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ABSTRACT: This paper presents a nonlinear model predictive control
(NMPC) framework employing Gaussian processes (GPs) for application in
froth flotation processes under online partial observability. Froth flotation, a
critical process in mineral processing, involves complex, nonlinear dynamics
and unmeasured variables, making traditional control methods challenging
to implement. In this work, we build a data-driven control strategy by
training GP-based state-space models on data generated from a physics-
based model. These GP models are then integrated into an NMPC
architecture where only a subset of the process states is observable online.
The GP-MPC controller accounts for uncertainty and disturbances by
predicting both the mean and variance of system dynamics, enabling robust
optimization over a finite horizon. Results demonstrate a 20% reduction in
the concentration of valuable minerals in the tailings compared to
traditional control methods, while achieving consistent operation throughout the process. The framework effectively handles
noise and disturbances, with the partially observable GP-MPC achieving consistent set point tracking within a 5% error margin, and
reduces deviations from target values by approximately 15%. The framework also meets real-time constraints, making it well suited
for complex, data-driven process control applications.

1. INTRODUCTION
Model predictive control (MPC) is an advanced control strategy
widely applied in various industries for its ability to handle
multivariate systems and explicitly manage process constraints.1

MPC uses a dynamic model of the process to optimize a
sequence of control actions over a time horizon at each sampling
step.2−4 Although linear MPC has matured into a well-
established strategy, many industrial processes exhibit significant
nonlinear behavior, motivating the development of nonlinear
MPC (NMPC) strategies.5 With the advancement of
optimization algorithms capable of handling nonconvex
problems, NMPC has gained increasing popularity, especially
in chemical engineering applications.
One of the critical factors influencing the performance of

MPC is the accuracy of the model used to represent the system.6

As a result, the development of accurate models often
constitutes a substantial portion of the effort required for
MPC implementation. For example, previous studies have
estimated that up to 80% of the commissioning effort is devoted
tomodel development.7 Traditional approaches typically rely on
mechanistic or first-principles models, which, while accurate, are
often too complex for real-time application and expensive to
develop.8 This has prompted interest in data-driven methods,

where models are derived from process data instead of detailed
physical principles. Data-driven approaches can learn the
dynamics of the system directly from process data. Among
these, Gaussian processes (GPs) have emerged as a powerful
tool to learn system dynamics from limited data, providing both
predictive accuracy and a measure of uncertainty.9,10 Their
flexibility and minimal reliance on prior process knowledge
make GPs well-suited for various applications, including state
estimation, reinforcement learning,11,12 and MPC.2,13,14 The
ability of GPs to provide probabilistic predictions is particularly
valuable in MPC, where it enables efficient exploration of
unknown regions and avoidance of unsafe areas with high
uncertainty, thus improving both learning efficiency and
robustness.15

GPs have been successfully integrated into MPC frameworks
to model nonlinear dynamic systems (e.g.16−18), with recent
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works demonstrating their efficacy in areas such as disturbance
rejection19,20 and fault tolerance.21,22 However, most GP-based
MPC applications assume that the system is fully observ-
able,23,24 where all relevant state variables can be measured
directly. In many real-world processes, this assumption does not
hold. One such example is the froth flotation process, the most
extensive mineral separation process used in the mining
industry.25 Froth flotation effectively separates valuable minerals
from gangue, but its efficiency depends on the control of various
process variables such as froth depth, air flow rate, and tailings
composition.8,26,27 While MPC has been successfully applied in
other chemical industries, its implementation in the mineral
processing sector, particularly for froth flotation, remains
limited.28,29 This is largely due to the difficulties in accurately
modeling the complex dynamics of flotation processes, which
restrict the application of traditional model-based control
approaches.8,30

1.1. Related Work. Previous works on modeling for
flotation control have focused on the use of simplified kinetics
models (e.g.31−33), which are limited in handling the process’s
inherent complexities, including nonlinear dynamics, disturban-
ces, and measurement noise. For example, Maldonado et al.
(2007)31 proposed dynamic programming approaches for
rougher flotation that have shown promise, but their high
computational complexity restricts real-time applications. Putz
and Cipriano (2015)32 developed a hybrid control system that
integrates continuous and discrete system variables through
logical rules, combined with MPC, to address these challenges.
However, they rely heavily on static models and do not
adequately capture the inherent uncertainties of the process.
Some other studies, such as Brooks and Koorts. (2017),34 have
focused more on regulatory control than process optimization.
Quintanilla et al. (2023)26,35 presented an economic MPC
strategy, achieving an 8−22% improvement in recovery while
maintaining a concentrate grade. Other recent advancements in
flotation modeling and control are discussed in.30,36−39

Although these advances enable performance improvements,
there remains a need to fully account for process uncertainties
and disturbances, especially in the presence of unmeasured
process variables.
In this work, we develop a nonlinear GP-MPC framework to

optimize an economic objective while accounting for system
uncertainties and disturbances. Our approach addresses the
limitations of previous studies by incorporating stochastic
process modeling via GPs, which explicitly accounts for
prediction uncertainty. This enables our GP-MPC to dynam-
ically balance exploration (reducing uncertainty) and exploita-
tion (optimizing control actions) based on real-time measure-
ments, which is crucial for maintaining robust control in the
presence of noise and disturbances. By introducing a partially
observable framework, our approach can predict latent variables,
such as mineral masses in flotation processes, that are not
directly measurable online and can typically only be measured
offline, significantly improving control effectiveness in scenarios
where conventional models struggle with incomplete state
information.31,32 We demonstrate that the partially observable
GP-MPC remains robust under varying levels of noise and
disturbances, making it highly applicable in industrial settings
where measurement variability and process uncertainty are
critical factors. This integration of stochastic modeling,
uncertainty quantification, and partial observability renders
this GP-MPC framework a suitable and reliable solution for

flotation processes. The framework is designed to be applicable
to other systems.
The rest of this paper is organized as follows: Section 2

introduces the theoretical background, including GP and MPC.
Section 3 details the proposed methodology, presenting the
development of the GP state-space model, the partially
observable GP state-space model, and the GP-MPC framework.
Section 4 describes the mineral froth flotation process, covering
the flotation model, problem setup, and implementation details,
including initial data set generation. Section 5 presents the
results and discussion, evaluating the performance of both full-
state and partially observable GP models, followed by an in-
depth analysis of the GP-MPC approach in different scenarios,
including trajectory tracking, optimization with the objective
function, and disturbance handling. Finally, Section 6
summarizes the key findings and discusses potential future
research directions.

2. PRELIMINARIES
2.1. Gaussian Processes. In this section, we give an

introduction to GP regression. For a more general overview,
see.40 GP regression aims to describe an unknown function
f:Rn_x → R using noisy observations, y = f(x) + ε, where

(0, )2 is Gaussian distributed measurement noise with
zero mean and (possibly unknown) variance σε

2.
GPs consider a distribution over functions, and they can be

seen as a generalization of multivariate Gaussian distributions

· · · ·f m k( ) ( ( ), ( , )) (1)

where the mean function m(·) can be interpreted as the
“average” shape of the function, while the covariance function
k(·,·) describes the correlations between function values.
Our focus herein is on a constant mean function, m(x)≔ 0,

alongside the squared-exponential (SE) covariance function40

= i
k
jjj y

{
zzzx x x x x xk( , ): exp

1
2

( ) ( )n
2 T

(2)

where σn
2 is the covariance magnitude; and Λ≔ diag(λ1···λn_x) is

a scaling matrix. The basis for the choice of the SE covariance
function is the assumption that the inferred function f is smooth
and stationary.
Maximum likelihood estimation is commonly applied to infer

the unknown hyperparameters Ψ≔ [σnσελ1:···:λnx]T, including
σε in case the measurement noise variance is also unknown.
Consider nd (noisy) function evaluations, denoted by y≔
[y(1):···:y(n_d)]T ∈ Rn_d, with corresponding inputs collected in
the matrix = [ ··· ] ×x x RX: : : n n n(1) ( )d x d. The log-likelihood of
the observed data, ignoring constant terms, is given by

= | | y yK X K X( ):
1
2

ln( ( ) )
1
2

( )T 1
(3)

with Kij(X)≔ k(x(i),x(j))+σε
2δij for each pair (i,j)∈ 1···nd

2; and the
Kronecker delta function δij.
The predicted distribution of f(x) at an arbitrary input point x,

given the input−output data (X, y) and the maximum-likelihood
estimates of Ψ, follows the Gaussian distribution.

|x y x xf X( ) , ( ( ), ( ))f f
2

(4)

with

=x r x yX K X( ): ( , ) ( )f
1
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= r x r xx X K X X( ): ( , ) ( ) ( , )f n
2 2 1 T

= [ ··· ]r x x x x xk kXand ( , ): ( , ): : ( , )n(1) ( )d

The mean μf in this context is the prediction made by the GP
at x, while the variance σf

2 provides a measure of the uncertainty
around this predictor.

2.2. Model Predictive Control. In this section, we provide
an introduction to model predictive control (MPC) in the
context of discrete time. MPC is an optimization-based control
strategy that predicts future system behavior over a finite time
horizon using a model of the system. Originally developed in the
1970 s for chemical process control, MPC has since been widely
adopted in various industries,41 including automotive, aero-
space, robotics, and chemical processing, due to its ability to
handle multivariable control problems and constraints effec-
tively. In chemical processes, such as froth flotation, MPC is
particularly valuable for optimizing operations where precise
control is necessary to achieve desired outcomes under complex,
nonlinear dynamics.42

Discrete-time MPC is particularly useful for real-world
applications. It allows the controller to update information at
discrete intervals rather than continuously, making it well-suited
for digital implementations where control strategies are
executed at specific time steps. This approach ensures
compatibility with digital processors and systems that operate
on sampled data, while also reducing computational complex-
ity.43 At each discrete time step k, MPC solves an optimization
problem to determine the optimal sequence of control actions
that minimize an objective (or cost) function while satisfying
system dynamics and constraints.
In this work, we extend the traditional MPC strategy by

integrating GP models, which allow for explicit handling of
uncertainty in nonlinear systems. The GP-MPC framework
predicts future states and incorporates the uncertainty of these
predictions into the optimization problem, enhancing robust-
ness and performance under uncertain conditions. The cost
function for this optimization is typically defined as

= +
=

x u x x uJ w wmin ( , ) ( )
u

N N
k

N

k SP k1: 0: 1
0

1

1
2

2
2

N0: 1

(5)

subject to

= =+x f x u k N( , ), 0, ..., 1k k k1 (6)

=u u u k N, 0, ..., 1kmin max (7)

=x x x k N, 0, ..., 1kmin max (8)

=x x(0) (initial condition)0 (9)

where xk ∈ Rn_x represents the state vector, uk ∈ Rn_u is the
control input, and f: X × U → X can ideally model the
uncertainties and disturbances within the system. The weights
w1, w2, and w3 are used to balance the contributions of each term
in the objective function: w1 corresponds to the state tracking
error, w2 penalizes the control effort, and w3 accounts for the
predicted uncertainty in the system. Since MPC is a model-
based strategy, developing an accurate model is essential. In the
context of nonlinear systems, the state evolution is not simply
described by a linear relationship but rather by a nonlinear
function f(·), as expressed in eq 6.

The solution of the optimization problem is a sequence of
control inputs over the prediction horizon N, represented as a
column vector

= [ ]+ + +u u u u, , ...,k k N k k k N: 1 1 1
T

(10)

Only the first control input uk is implemented, after which the
optimization process is repeated at the next time step with
updated state information, following the receding horizon
strategy. This approach allows MPC to continuously adapt to
changes in the system and external disturbances, making it
robust to model inaccuracies and uncertainties.

3. METHODOLOGY
3.1. Gaussian Processes State-Space Model. We

consider the nonlinear discrete-time system as described in
Section 2.2

= ++x f x u( , )k d k k k1 (11)

xk ∈ Rn_x denotes the state vector, uk ∈ Rn_u is the control input,
ϵk represents process noise, and kmarking the time-step where k
∈ N0 (meaning that k can take positive integer real numbers
including zero). The function fd:Rn_x × Rn_u → Rn_x is
differentiable but unknown. The GP model provides proba-
bilistic predictions for the mean and variance of the state at the
next time step, incorporating these probability estimates into
control decisions.
We assume that we can fully measure the current state; hence,

we have a data set of states and control measurements {x(i), u(i)}
with its corresponding consecutive state noisy measurement yk

(i)

= fd(xk
(i),uk

(i))+εk
(i), where the noise term is modeled as

[ ](0, diag( , , ..., ))d x d x d x,
2

,
2

,
2

nx1 2
.

We can then state our data set as

= {{ } } =x u y, ,i i i
i
n( ) ( ) ( )

1
d (12)

For ease of notation, we group the variables as = [ ]x u,k k
T

k
T T

such that +Rn nx u. To model dynamical systems we will
use a GP as a state-space model of the dynamical system. For
this, we use nd samples (our data set) to construct our GP state-
space model. We interpret the GP as a distribution over
functions as follows

f m k( ) ( ( ), ( , )) (13)

which is fully characterized by a mean function m R( ):
and a covariance function × Rk ( , ): . The input ξ′
refers to an arbitrary point in the input space at which the GP
prediction is evaluated. It is important to note that the
covariance function kψ(ξ, ξ′) models the GP’s predictive
uncertainty due to data sparsity or extrapolation, and not the
process noise, which is assumed to be additive and input-
independent during data generation.
Note that both the mean and covariance function produce a

scalar. This means that they map control and state inputs ξ to a
single output. If we want to produce nx outputs (say, one for each
state at a subsequent time), we must have nx GPs, one for each
state. Therefore, in this context, we will use data set to train a
GP, which given an input ξk, will aim to predict the mean and
variance of a future state xk+1. We then concatenate nx GPs to
model such dynamics
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=

l

m
ooooooo

n
ooooooo

f

f k

f k

( )

( ) (0, ( , ))

( ) (0, ( , ))
nx nx

1 1

(14)

We can then concatenate all parameter vectorsΨ = [ψ1,···,ψnx]
and all covariance functions kΨ(·,·) = [kψ1(·,·),···,kψnx(·,·)] to
describe the concatenation of all kernel functions into

f k( ) (0, ( , )) (15)

This representation of the dynamic system, via GP state-space
models, is used in Section 3.3 to formulate a data-driven
stochastic MPC.

3.2. Gaussian Processes Partially Observable State-
Space Model. In real-world systems, not all state variables can
be easily measured online. We distinguish these variables as
observed variable xobserved (measurable) and latent variable xlatent
(unmeasurable), as shown in eq 16.

= { } =x xx ,i i i
i l
n( )

latent
( )

observed
( ) d (16)

To address this challenge, it is essential to develop a partially
observable GPmodel that can predict all state variables based on
the measurable ones.
A time window of the observed variables is introduced to

compensate for the lack of direct measurements of the latent
variables and to enhance the robustness of the predictions. We
can consider the system as

=+x x x uf ( , , )k d k k k1 ,history (17)

where xk,history = [xobs,k, ..., xobs,k−l] and l defines the time-window
size.
Figure 1 illustrates the operation of the GPmodel at each time

step. At time step k, the GPmodel takes a time window of l (with
l = 3 in this example) previous observable states, along with
estimated latent variables and nominated control actions, to
predict the next state. This prediction includes both observable
and latent variables. For the next prediction at k + 1, the
observable states at k + 1 are measured and used to update the
time window, ensuring that the GPmodel incorporates the most
recent data for accurate predictions in subsequent steps.
The training data set for the partially observable GP model is

constructed using data generated from the first-principles

Figure 1. Schematic representation of the partially observable input−output structure used for GP model training and prediction. At time step k = 0,
full state information (both observable and latent variables) is assumed to be available for model initialization. For k > 0, only observable variables
(blue) are measured, and the GPmodel is used to predict the latent (unmeasurable) states (yellow) based on a time window of past measurements and
control actions.

Figure 2. Schematic of the proposed GP-MPC framework. A physics-based model generates full-state data offline to train a GP model. Online, the GP
model predicts full states from partial measurements, which are used by the NMPC optimizer to compute control actions subject to constraints.
Disturbances and noise are added at the process level to reflect real-world conditions.
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MATLAB model. Since the latent variables are measurable
offline, they can also be included in the training data set
alongside the observable variables. By leveraging the compre-
hensive data set generated by the first-principles model, the GP
model captures both observable and latent dynamics, improving
its ability to represent the system. Consequently, this helps
maintain predictive reliability and improve the accuracy of the
control strategy by accounting for the cumulative effects of past
actions.4

= {{ } } =x x u y, , ,i i i i
i l
n( )

history
( ) ( ) ( ) d

(18)

To simplify notation, we group the variables xk
(i), xk,history

(i) , and

uk
(i) into k

i( )
, where + · +Rn n l nx x ulatent observed . Using a similar

approach as derived in eqs 13 to 15, we develop a second GP
state-space model for data-driven stochastic MPC under
partially observable scenarios. This model enables learning
complete system dynamics from comprehensive experimental
measurements while ensuring reliable control during online
operation with partial observations.

3.3. Gaussian Processes Model Predictive Control (GP-
MPC). Figure 2 illustrates the proposed GP-based nonlinear
model predictive control (GP-MPC) framework under online
partial observability. The methodology consists of two main
components: an offline training phase and an online control
loop. In the offline phase, a high-fidelity physics-based model is
used to simulate full-state trajectories, which are then used to
train a GP state-space model. This fully observable training data
set enables the GP to learn a surrogate model that captures
nonlinear process dynamics with associated uncertainty.
During online implementation, only a subset of the process

states is directly measurable. The trained GP model is used
within the NMPC controller to predict the evolution of the full
state vector from recent measurements, based on a fixed-length
observation window. The predicted states are used to compute
tracking errors relative to the set point, which are passed to the
optimizer. The optimizer then solves the constrained finite-
horizon optimal control problem using the GP predictions, the
objective function, and the input constraints. Only the first
control input is applied to the process. To account for real-world
uncertainty, process measurements include additive white noise,
and disturbances are explicitly added to the simulation
environment.
We defined two types of objective functions for the GP-MPC

framework. The first objective function aims to minimize the
sum of a generic performance and/or economic term (zk), the
change in control input (Δuk = uk−uk−1), the control input
magnitude (uk

TRuk), and the predicted variance (σk
TQ3σk)

= + +

+
=

u u u uJ w w w

w

z Q z Q R

Q

( ( ) ( )

)

k

N

k
T

k k
T

k k
T

k

k
T

k

1
0

1

1 1 2 2 3

4 3 (19)

where zk represents a generic performance and/or economic
term that we aim to minimize or control, which will later be
defined in the context of the specific application. Each term in
the objective functions is penalized with a corresponding weight
wi. Note that we assumed that the first control variables are
known; thus, u−1 = u0.
We also propose a second objective function used for a

trajectory-based MPC strategy. This second objective function
focuses on minimizing the deviation of the performance and

economic term from a set point (zSP), alongside the same terms
as in the first objective function

= +

+ +
=

u

u u u Q

J w w

w w

z z Q z z

Q R

( ( ) ( ) ( )

( ) )

k

N

k SP
T

k SP k
T

k k
T

k k
T

k

2
0

1

1 1 2

2 3 4 3 (20)

Note that the term σk in eqs 19 and 20 corresponds to the
predicted standard deviation of the system’s state at time step k,
which is obtained from the GP model. This predicted variance
reflects the model’s confidence at each step and is penalized in
the objective to encourage reliable predictions and robust
control performance, particularly under partial observability and
disturbances. Specifically, σk

2 is defined as

= = r rX K X X( ) ( , ) ( ) ( , )k f k n k k
2 2 2 1 T

(21)

where = [ ]u,k k k
T T T is the GP input at time step k, σn

2 is the
covariance magnitude from the squared-exponential kernel in eq
2, K(X) is the covariance matrix with entries Kij =
k(x(i),x(j))+σε

2δij, = [ ]r x xk kX( , ) ( , ), ..., ( , )k k k
n(1) ( )d is the

vector of covariances between the test input ξk and training
inputs.
The GP-MPC optimization problem is then formulated as

=

=

= [ ]

= [ ]

=

+ +

z u

x

z

u

k

k

u u u

J

k k

m

k N

min ( , , )

subject to:

(0) (initial condition)

( )

,

( , ): ( , ), ..., ( , )

, ( ( ), ( , ))

for 0, ..., 1

k k k

k k

N N N

k z k

k k
T

k
T T

n

k k

k

u
1: 0: 1 1:

0

(1) ( )

1 1

min max

N

d

0:

(22)

Eq 22 is parametrized by the current state estimate x0 ∈ Rn
x,

analogous to the standard NMPC formulation in eq 5. The
prediction horizon is initialized as μ0≔x0, and the subsequent
GP-based state predictions μk+1 are recursively computed using
the GP posterior mean.
In our framework, two objective functions are defined to

accommodate different control strategies: J1 for economic
optimization and J2 for set point tracking. The choice between
these objectives depends on the specific control scenario. The
term =z ( )k z k maps the predicted state mean μk to an
economic or performance-related variable used in the objective
function to evaluate system performance over the control
horizon. At each time step k, ξk represents the concatenated
vector of the predicted state mean μk and the control input uk,
withN denoting the control horizon. The initial stateZ0 includes
both observable and latent variables, where latent variables are
assumed to be measurable offline and available for the first MPC
step, ensuring an accurate initial condition before transitioning
to predictive estimates in subsequent steps.
In addition, μk+1 and σk+1 represent the predicted mean and

variance of the output, respectively, obtained from the GP
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distribution described by the mean function mψ(ξk) and the
covariance function kψ(ξk, Ξ), where Ξ represents the set of
training data inputs. The control inputs are bounded by umin and
umax. It is important to note that the notation used in this
formulation corresponds to the fully observable case, where ξk
represents the concatenated vector of the predicted state mean
μk and the control input uk. For the partially observable case, the
previously defined notation k should be used, which accounts
for both observable and estimated latent states within the GP-
based state-space model.
Although uncertainty propagation can be considered in GP

state-space models,44 we do not consider it in this work. This
decision comes from the fact that available approaches typically
rely on linearization or statistical moment-matching approx-
imations, and most efficient methods focus on open-loop
propagation of uncertainties. However, open-loop propagation
often leads to overly conservative results due to the unchecked
growth of uncertainties. Instead, we adopt an alternative
strategy: limiting process uncertainty by penalizing the
uncertainty considered within the MPC scheme.18

4. SYSTEM DESCRIPTION: MINERAL FROTH
FLOTATION

The methodology proposed in Section 3 was implemented for a
mineral froth flotation process. Mineral froth flotation is a
separation process to extract valuable minerals, such as copper,
from impurities (unwanted mineral particles, also known as
gangue). This process involves mixing chemicals and air into
stirred tanks, which modifies the surface properties of mineral
particles, making them hydrophobic and causing them to attach
to air bubbles. The resulting mixture generates a froth at the
surface of the tank, which overflows as a mineral-rich
concentrate. The unattached particles remain in the tank’s
pulp phase and exit from the bottom of the tank as tailings. A
schematic of this process is depicted in Figure 3.

4.1. Flotation Model. Modeling mineral froth flotation
presents complexities due to its multiphase nature, involving
solid (minerals), liquid (water) and gas (air) components. In
particular, modeling the performance of the froth phase, which

defines the quality of the final product and overall efficiency,
depends on a number of complex subprocesses such as bubble
coalescence, particle-bubble attachment, and froth stabil-
ity.45−47 Significant research has focused on understanding the
role of these subprocesses and their interactions in flotation
performance, generally resulting in complex nonlinear models
composed of differential equations that are unsuitable for online
control purposes. For a comprehensive review of flotation
modeling for control, please refer to.8

In this study, we used a dynamic physics-based model that
incorporates froth physics37 to generate training data for the GP
model and to evaluate the impact of control actions, serving as a
surrogate for the real system. The model has been validated at a
laboratory scale,38,48 ensuring its reliability in representing the
flotation process dynamics. It comprises a nonlinear differential-
algebraic equation (DAE) system with 2 + MC + B ordinary
differential equations. Here, MC denotes the number of
mineralogical classes, and B represents the number of bubble
size classes. More information on bubble size classes can be
found in.49 In this study, we assumed B = 5 and MC = 2,
corresponding to chalcopyrite (valuable mineral, mc = 1) and
quartz (gangue (unwanted mineral), mc = 2). Presents an
overview of the states and control variables of the model.

4.2. Problem Setup.A prediction horizon of 30 steps with a
5 min sampling interval was selected, as this duration is sufficient
for the system to reach a new steady state under the tank
dimensions and operating conditions considered in this
study.35,37,38 The training data set consists of six simulated
trajectories designed to capture representative system dynamics
while ensuring computational feasibility. This is particularly
important to maintain manageable computational complexity
for the GP training, which scales as n( )d

3 with the number of
training points.50

The flotation process is modeled with nine states: mineral
masses (Mmin, Mgangue), gas holdup for each bubble size class49

(ε1, ε2, ε3, ε4, ε5), pulp height (hp), and tailings flow rate (Qtails).
In the full-state GP model, predictions focus on changes from
the current state rather than directly forecasting the next state.
This approach enhances accuracy and generalization by
concentrating on localized changes while mitigating the

Figure 3. Schematic of themineral froth flotation process. Note that the proportion of valuable and unwantedmineral particles (also known as gangue)
in this schematic is illustrative and does not represent the actual proportion of a flotation operation, as the proportion is typically below 1% of valuable
mineral.
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accumulation of prediction errors over time, which is critical for
maintaining robustness in MPC applications.4

In contrast, the partially observable GP model accounts for
the fact that only three variables (hp, Qtails, and the total gas
holdup =( )b b1

5 ) are directly measured, while the remaining
variables are latent (unmeasured). These latent variables,
however, can be realistically measured offline and incorporated
into the initial condition of the model to improve prediction
accuracy. This division reflects the typical availability of
observed and latent variables in industrial-scale operations
with existing instrumentation. This information is summarized
in Table 1. Themanipulated variables are the pulp level set point
(hp) and air flow rate (Qair). These are the typical manipulated
variables found at the industrial scale.

The time window size (l) for the partially observable GP (eq
16) is set to 3. This time window size was selected based on
empirical testing and domain-specific process knowledge. We
evaluated window lengths ranging from l = 1 to l = 5 and found
that l = 3 offers a practical trade-off between model accuracy,
generalization, and computational efficiency. This window
provides sufficient temporal context for the GP model to infer
the latent states from sequences of observable outputs without
introducing overfitting or unnecessary computational overhead
during training or online control.
To define the objective function in the MPC (eqs 19 and 20),

C1,tails from eq 23 is selected as the economic term (zk), because
it represents the concentration of valuable mineral particles (i.e.,
m = 1) in the tailing flow rate, a critical factor closely related to
the economic efficiency of the flotation process. In other words,
by minimizing the concentration of valuable particles in the
tailings, we aim to maximize the concentration of valuable
particles in the concentrate flow rate. This idea has also been
adopted by other studies (e.g.31).

=
=

C
M

h A(1 )p b b
1,tails

min

1
5

cell (23)

The weight coefficients in the objective function were tuned
to [w1,w2,w3,w4] = [60, 0.3, 0.01, 0.03]. The weights were tuned
empirically to balance control performance, model confidence,

Table 1. States for the Flotation Process

symbol unit description equation GP observability

fully
observable

partially
observable

Mm kg mass of mineral
class m

eq S1 yes no

εb gas holdup for
bubble size b

eq S2 yes only ∑b = 1
5εb

hp m pulp level eq S3 yes yes
Qtails m3/s tailings flow rate eq S4 yes yes

Figure 4. (A) Predictions of the full-state GP model for each state variable across three simulated experiments used for training. The solid lines
represent the GP mean predictions, shaded regions indicate the 95% confidence intervals, and black dots denote the true state trajectories. (B) Cross-
validation results under three levels of Gaussian measurement noise (0%, 1.0%, and 5%).
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and computational tractability. The prediction horizon in the
MPC is set to 5 time steps. It is important to note that C1,tails is
calculated from the final values of each variable, as optimizing it
is the ultimate objective, while the other terms in the objective
function are calculated from subsequent steps, given that they
relate to the actual execution of the control actions.

4.3. Implementation Details and Initial Data Set
Generation. The GP model was trained using three data sets
generated by model simulations in MATLAB R2022b. During
these simulations, the control action was adjusted every 300 s
within the bounds hp ⊆ [0.37, 0.42] and Qair ⊆ [9×10−4,
3×10−3]. The GP model was then constructed in Python 3.8.19
using an RBF kernel, with 10 hyperparameters, using amultistart
approach.
For training the full-state model, Xdata set was constructed by

extracting the state values at every 300 s, while Ydata set was
obtained by calculating the difference between consecutive time
steps. For the partially observable model, although latent
variables are not directly measurable in real-time applications,
they were included in the training stage by leveraging offline
measurements obtained from the first-principles model. This
approach enhances the model’s understanding of the system’s
underlying dynamics.
To establish the initial time window for the partially

observable model, the system was operated under a preset
control action from k = 0 to k = 2 to collect measurements for the
observable state vector, defined as = [ ]=h QX , ,p b bobs tails 1

5 .
Latent variables, represented by the state vector Xlatent = [Mmin,
Mgangue, ε1, ε2, ε3, ε4, ε5], are assumed to be available initially
through offline measurements. These initial values are used to
initialize the model for the first MPC step, ensuring accurate
state estimation. During real-time operation, the latent variables
are replaced by their predicted values for the subsequent steps to
accommodate partial observability. The fitted GP model,
integrated within the objective function, predicts state variables
over the control horizon based on the current state and
proposed control actions, enabling the computation of the
objective value.

The optimization of control actions is performed using a
constrained nonlinear solver (SLSQP) that minimizes the GP-
MPC objective function defined in eq 22. At each control step,
an initial guess of the control sequence is refined iteratively by
the solver, subject to predefined input bounds. The solver
evaluates the objective function by simulating the GP model
over a finite control horizon, set to hc = 5. To reduce oscillations,
the optimized sequence takes the form [uk, uk+1, uk+2, uk+2, uk+2],
instead of a fully independent sequence [uk, ..., uk+4]. After each
control step, the first control action is applied, and theMATLAB
simulation provides a measurement of the resulting system state.
Noise is added after each one-step MATLAB simulation. This
noise reflects measurement uncertainty and is added to the
observable outputs after each MATLAB simulation step. The
resulting noisy measurements are then used to construct the GP
input vector ξk for the subsequent prediction. In disturbance
scenarios, the feed flow rateQfeed is no longer treated as constant.
Instead, it is supplied as a time-varying input to the MATLAB
simulator to enable flexible and more realistic disturbance by
modifying Qfeed at particular time steps.

5. RESULTS AND DISCUSSIONS
5.1. GP-Model: Full-State. To evaluate the model’s fit,

particularly how well the predicted distributions align with the
true distribution of the data, we extensively used the negative log
predictive density (NLPD) metric, a standard for assessing GP
models.51 As shown in Figure 4A, the NLPD values for nearly all
fittings are close to zero or slightly negative, indicating a well-
calibratedmodel with high accuracy and appropriately estimated
uncertainty. Notably, for variables such asMmin and hp, which are
later used in calculating the objective value (C1,tails), the full-state
GP model provides highly accurate predictions with relatively
small standard deviations that are no larger than ±10% of the
state value. This level of precision is crucial for optimizing C1,tails,
underscoring the model’s significance in achieving the
controller’s objectives.
The cross-validation performance of the full-state GP model

under different noise levels, as presented in Figure 4B, highlights
the GP model’s robustness. The results demonstrate that the

Figure 5. (A) Predictions of the partially observable GP model for each state variable across three simulated experiments used for training. The solid
lines represent the GP mean predictions, shaded regions indicate the 95% confidence intervals, and black dots denote the true state trajectories. (B)
Cross-validation results under three levels of Gaussian measurement noise (0%, 1.0%, and 5%).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.5c00660
Ind. Eng. Chem. Res. 2025, 64, 13307−13322

13314

https://pubs.acs.org/doi/10.1021/acs.iecr.5c00660?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c00660?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c00660?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.5c00660?fig=fig5&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.5c00660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model effectively handles small perturbations in the data with
minimal performance degradation. This robustness is partic-
ularly beneficial in dynamic or highly variable environments,
where the input data may be noisy or subject to sudden
fluctuations. By ensuring consistent performance even under
these conditions, the model enables the MPC to make accurate
and reliable predictions, thereby improving overall system
performance. This ability to retain predictive accuracy despite
data imperfections makes the model well-suited for real-world
applications, where such variability is often unavoidable.

5.2. GP-Model: Partially Observable. Despite the
increased training burden associated with the time window
approach, it did not result in significantly longer training times
than the full-state model. As illustrated in Figure 5A,B, the
partially observable model effectively captures overall trends and
demonstrates robustness in the presence of noise. The model
exhibited negative NLPD values for all variables (see Table 2),
indicating that it remains a reliable tool for practical applications
despite the inherent challenges of measuring certain state
variables (see Table 3).

Compared to the full-state model, the partially observable
model achieved a higher level of accuracy with a smaller
confidence interval by predicting ∑bεb as a combined variable
rather than individually. Since ∑bεb is also used to calculate
C1,tails, its accurate prediction has the potential to improve the
implementation of MPC, thus improving the overall control
performance.

5.3. Gaussian Process Model Predictive Control.
5.3.1. Trajectory Tracking with GP-MPC. After developing
reliable GP models, we implemented them within an MPC
framework to achieve efficient control. The first step involved
trajectory tracking to ensure consistent system behavior and the
feasibility of the control actions generated by the MPC. This

procedure is essential to avoid the optimization process
suggesting solutions that are theoretically optimal but practically
unfeasible.
As shown in Figure 6A, the set point for C1,tails was initially 1.2

kg/m3 and later adjusted to 0.6 kg/m3. The GP-MPC controller
responded efficiently, solving each NMPC problem in under 30
s on average using an Apple M2 CPU laptop (8 GB RAM),
which fits within the 5 min sampling period. The final predicted
mean was 0.840 kg/m3, and the actual state reached 0.847 kg/
m3, indicating a steady-state offset. This offset can be attributed
to the saturation of the hp control input, which reached its lower
bound and limited further corrective action. Although the Qtair
input remained within bounds, its influence on the output may
have been underweighted in the cost function, reducing its
effectiveness in achieving the target set point. This suggests that
further tuning of control weightings or rebalancing of the
economic vs variance penalties may help improve performance.
The rest of the process variables remained within the 95%
confidence interval and showed strong agreement with the
predicted trajectories, as illustrated in Figure 6B.
For the partially observable model, the results show that it can

respond to the set point change within one time step and achieve
a similar level of trajectory tracking as the full-state model, with a
final predicted C1,tails = 0.896 kg/m3. Although Mmin and Mgangue
were assumed to be latent (unmeasured), their simulation
results were recorded to assess the performance of the GP-MPC.
As shown in 6(D) (red cross), the model provided accurate
predictions for both variables, with deviations smaller than 3%.
To compare the performance of both models (see Figure 6A

and C), although both models reached a similar level of tracking,
the confidence interval of the partially observable model was
significantly larger than that of the full-state model. This
difference is likely due to the lack of direct observation of Mmin.
Furthermore, the control variables hp and Qair exhibited
consistent control behavior in both scenarios, ensuring smooth
system operation.
5.3.2. End-Point Optimization with GP-MPC. Since our

design aims to solve optimization in real-time, data acquisition is
required, where measurement noise is unavoidable. To assess
the impact of measurement noise, we evaluated the GP-MPC
performance under three conditions: 0% noise (no noise), 1%
noise, and 5% noise. For the full-state model, as can be seen from
Figure 7A−C, the actual state values of C1,tails generally align
closely with the GP prediction across all scenarios. This close
alignment is attributed to the accurate state value predictions,
which exhibit a consistent 95% confidence interval (see Figures
7D, and S3D,E in the Supporting Information). However, as the
noise level increases, while the optimization performance does

Table 2. Predictive Performance of GP Models Evaluated by Negative Log Predictive Density (NLPD)

variable full-state GP partially observable GP

experiment 1 2 3 average 1 2 3 average

hp −3.40 −3.93 −3.39 −3.57 −4.88 −4.64 −4.78 −4.77
Qtails −5.99 −5.99 −5.99 −5.99 −5.99 −5.99 −5.99 −5.99
ε1 −2.64 −2.41 −1.91 −2.32
ε2 −5.96 −5.97 −5.96 −5.96
ε3 −5.99 −5.99 −5.99 −5.99
ε4 −5.99 −5.99 −5.99 −5.99
ε5 −5.99 −5.99 −5.99 −5.99
Σε1 to 5 −4.12 −3.96 −4.01 −4.03
Mmin −4.72 −4.94 −4.70 −4.79 −5.44 −5.12 −4.85 −5.14
Mgangue 38.95 0.19 0.12 13.09 −1.43 −1.31 −1.05 −1.26

Table 3. Final Concentration of C1,tails (kg/m3) Achieved by
Different GP-MPC Strategies and Measurement Noise
Levelsa

model
trajectory
tracking end-point optimization

disturbance
scenario

0%
noise

1%
noise

5%
noise

(with 5%
measurement

noise)

full-state 0.840 0.620 0.595 0.579 0.592
partially
observable

0.896 0.922 0.924 0.921 0.925

aNote: 0%/1%/5% noise indicate the level of white noise added to
the measurement data.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.5c00660
Ind. Eng. Chem. Res. 2025, 64, 13307−13322

13315

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.5c00660/suppl_file/ie5c00660_si_001.pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.5c00660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 6. Closed-loop trajectory tracking performance of the proposed GP-MPC framework. (A) Full-state model: control performance using GP-
MPC under full observability. (B) Full-state predictions for all state variables. (C) Partially observable model. (D) GP-based predictions of the latent
(unmeasurable) state variables under partial observability. The shaded areas represent the 95% confidence intervals for GP predictions.
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not significantly degrade, a noticeably higher level of fluctuation
is observed, indicating the influence of measurement noise on
the consistency of control actions.
In the case of the partially observable model, Figure 8A−C

demonstrate that, due to the partially observable nature where
fewer measurements are available, the impact of noise in the
measurements is less pronounced. For instance, the final
predicted value of C1,tails for the 0% noise, 1% noise and 5%
noise scenarios are 0.922, 0.924, and 0.921 kg/m3, respectively,
which are almost identical. Although theMPC did not minimize

C1,tails to the same extent as the full-state model, this consistency
shows that the partially observablemodel has significantly higher
robustness, which is crucial for real-world operations. This
conclusion is further supported by the convergence of all
objective function terms to a relatively steady level in this model,
as seen in Figure S4A−C in the Supporting Information.
Moreover, as detailed in Figure 8C, all state variables, regardless
of their availability for online observation, exhibit strong
alignment with the GP predictions, indicating the model’s
capability to accurately capture system dynamics (Figure S4D,E

Figure 7. Closed-loop end-point optimization performance of the proposed GP-MPC framework using the fully observable GP model. (A) Without
measurement noise. (B) With 1% measurement noise. (C) With 5% measurement noise. (D) GP-based predictions of the state variables under full
observability. The shaded areas represent the 95% confidence intervals for GP predictions.
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in the Supporting Information). Furthermore, the optimization
problem for each 5 min time step took no longer than 30 s on
average in both cases, confirming the practical feasibility of
implementing our strategy in real-world processes.
5.3.3. Disturbance Scenario: Feed Flow Rate Disturbances.

To ensure its robustness and reliability in real-world
applications, it is also crucial to evaluate the controller’s
performance under disturbance conditions. As a case study,
we tested the GP-MPC’s ability to handle disturbances in the
feed flow rate (Qfeed), a common process variable that frequently

experiences fluctuations and can significantly impact the final
product quality.
In the disturbance scenario, feed flow rates at 90% and 110%

of the nominal value of Qfeed = 1.662 × 10−4 m3/s were tested
sequentially, as illustrated in Figure 9A. For the full-state model,
both the GP model’s predictions and the actual state values of
the objective variable exhibited slightly higher levels of
fluctuation compared to the undisturbed case. However, there
remained a strong alignment between the predicted and actual
values, indicating that even though the GPmodel was trained on

Figure 8. Closed-loop end-point optimization performance of the proposed GP-MPC framework using the partially observable GP model. (A)
Without measurement noise. (B) With 1% measurement noise. (C) With 5% measurement noise. (D) GP-based predictions of the state variables
under partial observability. The shaded areas represent the 95% confidence intervals for GP predictions.
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undisturbed data, it retains sufficient robustness to effectively
manage moderate disturbances.
For the full-state model, the final state achieved was C1,tails =

0.592 kg/m3, with both the GP predictions and the actual state

values of the objective variable exhibiting higher levels of
fluctuation compared to the undisturbed case. During
disturbances, the state values occasionally fell outside the
confidence interval (see Figure 9A). However, unlike the full-

Figure 9. Optimization performance of the full-state GP-MPC under feed flow disturbance and 5% measurement noise. (A) Closed-loop tracking
under step disturbances in the feed flow rate (Qfeed). (B) Decomposition of the objective function into its components: total cost, Δu penalty, control
effort (u) penalty, and predicted standard deviation (uncertainty) penalty. (C) GPmodel predictions of all state variables with shaded 95% confidence
intervals.
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state model, when the same disturbance test was conducted on
the partially observable model, which reached a final
optimization level of C1,tails ≈ 0.92 kg/m3 similar to the
undisturbed case, the larger confidence interval provided greater
tolerance to disturbances. As shown in Figure 10A, even when
disturbances occurred between time steps 17 and 22, the actual
state values of C1,tails remained within the confidence interval.
A similar trend was observed for the latent variables (see

Figure 10C), with almost all state values remaining within the CI
at all time steps. Furthermore, theMPC optimization process, as

detailed in Figure 10B, converged to values comparable to those
observed in the undisturbed case (Figure S4C in the Supporting
Information). This consistency demonstrates that the GP
model, even when trained on undisturbed data, retains sufficient
robustness to effectively manage moderate disturbances.

6. CONCLUSIONS
In this work, we developed and demonstrated the application of
a fully and partially observable Gaussian process-based model
predictive control (GP-MPC) framework for froth flotation,

Figure 10.Optimization performance of the partially observable GP-MPC under feed flow disturbance and 5% measurement noise. (A) Closed-loop
tracking under step disturbances in the feed flow rate (Qfeed). (B) Decomposition of the objective function into its components: total cost, Δu penalty,
control effort (u) penalty, and predicted standard deviation (uncertainty) penalty. (C) GP model predictions of all state variables with shaded 95%
confidence intervals.
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targeting the minimization of mineral tailings concentration
(C1,tails), as a proxy to maximize mineral recovery, under varying
operational conditions. By incorporating GP models, we were
able to account for system uncertainties and disturbances,
significantly enhancing the controller’s robustness compared to
traditional control strategies. Our GP-MPC framework,
particularly the partially observable model, demonstrated an
ability to handle noise and disturbances effectively, maintaining
accurate predictions of state variables even when some were
unmeasurable in real-time.
The results from both the full-state and partially observable

models confirmed the potential of our approach to providing
reliable control in dynamic environments, with the partially
observable GP-MPC offering superior robustness under noise
and disturbances. Additionally, including historical data through
a time window further improved the accuracy of predictions,
ensuring better control performance in real-world applications.
This study contributes to the broader application of data-

driven control strategies in industrial processes, specifically
addressing the challenges of partial observability and process
uncertainty. Our work highlights the advantages of integrating
stochastic process modeling into MPC frameworks, paving the
way for future improvements in the economic and operational
efficiency of froth flotation and other complex industrial
processes. Future research will focus on extending the model
to other complex, multivariable systems and exploring its
scalability in large industrial applications.
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