
Blockchain Developer Experience: A Multivocal
Literature Review

Pamella Soares1, Allysson Allex Araújo2, Giuseppe Destefanis3,
Rumyana Neykova3, Raphael Saraiva1, Jerffeson Souza1

1Graduate Program in Computer Science, State University of Ceará, Fortaleza, Brazil
2Science and Technology Center, Federal University of Cariri, Juazeiro do Norte, Brazil

3Department of Computer Science, Brunel University, London, United Kingdom

Abstract—The rise of smart contracts has expanded
blockchain’s capabilities, enabling the development of innovative
decentralized applications (dApps). However, this advancement
brings its own challenges, including the management of dis-
tributed architectures and immutable data. Addressing these
complexities requires a specialized approach to software engi-
neering, with blockchain-oriented practices emerging to support
development in this domain. Developer Experience (DEx) is
central to this effort, focusing on the usability, productivity, and
overall satisfaction of tools and frameworks from the engineers’
perspective. Despite its importance, research on Blockchain
Developer Experience (BcDEx) remains limited, with no system-
atic mapping of academic and industry efforts. To bridge this
gap, we conducted a Multivocal Literature Review analyzing
62 to understand the distribution of BcDEx sources, practical
implementations, and their impact. Our findings revealed that
academic focus on BcDEx is limited compared to the coverage
in gray literature, which primarily includes blogs (41.8%) and
corporate sources (21.8%). Particularly, development efficiency,
multi-network support, and usability are the most addressed
aspects in tools and frameworks. In addition, we found that
BcDEx is being shaped through five key perspectives: complex-
ity abstraction, adoption facilitation, productivity enhancement,
developer education, and BcDEx evaluation.

Index Terms—blockchain, smart contracts, dapps, developer
experience, multivocal literature review

I. INTRODUCTION

Blockchain technology emerged in 2008 with Bitcoin [1]
as a pioneer in electronic peer-to-peer currency transactions
without intermediary authorities that use a consensus proto-
col based on cryptographic challenges [2]. This technology
ensures consensus in decentralized networks and guaran-
tees transaction auditability, authenticity, availability, and in-
tegrity [3]. In particular, adopting smart contracts by Ethereum
[4] expanded the capabilities beyond financial transactions and
enabled programmable business logic executed as transactions
on the blockchain [5]. This component has enabled the dif-
fusion of Decentralized Applications (dApps), which operate
independently of a central entity, utilizing blockchain for both
storage and processing [6].

Blockchain development presents different challenges due to
its distributed nature and high operational costs [7], [8]. Un-
like traditional software, dApp engineering requires practices
tailored to immutable databases, peer-to-peer networks, and
novel security mechanisms [9]. In light of these particularities,
Blockchain-Oriented Software Engineering seeks to shape

directions for effective software development for blockchain,
serving as a bridge between conventional software engineering
and these particular technical constraints [10], [11].

Multiple development environments and a steep learning
curve characterize the blockchain development ecosystem.
Hence, there is a continual need for new approaches to enhance
Developer Experience (DEx), as improvements in developer
efficiency, security, and productivity can directly influence the
success of system implementations [12], [13]. According to
Fagerholm and Münch [14], DEx encompasses the experiences
related to all types of artifacts and activities that a developer
encounters in the software development. Thus, we can observe
a strong connection between DEx and the cooperative and
human aspects of software engineering.

Despite growing attention to DEx among SE scholars
and practitioners [12], [15], research specifically addressing
Blockchain Developer Experience (BcDEx) remains consid-
erably limited. In fact, there are no systematic mappings that
capture how academic and professional communities approach
aspects of BcDEx. This gap is relevant, as the inherent
complexity and rapid evolution of blockchain technologies
emphasize the need to understand and enhance developers’
interactions with these tools. Addressing this issue could con-
tribute to improving developer productivity and satisfaction,
directly impacting the quality, security, and adoption of dApps.

Based on the motivation previously discussed, this study
conducts a Multivocal Literature Review (MLR) [16] to an-
alyze the distribution of BcDEx literature sources, practical
implementations, and their impact on BcDEx. In particular,
MLR is considerably suited to this research, as it combines
insights from both academic and gray literature (such as
blogs, corporate publications, and technical documentation),
providing a broader and up-to-date perspective on BcDEx. To
reach our research objective, we define the following research
questions (RQs).

• RQ1) What is the distribution and nature of academic
and industry sources related to BcDEx? Rationale:
Analyze the distribution of publications between White
Literature (WL) and Gray Literature (GL) related to
BcDEx, identifying types of publications, venues, re-
search approaches, and trends over the years.

• RQ2) What categories of practical sources related
to BcDEx have been discussed in the literature?

ar
X

iv
:2

50
1.

11
43

1v
1 

 [
cs

.S
E

] 
 2

0 
Ja

n 
20

25



Rationale: Identify and categorize practical sources that
influence BcDEx, analyzing key features and capabilities.

• RQ3) In what ways have the sources discussed in
the literature been shaping the BcDEx in practice?
Rationale: Examine how the sources shape the BcDex in
practice, focusing on their effects and benefits.

Therefore, this research offers contributions to both SE
academia and industry. For academia, it bridges the gap
between industry practices and academic research by system-
atizing BcDEx insights from industry sources on blockchain
development tools, practices, and challenges. We also highlight
research opportunities, particularly in empirical validation
studies and the creation of robust methods for BcDEx as-
sessment. For industry practitioners, we provide a structured
categorization of current context of BcDEx, focusing on criti-
cal aspects to guide blockchain development teams in making
informed decisions.

II. METHODOLOGICAL PROCEDURES

We conducted our Multivocal Literature Review (MLR)
following the guidelines provided by Garousi et al. [16].
This method considers theoretical and practical development
aspects by including WL and GL. We use this approach as
it covers contemporary topics and allows us to understand
industry aspects, where we can often find up-to-date resources.
Figure 1 illustrates how our process was organized into five
stages. In the following, we describe each one of these stages.

Additional 
sources

14

49

13

361

300

15

752 sources

733 sources

removing
duplicates
-19 sources

Dataset

Inclusion Criteria

89 sources

snowballing
+1 source

90 sources

Exclusion Criteria

-644 
sources

Source Selection

1- Create data extraction 
form

2- Qualitative Coding

3 - All papers 
independently double 
checked

62 sources

Data Extraction
and Analysis

Quality
Assessment 
Checklists

62 sources

WL

GL

-28 
sources

Source Quality 
AssessmentSearch Process

Fig. 1. Multivocal Literature Review process.

1) Search Process: Initially, we conducted this step using
Scopus, IEEE Xplore, ACM Digital Library as digital libraries,
and Google Scholar as databases to find studies for WL.
These libraries were selected based on their coverage, search
capabilities, and access to full texts. To obtain sources from
GL, we conducted searches using Google, a web search
engine commonly used in GL reviews. We conducted pilot
searches using basic “blockchain” and “developer experience”
terms. We identified additional relevant keywords from these
preliminary searches and expanded our search terms. The final
search was performed in June 2024 using the following terms:

(“blockchain” OR “smart contract”) AND (“developer experience”
OR “developer usability” OR “software engineer experience” OR
“programmer experience” OR “DevX” OR “DEx”)

Regarding the WL, we carried out this search using the
title, abstract, and keywords of the studies in most databases,
except Google Scholar. We applied the search string to the

full text when the database did not support searches using
these fields. For WL, the initial search returned 437 studies.
As Garousi et al. [16] suggested, we used an ‘effort-bounded’
mechanism as the stopping criterion for GL, including only
the top N search engine results. In this regard, we selected
the top 300 search results. During the initial search process,
we find several relevant platforms for blockchain development.
However, some of the most widely used and recognized tools
in the developer community were not identified due to the
inherent limitations of automated searches.

Based on the authors’ practical experience in developing
dApps using established tools (e.g., Infura, and Alchemy), we
searched for alternative solutions in the market, prioritizing
those with greater adoption by the developer community
and relevance to BcDEx, resulting in the inclusion of 15
additional technical sources. These sources were subjected to
the same evaluation processes and quality criteria as the others.
Considering both literatures, the process yielded a total of 752
sources. After removing duplicates, we obtained 733 sources.

2) Source Selection: In the this step, we established In-
clusion Criteria (IC) and Exclusion Criteria (EC) to filter
and select relevant sources. The ICs are as follows: (IC1)
sources must be written in English; (IC2) sources must focus
on blockchain and mention or discuss DEx in this context;
(IC3) sources must evaluate DEx factors (or synonyms) in
blockchain solutions; and (IC4) sources must present solutions
that may impact DEx factors (or synonyms). Given the broad
scope of DEx, we considered sources that relate any DEx
dimension proposed by Fagerholm and Münch [14]: devel-
opment infrastructure (Cognition), feelings about the work
(Affect), and the value of the contribution itself (Conation). We
included sources referencing “developer experience” explicitly
and implicitly. In the latter case, we include developer-focused
solutions with sentences such as “query blockchain data
with two lines of code” or “simplify account abstraction
development”, which can impact aspects of DEx.

The ECs were defined as follows: (EC1) sources without
full-text availability; (EC2) secondary or tertiary papers (e.g.,
systematic literature reviews, surveys, etc.); (EC3) papers in
the form of editorials, proceedings, etc., as they do not provide
sufficient information; and (EC4) sources where the topic of
“developer experience” is only mentioned without any relation
to BcDEx or the solution presented. We applied the selection
criteria through a peer review process. Specifically, the first
author applied the ECs and ICs, while another coauthor
conducted a double-check afterward. In cases of conflict,
the researchers met virtually with other coauthors to reach
a consensus. After applying ICs and ECs, we selected 89
relevant sources. In addition, we employed the “snowballing”
technique on the set of papers from the WL. This method
involves following citations backward or forward from a set
of seed papers [16]. As a result of this process, only one paper
was selected from snowballing forward.

3) Source Quality Assessment: We also assessed sources
to determine their quality in WL and GL, applying a checklist
with four questions used by Martin and Runeson [17] and



Baysal et al. [18]. This process was similar to the selection
process, in which two authors evaluated each source based on
checklist questions. For this purpose, we used a checklist with
a 3-point scale (0 – No, 1 – Partly, 2 – Yes). We calculated the
average of both reviewer scores and finally included review
sources with a rating of 0.7 or higher from 0 to 1. Table
I shows the quality assessment checklists of WL and GL,
respectively. As a result, we rejected 28 sources, resulting in
62 for the final set of primary studies.

TABLE I
QUALITY ASSESSMENT CHECKLISTS

WL Quality Assessment Checklist
Q1 Are the authors’ intentions with the research made clear?

Q2 Does the study contain conclusion, implications for practice
and future research?

Q3 Does the study give a realistic and credible impression?
Q4 Are the challenges or solutions adequately defined in detail?
GL Quality Assessment Checklist
Q1 Does the source have a clearly aim?
Q2 Does the source have a clearly stated date?
Q3 Does the source give a realistic and credible impression?
Q4 Are the challenges or solutions adequately defined in detail?

4) Data Extraction and Analysis: We aimed to extract and
analyze the available data based on the RQs defined earlier.
The data extraction process was systematically designed to ad-
dress each RQ specifically. The data were then analyzed quan-
titatively using descriptive statistics and qualitatively through
coding [19]. To ensure reliability in the qualitative analysis,
the first author independently performed the coding process,
and subsequently, a second co-author performed validation
reviewing each code and its associated evidence from the
sources. When disagreements emerged, both authors discussed
until consensus or consulted a third co-author for mediation.
Additionally, two other co-authors reviewed the final list of
codes.

To answer RQ1, we conducted quantitative and qualita-
tive analyses. For GL, we extracted the source type (blog,
video, wiki, documentation, etc.) and publication platform.
For WL, we identified authors’ affiliation (academic, industry,
or collaboration), publication type (conference, journal, etc.),
and venue. For the WL’s qualitative analysis, we applied a
deductive open coding approach with predefined categories
based on Wieringa et al. [20], which defines six types of
research: solution proposal, validation research, evaluation
research, personal experience paper, philosophical paper, and
opinion paper. We conducted a descriptive quantitative analysis
of the distribution of primary sources, based on the collected
data regarding their type and nature.

To answer RQ2, we employed a combined deductive and
inductive coding approach. Our analysis consisted of two main
steps. First, using deductive coding, we classified each source
into one of the following groups:

• [1st Group] Tool, platform/service, language,
method/technique, model, process, or framework: We

extracted the main features presented by the source or
the functioning of proposed approaches.

• [2nd Group] Heuristic/guidelines, empirical results
only, or other: We extracted the main topics approached
or discussed by the source.

We divided them in these two groups to gain an understand-
ing of both the tangible functionalities and the general thematic
discussions that influence the BcDex. Then, following Garousi
et al. [16], we applied inductive coding for each group where
factors emerged from iterative “open” and “axial” coding.
This approach allowed us to extract specific data from each
category. For instance, in the first group, we classified features
according to their capabilities - such as “deploying a contract
with a single line of command”, which was categorized
under “Efficiency of Development”. Based on our analysis,
we identified 10 main capability categories: (i) Efficiency
of Development; (ii) User Interface (UI) and Usability; (iii)
Reporting and Analytics; (iv) Quality Assurance; (v) Multi-
Network Support; (vi) Performance and Scalability; (vii) Pri-
vacy and Security; (viii) Specification and Documentation; (ix)
Asset Management; and (x) Storage.

We classified the sources from the second group from a
broader perspective considering how the content and topics
were addressed. For Heuristics/Guidelines, we noticed some
blogs compared Web3 tools or Blockchain platforms, for
example. Thus, we classified it as a “Tool Comparison”. In
this context, we identified that the sources were usually related
to presenting best practices, new protocols and blockchains,
emerging trends and new features, tool comparisons, empirical
results or surveys, and personal experiences.

Regarding RQ3, we employed an inductive open coding
approach to extract aspects that demonstrate how the sources
influence BcDEx, including (i) approaches to abstract com-
plexity and enhance usability, (ii) strategies for facilitating
adoption, (iii) impacts on developer productivity and workflow,
(iv) educational and support initiatives, and (v) empirical
evaluations of BcDEx. The complete mapping between sources
and its categorization is available in our repository [21].

III. RESULTS

A. RQ1) What is the distribution and nature of academic and
industry sources related to BcDEx?

Figure 2 presents the distribution of selected primary
sources considering publication type for WL and source type
for GL and their respective publication years. As we can see,
the number of WL studies (7) is considerably smaller than
the GL sources (55). This finding reveals a gap in academic
research explicitly focusing on BcDEx studies. Only one study
was published yearly, except in 2023, with two publications.
On the other hand, GL shows progress in discussions about
BcDEx, which is driven by industry efforts to enhance re-
sources for advancing blockchain solutions. Similar to WL,
GL’s results also increased in publications in 2023.

As for the publication type and venues in WL, seven
studies were published in the following conferences: IEEE



1
2
1

4

1
1
1

2
1

2
1
1
1

1

2
1
1

1

1

Conference Book

Grey Literature (GL)

White Literature (WL)

11

1
1

1
2

11

2

Fig. 2. Distribution of WL and GL type sources over the years.

International Conference on Data Mining Workshops [WL01],
International Conference on Evaluation and Assessment in
Software Engineering [WL02], Formal Methods in Computer-
Aided Design Conference [WL03], Workshop in Blockchain:
Theory, Technologies and Applications [WL07], Interna-
tional Conference on Blockchain Computing and Applications
[WL04], and International Conference on Software Engineer-
ing [WL06]. Springer published the book in the “Optimization
and Its Applications” series [WL05]. Regarding the authors’
affiliations in WL, we found that authors were predominantly
from academia (4 studies), with only one industry-authored
study and one industry-academia collaboration.

In contrast, the GL literature is predominantly represented
by blog articles (41.8%), followed by websites (21.8%), Q/A
sites, and documentation (7.3%) each. Other sources (videos,
white papers, presentations, reports, release notes, and thesis)
each comprise 3.6%. We could not identify the publication
date for 12 sources, primarily websites related to blockchain
products. Approximately 52.63% of the sources are published
by the enterprises themselves, offering relevant guidance for
developers. Finally, regarding the results of research types in
WL literature, we found that three studies [WL01, WL05,
WL06] were classified as ‘Solution Proposal’, which typically
involve solution techniques without a “full-blown validation”.
In addition, the other four studies [WL02, WL03, WL04,
WL07] were categorized as ‘Validation Research’ as they
utilize a methodologically sound set of methods such as
experiments, simulation, prototyping, mathematical analysis,
and mathematical proof of properties. However, we observed
limited empirical evaluations in WL and GL, with minimal
systematic research exploring DEx and the practical impact
of blockchain development tools and techniques in real-world
contexts.

Answer to RQ1: Our findings show that the BcDEx knowledge
ecosystem is predominantly driven by industry sources within
GL, with blog articles (41.8%) and company websites (21.8%)
offering practical guidance to developers. In contrast, we iden-
tified only seven studies in the WL, mostly classified as Solution
Proposals and Validation Research, highlighting a research gap
concerning empirical evaluations.

B. RQ2) What categories of practical sources related to
BcDEx have been discussed in the literature?

For this analysis, we identified and categorized practical
sources influencing BcDEx, examining their key features and
capabilities. Table II presents the findings of the sources and
their respective categories, which are discussed in detail below.

TABLE II
MLR FINAL SOURCE SET.

[2nd Group]
Discussed topics

[1st Group]
Main features

L
ite

ra
tu

re
Ty

pe

R
ef

er
en

ce

Ye
ar

– E
ffi

ci
en

cy
of

D
ev

el
op

m
en

t

U
Ia

nd
U

sa
bi

lit
y

R
ep

or
tin

g
an

d
A

na
ly

tic
s

Q
ua

lit
y

A
ss

ur
an

ce

M
ul

ti-
N

et
w

or
k

Su
pp

or
t

Pe
rf

or
m

an
ce

an
d

Sc
al

ab
ili

ty

Pr
iv

ac
y

an
d

Se
cu

ri
ty

Sp
ec

.a
nd

D
oc

um
en

ta
tio

n

A
ss

et
M

an
ag

em
en

t

St
or

ag
e

WL01 [22] 2018 1 1 1
WL02 [23] 2020 1
WL03 [24] 2021 1 1
WL04 [25] 2023 1 1 1 1
WL05 [26] 2022 1 1 1
WL06 [27] 2024 1 1
WL07 [28] 2024 1
GL01 [29] 2022 Empirical results or surveys
GL02 [30] 2018 1 1
GL03 [31] 2023 1
GL04 [32] 2023 1 1 1
GL05 [33] 2019 1 1 1 1
GL06 [34] 2023 1 1 1 1
GL07 [35] n.d. New features and trends
GL08 [36] 2023 Tool comparison
GL09 [37] 2019 1
GL10 [38] n.d. 1 1 1 1
GL11 [39] 2023 1 1
GL12 [40] 2023 1 1 1
GL13 [41] 2019 1 1 1
GL14 [42] 2018 Personal experiences
GL15 [43] 2022 1 1 1 1 1
GL16 [44] 2023 New protocols and blockchains
GL17 [45] 2022 Tool comparison
GL18 [46] 2023 1 1 1
GL19 [47] n.d. 1 1 1 1
GL20 [48] 2022 1
GL21 [49] n.d. 1 1 1
GL22 [50] 2019 1
GL23 [51] 2024 1 1 1 1
GL24 [52] 2019 Best practices
GL25 [53] n.d. 1 1 1 1
GL26 [54] n.d. 1 1 1 1
GL27 [55] 2020 1 1
GL28 [56] n.d. 1 1
GL29 [57] 2023 Tool comparison
GL30 [58] n.d. 1 1
GL31 [59] 2024
GL32 [60] 2024 1 1 1 1
GL33 [61] 2021 New protocols and blockchains
GL34 [62] 2023 1
GL35 [63] 2023 Tool comparison
GL36 [64] 2019 1
GL37 [65] 2022 Tool comparison
GL38 [66] 2018 Personal experiences
GL39 [67] 2023 1
GL40 [68] 2023 Tool comparison
GL41 [69] 2019 1 1 1
GL42 [70] 2023 Resource repository
GL43 [71] 2023 1 1 1
GL44 [72] 2021 1 1 1
GL45 [73] 2023 New features and trends
GL46 [74] 2021 1
GL47 [75] 2023 Empirical results or surveys
GL48 [76] n.d. 1 1 1 1
GL49 [77] n.d. 1 1 1 1
GL50 [78] 2024 1 1 1
GL51 [79] 2018 1 1 1 1
GL52 [80] 2023 1 1
GL53 [81] n.d. 1 1 1 1 1
GL54 [82] n.d. 1 1 1 1 1 1 1
GL55 [83] n.d. 1 1 1 1 1 1

1) Tool, platform/service, language, method/technique,
model, process, or framework: In this analysis, we identified
features impacting efficiency of development, including easy
deployment, speed, flexibility, and modularization. Some plat-
forms have proposed easy deployment with minimal command
inputs [GL09, GL28, GL54], offering “easy-to-use” APIs



Efficiency of Development

Easy Deployment- Minimal command inputs
- "Easy-to-use" APIs
- Token integration and wallet setup

Speed of Development

Flexibility

Modularization 
and code reuse

User Interface (UI) 
and Usability

Multi-Chain Support

Tool, platform/service, 
language, method/technique, 
model, process, or framework

Quality Assurance

- Debbuging: Breakpoints, step control, call stacks, watch windows
- Real-time diagnostics
- Compiler feedback and code formatting
- Static analysis for security
- Gas profiling
- Chaincode debugging (Fabric)
- Strongly typed APIs

Performance and Scalability
- "Node as a service" and "supernodes"
- Rollup blockchains and Layer 2 solutions
- Fast queries through caching and indexing
- Real-time streaming and serverless edge functions
- Transaction speed and gas cost management

Reporting and Analytics
- Alerts and push notifications
- Observability stacks
- Real-time data APIs
- Asset search and transaction fee reporting

Specification and Documentation
- Native abstraction languages
- DSL documentation
- Blueprints for DLT selection
- Documentation generation from code comments

Asset management
- Support for fungible and non-fungible tokens
- APIs for token-based dApps
- Cross-chain asset transfers
- Datatokens for data access

Privacy and Security
- Static auditing
- Secure execution
- Data encryption
- Access control

Storage- Decentralized storage solutions (IPFS)
- EGGS System

- Reduce manual work
- Simulation API
- Hot reloading

- Familiar languages
- Declarative language
- Customizable properties

- "Data lego" and "lego bricks"
- Templates for dApp development
- Download of popular smart contracts

IDE integration

Intuitive UIs

New languages for better ergonomics

- LIGO WebIDE
- VSCode solutions
- Debugging chaincode interfaces

- Designing node details
- Exploring blockchain data

- Sway (Fuel blockchain)
- Aiken (Cardano)

- Unified interface for multiple blockchains
- Interchain Token Service (ITS)
- Polkadot parachains and Cosmos SDK-based blockchains
- Ethereum Layer 2 solutions

Fig. 3. Overview of sources related to Tool, platform/service, language, method/technique, model, process, or frameworks.

[GL48, GL25] for blockchain development, with features such
as token integration and wallet setup [GL54, GL55].

Platforms such as Azure cover the entire development
cycle [GL13, GL27, GL41, GL49] with encapsulated tools
[WL05]. [GL52] emphasizes the importance of on-premises
networks in providing a sandbox environment before mainnet
deployment. Blockchain as a service also simplifies network
deployment with robust cloud tools. With simple push-buttons,
key management, node backups, log streaming, and single
sign-on to any blockchain-based business applications can be
performed in the cloud and region of the user’s choice [GL53].

These tools enhance speed of development and “save time”
by reducing manual work [GL15, GL53]. Using a simulation
API, for example, allows users to visualize transaction results
and submit them more confidently [GL15, GL41]. Hot reload-
ing is another feature that automatically reloads the source
code of a web app and the blockchain when changes are
made without setting up multiple steps before compiling the
smart contract [GL28, GL36]. Furthermore, these tools can
help developers of all experience levels and promote proper
integration between Web2 and Web3 components [GL52].

In addition to APIs, third-party libraries, SDKs, or services
are essential resources to abstract the complexities of using
blockchain platforms and integrate existing systems [WL04,
GL36, GL39, GL25, GL28]. Moreover, new and challenging
concepts, such as Parachains in Polkadot, can be simplified
through SDKs. [WL04] includes handlers for multiple pallets
responsible for Cross-Consensus Message Format (XCM),
Asset, and Horizontal Relay-routed Message Passing (HRMP)
calls using customized parameters. These parameters include
the source and destination Parachains, the token, the amount
being transferred, and the recipient’s address. Both Polka-
dot and Cosmos ecosystems present development challenges.
However, the community enables solutions to provide seam-
less communication with other chains, apps with a single
deployment and features that automatically create a web app to
interact with the blockchain, including CosmJS [GL18, GL28].

Platforms’ increasingly common automation processes often
influence the ease of deployment and speed of development.
For instance, [WL06] clone source code, orchestrate verifica-

tion, and serve source code over a REST API. [GL15] provides
‘Web3 Actions’ to automate workflows and respond to on-
chain and off-chain events in less than a second.

Solutions have also been focused on providing flexibility to
support better developers transitioning from Web2 to Web3. In
this regard, platforms have made efforts to allow developers
to “build with your usual dev tools” [GL23], develop custom
extensions in familiar languages (such as JavaScript, Go, Rust,
or C), and code workflows to interact with smart contracts
using declarative language [GL26], for example. Furthermore,
customizing properties (consensus mechanisms, blockchain
type, root configurations) enables more flexibility in devel-
oping dApps. This feature makes it easier for developers to
onboard the blockchain domain, as they can build dApps using
their preferred stack. [GL04] provides a simple and extensible
way to modify existing data models and add new ones with
minimal changes to the source code required by the developer.

Another type of resource platform present is modularization
and code reuse contributing to development efficiency. The
Ocean protocol [WL05] serves as “data lego” to simplify de-
velopment through “composability” and data tokens to connect
data assets with Decentralized Finance (DeFi) tools. [GL27]
also introduces the concept of “lego bricks”, which provide
reusable code snippets for easier development. [GL52] offers
a set of templates to use as a starting point for dApp develop-
ment. In addition, [GL22] allows developers to discover and
download popular smart contracts from OpenZeppelin, one of
the developers’ most widely used libraries. In this sense, its
reputation and audited smart contracts can influence the DEx.
In terms of APIs, we also found modular and composable
APIs [GL32] and API infrastructure that allows developers
to leverage pre-built modules [GL44]. Moreover, [WL01]
introduces the concept of “design pattern as a service”. This
solution provides data management services, smart contract
design services, and auxiliary services based on design patterns
to better leverage the unique properties of blockchain and help
developers save time using modular and pre-built services.

Regarding User Interface (UI) and usability, the results
mainly highlight the integration of tools with Integrated Devel-
opment Environments (IDEs). LIGO WebIDE [GL30] facili-



tates the creation of LIGO projects and supports writing and
testing smart contracts in CameLIGO and JsLIGO with syntax
highlighting. Visual Studio Code (VSCode) has been widely
used with solutions such as [GL13], providing a UI that allows
developers to interact with their contracts within the IDE.
Meanwhile, [GL10] offers a plugin with a powerful, intuitive
interface for debugging chain codes without requiring complex
setup procedures. Waves IDE [GL27] generates interfaces for
smart contracts and enables running transfer and exchange
transactions or simply writing data to the blockchain.

Using graphical interfaces, [GL20] allows developers to
design node details, auto-populate the query arguments input
box based on the provided smart contract query, and edit
smart contracts using a formatted editor instead of a plain text
box. With [GL41], EOS developers can effortlessly explore
blocks within their development nodes and inspect smart
contract account details directly on the blockchain. Uploading
smart contracts is streamlined with a user-friendly drag-and-
drop interface. Moreover, [GL11] provides visual feedback
similar to IntelliSense and presents code maps and visual
diagrams for smart contracts. [GL34] presents a UI that shows
how to interact with an EVM-compatible blockchain and its
smart contracts. This solution has addressed challenges by
combining the server-rendering paradigm introduced by React
and Next.js with the client-side nature of user-facing dApps.

Other solutions are more specific, such as white-label RPC
services [GL06], an in-browser request sandbox [GL54], a
repository that serves as a universal UI for experimenting
with cross-chain transactions [WL04], and a no-code portal for
token management [GL19]. In addition, platforms have intro-
duced new languages based on Rust to address ergonomics
challenges. For example, Sway [GL21] (Fuel blockchain)
uses a domain-specific language (DSL), and Aiken [GL43]
(Cardano) offers server capabilities with editor integrations.

The platforms also offer multi-chain support as key fea-
tures to attract developers from different ecosystems [GL04,
GL12, GL19, GL44, GL54, GL06, GL49]. [GL19] introduces
the ‘Interchain Token Service’ (ITS), designed to scale token
operations across multiple chains, enhancing interoperability.
This service aims to support new and existing tokens, pre-
serving their fungibility and native functionalities on EVM-
compatible chains. [GL55] facilitates cross-chain token trans-
fers through accessible APIs, including DeFi services.

Furthermore, [WL04] offers direct operations to query and
manage assets on parachains on Polkadot, with an architecture
that facilitates communication between parachains and other
blockchains. This solution includes a map of XCM pallets
(modules that simplify cross-chain communication) provided
by each compatible para chain, allowing users to query these
data as needed. Cosmos also faces the challenge of bridging
the gap between its internal ecosystem and other Web3 ecosys-
tems. [GL18] introduce EVM extensions that enable seamless
communication with other chains through a single deployment.
In [GL28], developers can launch a simple Cosmos SDK-
based faster, providing interoperability by supporting the Inter-
Blockchain Communication (IBC) protocol.

Scroll [GL23], a Layer 2 network described as “built by
Ethereum devs for Ethereum devs”, provides interoperability
bridging ETH to different networks. It aims to deliver an
accessible scaling solution while preserving Ethereum’s core
features and adding new capabilities, such as zero knowledge.
[GL51] presents the integration of Monax’s Bos deployment
tool into Burrow Deploy to support Ethereum smart con-
tract systems, making the deployment and management of
Ethereum smart contracts in permissioned environments pos-
sible. Moreover, [GL53] presents solutions for permissioned
ecosystems by supporting private blockchains and consortium
architectures through a consortia management platform.

Related to the category of quality assurance, debugging
was one of the most frequently discussed themes [GL10,
GL13, GL15, GL30, GL43, GL46, GL10]. [GL13] integrated
Truffle Debugger into VSCode, providing debugging features
(breakpoints, step control, call stacks, watch windows, and
Intellisense pop-ups). [GL30] provides a VSCode extension
that integrates with the Debbug Adapter Protocol (DAP) with
an intuitive UI. In addition, some solutions offer real-time
diagnostics with parser and typer error recovery [GL30], useful
compiler feedback and automatic code formatting [GL43], bi-
directional type checker with precise error message [GL05],
and static analysis to detect security issues [GL11]. [WL06]
provides a standalone library for verifying code accuracy using
a Rust language source-to-bytecode verification routine. On
the other hand, tools such as [GL10] designed features for
debugging chain code in networks using Hyperledger Fabric.

We also found solutions that present a ’Gas Profiler’ to
develop gas-optimized smart contracts [GL15]. [GL32] pro-
poses strongly typed APIs, type inference, and static valida-
tion. Finally, [WL02] presents two main features related to
analyzing Bitcoin APIs: i) applications for violations of API
heuristics and guidelines and ii) identifying the best practices
for addressing problematic API issues.

Regarding performance and scalability, solutions offer
‘node as a service’ and ‘supernodes’ for read-heavy workloads
[GL15, GL48, GL54, GL53], along with optimized bundle
sizes and enhanced task execution [GL32]. Platforms provide
rollup blockchains [GL06] and Layer 2 solutions with EVM
compatibility [GL23], including parallel transaction process-
ing through UTXO model [GL21]. Related to fast queries,
[GL44] introduces available API nodes that cache and index
blockchain data, achieving results 10 times faster, along with
APIs-core that offer extremely low throughput. Meanwhile,
[GL06] enables real-time data streaming and serverless edge
functions for blockchain data to improve performance, and
[GL54] uses subgraphs through custom GraphQL APIs. More-
over, this platform aims to enhance performance by improving
transaction speed and managing gas costs with a ‘Gas Manager
API’, sending batch transactions using a reliable ‘Bundler
API’, and completing transaction history in one call with
‘Transfer API’ [GL49] allows developers to mint tokens and
perform on-chain actions with automatic nonce management,
transaction queuing, and gas-optimized retries, which promises
to autoscale dApps. [WL01] introduces a hybrid on-chain



and off-chain service for storing critical and immutable data
on-chain while keeping other data off-chain to enhance data
reading efficiency. This service lets users define the data
schema and specify which attributes are stored on-chain.

In the reporting and analytics, we found features re-
lated to alerts and push notifications, such as instant on-
chain alerts [GL06] and fast push notifications through
webhooks [GL54]. Additionally, solutions offer observability
stacks with reporting, analytics, and monitoring capabilities
[GL15, GL54]. The solutions enhance real-time data capa-
bilities with APIs that stream live general on-chain data to
backends and offer self-serve query functionalities to support
these functions. These data are related to blocks, transactions,
logs, raw and decoded data, transaction labeling, real-time
crypto prices [GL55], assets, owners, metadata [GL25], and
transaction fee reports [GL26]. These queries are usually
enabled by services that manage smart contract events. For
instance, [GL51] introduces an ETL/execution event service,
and [GL54] uses custom webhooks for custom events.

Regarding specification and documentation, [GL02] aims
to enhance the DEx by creating a native abstraction language
that allows developers to represent their specifications as a
programming language to interact with blockchains. In turn,
[GL26] provides documentation for domain-specific languages
(DSL) using a native syntax proposed by the solution, enabling
developers to define which blockchains and networks to use,
what data to retrieve, and which transactions to broadcast, as
well as the dependencies between resources. [GL04] proposes
a framework for developers to define a blueprint for selecting
a new DLT for InteroperaChain. This blueprint includes a
decision tree to guide developers on data storage capabilities
and the availability of a client library written in a language
supported by the solution. Finally, [GL43] allows documenta-
tion to be generated directly from code comments.

Several features related to asset management support
different token types, from fungible to non-fungible tokens
[GL05, GL25, GL54, GL55, GL53]. Some provide APIs to
enable transfers, real-time pricing, and custom ecosystems. For
example, [GL53] offers a sandbox to simplify the development
of Central Bank Digital Currencies (CBDCs) and provides
full-stack tools for designing, building, and testing digital
currencies. [GL18] and [GL19] allow asset transfers across
different chains, ensuring interoperability. [WL04] enables
the mapping of assets compatible with each Parachain on
Polkadot. On the other hand, [WL05] serves as an on-ramp
through data tokens (fungible ERC20 tokens to access specific
data services in crypto ecosystems).

In the context of privacy and security, features aim to
protect data integrity, manage permissions, and ensure secure
transactions. The authorities and embedded permission service
[WL01] provide access control, while data encryption and hash
integrity protect sensitive information through encryption and
integrity checking. Additionally, the dynamic binding service
supports initially unknown participant addresses. Compute-
to-Data [WL05] provides a way to share or monetize one’s
data while preserving privacy. Some platforms also provide

mechanisms for the secure execution of smart contracts.
For example, off-chain computations that perform checks on
smart contracts [GL12] ensure the correctness of computations
without exposing critical data on-chain. In addition, [GL19]
provides battle-tested proof-of-stake verification.

In terms of development security, [WL27] brings the con-
cept of static auditing to smart contracts. Additionally, solu-
tions aimed at projects with Ethereum-level security [GL25]
and platforms like [GL26] simplify using secure multi-
signature flows and secure enclaves in the cloud, abstracting
complexity through runbooks. Furthermore, The built-in key
signing daemon [GL51] helps manage secure key signing oper-
ations, and account contracts [GL54] and wallet APIs [GL55]
provide secure frameworks for managing Web3 assets and
wallets. Digital asset platforms [GL49] provide robust tools
for managing and securing assets, while user authentication
and integration services [GL53] facilitate connecting to Web3.

In terms of storage, [GL03] presents the External Global
Grouped Storage (EGGS) system, which enables the platform
to manage large volumes of data by offering developers easy
access to smart contracts. To draw an analogy with the web2
environment, developers would open a file and write to it, and
their application would seamlessly access the storage. [GL48,
GL06] provide Interplanetary File System (IPFS) gateways
and pinning services for decentralized storage solutions.

2) Heuristic/guidelines, empirical results only, or other:
Figure 5 shows the categories addressed within sources. Most
sources in this category presented comparison of Web3
tools or platforms. [GL17] compared and presented practices
using dependencies, logging, tests, and deployment between
Foundry and Hardhat. Similarly, [GL29] compared Truffle and
Hardhat on the Celo Blockchain, emphasizing core features,
use cases, key differences, and factors to consider. Finally,
[GL35] compared Hardhat, Truffle, and Foundry, emphasizing
distinctive characteristics, pros, cons, and the best fit for each,
as well as key commands and practical scenarios. Mean-
while, [GL40] thoroughly compared the Ethereum, Solana,
Aptos, and Radix blockchains. [GL31] provided information
on Polkadot and, at the end, offered a brief comparison of
parachains and smart contracts, considering aspects such as
speed of development, ease of deployment, complexity of
logic, maintenance overhead, level of customization, strict
resource control, native chain features, and scalability. On a
more specific field, [GL08] conducted an in-depth analysis of
DEx in ZK Rollups, such as StarkNet, zkSync Era, Polygon
zkEVM, and Scroll, which are different and detailed aspects
of the development lifecycle.

Q/A forums have also discussed the DEx of new protocols
and blockchains. In [GL16], the thread titled “Developer
experience must be our #1 priority” in the Polkadot forum
highlights the major pain points development teams face
in Polkadot, acknowledging that “parachain development is
rough”. According to the developers, specific technologies
used in parachains (such as Substrate) are highly complex and
carry substantial technical debt. Moreover, parachain teams
feel unsupported and unheard by the creators. Financial issues



Comparison of Web3 
Tools/Platforms

Hardhat, Truffle and Foundry

- Dependencies
- Logging
- Tests
- Deployment
- Use cases

Blockchains

ZK Rollups

New Protocols
and Blockchains

Personal 
Experiences

and Concepts

Heuristic/guidelines, 
empirical results only, 

or other

- Ethereum x Solana x Aptos x Radix

Polkadot Pain Points

Plutus Smart Contracts

- Complex parachain develop.
- Technical debt
- Lack of support
- Treasury funding issues

- Built on Haskell
- Reliability/Security
- Big integers support

- Limited IDEs
- Insufficient tutorials
- Poor error handling

- StarkNet x zkSync Era x Polygon zkEVM x Scroll

Development Issues

- Developer involvement
- Clear documentation
- Educational resources
- Quality hackathons

Community Engagement Tips

- Debugging limitations
- Testing tools gaps
- Gas estimation issues

Solidity Survey 2022

Additional 
Resources

- 75% saw improved DEx
- Debugging issues
- Stack errors
- Bytecode limitations

Solidity v0.8.4 Updates

Development Trends

- Custom errors
- Standard error lists

- Rapid tool releases
- Managed blockchain services
- Intuitive tools
- Open-source promotion
- DeFi programmability

- Audited contracts
- Static analysis
- Formal verification
- Unit testing

Smart Contract Best Practices

Near Protocol Repository with Tools

Smart Contract Challenge
Empirical Results
and Surveys

New Features
and Trends

Fig. 4. Overview of sources related to heuristic/guidelines, empirical results only, or other.

were also discussed, including uncertainty around Treasury
funding. In turn, developers discuss the DEx of Plutus smart
contracts in [GL33]. They discuss the language’s benefits, such
as its reliability and security due to being built in the Haskell
language. It supports big integers, simplifies arithmetic, and
leverages existing Haskell tools and libraries. Optimizing
blockchain storage space was also emphasized.

[GL14] and [GL38] are presentations by developers dis-
cussing personal experiences and general concepts in
blockchain. [GL38] identifies issues such as needing more
IDEs, better education/tutorials, community error support, and
improved error message handling in smart contract develop-
ment platforms. In turn, [GL14] highlights personal expe-
riences in enterprise blockchain development. [GL37] host
suggests different tips for engaging the Web3 community, such
as involving developers to make technologies successful, hav-
ing clear documentation, support, and educational resources,
balancing technical complexity not to alienate beginners, and
providing high-quality hackathons.

Considering sources that present empirical results or sur-
veys, [GL01] presented findings regarding challenges in DExs
with smart contracts. At the time of the study, developers
participating in the experiments reported that debugging and
testing were hindered by the lack of practical tools to provide
technical assistance at the source code level, as well as the
absence of gas usage estimation and efficient tools for unit
and integration testing, in addition to the inadequate interface
for viewing state variables. A survey conducted by the Solidity
community [GL47] in 2022 also supports the aforementioned
issues. According to the survey, 0.9% of those who felt
that the Solidity experience had worsened reported frequent
debugging issues, followed by deep stack errors and bytecode
size limitations. However, most developers surveyed (+75%)
believe the Solidity DEx has improved over the past year.

Regarding new features and trends, to address error
handling issues, Solidity v0.8.4 introduced the ability to define
custom errors, as shown by [GL45]. This source explains
that OpenZeppelin proposed a list of standard errors for
common token types (ERC-20, ERC-721, and ERC-1155). It
also presents results on using custom errors to reduce costs.
[GL07] briefly presented five trends that impact blockchain
DEx: i) the speed of release of development tools; ii) managed

blockchain services; iii) evolving DEx with intuitive tools; iv)
corporations promoting open-source software; and v) increas-
ing programmability across industries, led by DeFi.

Other sources were more specific, such as [GL24], which
provided a list of best practices for smart contract develop-
ment. These practices include using audited contracts, priori-
tizing DEx, employing static analysis tools, considering formal
verification, writing unit tests, and more. Finally, [GL42] made
available an extensive repository of resources with tools for
improving DEx using the Near Protocol.

Comparison of Web3 
tools or blockchains

New features and trends

Personal experiences

Resource repository

[GL08, GL17, GL29, GL31, 
GL35, GL40]

[GL07, GL45]

[GL14, GL37, GL38]

[GL42]

New protocols and blockchains

[GL16, GL33] 35,3%

Best practices

[GL24]
5,9%

Empirical results or surveys

[GL01, GL47]
11,8%

11,8%

11,8%

5,9%

17,6%
and general concepts

Fig. 5. Main categories regarding the heuristic/guidelines, empirical results
only, or other sources.

Answer to RQ2: Our analysis shows that 74.19% of sources (46)
fall into the first group, covering tools, platforms/services, lan-
guages, methods/techniques, models, processes, or frameworks.
The remaining 25.81% (16 sources) comprise the second group,
which includes resources such as guidelines, empirical findings,
and other insights. Within the first group, the most frequently
mentioned aspects were development efficiency, multi-network
support, and UI/usability. On the other hand, the most discussed
topics in the second group included comparisons of Web3 tools,
personal experiences, general concepts, and the complexities of
protocols and blockchains.

C. RQ3) In what ways have the sources discussed in the
literature been shaping the BcDEx in practice?

In this section, we discuss how the sources have been
shaping the BcDEx, focusing on their effects and benefits.

1) Simplifying complexity through abstraction and enhanc-
ing usability: The abstraction of complexity and heterogeneity
of blockchain connectors for developers has been one of the



primary focuses of blockchain solutions identified [GL04].
Solutions such as [GL02], for instance, abstract the need for
protocol design and allow developers to interact with arbitrary
blockchains through simple programmatic syntax. The pro-
posed platforms enable developers to avoid infrastructure setup
and maintenance [GL15, GL10], allowing them to concentrate
on key business logic while abstracting trivial details [GL09].
Features such as interfaces [GL20], map interaction [GL05],
and transaction simulation [GL15] can make the development
process easier and more efficient and provide developers with
an “invisible blockchain experience” [GL39].

2) Facilitating the adoption of blockchain technologies:
Such solutions can ensure the frictionless adoption of new
technologies and reduce the entry barriers for developers in
blockchain technology [WL03, GL28]. This issue is essential
for promoting its use and enabling a smooth transition from
Web2 to Web3 technologies [GL03, GL08, GL44, GL52].
Most of the presented solutions aim to provide a user-friendly
experience for developers of all skill levels, making it easier
for those with little Web3 experience to get started [GL10].
For example, solution [WL07] promises that technical and
non-technical developers can create contracts more efficiently.
Another relevant point is that platforms have introduced fea-
tures to support different ecosystems and allow developers to
work with specific Web2 stacks, such as [GL11], tailored for
C# developers. Similarly, solutions such as [GL22] empower
Ethereum developers, both public and private networks.

3) Impact on developer productivity: Reducing program-
mer overhead [GL05] and saving development time and op-
erational costs [WL01, WL04, GL43, GL25] can positively
impact developer productivity, as expressed in [WL06, GL08,
GL10, GL22]. Several solutions offer multiple services on a
single platform, such as [WL05, GL15, GL19, GL23, GL25,
GL48, GL54, GL55, GL06, GL53, GL49]. These resources
enable developers to access services for most phases of decen-
tralized application development, from libraries that abstract
the complexity of blockchain connectivity and functionalities
to infrastructures of varying sizes, including the complete
setup of nodes and networks. These tools also increase
development speed, allowing teams to work together more
efficiently without relying on isolated tools, thus improving
project flow and overall productivity.

4) Education, training, and support for blockchain devel-
opers: This support is a key factor in the BcDEx. Resources
such as guidelines and heuristics help developers familiarize
themselves with key blockchain concepts [WL02, GL01].
These educational resources can provide insights into how
to write efficient and maintainable code [GL24, GL27]. Plat-
forms such as [GL42] contribute by making available a wide
range of resources to support their projects, and programs
such as hackathons and boot camps contribute to hands-on
training [GL52]. Furthermore, community engagement and
collaboration are equally important. Resources and guidelines
based on presenting and sharing real-world experiences allow
developers to learn from practical challenges faced by others
[GL14, GL16, GL33, GL38, GL47]. Moreover, developers

benefit from feedback loops within the blockchain community,
which can be instrumental in selecting the best tools and
frameworks for specific projects through knowledge sharing
and updates on new features [GL17, GL29, GL35, GL40].

5) BcDEx evaluation: In the Polkadot ecosystem, re-
searchers evaluated DEx by comparing how experienced de-
velopers performed using different interfaces: the PolkadotJS
XCM UI versus the ParaSpell XCM SDK [WL04]. The results
demonstrated improved usability aspects with the ParaSpell
SDK, as developers completed tasks faster and with fewer
errors. In the Polkadot Q&A forums [GL16], the authors
emphasized the importance of developer engagement and
deployment of new applications as indicators of success, as
previous efforts effectively attract and support new developers.

[GL01] assessed the challenges faced by smart contract
developers through a task analysis. This approach provided
reports on how developers interact with leading smart contract
development tools. Finally, [WL06] uses the Sui Blockchain
and Move Language approach to verify and display smart
contract source code. The study aims to assess how often
developers consult source code, and plans to incorporate
quality indicators to highlight software quality signals.

Answer to RQ3: We identified five key perspectives through
which sources in the literature have been shaping BcDEx in prac-
tice: abstraction for usability, blockchain adoption facilitation,
productivity impact, developer education and support, and BcDEx
evaluation. Together, these aspects enhance BcDEx by lowering
entry barriers, optimizing workflows, and supporting continuous
improvement.

IV. DISCUSSION

Our study provides a detailed examination of BcDEx, ana-
lyzing the distribution of literature, practical implementations,
and their impact on BcDEx. In the following sections, we
discuss the primary takeaways in relation to each RQ.

A. In RQ1, we asked about the distribution and nature of DEx
in blockchain solutions

The bibliographic analysis reveals a distinct evolution
in discussions on BcDEx, primarily fueled by industry
sources [GL52, GL54]. While contributions from academic
sources remain limited, the steady growth in industry pub-
lications, especially blogs and company websites, indicates
a strong response to the need for improved BcDEx. This
emphasis reflects a practical demand for developer-oriented
solutions as blockchain complexity increases. In addition, the
increase in both academic and industry publications in 2023
reflects a rising awareness of DEx as an important factor in
sustaining blockchain development.

Takeaway: Academic research is currently lagging behind
industry engagement, but industry efforts are accelerating
the development of tools and resources directly aimed at
improving BcDEx. This trend points to a clear opportunity
for further academic exploration, especially in developing
evaluation frameworks specific to blockchain’s environment.



B. In RQ2, we aimed to identify what are the categories of
practical sources related to BcDEx

Our study identified a range of contributions, including
tools, frameworks, and guidelines that address distinct aspects
of BcDEx. Efficiency in development, usability, and multi-
network support emerge as recurring themes across both aca-
demic and industry sources [GL54, GL55, GL06]. In particu-
lar, industry publications focus on practical tools and platforms
to streamline blockchain development, while academic sources
contribute by validating methods and proposing frameworks to
enhance BcDEx [WL04, WL06].

Takeaway: Practical tools for enhancing BcDEx are avail-
able and supported by industry initiatives, yet there remains
considerable scope for further academic study to systemat-
ically validate these contributions. By combining industry-
driven innovation with academic rigor, the community could
establish more robust BcDEx practices.

C. In RQ3, we explored what ways have the sources discussed
in the literature been shaping the BcDEx in practice

Our study highlights implications for blockchain developers,
including enhanced productivity, time savings, and increased
adoption of blockchain solutions. Different sources empha-
size productivity gains through simplified workflows [GL09,
GL39] and streamlined processes. However, we noticed that
few methods or studies exist for specifically evaluating
BcDEx, ranging from informal user feedback in industry publi-
cations to validation studies in academic literature. This issue
highlights an important research gap, as reliable evaluation
tools are important for consistently improving BcDEx.

Takeaway: BcDEx has a dual impact, affecting both tech-
nical productivity and developer satisfaction. Recognizing and
addressing these dimensions is relevant for improving devel-
oper retention and fostering sustainable project communities.
Developing standardized methods for evaluating BcDEx could
enable more objective and consistent assessment. Future re-
search should prioritize efforts that are specifically suited to
blockchain’s technical and social context.

In general, our study emphasizes the importance of BcDEx,
noting that industry engagement is advancing practical re-
sources to support developers. Academia has an opportunity to
contribute by validating these contributions and by developing
evaluation methods. Our findings suggest that a collabora-
tive approach between academia and industry would benefit
blockchain ecosystems, making them more developer-friendly.

V. THREATS TO VALIDITY

We followed the checklist provided by Ampatzoglou et
al. [84] to identify threats and their mitigation actions.

Study inclusion/exclusion bias. We identified the com-
pleteness of this review could be limited by the scarcity
of relevant studies in the WL. To deal with this challenge,
we included sources from the GL and applied snowballing
techniques (backward and forward) to expand the number
of potential primary studies. In addition, we conducted a

pilot search to identify terminological variations related to
“developer experience” in relevant studies.

Researcher bias and Repeatability. We faced challenges
related to qualitative coding, which was based only on the
textual content of the pages retrieved from the GL. For
example, the extraction of features of blockchain development
products was performed only from their main pages, poten-
tially omitting details from secondary or internal pages. To
mitigate this threat, we followed guidelines from [16] and
implemented a quality assessment framework derived from
Host and Baysal [17], [18]. Additionally, a second reviewer
performed a thorough review of the extracted data to ensure
comprehensive coverage and comparison of key information.

Robustness of classification. We recognize two main
threats: the absence of a standardized definition of developer
experience” in the literature and the fact that most sources
of GL do not apply rigorous peer review. To reduce the
impact of these issues, we adopted Fagerholm and Münch’s
framework [14], which considers technical aspects, emotional
responses, and perception of value in contributions.

VI. CONCLUSION

Blockchain development has introduced particular chal-
lenges to software engineering, requiring specialized ap-
proaches to support developers effectively. Developer Expe-
rience (DEx) is a critical factor, as it impacts developers’ pro-
ductivity, efficiency, and satisfaction. However, studies specif-
ically addressing Blockchain Developer Experience (BcDEx)
remain limited, with no systematic mapping exploring how
academia and practitioners have approached this topic. This
scarcity of studies can hamper efforts to evaluate and improve
BcDEx initiatives adequately. In this direction, we conducted
a Multivocal Literature Review to analyze the distribution and
nature of BcDEx sources, practical implementations, and their
impacts shaping this domain in practice.

Our findings showed that the academic focus on BcDEx
is limited compared to the gray literature, which mainly
includes blogs and corporate sources focused on improving
development efficiency, multi-network support, and usability.
Furthermore, we found five perspectives influencing BcDEx in
practice: abstracting complexity for better usability, facilitating
blockchain adoption, impact on productivity, developer educa-
tion and support, and BcDEx evaluation. The implications of
this research suggest that BcDEx goes beyond improving tools
and frameworks and involves rethinking software development
in a decentralized environment. Therefore, future work should
complement this direction by focusing on developing best
practices for BcDEx and establishing effective frameworks
for its evaluation. In addition, future research should apply
empirical studies to capture individual developers’ personal
experiences and perceptions directly.

ACKNOWLEDGMENT

This work received partial funding from CNPq-Brazil,
Universal grant 404406/2023-8, and support from CAPES -
Funding Code 001.



REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] I. Bashir, Mastering blockchain. Birmingham, United Kingdom: Packt
Publishing Ltd, 2017.

[3] F. G. Greve, L. S. Sampaio, J. A. Abijaude, A. C. Coutinho, Í. V.
Valcy, and S. Q. Queiroz, “Blockchain e a revolução do consenso sob
demanda,” 2018.

[4] V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1, pp.
22–23, 2013.

[5] X. Xu, I. Weber, and M. Staples, “Blockchain patterns,” in Architecture
for Blockchain Applications. Springer, 2019, pp. 113–148.

[6] W. Metcalfe, “Ethereum, smart contracts, dapps,” in Blockchain and
Crypt Currency. Springer, Singapore, 2020, pp. 77–93.

[7] X. Li, Z. Zheng, and H.-N. Dai, “When services computing meets
blockchain: Challenges and opportunities,” Journal of Parallel and
Distributed Computing, vol. 150, pp. 1–14, 2021.

[8] R. K. R. Kotha and M. Sony, “Complexity and ambiguity for blockchain
adoption in supply chain management,” in Blockchain in a Volatile-
Uncertain-Complex-Ambiguous World. Elsevier, 2023, pp. 29–41.

[9] M. Kassab, G. Destefanis, J. DeFranco, and P. Pranav, “Blockchain-
engineers wanted: an empirical analysis on required skills, education
and experience,” in 2021 IEEE/ACM 4th International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2021, pp. 49–55.

[10] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: challenges and new directions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2017, pp. 169–171.

[11] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, “Smart contracts vulnerabilities: a call for blockchain
software engineering?” in 2018 International Workshop on Blockchain
Oriented Software Engineering (IWBOSE). IEEE, 2018, pp. 19–25.

[12] A. Razzaq, J. Buckley, Q. Lai, T. Yu, and G. Botterweck, “A systematic
literature review on the influence of enhanced developer experience
on developers’ productivity: Factors, practices, and recommendations,”
ACM Computing Surveys, vol. 57, no. 1, pp. 1–46, 2024.

[13] A. Nylund, “A multivocal literature review on developer experience,”
Master’s thesis, Aalto University, 2 2020.

[14] F. Fagerholm and J. Münch, “Developer experience: Concept and
definition,” in 2012 international conference on software and system
process (ICSSP). IEEE, 2012, pp. 73–77.

[15] M. Greiler, M.-A. Storey, and A. Noda, “An actionable framework for
understanding and improving developer experience,” IEEE Transactions
on Software Engineering, vol. 49, no. 4, pp. 1411–1425, 2022.

[16] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and software technology, vol. 106, pp. 101–
121, 2019.

[17] M. Host and P. Runeson, “Checklists for software engineering case
study research,” in First international symposium on empirical software
engineering and measurement (ESEM 2007). IEEE, 2007, pp. 479–481.

[18] M. V. Baysal, Ö. Özcan-Top, and A. Betin-Can, “Blockchain technology
applications in the health domain: a multivocal literature review,” The
Journal of supercomputing, vol. 79, no. 3, pp. 3112–3156, 2023.

[19] M. B. Miles, “Qualitative data analysis: An expanded sourcebook,”
Thousand Oaks, 1994.

[20] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal and
a discussion,” Requirements engineering, vol. 11, no. 1, pp. 102–107,
2006.

[21] Anonymous, “Repository of blockchain developer experience:
A multivocal literature review,” 2024. [Online]. Available:
https://zenodo.org/records/14060672

[22] Q. Lu, X. Xu, Y. Liu, and W. Zhang, “Design pattern as a service
for blockchain applications,” in 2018 IEEE International Conference on
Data Mining Workshops (ICDMW). IEEE, 2018, pp. 128–135.

[23] P. Tschannen and A. Ahmed, “On the evaluation of the security usability
of bitcoin’s apis,” in Proceedings of the 24th International Conference
on Evaluation and Assessment in Software Engineering, 2020, pp. 405–
412.

[24] S. Dharanikota, S. Mukherjee, C. Bhardwaj, A. Rastogi, and A. Lal,
“Celestial: A smart contracts verification framework. in 2021 formal
methods in computer aided design (fmcad),” oct, vol. 10, p. 2021, 2021.

[25] D. Morháč, V. Valaštı́n, K. Košt’ál, and I. Kotuliak, “Paraspell xcm sdk:
A new protocol for interoperability in polkadot paraverse,” in 2023 Fifth
International Conference on Blockchain Computing and Applications
(BCCA). IEEE, 2023, pp. 569–576.

[26] T. McConaghy, “Ocean protocol: tools for the web3 data economy,” in
Handbook on Blockchain. Springer, 2022, pp. 505–539.

[27] R. van Tonder, “Verifying and displaying move smart contract source
code for the sui blockchain,” in Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion
Proceedings, 2024, pp. 26–29.

[28] G. C. Velasco, M. A. Vieira, and S. T. Carvalho, “Evaluation of a high-
level metamodel for developing smart contracts on the ethereum virtual
machine,” in Anais do VI Workshop em Blockchain: Teoria, Tecnologias
e Aplicações. SBC, 2023, pp. 29–42.

[29] R. Vasconcelos, “Smart contracts: A study about its challenges from
a developer experience point of view,” 2022. [Online]. Available:
https://www.cin.ufpe.br/t̃g/2022-1/tg EC/TG rjav.pdf

[30] J. Pharr, “Exposing a customizable, decentralized cryptoeconomy as a
data type,” 2018. [Online]. Available: https://arxiv.org/abs/1812.08073

[31] Xandeum, “Xandeum: An l1 smart contract
platform with scalable blockchain-based storage,”
2023. [Online]. Available: https://www.xandeum.com/wp-
content/uploads/2023/07/XandeumWhitepaper.pdf

[32] D. Barasti, “Assessing the maturity of blockchain inter-
operability mechanism evaluation: the case of interoper-
achain,” 2023. [Online]. Available: https://jlab-ports.cnit.it/wp-
content/uploads/2022/12/Master Thesis Barasti.pdf

[33] A. Das, J. Hoffman, and F. Pfenning, “Nomos: A protocol-enforcing,
asset-tracking, and gas-aware language for smart contracts,” 2019. [On-
line]. Available: https://www.cs.cmu.edu/ janh/assets/pdf/DasHP21.pdf

[34] QuickNode, “Quicknode,” n.d. [Online]. Available:
https://www.quicknode.com/

[35] Truffle, “5 trends impacting the blockchain developer experience,”
n.d. [Online]. Available: https://archive.trufflesuite.com/blog/5-trends-
impacting-the-blockchain-developer-experience

[36] Glaze, “Exploring developer experience on zkrus: An in-depth analysis,”
2023. [Online]. Available: https://hackernoon.com/exploring-developer-
experience-on-zkrus-an-in-depth-analysis

[37] Kalos, “A blockchain developer’s experience with using vvisp
(2),” 2019. [Online]. Available: https://medium.com/haechi-audit/a-
blockchain-developers-experience-with-using-vvisp-2-ground-x-hoonil-
kim-4d7b61f28443

[38] Spydra, “Empowering businesses with spydra: Hyperledger fabric
platform,” n.d. [Online]. Available: https://www.spydra.app/hyperledger-
fabric

[39] A. Beharry, “Stratis devex: Introduction to the new developer
experience for stratis c# smart contracts,” 2023. [Online]. Available:
https://www.spydra.app/hyperledger-fabric

[40] Nerif, “How bad developer experience leads to poor
user experience in web3,” 2023. [Online]. Avail-
able: https://medium.com/coinmonks/how-bad-developer-experience-
leads-to-poor-user-experience-in-web3-a266495a13b8

[41] Microsoft, “Improved developer experience for
azure blockchain development kit,” 2019. [Online].
Available: https://azure.microsoft.com/en-us/blog/improved-developer-
experience-for-azure-blockchain-development-kit/

[42] M. Rahman, “Enterprise blockchain developer experience,”
2018. [Online]. Available: https://pt.slideshare.net/slideshow/enterprise-
blockchain-developer-experience/121006081

[43] A. Bencic, “Introducing tenderly web3 gateway for an all-
in-one web3 developer experience,” 2022. [Online]. Avail-
able: https://blog.tenderly.co/introducing-web3-gateway-to-all-in-one-
developer-platform/

[44] P. Forum, “Underestimated developer cost in polkadot ecosystem,” 2023.
[Online]. Available: https://forum.polkadot.network/t/underestimated-
developer-cost-in-polkadot-ecosystem/4292

[45] A. Ufano, “Smart contract frameworks – foundry vs hardhat: Differences
in performance and developer experience,” 2022. [Online]. Available:
https://chainstack.com/foundry-hardhat-differences-performance

[46] Yuval, “Evmos - a new developer experience for web3,”
2023. [Online]. Available: https://www.lavanet.xyz/blog/evmos-a-new-
developer-experience-for-web3

[47] Axelar, “Axelar — internet-scale interoperability,” n.d. [Online].
Available: https://axelar.network



[48] Vendia, “Improved user experience and developer experience,”
2022. [Online]. Available: https://www.vendia.com/releases/2022-01-
31-releasenotes/

[49] Fuel, “What is fuel?” n.d. [Online]. Available:
https://docs.fuel.network/docs/intro/what-is-fuel/

[50] M. Mercuri, “Discover, develop, and deploy smart contracts
faster with blockchain dev kit updates,” 2019. [Online].
Available: https://opensource.microsoft.com/blog/2019/10/08/microsoft-
azure-blockchain-dev-kit-updates-ethereum-devcon/

[51] Scroll, “Scroll – native zkevm layer 2 for ethereum,” n.d. [Online].
Available: https://scroll.io/

[52] Y. Riady, “Best practices for smart contract development,”
2019. [Online]. Available: https://yos.io/2019/11/10/smart-contract-
development-best-practices/

[53] Immutable, “Immutable — powering the next generation of web3
games,” n.d. [Online]. Available: https://www.immutable.com/

[54] Txtx, “Build confidence with smart contract runbooks,” n.d. [Online].
Available: https://www.txtx.sh/

[55] V. Zhuravlev, “Waves ide: improving developer experience,”
2020. [Online]. Available: https://medium.com/wavesprotocol/waves-
ide-caring-about-developers-af106ebb5079

[56] M. Leech, “Ignite cli, the easiest way to build a blockchain,” 2020.
[Online]. Available: https://ignite.com/blog/ignite-cli-the-easiest-way-to-
build-a-blockchain

[57] Celo, “Truffle vs hardhat: A comprehensive comparison for,”
2023. [Online]. Available: https://celo.academy/t/truffle-vs-hardhat-a-
comprehensive-comparison-for-developing-on-the-celo-blockchain/2672

[58] Serokell, “Ligo language server,” nd. [Online]. Available:
https://serokell.io/project-ligo

[59] Radha, “Polkadot developer portal,” nd. [Online]. Available:
https://wiki.polkadot.network/docs/build-guide

[60] Viem, “Why viem,” 2024. [Online]. Available:
https://viem.sh/docs/introduction

[61] Reddit, “Developer experience of plutus
smart contracts,” n.d. [Online]. Available:
https://www.reddit.com/r/cardano/comments/nxv31e/developer
experience of plutus smart contracts/

[62] I. Mollov, “The modern stack for ethereum dapps,” 2023. [Online].
Available: https://hack.bg/blog/blockchain-tech-talks/the-modern-stack-
for-ethereum-dapps

[63] S. C. Tips, “Hardhat, truffle, and foundry: A comprehensive exploration
of leading web3 development frameworks,” 2023. [Online]. Available:
https://smartcontract.tips/articoli/truffle-hardhat-foundry-compare/

[64] A. Coathup, “Building an openzeppelin dapp with solidity hot loader,”
2019. [Online]. Available: https://forum.openzeppelin.com/t/building-
an-openzeppelin-dapp-with-solidity-hot-loader/1843

[65] S. Flamini, “Building a thriving developer community,” 2022.
[Online]. Available: https://archive.devcon.org/archive/watch/6/building-
a-thriving-developer-community

[66] E. Trautman, “Improving blockchain developer experience
(devx): Where ux meets developer tools,” 2018. [Online].
Available: https://pt.slideshare.net/slideshow/improving-blockchain-
developer-experience-devx-where-ux-meets-developer-tools/125912930

[67] Skale, “Building invisible blockchain experiences: Account
abstraction vs skale — skale,” 2023. [Online]. Avail-
able: https://skale.space/blog/building-invisible-blockchain-experiences-
account-abstraction-vs-skale

[68] CryptoEQ, “The state of web3 user and developer experience,”
2024. [Online]. Available: https://www.cryptoeq.io/research/web3-ux-
dx-comparison

[69] H. Maishera, “Block.one releases eosio explorer inter-
face to improve developer experience,” 2019. [Online].
Available: https://blokt.com/news/block-one-releases-eosio-explorer-
interface-to-improve-developer-experience

[70] Near, “Near protocol developer guide,” 2023. [Online]. Available:
https://github.com/near/DX

[71] L. Rosa, “Aiken: the future of smart contracts,” 2023. [Online].
Available: https://cardanofoundation.org/blog/aiken-the-future-of-smart-
contracts

[72] Zycrypto, “How apis technology is building an en-
hanced user-end and developer experience,” 2021. [On-
line]. Available: https://zycrypto.com/how-apis-technology-is-building-
an-enhanced-user-end-and-developer-experience

[73] S. Webber, “Defining industry standards for custom error messages
- improving the web3 developer experience,” 2023. [Online].
Available: https://blog.openzeppelin.com/defining-industry-standards-
for-custom-error-messages-to-improve-the-web3-developer-experience

[74] S. Pomposi, “Fantom extends smart contract func-
tionality with transaction tracing api,” 2021. [On-
line]. Available: https://blog.fantom.foundation/fantom-extends-smart-
contract-functionality-with-transaction-tracing-api/

[75] F. Heintel, “Solidity developer survey 2022 results,” 2023.
[Online]. Available: https://soliditylang.org/blog/2023/03/10/solidity-
developer-survey-2022-results/

[76] Infura, “Infura,” n.d. [Online]. Available: https://www.infura.io/
[77] Thirdweb, “Thirdweb,” n.d. [Online]. Available: https://thirdweb.com/
[78] Chainlink, “Developer experience on zksync — block magic,” 2024.

[Online]. Available: https://www.youtube.com/watch?v=YAou1sjErAY
[79] K. Weare, “Hyperledger releases new version of burrow featuring,” 2018.

[Online]. Available: https://www.infoq.com/news/2018/09/Hyperledger-
Burrow-DevExperience/

[80] A. Foundation, “Algokit introduces web2 developer experience for
building web3 applications on algorand,” 2023. [Online]. Available:
https://www.prnewswire.com/in/news-releases/algokit-introduces-web2-
developer-experience-for-building-web3-applications-on-algorand-
301784667.html

[81] Kaleido, “Kaleido,” n.d. [Online]. Available: https://www.kaleido.io
[82] Alchemy, “Alchemy,” n.d. [Online]. Available:

https://www.alchemy.com/
[83] Moralis, “Moralis web3,” n.d. [Online]. Available: https://moralis.io/
[84] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzi-

georgiou, “Identifying, categorizing and mitigating threats to validity
in software engineering secondary studies,” Information and Software
Technology, vol. 106, pp. 201–230, 2019.


