, we may sometimes not achieve the 

ideal weight for best accuracy after model is trained.  Then we resolve to utilize 

optimisation method to improve performance. More broadly, optimisation in machine 

learning refers to the deliberate modification of model hyperparameters to determine 

the initial values of each parameter in order to identify the optimal set of weights for the 

model.  

Hyperparameters tuning automatically modifies the model with updates during this 

optimisation process, which was carried out through a number of iterations. This 

iterative process is extremely transformative because it helps develop a model with high 

prediction accuracy that both performs optimally on the training dataset and also 

generalize well on unseen datasets.  

We now require an algorithm that converts these gradients into weight updates in order 

to optimise the loss function and create a network that performs well on new datasets. 

Our SDD uses the Stochastic Gradient Descent (SGD) technique to lower the training 

loss function, which enhances the model's average precision. 
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Linearised least squares is the suggested approach for the majority of computer vision 

algorithms. Using a second-order technique like Gauss-Newton, the optimisation is 

carried out by evaluating each term in the loss function and then taking an optimally 

sized downhill step using a direction determined by the gradients and the Hessian of the 

energy function. 

Unfortunately, as demonstrated by parameter counts and our training sample sizes, the 

challenges in deep learning are becoming more significant. We have used a range of 

optimisation algorithms based on extensions to Stochastic Gradient Descent (SGD) as 

highlighted in the study by Padila in [150] and DeFazio in [151]. To solve this issue. The 

SGD algorithm computes the derivatives of the associated loss Eₙ(w after evaluating  a 

single training sample *n* in the crime video dataset rather than the complete training 

set.  

Study by author Xie in [153] demonstrates the need for modern optimisers, which uses 

adaptive learning rates, momentum scheduling 152], and even second-order derivatives 

of the objective function [154-155] for optimising the feature representations of the 

approximate second-order information [154]. These developments have been applied 

and yielded greater stability and improved performance of our   SDD training 

4.5.3   Hungarian tracking algorithm  

 
In multi-object tracking, the Kuhn-Munkres algorithm, also known as the Hungarian 

tracking algorithm, is frequently used to solve the assignment problem, which relates to 

linking the identified objects across temporal video frames. It aims to minimise average 

cost by cost-optimizing the assignment of detected entity candidates in one frame to 

their locations in another frame based on some criterion, similar to spatial or visual 

similarity. The best one-to-one correspondences are ensured by this approach, which 
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works especially well in applications where tracking object identities over time is 

required, like surveillance and crime detection systems. Recent studies have combined 

the Hungarian algorithm with motion prediction methods like the Kalman filter [155] and 

object detection frameworks to improve accuracy and real-time in dynamic 

environments [156]. The DeepSORT Algorithm used for multiple object tracking in this 

research builds on Hungarian tracking algorithm. 

4.5.4  Deep-SORT Algorithm 

 
Multi-Object Tracking (MOT) methods based on vision analyse image sequences to 

determine object correspondences among the images [157]. Numerous motion analysis 

methods have been proposed and widely used in a variety of domains, such as 

autonomous driving and traffic monitoring suggested by Shama in [159]. The surveillance 

system demonstrated by Hsieh in [158], and mobile robot navigation, which includes 

tasks like target tracking in the study by Wang in [161].  Moreover, the research by Mohanty 

in [160] utilized object collision prevention as multiple object technique. 

By incorporating appearance data of tracked objects to connect new detections to 

previously identified objects, Deep-SORT, a sophisticated tracking algorithm, improves 

on the Hungarian algorithm. Deep-SORT was created as an expansion of the SORT 

technique, uses deep learning methods to increase tracking accuracy, particularly in 

difficult situations with occlusions and crowded spaces. The three main components of 

the SORT and Deep-SORT approaches Kalman Filter-based estimation, data association, 

and track supervision are all part of the same architectural framework [162]. 

However, the paper presented by Sapkota in [163] further simplifies the Deep-SORT 

architecture into two main parts: the embedding model and the detection model, which 

are usually based on pre-trained object detection frameworks like YOLO, SDD or Faster 
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R-CNN. The embedding model gives detected objects distinct feature vectors for reliable 

tracking across frames, while the detection model finds and identifies human figures in 

every video frame. Deep-SORT's advanced association and tracking mechanisms are one 

of its main advantages; they are excellent at linking detections across frames, even in 

difficult situations like partial visibility or occlusions. The Hungarian algorithm facilitates 

this association process by effectively identifying the best matches between existing 

tracks and current detections by measuring the dissimilarities between embedding 

objects using a cost matrix. This is the main reason we have implemented algorithm for 

tracking task by both the SDD and YOLOv4 Models. It helps track the trajectory movement 

of suspicious persons and weapons even in occluded conditions. 

By merging data from earlier frames with the current detections, Deep SORT used Kalman 

filtering to monitor detection errors and guarantee smooth trajectory predictions. It is 

ideal for crowded settings where objects may momentarily obstruct one another due to 

its effective occlusion management capabilities. Deep SORT involves calculating costs 

for association represented in matrix form for the Hungarian algorithm, but it does not 

have a single overarching equation. In order to predict and update steps for tracked 

objects, the Kalman filter equations are essential. 

Prior to using the Hungarian algorithm to optimise the assignment of new detections to 

preexisting tracks, each bounding box in the first frame was given a distinct track ID. This 

integrated approach that combines spatial and appearance information contributes 

significantly to object tracking robustness and accuracy, particularly in complex 

scenarios where both spatial and visual distances considered within the cost function ci, 

j formulation in Deep-SORT. This is represented in equation 4.2 as follows: 

ci, j=λ⋅dspatial (I, j) +(1−λ) ⋅dvisual (i, j)       (4.2) 



126 
 

Where: 

The spatial distance, denoted by the Mahalanobis distance between the detected 

bounding box and its predicted position based on the tracked object's most recent 

position, is dspatial (I, j). The visual distance, I. dvisual (i, j), represents the difference 

between the observed object j's appearance and the tracked object i's previous 

appearances. 

The trade-off between visual and spatial distances is controlled by the parameter λ. It is 

a value between 0 and 1, where 1 means spatial information will get more weight and 0 

indicates that visual information is given more weight. 

The Mahalanobis distance between the detected bounding box and its predicted position 

based on the last known position of the tracked object is given by Qiu in [164]. 

This is commonly used to represent the spatial distance dspatial (i, j) in the Deep SORT 

algorithm. The Mahala Nobis distance is calculated as follows: 

spatial (𝑖, 𝑗) = (𝑥𝑗 − 𝑥𝑖)𝑇 ⋅ 𝑆𝐼−1 ⋅ (𝑥𝑗 − 𝑥𝑖)                          (4.3) 

Where. 

𝑥𝑗 is the centroid (or other representative point) of the detected bounding box j. 

𝑥𝐼  is the predicted centroid of the tracked object i based on its last known position. 

𝑆𝐼  is the covariance matrix associated with the predicted position of the tracked object i. 

𝑇 denotes the transpose operation. The visual distance d visual (i, j) in Deep SORT 

represents the dissimilarity between the appearance of the detected object j and the 

historical appearances of the tracked object i. This often calculated using methods such 

as cosine distance, Euclidean distance, or other similarity metrics based on the feature 

representations of the object's appearance. 
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The specific expression for dvisual (i, j) depends on the feature representation used for 

the appearance information.  

Mathematically. 

d (2) (i, j) = min {1 - 𝑟𝑗
𝑇𝑟𝑘
(𝑖)
| 𝑟𝑘

(𝑖)𝜖𝑅𝑖}                   (4.4) 

Where rj is the appearance descriptor extracted from within the jth detected bounding box, 

and Ri is the set of the last 100 appearance descriptors, 𝑟𝑘
𝑖  associated with the ith track 

Appearance descriptors  derived from a wide residual neural network, which consists of 

two convolutional layers followed by six residual blocks.  

4.6 SDD Methodology Result  
 
The outcome of applying the SSD method to the crime dataset is described in this 

section. About eight hours are spent on the training. The batch size was limited to 16 and 

the number of data loading rates set to 20 in order to optimize the memory infrastructure. 

This is the largest size and type of dataset that the system architecture we used permits. 

We used AWS EC2 P3 instances and local infrastructure for the training. 500 epochs 

assumed for the model training. But at 121 epochs, the model began to overfit. Our model 

was now "overfitting" since we saw a decline in both the training and validation losses. At 

the minimum loss function, the matching training weight was saved. This corresponded 

to 119 Epoch. At test time, the weight that matches the assumption was retained. The 

best result epoch on the training set is illustrated in Fig 4.2. Also Fig 4.4 illustrates the loss 

function graph for the training set.  

 
Figure 4.2. Best weight Checkpoints 
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Figure 4.3. The Training loss 

Figure 4.3 shows that after a certain number of steps, the training loss (which was already 

converging to zero) starts increasing again.  

The model is most likely overfitting the data and failing to learn features that could be 

highly generalizable to unseen datasets, as evidenced by the fact that the remaining loss 

keeps rising. The graph shows this crucial moment as the ideal checkpoint or optimal 

weight. At that point, the procedure was stopped, and the associated weight was 

preserved. After 119 epochs, the model achieved its maximum mean average precision 

of 74.74%, as shown in Figure 4.3. As the model picked up new features from the 

datasets, the loss function continued to drop. Figure 4.4 summarizes the class by class 

performance for the model at different epochs during the training process.  
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Figure 4.4. Single Shot Multi-Box Detection Epochs Performances 

 

4.6.1  Generating Class Inference 

 

The model was validated on unseen dataset of crime videos, as shown in Figure 4.4, 

with a mean Average Precision (mAP) of roughly 75%. Figures 4.5a and 4.5b display 

the findings of the inference made during the generalisation process. 
 
 
 
 
 
 
 

 

 

   

 
 

 

Figure 4.5(a). Input Image Figure 4.5(b). SDD Model Prediction result for sampled image 
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4.6.2 The SDD Performance Metrics 

 
Our main evaluation metric, mean average precision, calculates the model's overall 

accuracy across all classes. To provide a comprehensive picture of the model's detection 

performance, mAP is computed at different Intersection over Union (IoU) thresholds. 

By averaging the precision for each class, the model displayed in Fig. 4.5 reached a mean 

average precision of 74.79%. The precisions attained by each class represented in Table 

4.2. 

Table 4.2. Class by class precisions. For SDD Model 

 

 

 

4.6.3  The SDD Hyperparameter Tuning- Improving Model Performance 

 
One of the notable outcomes of this chapter is the hyperparameter tuning of the 

configuration variables. We optimized the model in pursuit of enhanced performance, 

which improved generalization and prediction accuracy and reduced overfitting or 

underfitting. This ultimately increased the model's robustness. The optimization process 

involved adjusting several configuration variables, including changing the dataset split to 

80:20, lowering the learning rate from 0.001 to 0.0001, and reducing the batch size to 16. 

Figure 4.7 displays the graph of the loss function and the model performance achieved 

under these optimized conditions. Additionally, Figure 4.6 illustrates the epoch results 

for the optimization.  

Class AP 
Person 66.48 
Shotgun 73.86 
Handgun 81.42 
Knife 72.52 
Rifle 79.49 
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Figure 4.6. Optimized Mean Average Precision (mAP) for SDD Model 

 

Figure 4.7. Training Loss for the optimized Mode 
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Table 4.3 Optimized SDD Precision 

 

 

 

 

 

 

4.6.4  Analysis of the findings- Model and Class by Class Precision 

 
The model has done reasonably well to identify each class in the validation crime video 

particularly with the boost after optimization which improved accuracy and precision 

after hyperparameter tuning.  

Overall Performance 

mAP Comparison: 

• Original Model mAP: 74.74 

• Mean average precision for Optimised Model: 84.19 

The improvement in mAP from 74.74 to 84.19 is significant, indicating that the optimized 

model has better overall performance in detecting and classifying objects. This increase 

of approximately 9.45 points suggests that the optimizations made in the model have 

successfully enhanced its ability to generalize and accurately predict across all classes. 

Class-by-Class Performance 

The class-wise precision percentages provide further insights into how the model 

performs for individual classes: 

Class Precision(%) 
Original Model Optimized 

Model 
Person 66.48 86.9 
Shotgun 73.86 84.9 
Handgun 81.42 91.6 
Knife 72.52 77.4 
Rifle 79.49 80.3 
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Detailed Analysis: 

Person: 

• Original: 66.48% 

• Optimized SDD (mean average precision)= 86.9% 

Analysis: The detection of ̀ `Person'' class presents the largest increase, (+20.42%). This 

means the model has improved a lot at recognizing people across scenes. 

Shotgun: 

• Original: 73.86% 

• Optimized: 84.9% 

Analysis: The accuracy improved 11.04%, indicating a significant improvement in the 

recognition of the shotgun that could be very important to certain applications, such as 

security or surveillance 

Handgun: 

• Original: 81.42% 

• Optimized: 91.6% 

Analysis: The 10.18% increase means the optimized model is more capable to recognize 

handguns, which is quite significant for some applications that need a highly precise in 

weapon detection 

Knife: 

• Original: 72.52% 

• Optimized SDD: 77.4% 
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Analysis: 4.88% increment is not as high as in other classes, which means that despite 

the hyper parameter tuning, there is a room for modification, more transformations 

would be beneficial for this class 

Rifle: 

• Original: 79.49% 

• Optimized: 80.3% 

Analysis: Although there is an improvement, it might not be as significant as it is for other 

classes, as the model's performance for rifles is already comparatively high, according 

to the marginal increase of 0.81%. 

Assessment of Optimisations 

The large gains in most classes demonstrate we made the following optimizations: 

Augmentation: Transitional augmentation was applied to the dataset to increase class 

instances  

 Model Design: With architectural adjustment like as deeper networks (changed layer 

number and types), the training system was able to extract more features that aided 

improved generalisation.  

Hyperparameter tuning: Tweaking learning rates, batch sizes, and other 

hyperparameters resulted in better convergence of the model during training.  

4.7  Comparison of the SDD Result with existing models 
 
This method uses computer vision algorithms to identify weapons and classify high-risk 

individuals. As a result, we benchmark the model's performance using related detection 

algorithms from the findings of researchers I the literature reviewed. Our model performs 
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well and demonstrates with competitive precision when compared to the author's Yolov4 

on UAV imagery in [165].  The SDD model exhibits comparative competitiveness because, 

while the overall mAP in this related work was 62.71% with "Person" at 48.67%, we 

achieved 81.4% mAP for the same class in this study. 

Further comparison with additional similar works in the Table 2.0 in the literature reveals 

that the performance of the optimized SDD in precision is competitive. This was 

specifically compared with the performance of the study in [118], where the author 

achieved 56.8%. Further comparison with the performance of the studies in [125],77.6%; 

[124],52%; [122],85% and [123],89% respectively, demonstrates the competitiveness of 

our SDD model, especially after the optimisation process was performed. 

4.8  Conclusion 
 

According to the validation conducted in this section, the optimised SDD model is a 

major improvement over the original, especially when it comes to identifying important 

classes like "Person," "Shotgun," and "Handgun." Although there are improvements for 

"Knife" and "Rifle," they are not as noticeable. Future research could concentrate on 

improving these classes' performance even to attain more evenly distributed precision 

across all categories. Overall, the optimised model significantly improves performance. 

This result is significant for applications where high crime detection and classification 

accuracy is required. 
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CHAPTER FIVE 

The YOLOv4 Neural Based Network Methodology 
 

5.0  Introduction 
 

The rest of this study focusses on improving security and surveillance by using a YOLOv4 

model to detect anomalies and track suspicious human behaviours through weapon 

detection. The collection and pre-processing of the training data are described in detail 

in Chapter 3. As an extension of the model implementation, this section covers important 

methodology, architecture selection, dataset training and model validation, result and 

discussion.  It also includes a comparison with findings from the SDD Method presented 

in Chapter 4. 

The chapter includes a subsection detailing integration of the weapon and person 

detection system achieved with YOLOv4 with a high-risk classifier, developed using 

Python script. This system employs Euclidean distance and the DEEPSORT tracking 

algorithm to automatically track and label potential criminals as high-risk individuals. 

The section concludes by highlighting the limitations of the model. 

5.1 Exploring YOLOv4 Detector Method with CNN 

 

All of the fundamental components of building and training deep networks has been 

published by computer vision researchers. Nevertheless, most of their works have 

overlooked the use of trainable multi-layer convolutions to predict weapons and 

suspicious human in a pre-crime video. This is probably one of the most important 

aspects of deep networks for computer vision and image [166]. The paper published by 
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[167] popularized the concept of convolutional neural networks by introducing the LeNet-

5 network for digital recognition. Convolutional networks arrange each layer into feature 

maps, which can be thought of as parallel planes or channels, rather than linking every 

unit in a layer that comes before it. Similar to standard shift-invariant image convolution 

and correlation, the weighted sums in a convolutional layer are only carried out within a 

small local window, and the weights are the same for every pixel [168]. 

YOLO (short for “You-Only-Look-Once”), is an algorithm that takes the whole image at 

the concurrently and offers forecasts along with class probabilities and bounding box 

coordinates [169]. YOLO's greatest feature is speed. It processes about 45 frames per 

second. Version 4 is among the quickest and most accurate YOLO variants when it comes 

to object detection. There are 53 convolution layers in the YOLO version 4 algorithm (see 

Figure 2). There are three types of layers in the architecture. Layer one which the 

activation can be easily transferred to the inner layer neural network, where the residual 

layer is created [170]. The output of layer one is added to the output of layer two in a 

residual configuration. Second, we have the detection layers, which do detection at 

three stages. The grids are enlarged for detection. The third layer is up sampling layer, 

which indexes up the spatial resolution. Here the image is up sampled before the 

scaling.  

According to the study by [171], the release of YOLOv4 marks a substantial development 

in the YOLO family of real-time object detection algorithms. Researchers have used this 

algorithm extensively to solve object detection problems, such as crime forecasting. 

Research on using the algorithm to predict the level of crime committed by offenders in 

pre-crime scenes is, however, lacking. This section of the research seeks to close this 

gap. The section seeks to improve pre-crime prediction precision, F1 scores, and recall 
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values by incorporating more complex components into its architecture. It may also 

improve on the detection outcomes achieved with the SSD method covered in Chapter 3 

of the study. To overcome some of the research's limitations related to SSD and improve 

detection speed and accuracy, the YOLOv4 algorithm was trained using the same 

dataset. Figure 5.0 gives the system diagram, adapted for the YOLOv4 neural algorithm. 

The figure illustrates the sequence of tasks required to achieve the crime prediction with 

YOLOv4 version in this work. 

 
Figure 5.0. YOLOv4 Crime Prediction Pipeline 

 

5.2  Multiple Camera Mapping Technique for Yolov4 Dataset 

 

As illustrated in Figure 5.1, the crime video dataset, sourced from various camera types 

(such as CCTV, HD, drone etc). Then, standardisation for model training becomes 

necessary. The research conducted by Abishek, 2025 in [178], shows that the quality of 

images contained in deep learning datasets determines the effectiveness of training and 

generalizability of the model.  Normalisation begins with the image resolutions obtained 
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from the multiple camera sources. This can sharpen the images, and helps maintain 

uniform illumination input data. 

For this reason, this section outlines the essential multi-camera technologies and 

methods that enhances quality camera outputs in multiple camera datasets. This is an 

important step to ensure a uniform image quality and transformation per pixel in system 

training 

5.2.1  The Camera Matrix 

 

This is an important idea in computer vision and computer graphics. The camera matrix 

in (eqn. 5.0) describes the intrinsic parameters of the camera. From the equation, the 

relationship between a point's 3D location in the world and the location of its 2D 

projection on the image plane of the camera is mathematical represented. In image 

rectification, 3D reconstruction, and object detection applications (feature extraction, 

object localization within image and drawing bounding boxes around detected object), 

the camera matrix is crucial [172]. It is shown that the 4×4 camera matrix P ̃ is necessary 

for differentiable rendering and is optimised through neural networks. In more recent 

work,the author in [173] extends this to wide-angle lenses. 

The standard *3×4* projection matrix created by combining the intrinsic and extrinsic 

parameters after the calibration matrix K has been parameterized as follows: 

𝑃̃  =  𝐾 [𝑅 𝑡]             (5.0) 

Where R is the rotation matrix and 𝑡 is the translation vector. This matrix P uses 

homogeneous transformation to transform 3D world points  

𝑝𝑤 = (𝑥𝑤,𝑦𝑤,𝑧𝑤,1)𝑇                           (5.1) 

 into 2Dimage coordinates  
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𝑥𝑠=(𝑥𝑠,𝑦𝑠,1)𝑇.           (5.2) 

This equations 5.1 and 5.2 are relevant to our research because the yolov4  takes input 

image as 2D formats such as JPEG, or PNG , which are images in 2-dimension. They are 

pixel comprises intensity and color, then conversion from the 3D to 2D achieved with the 

camera matrix in equation 5.0.  For applications that require invertibility, an extended *4 

× 4* camera matrix 𝑃 may be made by retaining the last row. Equation 5.0 becomes (5.1) 

when such complicated problems are solved. 

𝑃̃ =  [
𝐾 0
𝑂𝑇 1

] [
𝑅 𝑇
𝑂𝑇 1

] =  𝐾̃𝐸,               (5.3) 

where K ̃ is the differential-state full-rank calibration matrix and E is a rigid-body 

(Euclidean) transformation. With this parameterization, a 3D world coordinate 

 𝑝𝑤 = (𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 1)           (5.4) 

in homogeneous 3D world coordinates can be directly projected to screen coordinates 

with disparity; 

 𝑥𝑠 = (𝑥𝑠, 𝑦𝑠, 1)𝑇              (5.5) 

where ∼ denotes an equality up to scale.  

5.2.2  Mapping from one camera to another 

 

Geogeardis et.al, 2025 in [179] emphasized the importance of dataset merging to 

generate multiple images essential for data training. As our task involves merging 

multiple pictures of the same or different 3D or 2D scene with different camera 

orientations or positions, the projection to screen coordinates can be expressed as 

equation 5.6, using the full rank 4 x 4 camera matrix P̅ = K̅E. 

x̅0~K̅0E0p = P̅op.                 (5.6) 
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We can use the following expression to compute the 3D point location p given that we 

know the Z-buffer (or disparity) value 𝑑0 for a pixel in one image: 

𝑃0~𝐸0
−1K̅0

−1
 𝑥̅o                 (5.7) 

 Equation 5.7, when projected into another image yields  

x̅1~K̅1E1p = K̅1E1E0
−1K̅0

−1
x̅0 = P̅1P̅0

−1
x̅0 = 𝑀10x̅0            (5.8) 

As a result, equation 5.8 serves as the foundation for mapping numerous images from 

various cameras while preserving a constant level of the crime image quality across our 

dataset. Each component in the equation is understood as follows: 

x̅1: the post-projection image point in the second camera (Camera 1). In homogeneous 

coordinates, it could be a 2D point. 

K̅1:: Camera 1's intrinsic matrix, where K is the intrinsic matrix containing focal lengths 

and the optical center coordinates that convert the 3D world coordinates to 2D 

coordinates in the picture frame (for Camera 1). 

𝐸1: This is the extrinsic matrix of the first camera and contains the rotation and translation 

parameters from the world coordinate system to the camera coordinate system. 

𝑃: Describe a point in 3D-space, in homogeneous coordinates and denoted [...] in 

practical applications a point in the world coordinate system. 

(𝐸1): The extrinsic matrix of Camera 0, i.e. the matrix that maps the world coordinate 

system to the Camera 0 coordinate system 
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5.2.3  Image Pixel transforms 
 

This section discusses the mathematical methodology on how we transformed the 

heterogenous images captured by CCT and HD to homogenous pixel used in the 

research. This task helps to align the various image properties to homogenous pixel for 

better training and model generalization.   Equation 5.9 exemplifies the function that 

creates an output image from the multiple crime video input images. This is known as a 

general image processing operator. In this work, it represents the continuous domain: 

𝑔(𝑥) = ℎ(𝑓(𝑥)) 𝑜𝑟  𝑔(𝑥) = ℎ(𝑓0(𝑥), … , 𝑓𝑛(𝑥))               (5.9) 

The input and output functions 𝑓 and g operate over a range that can be either scalar or 

vector-valued, such as for colour images or 2D motion, where 𝑥 is in the D-dimensional 

(typically D=2 for images) domain. The domain of discrete (sampled) images is made up 

of a finite number of pixel locations, 

Such that 𝑥 = (𝑖, 𝑗), and we can then write 

𝑔(𝑖, 𝑗) = ℎ(𝑓(𝑖, 𝑗))                                  (5.10) 

Multiplication and addition with a constant are two frequently utilized point processes 

from equation 5.10. Then we derive a key term in equation 5.11 

𝑔(𝑥) = 𝑎 𝑓(𝑥) + 𝑏                     (5.11) 

This is referred to as the gain and bias parameters in this work,  

the operators a > 0 and b control brightness and contrast of the crime images in the 

images used. Additionally, the gain and bias parameters may vary spatially. 

𝑔(𝑥) = 𝑎(𝑥)𝑓(𝑥) + 𝑏(𝑥)                (5.12) 
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Because it adheres to the superposition principle. The multiplicative gain both globally 

and spatially varying is a linear operation represented by equation 5.13 

ℎ(𝑓0 + 𝑓1) = ℎ(𝑓0) + ℎ(𝑓1).                (5.13) 

The linearised transform equation, now known as equation 5.13, standardised the 

dataset we used to train the Yolov4 and SDD models and could preserve uniformity of 

pixel, brightness, contrast, and other image properties from multiple camera sources. 

The performance of the corresponding predictive models was greatly enhanced by the 

pixel transform technique. 

5.3  Justification for using YOLO Method for Crime Prediction 

 

Bochkovskiy in [178], emphasis that speed and accuracy are essential features of yolov4 

that distinguishes it for image detection and classification tasks in computer vision. This 

was supported by the research conducted by [182], where they used yolov4 to detect 

polyp.  Moreover, the experimentation result of the human detection conducted by Xuan, 

2022 shows that yolov4 is effective for complex targets including human detections [62]. 

The rationale for selecting the YOLOv4 approach for this work is summarised in Table 5.0. 
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Table 5.0. Rationale for UsingYOLOv4 Algorithm 

Factor  Justification 

Real-Time 
Detection 

 YOLOv4 aims for real-time object detection. It can process 
images at high speed and is valuable in time-sensitive 
applications in which fast access to the information is 
essential, such as surveillance and/or responding to dynamic 
crime scenarios. 

Accuracy  YOLOv4 has superior accuracy in object detection under 
different photometric conditions. 

Variability and 
Robustness 

 YOLOv4 is insensitive to lights, occlusions and various object 
scales. Such accuracy is crucial in practical applications where 
conditions may be highly dynamic and a reliable recognition of 
object is indispensable for a successful crime prediction 

Integration with 
other System 

 The proposed design of YOLOv4 makes it easy to integrate with 
other systems (e.g., surveillance cameras and data analytics 
system, etc.). This can enable a full pipeline of crime prediction 

using object detection and other data sources. 

Multiple Object 
Detection 

 YOLOv4 can detect multiple types of-object at the same time. 
When considering crime prediction, it can be used to recognize 
different types of objects in crime video including people, 
vehicles, weapon, firearms to judge potential risks 

Transfer 
Learning 

 YOLOv4 has transfer learning functionality, that is, you can 
finetune the model on a given dataset. This makes it possible 

to tailor it to specific crime-related objects or events, and 
improves the performance of the method in crime prediction 
tasks 

Data Driven 
Insight 

  The architecture of SSD is capable of low latency performance 
that is very important for its target applications that consists of 
missions demanding timely action 

Open Source and 
Community 
Support 

  YOLOv4 operates on an open-source basis, and it grows every 
day with good community support. This openness makes the 
researchers, developers together to share knowledge, 
benchmark and improve the model for crime with applications. 

Scalability  YOLOv4 is flexible to be run on different hardware, from server 
machine to edge device. This scalability in product will support 
other downstream use cases in security space  
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To sum it up, the neutral balance between speed, accuracy, robustness, and versatility of 

YOLOv4 makes it an ideal option for both the weapon and person of interest prediction in 

this research. 

5.4  The File Structure and YOLOv4 Model Training Configuration  

 

We described the YOLOv4-specific data collection, standardisation, cleaning, and 

preprocessing procedures in Chapter 3. The methods used to arrange the necessary 

training files and train the benchmarked YOLOv4 algorithm on the annotated crime 

dataset are the main topic of this section.  

For easy understanding, it may be useful to define the following YOLOv4 training 

directories and terminology: 

/darknet=the final directory containing the Darknet framework. The de facto framework 

for training and implementing the YOLO model is Darknet, an open source neural network 

framework created in C and CUDA.  

Detector = This is a sub-command of Darknet that specifies the type of task performed. 

In this case, "detector" indicates that we are training a model for object  

data/obj.data: 

This is the path to the file that holds training relevant information. The data file typically 

includes: The number of classes, in respect to this research the person, knife, shotgun, 

handgun and Riffle. It is the Paths (URL or local) for the training/validation datasets. And 

backup directory for models and weight files. 
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. cfg/yolo-obj.cfg: 

This is the path to the YOLO model configuration file. The. cfg, which contains the 

architecture of neural network such as: The number of layers. The layer type (e.g., 

convolutional layer, pooling layer, etc.). The parameters of each layer (filters, stride, 

padding) and other training parameters including batch size, learning rate, and iteration 

numbers. 

. yolov4.conv.137: 

This is the pre-trained weights file for transfer learning. The yolov4. conv. 137 file 

contains weights trained on a large dataset (such as COCO) of the first 137 layers of 

YOLOv4. Training with these weights allows us a faster model convergence for the model 

and enables better performance, as the model begins training from a set of features 

which already learned from a diverse dataset.  

These intuitions allow us to express the weighted linear sum carried out in a 

convolutional layer. This is expressed in equation 5.14 

𝑠(𝑖, 𝑗, 𝑐2) =  ∑ ∑ 𝑤(𝑘, 𝑙, 𝐶1, 𝐶2:𝑘;𝑙) 𝜖 𝑁𝑐1 𝜖 {𝐶1} ) 𝑥 (𝑖 + 𝑘, 𝑗 + 𝑙, 𝑐1) + 𝑏(𝑐2)     (5.14) 

Where; s(i, j, 𝑐2): is the feature map at position ((i,j)) for the channel (𝑐2). The output 

feature map is a 3D tensor with the height, width, and number of channels (see Table 5.2 

and Appendix B for Yolov4 Architecture Convolutional layer configurations) 

It worth noting that this summation is over all input channels (c1 ) in the set ({c1)}). The 

convolutional layer generally takes in the input of multiple channels. In our case, we use 

(RGB) images which has 3 channels. 
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Unlike image convolution, which applies the same filter to all (colour) channels, neutral 

network convolutions typically use different convolution kernels for each of the C_2 

output channels and linearly combine the activations from each of the C_1 input 

channels in a preceding layer. This is because the convolutional neural network layer's 

main job is to build local features and combine them in different ways to produce more 

discriminative and semantically meaningful features [174]. 

Where ∑  (𝑘,𝑙)∈𝑁  is sum over the spatial dimensions of the filter (kernel) (w). The kernel 

(which usually has shape K for squared kernels with indices ((k, l)).and  

 (𝑤(𝑘, 𝑙, 𝑐1, 𝑐2)):is the weight of the kernel at position (k, l) for the input channel (c1) and 

the output channel (c2). This means that each output channel has its own bank of 

weights for each input channel.   Where, (𝑥(𝑖 + 𝑘, 𝑗 + 𝑙, 𝑐1) is the input feature map at 

((𝑖 + 𝑘, 𝑗 + 𝑙)) for the input channel (𝑐1). The indices (𝑖 + 𝑘) and (𝑗 + 𝑙) tell us which area 

of the input feature map we are examining at any given position of the kernel. (𝑏(𝑐2)) 

.This expression defines the bias term for the output channel (c2).  

Usually each output channel has its own bias which is added to the output of the 

convolution operation. 

In this research, the file requirements and training procedure for the custom CNN YOLO 

v4 model simplified into the following 6 stages: 

Stage 1: Configuring the YOLOv4 .cfg files for model training. 

The file contained layer structures, batch size, and filter, and as its name implies, it is the 

structural configuration of YOLOv4, a file that we modelled to suit training requirements. 

For simplicity, the layer structure for the YOLOv4 convolutional neural network is 

mathematically represented in equation 5.9 
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Stage 2: Creating an obj. name file.  

Obj.name file contains the name of the classes we are training, which includes person, 

short gun, riffle, handgun, and Knife. In this design, it was developed in sublime text 

environment and uploaded into data file inside darknet directory. 

Stage 3: The annotated dataset was placed in “obj.name” file opened in the path. 

• YOLOv4>darknet>data 

Stage 4: Splitting the dataset into train.txt and test.txt  

Stage 5: Create a metadata file called “obj.data.” 

Stage 6: Begin training execution 

The Figure 5.1 shows the step-by-step process from importing libraries, mounting the 

Google drives, cloning the darknet neural network to compiling the yolov4 with make 

directory in Google Collaboratory environment, (Training in local GPU is going to be 

described in the next section 
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Figure 5.1. Drive mounting and YOLO Darknet Cloning 

Once the steps pointed out in Figure 5.1 is done and yolo compiles for you using make 

file command, the following single python command trains our model as expected. 

. /darknet detector train data/obj.data cfg/yolo-obj.cfg yolov4. conv.137 (This 

command initialize the model training. 

5.5   YOLOv4 Algorithm Model Implementation on PC 

 

The AI software's high computational demands make it extremely difficult. It is usually 

tedious to run complex algorithms on a CPU because the resources and training time 

needed are prohibitive. In our case, the training task was started on a high-specification 

computer system with a Graphical Processing Unit (GPU) and memory allocation. This 

proved to be difficult, though, because the research focusses on large-scale video 

datasets. Training took far too long, and the PC frequently shuts down due to the long 
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training hours needed for the 10,000 iterations (10,000) that are required for the model to 

learn features that can make it generalise. This high computational requirement was 

highlighted in the paper recently published in 2025 by Ding [184] . It could lead to poor 

generalization if not managed. 

In addition, from this point on we decided to use the cloud to make use of Google 

Collaboratory's T4/A100 (see Figure 5.1) GPU services to train the data, which was very 

expensive. In the end, the purpose of this training is a combination of local computing 

and shared cloud to reduce training costs and ensure the model is training effectively 

This procedure is demonstrated on a GPU PC in the step-by-step setup below. It should 

be noted that at this point, we had already set up CUDA10.1, Cudnn7.5, and the Python 

Jupiter/Spyder virtual environment. The virtual environment's required libraries are 

installed or built, as shown in Table 5.1. 

Step 1 Clone Darknet on Local PC  

$>sudo apt install git //This command installs git dependency on the terminal 

environment for the darknet) 

(Enter password: xyzzy) 

$>git clone https: github.com/AlexeyAB/darknet //this command installs darknet 

framework where YOLOV4 is derived) 

Step 2: Configure YOLOv4 architecture. 

$>cd darknet // change current directory 

$>ls // display file within current working directory 
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$>cfg)// working in YOLOv4 configuration folder where we configure the training 

parameters 

(YOLOv4 series is in the YOLOV4-Custom.cfg folder). Open the Sublime text (or other text 

editors used for file configuration, double clicked to open the configured files). This was 

where the following important training parameters configured. (See the complete 

configurations and set up in appendix B). Table 5.1 summarizes the dependencies and 

libraries used for annotation, file configuration and training of the model. 

Table 5.1. Packages and libraries 

Library Function Installation Code 
Imageio Write images pip install imageio 
OpenCV Draw Bounding 

Box, write text, 
formatting,  

pip install OpenCV-python 

Darknet It’s a framework 
used for yolo 
object detector 

git clone https://github.com/AlexeyAB/darknet 

labelImg Data annotation 
and conversion to 
YOLOv4 format 

pip install labelimg 

 

 

5.5.1  Design Parameters for YOLO v4 Model Training 
 

The following presumptions were made for the design of filters, batches, classes, 

channels, etc. 

I. Batch: Sixty-four (64) was the value selected in the batch design. This implies that 

each batch could process sixty-four frames of the input data. 

II. II. Subdivisions: The sixty-four-batch was divided into four iterations in order to 

improve the system's learning capabilities. 64/4 = 16. To improve learning weight 

https://github.com/AlexeyAB/darknet
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per iteration, the subdivision was further reduced to sixteen. Thus, a stream of 

sixteen images is used as a unit step. 

III. Image Width: 320 was the selected width. The width of the frame must be factor 

of thirty-two. The original image size was lowered from 608*608 to 320*320 as a 

result. This helped to conserve GPU infrastructure. 

IV. Image Height=320: The same dimension as image width chosen to obtain perfect 

square shape. 

V. Channel: The channel was set to 3 for the dataset because it is RGB image data 

that we are training. It could be noted that although we acquired video dataset (4-

D tensor), it is easier to convert it to image RGB, a 3-D tensor during data 

annotation with YOLO labelImg.  

VI. Design of the maximum batch size: 2000 is the minimum batch size standard. This 

is how many iterations a class must have. This is calculated as 

Batch Size= 2000* number of classes         (5.15) 

2000*5= 10,000 

 after the five classes-person, knife, short gun, handgun and rifle, that the model 

will learn. This is the current iteration count needed for training for the model to 

generalise and learn key features. 

Vii The step sizes' design: In the event that the employed algorithm converges to an 

orbit rather than a fixed point, step sizes characterise the oscillation magnitudes. 

It establishes the rate of descent of the optimisation error curves.  

Step size = (0.8, 0.9) * (the maximum batch size)          (5.15) 

= (8000, 9000) 
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viii. Design of the Filter or Kernel: This is the weight learned by the convolution. The 

Filter value=  [Class + 5] *3        (5.16) 

   [5+5]3=10*3=30. 

Note: In this YOLOv4 Model design, the filter value was changed to thirty from the default 

18 at every convolutional layer proceeding the YOLO layer. The easiest way is to utilize 

the go to find feature on the top menu bar in the sublime text, click find and scroll through 

to change the filter default configuration to 30 as calculated.  

Also, in YOLOv4 CNN design, classes changed from default value in analogous way as 

filter but on YOLO layer and not convolutional layer. So, in this design, it was changed to 

5 at the YOLO layers which is the layer immediately after the convolutional layer where 

filter was changed. Altogether, filters and classes changed for a total of three layers each. 

Table 5.2 summarizes the design values and the assumptions made to implement the 

training. 
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Table 5.2. Configuring YOLOv4 Model for Training 

Parameter Design Value Rationale 
Image Width  320 Each image width changed to 320 to manage memory 

infrastructure and improve training time 

Image Height 320 Set to 320 to maintain perfect square with image Width. 
The chosen value ensured the image size is a multiple 
of 32 

Batch Size 64  This implies 64 images of the dataset with dimension 
320*320 are processed in one cycle or training iteration 

Subdivision 16 With the training data divided into 64 subsets, the 
training process will still be slow. For faster training, 16 
was set for faster training. 

Max Batches 10000 Calculated as 

 (No of classes i.e. 5) * 2000= 10000 
Steps (8000,9000) Calculated as 80% , 90% of Max Batch 

Filter 30 Calculated as (Class+5)*3. Filter adjustments occurs 
at the 3 conv. layers preceding yolo layer in the .cfg file 

Learning Rate 0.001 Set to 10-3 .  

 
5.5.2  Weight initialization 

 

Weight optimization cannot begin until networks have been initialized. To break the 

symmetry, or ensure that none of the gradients were zero, early neural networks 

employed tiny random weights. However, it was noted that the activation would gradually 

decrease in deeper layers. To ensure a similar variance in the activations of subsequent 

layers, we need to take into account the fan-in of each layer, which is the number of 

incoming connections where activations are multiplied by weights. 

In an early study on this subject, the author in [175] proposed that the fan-in's inverse be 

used to set the random initial weight variance. But at least close to the origin, their 

analysis relied on a linear activation function, such as a tanh function. The study by the 

author in [176] revised this analysis to take into consideration the asymmetric non-
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linearity issue that exists in our dataset. If the weights are initialised to have zero mean 

and variance Vi for layer l and the original biases are set to zero, the variance of the linear 

summation will be zero.  

𝑉𝑎𝑟[𝑠𝑙] =  𝑛1𝑉𝑙𝐸[𝑥1
2]                   (5.17) 

𝐸[𝑥1
2]  is the expectation of the squared incoming activations, and 𝑛1 is the number of 

incoming activations weight in equation 5.17. In our research, we used Sigmoid 

activation for the model training in order to apply this to improve regularization and 

generalisation. The sigmoid activation was chosen because it minimizes the error 

function and helps the training outputs converge quickly. The output is fed into units in 

large stages after the summation 𝑠𝑙, which has zero mean, through the Sigmoid. Then, the 

model begins learning the features required to generalise on new datasets, initialised the 

learning weight. 

YOLOv4 detection Weight 

Optimally, this model's weights in the research saved every 1,000 of the total 10,000 

training iterations, and a learning rate of 10-3 was employed. We can observe the learning 

of our model step by step over the training, and store the highest weight achieved in the 

course of the 10,000 iterations. This is referred to in this experimentation as the best 

weight, and the corresponding epoch noted.  

The following is an explanation of the procedure for importing weights saved during object 

detection training: First, we search for the location of all of your data.obj, and 

configuration files on your computer. The network architecture, class names, and class 

colours are then loaded during import using the load_network function. 
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The Python import statement is used to import the libraries OpenCV, Darknet, NumPy, 

and DeepSORT that are required for this procedure. 

In this section, we could also learn about model optimisation. Hoang in their research 

demonstrated how Bayesian  hyperparameter tuning optimised the detection of fire  in 

their  experiment conducted in 2025 (Hoang et.al.,2025). Similarly, to enhance our 

model's performance, the hyperparameters indicated in Table 5.2 can be adjusted. For 

example, the learning rate can be changed to 10-4, 10-5, etc., and other yolo/.cfg file 

configuration values can be adjusted. However, in contrast to SDD, the model already 

achieved high accuracy, so no additional fine-tuning was necessary during the 

experiment. 

5.6 The Model Class Detection and High Risk Person Classification Techniques 

 

The primary purpose of custom YOLOv4 object detection is the end point. The main 

factors that need to be satisfied in order for us to accurately forecast and categorize 

High Risk. In addition, the recognition of certain weapons related to violent acts are an 

important part of this process. 

To find these important points, we use the Yolov4 object detector in the design. We then 

move forward with developing a model that will make use of those YOLOv4 object 

detection weights. This model makes use of the motion estimation and object class 

classification functions that are inherent to the detection model (for the high_risk.py 

Python script, see Appendix F). It accomplishes this by determining where each of their 

actions falls on the spectrum for being classified as a "High-Risk" person. 

ConvertBack and DetectFunction with YOLOv4 Object-detection are the steps needed to 

accomplish this. 
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ConvertBack 

The process begins with the extraction of crucial information such as the center 

coordinates in the x (Xmin) and y (Ymin) axes, as well as the width (Xmax) and height 

(Ymax) of the objects detected. Figure 5.2 presents the screenshot of the snippet python 

code for convert back that implement the localized object coordinate  

 
Figure 5.2. The ConvertBack Function 

 

 By establishing the necessary classes within the model, it paves the way for  localization 

of the object coordinates.  

CvDrawBoxes 

The Figure 5.3 presents the screenshot of the block of code that enables the model to 

efficiently draw rectangular bounding boxes around the detected object, thereby 

streamlining the visual representation of the identified elements.  

 
Figure 5.3. CvDrawBoxes Function 

 

DetectFunction 

After that, the emphasis turns to using the detect function, which is crucial in deciding 

what to do when certain classes in the scene are detected. The system can identify   
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"Person" and initiate appropriate responses based on these detections by linking class 

IDs and names within a designated for loop "detection" function. When a human is 

detected in the scene, the convertBack functions take over, precisely determining the 

object's coordinates and using the CvDrawBoxes function to draw rectangular borders 

around the person as illustrated in figure 5.4. 

 
Figure 5.4. Detect Function identifying person of High Risk in Public Place 

 

When other classes, such as "Weapons," are detected alongside a "Person," as shown in 

Figure 5.4, an advanced tracking mechanism driven by deep-sort algorithms with 

Eucledian distance is activated. The system can determine the degree of risk involved in 

the person's actions by tracking their movements. In the event that the algorithm detects 

high-risk behaviours, a "High Risk" prompt will appear on the screen, acting as a proactive 

step to address possible environmental threats. 

Appendix F describes an object detection pipeline that uses the trained YOLOv4 model 

to analyse and visualise objects in a video stream in order to predict high-risk individuals.  
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First, import the required libraries, which include Darknet (`from darknet import *`), 

NumPy (`np`), and OpenCV (`cv2`). A set of object classes are defined, such as 

“Person,” “Rifle,” “Shotgun,” “Handgun,” and “Knife.” 

There are two important  functions `ConvertBack` and `CvDrawBoxes` that take care of 

the drawing boxes before drawing object  or converting the coordinates of the bounding 

box. The concepts were stated in the paper by Sengahbavali in [186]. Their work 

emphasized the need for adaptive bounding boxes to overcome the challenges of 

occlusion, and object orientation variability due to motion.  The primary function, 

`YOLO()`, creates video writer for the processed output, loads the YOLOv4 model from 

the Darknet library, and initialised video capture object. 

In a loop, we read, processed, and resized video frames using YOLOv4. The detected 

objects are visualized in real-time using Matplotlib, and a frame is labeled as a "High Risk" 

scenario if both a person and a weapon are detected. The processed video is saved as 

"test_sample.mp4 ", in our example. 

5.6.1  Model Expected Risk  

 

The Model training comes with associated risk that could cause errors or reduce system 

performance [26]. Equation 5.18 gives the expected risk of error in the experimental 

training of the model: 

𝐸𝑅𝑖𝑠𝑘 (𝑤) =  
1

𝑁
∑𝐿(ℎ𝑖, 𝑓(𝑥𝑖, 𝑤))                           (5.18) 

ℎ𝑖 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑓(𝑥𝑖, 𝑤)= The Predicted output of the AI Model 

xi = Crime Video Input containing the objects to predict. 
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Where E = Expected risk and the loss function L calculates the cost of predicting an 

output 𝑓(𝑥𝑖, 𝑤) for input 𝑥𝑖  and the model parameter w, when the corresponding target is 

𝐹𝑖
2. Errors can be caused by a variety of factors, such as inadequate dataset quality, 

problems with data augmentation, overfitting or underfitting, problems with hardware or 

software, and too high or too low learning rates, which can cause problems with training 

convergence. These hazards were taken into account when pre-processing and training 

the data. 

The cost (penalty) could be a simple quadratic or robust of the function difference 

between the desired output (hi) and the output predicted by the AI model given as; 

𝑓(𝑥𝑖 ;  𝑤). In simple term and with regards to the AI safety Model designed in this 

research, the expected error could be of serious ethical issues. In the context of a 

predictive artificial intelligence tool for criminal assessment, inaccuracies within the 

system may lead to two types of errors: false positives (incorrectly detected an individual 

as a criminal) and false negatives (failing to recognize an individual as a criminal).This 

pitfall may cause criminal masterminds make off crime scenes, or it may lead to wrongful 

accusations, legal feuds, and damage to the reputation of the organization. 

Costs of these errors go beyond the budget to include legal fees, settlements, brand 

damage and deteriorated stakeholder confidence. The implementation of the AI solution 

also includes the costs associated with the retraining of the model, actualizing more 

accurate data, and implementing more solid error-prevention procedures. 

Consequently, it is essential for organizations to consider the possible risks and costs of 

errors in deploying the CNN model. To mitigate these risks, it is important to undergo 

robust testing and validation procedures, and also apply regular monitoring of flow. 
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5.6.2  Performance Metrics 

 

In the proceeding of the 9th International Conference of IEEE, 2006, Bashir described the 

performance metrics of object detection for a computer vision model as the evaluation 

method implemented to quantitatively analyse the performance of the model [4] In this 

work, was measured either on frame based or object based. Typically, the mean average 

precision (mAP) was used to gauge the object detector's performance. (mAP) provides a 

thorough assessment of a model's capacity to identify and categorise objects within an 

image by combining three crucial factors: precision, recall, and F1. Precision-recall 

curves were created for every class of objects in our dataset in order to calculate mAP. 

Plotting precision against recall at various confidence score thresholds is shown by these 

curves. The mean average precision was then calculated by averaging the area under the 

curves for each class of objects. It offers a balanced evaluation by considering precision 

and recall, making it particularly suitable for object detection and classification 

problems. It is the metric that objectively compare the output of the module performance 

with the ground truth to avoid false alarms [187] 

The mean average precision calculated with equation (5.19) 

mAP = 1
𝑁
∑ 𝐴𝑃𝑁
𝑖=1 i                                     (5.19) 

• N is the total number of object classes of the dataset 

• APi is the average precision for each class i. 

• m is the average precision for each class 
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5.6.2.1  Precision 

 

Precision measures the proportion of correctly identified positive detections out of all the 

detections made by the model. It assesses the model's accuracy in predicting true 

positives while minimizing false positives as shown in equation 5.20 

Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (5.20) 

TP= True Positive, which are the instances that are true objects and are positive by the 

model. 

FP = False Positive, which are instances that are not true objects of a class but positive 

for the model 

5.6.2.2  Recall 

 

Equation 5.21 computes the proportion of true positives detected by the model out of all 

the ground truth objects present in the image. It measures the model's ability to find all 

relevant objects, minimizing false negatives. 

Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (5.21) 

Here, 

FN= False Negative. These are instances where the object is positive (criminal), but the 

model wrongly predicted (failed to identify the criminal). 

5.6.2.3  Model F1 Value 

 

The F1 score is the harmonic mean of precision and recall and provides a balance 

between the two metrics. Equation 5.22 detail how a model can calculate its F1 value 
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 It is calculated as: 

 F1 Score = 2 *  {Precision* Recall} /{Precision + Recall}]       (5.22)    

For simplicity,                  

• Precision focuses on the accuracy of positive predictions. 

• Recall focuses on the proportion of actual positives that correctly identified. 

• F1 score provides a balance between precision and recall, especially when there 

is an uneven class distribution. 

5.7  YOLOv4 Model Result  

 

We present the following sections based on the processed AI models that were trained 

after a lengthy experimental process on both local GPU machines and cloud-based 

AWS EC2 P3 instances and Google Collab. The critical analysis and interpretation of 

these findings and the criminal's prediction methodologies are covered in detail in the 

section. A summary of the model precisions and accuracy of the YOLOv4 predictive tool 

is also tabulated with results previously obtained from the SDD detection method.  

5.7.1  Generating YOLOv4 Detection Inference 

 

 This is the average time taken to achieve detection result when crime dataset applied to 

our model. According to Mwita, 2024 in [188], Inference time for Yolov4 takes between 2-

5ms. In this research, it took about 4ms to obtain detection from the model due to various 

factor like occlusion, lighting, weapon and person in motion, which varies the confidence 

level of the instrument.  Figures 5.5, 5.6 and 5.7 generate the sample inference of the 

result when the trained yolov4 model was validated with unseen dataset. 
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Figure 5.5(a). Handgun input Class         Figure 5.5(b). Detection result Handgun 

 

   

   

              

Figure 5.6(a). Knife sample input image   Figure 5.6(b). Detection Result for Knife 

 

           

Figure 5.7(a). Shotgun Sample Input   Figure 5.7(b) Shotgun Detection 

   

Figure 5.5(a) and figure 5.5(b) show sample input data for the model and its 

corresponding detection results. The 5 classes of interest including person to be 

identified in crime video by the yolo predictive instrument categorized as: 
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Gun 

Handgun 

Shotgun 

Rifle 

Knife 

Person 

The methodological design of this research consider sub arms carrying countries and 

that such accessory can only found mostly with state actors like police or army. If so, it 

is our assumption that persons having this object (Gun), or any crime weapons are more 

probable to commit violent crime. Hence, detecting “Person of interest” becomes 

important work which eventually helps reduce misclassification rate. That is why 

YOLOv4 trained on these top five (5) classes.  

5.7.2  Best Epoch Result for Yolov4 Model 

 

Figure 5.8 presents the epoch showing expanded performance of the model like Model’s 

mean average precision (mAP), F1, recall values and object-wise class analysis 

performances of each class. This epoch result is summarized in Table 5.3. 



166 
 

 
 

Figure 5.8. YOLOv4 Best Epoch Performance 

From Figure 5.8, the performance of the classes summarized in Table 5.3 as below 

Table 5.3. Class by Class Performance of YOLOv4 Model 

Class_ID Class Name  AP(%) TP FP  
Class_id=0 Person 75.99 453 169  
Class_id=1 Shotgun 91.97 40 3  
Class_id=2 Handgun 92.86 57 1  
Class_id=3 Knife 96.11 80 2  
Class_id=4 Riffle 95.98 128 13  

 

5.7.2.1 The Confusion Matrix and Model Performance  
 

According to the paper presented by Mahrishi during 2021 IEEE Conference [189] 

Confusion Matrix computes the precision and recall value of model against the ground 

truth.  When analyzed the confusion matrix of YOLOv4 for each class, we examine the 

findings presented in Table 5.3, which details the instances of each class within the crime 

dataset. As follows: 
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A. Person (Class_ID=0) 

✓ Average Precision: 75.99% - This is a reasonable precision, but there is room for 

improvement. 

✓ True Positive (TP): 453 - The model was successful at predicting 453 of the 

'Person' class correctly. 

✓ False Positive (FP): 169 - 169 of the instances of person in the crime video wrongly 

predicted to be 'Person'. 

B. Shotgun (Class_ID=1) 

• Average Precision (AP): 91.97% - An AP in the 91.97% indicates that the model 

perform well. This implies the model did not miss many shotguns instances in the 

crime video. 

• True Positive(TP): 40- In this scenario, the Model correctly predicted 40 shotguns, 

which were correctly classified 

• False Positive (FP): 3 - There were only 3 mis-classifications cases of shotgun in 

the prediction, indicating a high accuracy in the detection of shotgun classes. 

C. Handgun (Class_id=2) 

• Average Precision (AP): 92.86% this is another high average precision value, 

indicating the detection of handgun is efficient. 

• True Positive (TP): 57 - The model was successful at detecting 57 handguns 

correctly in the crime video. 

• False Positive (FP): 1 – In the handgun detection scenario, the low number of false 

positives shows the detection is good. 
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D. Knife (Class_id=3) 

• Average Precision (AP): 96.11% - The  model performs overall best on this class 

detection. 

• True Positive (TP): 80 - The model was able to detect 80 of the knives instances 

correctly. 

• False Positive (FP): 2 – However, it records 2 false positives. This is a good accuracy 

in knife detection still. 

E. Rifle (Class_id=4) 

• Average Precision (AP): 95.98% - This also shows good results in detecting rifles, 

which is a close competition with knife detection. 

• True Positive(TP): 128 - The model correctly identify 128 rifles in riffle scenario 

• False Positive(FP): 13 -The instruments registered a total of 13 incorrect 

predictions of Riffle instances in the video dataset; which is acceptable  

Summary of Performance: Based on the class by class precisions, the model 

performance is high over all the classes with AP values usually above 90%. The class 

'Knife' has the largest precision value and closely followed by riffle detection.  

Trade-offs: The number of false positives (FP) is class varying. Although the `Person' 

class exhibits more FP, it also includes much more TP, as might be expected when there 

could be more samples of this class in the crime dataset. 

• Optimisation for person: The 'Person' class might need some enhancement to 

decrease the false positives, but it seems that other classes are doing well and 

need less attention. 
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Summarily, the YOLOv4 model demonstrates detection performance index for classes 

considered with a high Average Precision and rather low number of false positive 

predictions, especially for the detection of guns and knives. 

Further to the above interpretation of the class performances, Figure 5.8 graphically 

illustrates the overall system performance for the YOLOv4 Convolutional Model. 

 

Figure 5.9. YOLOv4 Loss Function and mAP 

 

Model Performance Metrics Calculation- The computation executed during the 

validation of the model (see Figure 5.8 for expanded result results). The following 

presents the mathematical procedures for clarity. 

1. Precision: Measures the accuracy of the positive predictions. {Precision} = 

{TP}/{TP + FP} = {758}/{758 + 188} = 0.801 ] 



170 
 

2. Recall (Sensitivity): Measures the ability of the model to find all relevant cases 

(true positives). [ {Recall} = {TP}/{TP + FN} = {758}/{758 + 259} = 0.745  

3. F1 Score: The harmonic mean of precision and recall, giving a balance between 

the two. [ F1 = 2*{Precision* Recall}/{Precision + Recall} = 2 *0.801* 0.745//{0.801 

+ 0.745} = 0.772  

4. Total Predictions: The total number of predictions made by the model. [ {Total 

Predictions} = TP + FP + FN = 758 + 188 + 259 = 1205 ] 

Interpretation and Evaluation 

o Mean Average Precision (mAP): The higher mAP of 90.58% reveals that the model 

is good at generalization across different classes. This is an important measure in 

all object detection problem 

o Precision:  The approximated precision of the model is 80.1%. For example, it tells 

us that when the model predicts “positive” (object detected), it is correct in 

approximately 80% of the time, this is a decent measure for how reliable our 

model is. 

o Recall: 74.5% recall means – in 74.5% of positive instances, the instrument was 

able to detect correctly. This is a good performance, but it can still improve  as 

hundreds of real objects (259) are missed (FN) in all the detection  scenarios. 

o F1 Score: As we have an F1 score of 77.2%, we have achieved fair balance between 

Precision and Recall. This is a good accuracy, but this also shows a precision/recall 
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trade-off.  The trade-off in the research can be overcome by adjusting the confidence 

threshold or fine-tuning the model. 

Overall, the YOLOv4 model shows strong performance with a high mAP and reasonable 

precision and recall values. However, improvements could be made to increase recall, 

which would help in reducing the number of false negatives. Adjusting the confidence 

threshold or further fine-tuning the model could help achieve this objective. 

5.8  Evaluation and Comparison of YOLOv4 and SDD Models (Optimized vs. Non-
Optimized) 

 

Based our research findings, this section compares the two models' from the data 

training to compare the class-by-class performances. It also highlight their respective 

advantages and disadvantages. Table 5.4 below provides has the summary  

 

Table 5.4. Comparative Performances of the YOLOv4 Model with SDD (Non-optimised and Optimised 

Models) 

Class Precision % 
SDD Optimized 

SDD 
YOLOv4 

Person 66.48 86.9 75.99 
Shotgun 73.86 84.9 91.97 
Handgun 81.42 91.6 92.86 
Knife 72.52 77.4 96.11 
Rifle 79.49 80.3 95.98 

 

 

Summary Comparison SDD vs YOLOv4 Model: 

1. Overall Performance: 

I.  YOLOv4: Obtains high mAP, 90.8%, which represents better overall detection 

results incorporating all classes.  
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II.  Non-Optimized SDD: Its mAP of 74.7% is lower, meaning it is not as efficient 

overall in correctly categorizing and detecting objects.  

III.  Optimized SDD: Displays a better mAP of 84.19% and this tells us that parameter 

tuning has played a vital role in improving the performance of the model and 

therefore can compete more favorably with YOLOv4 

2. Class-by-Class Performance: 

Person: 

▪ Non-Optimized SDD: 66.48% 

▪ Optimized SDD: 86.9% 

▪ YOLOv4: 75.99% 

Class Result Analysis: The optimized SDD model performs better than YOLOv4 in 

detecting persons, showcasing the effectiveness of parameter tuning. 

Shotgun: 

▪ Non-Optimized SDD: 73.86% 

▪ Optimized SDD: 84.9% 

▪ YOLOv4: 91.97% 

Class Result Analysis: While the optimized SDD improves significantly, YOLOv4 still 

outperforms it in shotgun detection. 

Handgun: 

▪ Non-Optimized SDD: 81.42% 

▪ Optimized SDD: 91.6% 

▪ YOLOv4: 92.86% 

Class Result Analysis: The optimized SDD is very close to YOLOv4, indicating strong 

performance in handgun detection [177] 
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Knife: 

▪ Non-Optimized SDD: 72.52% 

▪ Optimized SDD: 77.4% 

▪ YOLOv4: 96.11% 

Class Result Analysis: YOLOv4 continues to excel in knife detection, while the optimized 

SDD shows some improvement but remains lower. 

Rifle: 

▪ Non-Optimized SDD: 79.49% 

▪ Optimized SDD: 80.3% 

▪ YOLOv4: 95.98% 

Class Result Analysis: YOLOv4 outperforms both versions of SDD in rifle detection. 

Strengths of the YOLOv4 Model 

o YOLOv4 consistently outperforms both non-optimized and optimized SDD 

models across most classes, particularly in knife and rifle detection. 

o Its high mAP indicates robustness and reliability for object detection tasks, 

especially in critical applications such as crime detection 

Strengths of Optimized SDD: 

o The optimized SDD shows substantial improvements, particularly in 

detecting persons and handguns, where it surpasses YOLOv4. 

o This indicates that with appropriate tuning, SDD can become a 

competitive model for specific applications. 

Limitations of SDD Model 

The lower mAP and class precision of the non-optimized SDD suggest that it does not 

generalize well across object classes in this research when compared to yolov4 model 
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Even after optimization, SDD presents comparatively lower precision in knife and rifle 

detection which ideally implies the need for improvements. 

5.9 The Perpetrator Prediction with YOLOv4 Framework- High Risk Classification 

 

Building on the competitive performance demonstrated by YOLOv4 in Table 5.4, this 

section utilizes the detection results to classify individuals as high risk based on the 

identification of any weapon class and when an individual exceeds a predefined 

threshold set in the classification scripts (refer to Appendix F for the high_risk.py Python 

script). 

The script was modified to increase the model's capacity to recognise weapon sub-

objects on people and classify possible criminals as high-risk, a unique characteristic 

highlighted in this study. By correctly identifying illegal weapon carriers in pre-crime 

videos as High-Risk Persons, the improved model demonstrated strong generalisation. 

Figures 5.9(a) and 5.9(b) demonstrate how well it predicts high-risk behaviours in society. 

When the model was tested using fresh datasets of crime videos or live criminal footage, 

similar outcomes were obtained. 
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Figure 5.9(a). Sample Crime Video used for generalization

 

Figure 5.9(b) Person of High-Risk Prediction with YOLOv4 

 

5.10  The Models Prediction for Static and Moving Objects Comparison 

 

Research has been conducted on both static and motion object detections in recent 

time. For example, Teja, 2023 in [190] conducted their research on static object detection 

to identify abandoned luggage and possible weapons left in public places to cause public 

harms. They used combination of background subtraction algorithm, yolov5 and CNN 

framework. On the other hand, Hu, 2025 in [191] investigated moving object detection 

from dynamic camera output. They used MONA, a framework designed for moving object 

detection (extract dynamic point and optical flow from images) and segmentation 
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In this research, bboth the YOLOv4 and SDD object detection models were evaluated for 

their effectiveness in detecting weapons and persons in motion throughout the 

experiment. The analysis of the two object categories is presented below: 

a. Static Object Detection 

To identify static objects, both models showed excellent accuracy. The stability of image 

elements like edges, lighting, and object boundaries is responsible for this achievement. 

Both YOLOv4 and the optimised SDD consistently maintained a high confidence score, 

averaging above 80% Average Precision (AP) for weapons held with little movement or at 

rest. Because these objects were static, there was less motion blur and obstruction, 

which resulted in fewer false positives and negatives. In turn, it aligns with YOLOv4's 

architectural optimisation for spatial precision and real-time inference [114]. 

b. Moving Object Detection 

In contrast, the models' performance on moving objects was somewhat hindered by 

motion artifacts. The detection accuracy decreased by 10–15%, influenced by factors 

such as frame rate, object velocity, and camera stability. Both YOLOv4 and SDD 

occasionally faced challenges in the following areas: 

i. Motion blur in fast-moving scenes 

ii. Partial obstruction caused by intersecting limbs or objects 

iii. Variations in scale and rotation between frames 

5.11   Limitations of the YOLOv4 Model in Crime Prediction  

 

The paper published by the [181], presented some limitations associated with using 

YOLOv4 model, this includes high computational cost of the architecture and the long 

training time requirement [181]. Similarly, although our YOLOv4 predictive model exhibits 
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robust performance across various classes, it also has significant limitations that can 

affect its effectiveness in real-world applications, especially in the realm of crime 

prediction. Upon evaluating these limitations, several key factors emerge. Below are the 

specific constraints of the YOLOv4 model in this work. 

Precision and False Positives: 

Precision of 80.1%: The model's precision indicates that while a significant number of 

positive predictions are correct, there is still a considerable number of false positives (FP 

= 188). In a crime prediction context, false alarms can lead to unnecessary police 

interventions, potentially escalating situations or wasting resources on non-issues. This 

can erode public trust and lead to community relations issues. 

Recall and False Negatives: 

Recall of 74.5%: The model's ability to detect all relevant cases is limited, as indicated 

by the number of false negatives (FN = 259). In crime prediction, missing critical 

detections (e.g., failing to identify a person involved in suspicious activity) can have 

serious consequences, including potential threats to public safety. This limitation 

emphasizes the need for a model that can reliably capture all relevant instances.\ 

F1 Score: 

The model achieves a trade-off between precision and recall but may not perform 

optimally in crime detection context. A moderate F1 score may imply that the model 

misses some instances or has a high false alarm rate, which does not facilitate well the 

decision for crime prevention and response 

Class-Specific Performance Variability: 

Inconsistent Performance Across Classes: The Average Precision (AP) performance 

metrics exhibit large inconsistencies between classes. For example, although the model 
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has a good performance on weapons (shotgun, handgun, knife, rifle) detection with AP 

higher than 90%, it does not perform maximally on person detection (AP = 75.99%). Such 

inconsistency could disrupt the reliability of crime prediction models, which is especially 

important in environments where human detection is crucial, such as crowded public 

spaces or during large public events 

Total Predictions and Model Complexity: 

Total Predictions of 1205:  A large total number of predictions (both true positives and 

false positives), suggest that the model could be too sensitive. For applications as crime 

prediction, this may result in an increase of operational costs and resource management 

of law enforcement agencies, since potentially a larger number of alerts should be 

followed up, some of which are unjustified 

Sensitivity to Environmental Factors: 

Environmental Influences: YOLOv4 and the likes of object detection models, can be 

sensitive to lighting conditions, occluded and cluttered backgrounds. These 

environmental features can have serious implications for the accuracy of detection, in a 

crime prediction task. For example, the bad lighting of the video in a surveillance video 

may make the model unable to correctly recognize the person or weapon, resulting in 

missed detection and wrong classification 

Lack of Contextual Understanding 

YOLOv4 is designed for object detection, as opposed to understanding the context in 

which objects exist. In crime forecasting, situational context (e.g., the behavior of actors, 

time and place of events, and environmental conditions) is essential to analyzing the 

crime prediction information. Without this contextual information, a model might 

misclassify benign activity as suspicious, or miss real threats. 
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Contextual Limitations: YOLOv4 focuses on object detection rather than understanding 

the context in which those objects are present. In crime prediction, understanding the 

situational context (e.g., the behaviour of individuals, the environment, and the timing of 

events) is crucial for making informed decisions. A model that lacks this contextual 

awareness may misinterpret benign activities as suspicious or fail to recognize genuine 

threats. 

 

5.12   Conclusion 

 

Although YOLOv4 is robust for object detection, based on our findings, it may lack 

optimal precision and recall, contextual understanding which impedes its suitability for 

crime prediction applications. These considerations should be carefully taken into 

account by police agencies and predictive analytics teams when using YOLOv4 for 

criminal activities. For its better application and utility, more optimization, additional 

models, or holistic approaches with contextual integration may result in overall higher 

accuracy and reliability of predicting crime. 
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CHAPTER SIX 

CONCLUSION, RECOMMENDATION AND FUTURE 
WORK 

 

6.0 Conclusion 

 

In conclusion, this research focuses on developing a crime predictive artificial 

intelligence tool utilizing computer vision algorithms. It evaluates the accuracy of two 

widely used detectors, YOLOv4 and Single Shot Multibox Detector (SSD), to identify the 

most effective algorithm for classifying perpetrators as high risk. The findings indicate 

that both SSD and YOLOv4 algorithms, when integrated into computer vision systems, 

provide a practical approach to enhancing security and surveillance in complex 

environments. 

Training and validation of the data were successfully conducted on cloud infrastructure, 

as well as on a local HP Pavilion gaming machine with specific hardware specifications: 

16 GB RAM, a 4 GB Nvidia GeForce 1050 Ti, a Linux distribution environment, a 1 TB HDD, 

a 128 GB SSD, and an 5th Generation Core i5 processor. 

The results obtained from both detectors successfully met the following research 

objectives: 

Data Acquisition and Preprocessing: For model training, we effectively acquired and 

processed criminal video data from reliable sources such as UCF and NIST, as well as 

scraped data from reputable online sources for weapons and non-criminal images that 

are royalty-free. 
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The research utilized data curated from Kaggle and Data World, two reputable online 

platforms recognized for their reliability in data science and as open data repositories. 

Each source was thoroughly verified to ensure that permissions for content use were in 

place. 

The research ensured that appropriate online privacy and data protections such as the 

UK GDPR regulations are followed [129] and in compliance with the UK Information 

Commissioners Office (ICO), the department that upholds public interest on information 

rights [178]. Additionally, we ensured that personal identifiable information (PII) are either 

anonymized or pseudonymous before being used for the data training.  Any identifiable 

inferences related to individuals depicted in the thesis were intentionally blurred. We 

also took measures to mitigate specification bias, sample bias, annotation bias, and 

other model biases, ensuring fairness and transparency in our data representations.  As 

a result, we affirm the dataset encompasses individuals of diverse races, ages, colours, 

genders and occupations. This promotes interpretability, accountability, and 

transparency model that does not perpetuate prejudice when deployed in public safety 

contexts. 

 The training of the SDD model was conducted using TensorFlow, with the annotated 

dataset converted from YOLO format to Pascal VOC format (.XML). A competitive mean 

Average Precision (mAP) of 74.74% was achieved when the model was validated on 
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unseen crime videos. As shown in Table 4.2, the class-by-class precisions at the 119th 

epoch were 66.48% for Person, 73.86% for Shotgun, 81.42% for Handgun, 72.52% for 

Knife, and 79.49% for Rifle. 

To enhance the SDD model's performance, we implemented optimization through 

parameter tuning of the configuration variables, as discussed by Namdeo and Singh in 

their paper published in 2024 [179]. This was done by improving the augmentation 

process on the dataset, changed the learning rate from 0.001 to 0.0001 and modifying 

the Python training script to split data set in ratio 80:20 from the original 70:30. The result 

was a notable improvement as the mean average precision increased to 84.19% [179]. 

This process significantly increased the precision of person detection by 20.42%. 

In comparison, YOLOv4 achieved a high mAP of 90.8%, with impressive detection rates 

across the five classes. For instance, the precision for detecting persons was 75.99%, 

surpassing the pre-optimization performance of the SDD model. Additionally, weapon 

detection metrics were also higher for YOLOv4, with Knife detection reaching 96.11%. 

However, with parameter tuning, the SDD model demonstrated improved detection 

capabilities, highlighting the effectiveness of hyperparameter tuning in neural model 

training. Despite differences in performance metrics, both models exhibited notable 

accuracy and precision across various classes. While the YOLOv4 architecture 

showcased slightly higher average precision values - ranging from 75.99% to 95.98% - the 
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optimized SSD model achieved substantial average precision percentages from 66.48% 

to 91.6%. Notably, both models maintained high precision levels across all classes. 

In terms of true positive (TP) and false positive (FP) values, both models effectively 

identified instances while minimizing misclassifications. However, the YOLOv4 model 

exhibited higher precision and lower recall values compared to the SSD model, indicating 

its superior accuracy in detecting instances with the dataset used for this research. 

Consequently, we built our high-risk classification system on this architecture. The 

Python script was enhanced with the DeepSort algorithm, utilizing Euclidean distance 

with a threshold set at 0.25 (see Appendix F for the classification Python script) to track 

the movement trajectories of individuals possessing weapons in the crime video or real 

world scenario. A perpetrator was classified as high risk if their suspicious movement 

exceeded the established threshold. 

The instrument generalized well, successfully classifying suspicious perpetrators as high 

risk when tested with unseen video for high-risk classification). 

6.1 Recommendation 

 

Based on the experimental results of this research, we offer the following 

recommendations for researchers seeking to enhance the performance of crime 

prediction AI tools: 
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1. Data Size: In 20016 data from the study by Tsangaratos in [192] suggests that Deep 

learning and Machine learning performances improves by increasing the amount of 

data(To achieve higher mean average precision for the five classes, researchers can 

increase the size of training dataset. Hence, the presence of each object in the 

dataset. For example, class “person” recorded the lowest average precisions 

because there were fewest instances of person in the training video dataset. 

2. Training Infrastructures: According to the research conducted by Yuksel and Metin in 

2025, Infrastructures are the drivers of deeper paradigm shifts in computer vision 

[193]. As AI training is computationally intensive, it could be better to use the best 

cloud services. Our experience during the experimentation shows that cloud 

infrastructure like AWS, Google Collaboratory could be a better infrastructure to 

leverage for deep learning training. It is faster and smoother. Optimizing cloud 

infrastructure improves performance and reduce cost of training an AI model [194]. 

3. Mobile Profiling: The scope of this project excludes mobile profiling of the 

perpetrators. To further apprehend high-risk perpetrators, collaboration with social 

media and Telecommunication Company becomes essential. Here, we could 

conduct an image search as the AI Safety instrument shares API with other agencies 

to reveal further information about the perpetrator. 

Based on the findings of this research, we offer the following recommendations for 

researchers in the fields of Computer Vision and neural networks who are working on 
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similar projects involving crime video analysis and are considering whether to use 

YOLOv4 or SSD: 

 

Selecting YOLOv4:  

For tasks that demands high accuracy and robustness in detecting diverse objects, 

YOLOv4 is the model of choice according to this comparison.  

 Selecting SDD 

 If concentrating on certain classes, in particular persons and handguns, the optimised 

SDD might represent a practical alternative, especially if computational resources are 

scarce 

6.2   Future Directions 

 

This research has potential for improvements in crime prevention and forecast. 

Therefore, it is a revelation to the divergent world of artificial intelligence. 

First, to improve the object detection and prediction, hybrid approaches need to be 

investigated. This concept was long advocated by Chung-Kwan in their research in [195].  

These could be related to mixture of models or using sophisticated fine-tunning methods 

that benefit from the strengths in multiple methods. Learning from these hybrid models 
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may provide higher performance for critical object searching in crime thus it can be a 

promising topic for the future. 

 Furthermore, we intend researchers in Computer Vision advance the study to 

specifically include mobile profiling where, image search conducted reveals criminal 

identities on social media-Facebook, Twitter(X), and Instagram. 

Moreover, research of this nature could benefit maximally if the geometry and spatial 

coordinate of the perpetrator links with the bounding boxes. So, introducing GPS could 

be an inclusion for future researchers. 

More importantly, future research could concentrate on bias, transparency, 

accountability, interpretability and fairness of the instrument in public context. The 

following can be factored into the future design for ethical reasons: 

• Transparency: The theoretical principles guiding the decision within the AI 

system explicitly made known and understandable to users or stakeholders. 

This helps with transparency in the system and creates accountability of itself. 

• Bias and Fairness:  In 2025, Hannah suggested that AI must be implemented 

responsibly to ease biasness and unfairness [196]. The future work could 

ensure that training data is unbiased. Additionally, the investigator 

continuously monitors and audit the AI system to spot biases through 

continuous testing at validation stage. 

• Data Protection: One of the key principles to ensuring persons personal data 

adequately protected is preserving individual data protection terms. Reddy 
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and Rajendrah in 2025 emphasized the need for an enhanced data protection 

settings in neural model [197]. Personal data of the persons in the dataset 

secured in accordance with privacy standards. Personal identifiable 

information (PII)  anonymized or pseudonymized  before used for model 

training purposes. 

• Human Over-the-Shoulder:  As suggested by Andrew in [198], both humans 

and machines are needed for any technology to work the way it is designed to. 

For Commercial deployment, it is advisable that the AI system kept under human 

overwatch for stepping in if anything goes wrong or becomes bias. As such, 

humans should be able to intervene and have control of overriding decisions by 

an AI system.  
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Appendix B: YOLOv4 System Architecture Configuration file 
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Appendix C: Single Shot Multi-Box Detection  
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Appendix D: Single Shot Training Command 
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Appendix F: High Risk Python Script 
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Appendix G: Screenshots of sample training datasets 
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Appendix H: Training Weight Yolo Weights 
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