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In online auctions, fraudulent behaviours such as shill bidding pose significant risks. This paper 
presents a conceptual framework that applies dynamic, behaviour-based penalties to deter auc

tion fraud using blockchain smart contracts. Unlike traditional post-auction detection methods, 
this approach prevents manipulation in real-time by introducing an economic disincentive system 
where penalty severity scales with suspicious bidding patterns. The framework employs the pro

posed Bid Shill Score (BSS) to evaluate nine distinct bidding behaviours, dynamically adjusting 
the penalty fees to make fraudulent activity financially unaffordable while providing fair compe

tition.

The system is implemented within a decentralized English auction on the Ethereum blockchain, 
demonstrating how smart contracts enforce transparent auction rules without trusted intermedi

aries. Simulations confirm the effectiveness of the proposed model: the dynamic penalty mech

anism reduces the profitability of shill bidding while keeping penalties low for honest bidders. 
Performance evaluation shows that the system introduces only moderate gas and latency over

head, keeping transaction costs and response times within practical bounds for real-world use. 
The approach provides a practical method for behaviour-based fraud prevention in decentralised 
systems where trust cannot be assumed.

1. Introduction

Online auctions have become a widely used service, allowing buyers and sellers to trade goods remotely through platforms like 
eBay and Yahoo [1]. Their accessibility has contributed to significant growth, reflected in sales figures from major auction houses. 
According to ArtTactic [2], online auction sales reached $1.35 billion in 2021, a 28.2% increase from 2020, with projections indicating 
further growth of $1.9 billion by 2026 [3].

Despite their wide use, centralized auction systems are still susceptible to fraudulent behaviour, affecting sellers, bidders, and 
auctioneers too. One issue is Bid Shielding, where a set of bidders collude to get the item at a lower price by placing low bids [1]. 
Another significant fraud is Shill Bidding (SB), the focus of this work, where sellers or their associates place fake bids to inflate final 
prices [4]. These fraudulent activities damage platform trust and user engagement.
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Current SB detection and prevention systems struggle to between legitimate and fraudulent bidding activities [1]. The patterns 
used to identify shill bidders are not always reliable, and there is no definitive way to determine SB with certainty [1]. The ability 
to create multiple pseudonymous accounts makes detection even harder, making collusion and repeated manipulation possible [5]. 
These challenges reflect the need for an auction mechanism that discourages SB rather than relying on reactive approaches [5].

Blockchain has been proposed as a solution to enhance fairness and transparency on online auctions [6]. Its transparency helps 
resolve the issue of information asymmetry faced in classic central auctions, where part of the bidders have access to more information 
than other [7]. This limits the scope for collusion and improves the identification of fraudulent activities such as SB [6]. Furthermore, 
blockchain provides timestamping to record transaction time and smart contracts [8], which are secure, and self-executing code that 
automates agreements without relying on a trusted third party [9]. Researchers have explored blockchain-based auction systems to 
support decentralization and automation [10], with applications including tokenizing auctioned items and real-time bidding [11]. 
However, despite these developments, fraud prevention in blockchain-based auctions remains underexplored, and existing solutions 
have failed to address these threats [12].

This paper presents a blockchain-based English auction framework that employs smart contracts to discourage SB through a 
dynamic penalty mechanism. The framework includes a penalty model that tracks nine different bidding patterns continuously and 
charges penalty fees depending on bidding actions. The following research questions guided the design and implementation of the 
framework:

1. What are the specific SB behaviours that can be identified and mitigated through smart contracts in blockchain-based auctions 
while maintaining scalability and cost-e˙iciency?

2. How can we design a dynamic transaction fee mechanism within blockchain-based auction systems to discourage SB while 
ensuring that honest bidders are not subjected to excessive fees?

Building on these questions, this paper highlights the lack of prior research comparing bidding patterns in decentralized blockchain

based auctions and traditional centralized auctions. To bridge this gap, we first need a system that can monitor these patterns within 
the context of blockchain-based auction systems. Based on this, we design and implement a framework in which the smart contract 
acts as a consensus mechanism between bidders and sellers. The framework applies predefined rules to deter fraudulent bidding 
through a dynamic bid fee mechanism inspired by transaction fee models in blockchain networks. This mechanism adjusts penalties 
in real time based on a bidder’s activity. The main contributions provided in this paper are:

1. A blockchain-based English auction framework with an integrated anti-shill bidding mechanism.

2. A fraud prevention system based on two models: the Bid Shill Score (BSS) for evaluating bidder behaviour and a dynamic penalty 
fee model that increases transaction costs for suspected fraudulent bidders.

To achieve these contributions, we first identified common SB patterns as reported in the existing literature. We then measured 
each of these patterns with an associated metric. Based on these metrics, we developed a dynamic penalty system that gets updated in 
real time according to the BSS. This mechanism was implemented within a smart contract in order to allow decentralized enforcement 
of these rules. Finally, we discussed the theoretical advantages and trade-offs of using smart contracts for on-chain prevention of SB. 
This approach aims to fill existing research gaps and introduces a cost-effective, scalable solution for SB prevention in decentralized 
online auctions.

The remainder of this paper is organized as follows. Section 2 defines important concepts for the proposed work, such as auction 
types and SB fraud. Section 3 reviews existing work on SB detection and blockchain-based auctions. Section 4 details the proposed 
framework, covering the smart contract design, penalty the proposed framework, smart contract design, penalty mechanism, and bid

ding patterns metrics. Section 5 outlines the implementation process. Section 6 discusses the framework’s performance and scalability, 
highlighting the ability to identify advanced SB strategies while maintaining efficiency. Section 7 highlights the system limitations, 
and Section 8 concludes the paper with directions for future research.

2. Background

This section outlines the concepts relevant to the proposed work. First, it describes different types of auctions, their mechanisms, 
and common applications. Then, we examine SB, its motivations, and its impact on auction integrity.

2.1. Types of auctions

An auction is a structured sales process in which potential buyers engage in competitive bidding for various goods or services [12]. 
It usually involves four main elements: (1) a seller who owns the item, (2) one or more bidders who are interested to buy it, (3) the 
auctioned item, and (4) an auctioneer who conducts the procedure. Auctions are classified based on factors such as the bidding 
process, the number of items, and the visibility of participants and bids [13].

Based on bidding mechanisms, auctions can be open-outcry, in which bids are placed publicly, or sealed-bid, in which offers are 
placed privately [12]. Both auctions have their characteristics and are suitable for different applications. The most commonly used 
auction models are described below and illustrated in Fig. 1.
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Fig. 1. Summary of auction types. 

Fig. 2. English auction process. 

1. English Auction: Also known as an open-outcry ascending-price auction [14], the English auction, as shown in Fig. 2, begins 
with a low starting price that increases as buyers place higher bids. The process continues until no further bids are received 
within the allotted time, and the highest bidder wins [15]. This auction type is highly transparent, as all participants can see the 
current highest bid [12].

2. Dutch Auction: A Dutch auction, defined as an open-outcry descending-price auction, is where the auctioneer begins with a 
high price and decreases it progressively until the bid is accepted by someone. This auction is typically used for selling multiple 
identical items quickly [14].

3. First-Price Sealed-Bid Auction (FPSB): In an FPSB, all bidders place their bids at the same time and in private, and each is 
allowed only one bid [14]. The auction ends with the determination of the highest bidder as the winner. This type requires very 
strategic planning because the bidders have to get the best out of both submitting a competitive bid and not overspending [16].

4. Second-Price Sealed-Bid Auction (Vickrey Auction): Similar to FPSB, sealed bids are placed by bidders simultaneously. How

ever, in this format, the bidder with the highest bid wins but pays the price of the second-highest bid [1]. This approach 
encourages honest bidding because bidders have fewer incentives to overbid [17].

Each auction type has advantages and limitations, making it important to select the format that best suits the needs of buyers and 
sellers. However, all auctions are vulnerable to fraudulent practices that damages fairness and efficiency. SB is particularly common in 
English auctions, where open bidding makes it difficult to distinguish between fraudulent and legitimate participants. The similarities 
in bidding patterns make detection challenging. The following section examines this fraudulent practice in more detail.

2.2. Shill bidding

Shill bidding, or ``shilling'', is the submission of false bids in order to inflate the final sale price. This manipulation is usually 
carried out by the seller in collusion with other parties or through several fake accounts [1]. Shill bidders aim to drive up the auction 
price, forcing legitimate bidders to place higher bids. This practice can be classified into two main types:

1. Competitive Shill Bidding: In this strategy, shill bidders submit numerous small, incremental bids to falsely move the auction 
price higher, giving the impression of active competition. This strategy keeps up the pressure on legitimate bidders to raise their 
bids until the price reaches a targeted level. The shill bidder avoids winning the auction but succeeds in inflating the final sale 
price [1].

Fig. 3 illustrates an example where a shill bidder places multiple small bids immediately after a legitimate bidder. This forces 
the legitimate bidder to increase their bid during the auction, which causes paying more than necessary to win the auction.
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Fig. 3. Example of shill bidding scenario. 

2. Reserve Price Shilling: This form of shilling targets auction platforms that charge listing fees based on the seller’s declared 
reserve price. Sellers may list items with lower reserve prices to minimize fees, then use shill accounts to inflate the price to their 
actual desired value. If bidding remains too low, the seller may use shill accounts to ``buy back'' the item, avoiding selling at an 
unfavourable price [1].

Detecting SB is challenging due to the ease of creating anonymous accounts in online auctions, which makes it hard to distinguish 
between fraudulent and legitimate bids. Furthermore, online auction platforms usually do not disclose their monitoring methods, 
reducing transparency.

Given the impact of competitive SB, this study focuses on its prevention within decentralized auctions. Our proposed system 
utilizes smart contracts to create an open and tamper-evident auction environment and dynamically penalizes suspicious behaviour 
according to predefined metrics. This approach aims to limit the effectiveness of competitive SB and improve the auction’s integrity.

3. Related works

While prior research has proposed various detection mechanisms, there has been a lack of studies on using smart contracts 
to prevent shill bidding and analyzing bidding patterns in decentralized auction systems. To bridge this gap, we first examine, 
SB detection and prevention strategies. Next, we review the blockchain applications in auctions, particularly its role in improving 
transparency and security, while identifying the open challenges in addressing auction fraud, especially in open-bid mechanisms. 
Finally, we outline the remaining gaps in current research that this work aims to address.

3.1. Shill bidding detection and prevention mechanisms

Shill bidding has long been a challenging issue in online auctions. Research efforts have primarily focused on identifying and 
categorizing SB patterns, including early bidding, successive outbidding [18], and bidder tendency [19]. These studies have led to 
the development of various detection and prevention mechanisms, which can be classified into offline and real-time approaches [1].

Initial detection methods relied on reputation-based scoring systems. Trevathan et al. [19] introduced the Shill Score Algorithm, 
which tracks six bidding patterns to identify SB. Similarly, Rubin et al. [20] proposed a statistical reputation system that ranks bidders 
based on anomaly scores. While these solutions are effective for post-auction fraud analysis, they do not provide real-time mechanisms 
to prevent SB during the auction.

Machine learning techniques have been explored for real-time fraud detection. Anowar et al. [21] and Alzahrani et al. [22] devel

oped classification models that cluster bidders based on their behaviours in large-scale datasets. Despite their high detection accuracy, 
these models face scalability issues when applied to real-time bidding environments, where rapid decision-making is required. Hybrid 
detection approach was proposed by Adabi et al. [23]. it combines offline and real-time mechanisms using genetic algorithms to cre

ate favourable conditions for honest bidders. However, this method does not scale well to detect real-time collusion in large-volume 
auctions.

While most studies focus on detecting SB, fewer works propose mechanisms to prevent it. Kaur et al. [24] introduced a variable 
bid fee model that charges a fixed 2% fee per bid. While this method discourages aggressive bidding, it does not differentiate between 
honest and fraudulent bidders, leading to unfair penalties for legitimate participants. Komo et al. [25] proposed an optimal reserve 
price strategy to make SB unprofitable. However, this method limited to resource allocation auctions and does not address bidder 
collusion in open-bid English auctions.

Blockchain and auctions

Blockchain has been proposed as a secure and transparent solution for online auctions [26]. While several blockchain-based 
auction applications have been explored, limited research has focused on monitoring bidding patterns, particularly in open-outcry 
auctions.
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Most of the studies in the literature have focused on sealed-bid auction applications, Wu et al. [27] introduced CReam, the first 
application of smart contracts to deter bid shielding in sealed-bid auctions. Their approach ensures bid confidentiality but does not 
handle open-bid auction frauds such as SB. Similarly, Xiong et al. [8] designed an anti-collusion smart contract for data auctions, 
however, their system relies on centralized seller control, reducing decentralization benefits.

Other studies have focused on enhancing privacy-preserving in blockchain-based auctions. Dai et al. [26] proposed a sealed-bid 
auction using zero-knowledge proofs (ZKPs) and multi-party computation (MPC) to prevent bid manipulation while preserving bidder 
privacy. Guo et al. [28], as well introduced a combinatorial auction model for decentralized edge computing using blockchain and 
differential privacy to ensure bid confidentiality and optimal resource allocation.

Additional research focused on optimizing blockchain-based auction performance. Omar et al. [14] presented a reverse auction 
system that extends blockchain use to offer submission through IPFS [29], reducing reliance on on-chain storage. However, gas 
costs remain a limitation. To address this, Zhang et al. [30] proposed a low-cost verifiable auction mechanism designed to minimize 
transaction fees and improve cost efficiency.

3.2. Research gap and our contributions

Prior research has explored various strategies for SB detection, but the used patterns to identify shill bidders are not always 
reliable [1]. Most existing solutions focus on post-auction detection rather than real-time prevention [31]. Blockchain technology 
offers advantages in transparency, decentralization, and security. However, there is a notable gap in addressing fraud behaviours 
and mitigating bid manipulation using this technology [12]. Current methods for addressing SB also face scalability issues related to 
computational complexity, real-time effectiveness, and cost efficiency [1]. Their integration into smart contracts introduces additional 
challenges due to gas fees and storage overhead, which can become significant in high-volume auctions [12]. Therefore, preventing 
SB activities within decentralized auctions requires solutions with low computational complexity, support for multiple sellers, and 
real-time detection. Additionally, they also need to reduce the impact on honest bidders while retaining fair competition in trading, 
user participation, and realism [23].

To address these challenges, we present a blockchain-enabled English auction framework that adopts real-time SB prevention 
through smart contracts. The main contribution of the paper is a new dynamic penalty mechanism for adjusting bidding fees according 
to the suggested Bid Shill Score, which examines nine potential suspicious bidding patterns to make shill bidding economically 
unfeasible. Additionally, we integrate these metrics within the smart contract-based auction mechanism to create a transparent 
consensus mechanism that discourages collusive bidding while maintaining fair competition.

4. Blockchain-based framework for shill bidding prevention

The proposed blockchain-based auction framework consists of an architecture that enforces fair bidding practices and a penalty 
mechanism to deter fraudulent activity. We first present the system architecture, including its components and stakeholder interac

tions. Next, we introduce the formal mathematical models, including the nine metrics used for SB detection, the Bid Shill Score (BSS), 
and the penalty fee computation. Finally, we describe the financial impact of The dynamic Penalties on Shill Bidders.

4.1. System architecture

Fig. 4 illustrates the architecture of the blockchain-based auction system, which employs smart contracts to detect and prevent SB. 
The system consists of three main layers. The first one is dedicated to the involvement of three main actors: sellers, honest bidders, 
and shill bidders, all of whom interact with the auction smart contract.

Sellers create and manage auctions by listing items and defining auction parameters. Bidders participate by placing bids, with 
honest bidders following fair bidding practices and shill bidders attempting to manipulate auction prices.

The smart contract layer consists of two contracts that govern the auction process and enforce bidding rules. The 𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐻𝑜𝑢𝑠𝑒

smart contract handles the entire auction lifecycle, allowing users to create auctions, activate them, place bids, and finalize trans

actions. The SB patterns monitoring smart contract validates bids by calculating the BSS and applying penalties. This contract 
continuously monitors bidding behaviour to discourage unfair practices while ensuring fair competition.

Finally, the Blockchain layer integrates the blockchain technology used as the basis for all the supported functionalities.

Fig. 5 illustrates the class diagram of the implemented system, representing the core entities and their relationships within the 
blockchain-based auction system. The Bidder and Seller classes extend from Account, where bidders participate in auctions and 
sellers list and manage them. The Asset class represents auctioned items, storing their attributes such as title and description. The 
Auction class handles auction parameters, including start and end times, current bid, reserve price, and bid increment rules. Sellers 
list assets in auctions, and bidders place bids through the Bid class, which records bid details such as bidder address, bid amount, 
and timestamp.

To evaluate bidder behaviour, the BidderAuctionStats and BidderSellerParticipation classes track bidding history 
and patterns, including bid frequency, last bid time, and bidder tendencies toward specific sellers. The BidEvaluation class performs 
the system’s core calculations, including computing the BSS and penalty fees.

Fig. 6 presents a sequence diagram illustrating the system’s operational flow. The process begins when a seller creates an auction 
for an asset. The system first verifies the seller’s ownership before allowing the auction to be listed. Once confirmed, the seller 
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Fig. 4. The proposed auction system architecture. 

configures auction parameters such as the starting price, reserve price, and duration. After creation, the seller must activate the 
auction to enable bidding. 

Once the auction is active, bidders can place bids using the 𝑝𝑙𝑎𝑐𝑒𝐵𝑖𝑑 function. This function validates the bid amount and calls 
the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑃 𝑒𝑛𝑎𝑙𝑡𝑦 function to compute bid fees for the previous highest bidder. The 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑃 𝑒𝑛𝑎𝑙𝑡𝑦 function calculates the dynamic 
penalty fee using the 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆ℎ𝑖𝑙𝑙𝑆𝑐𝑜𝑟𝑒 function, which determines whether the previous bidder showed SB patterns.

After processing the penalties, the 𝑝𝑙𝑎𝑐𝑒𝐵𝑖𝑑 function refunds the previous highest bidder, deducting the applicable penalty fees 
from the refunded amount. Finally, when the auction concludes, the seller or contract owner calls the 𝑒𝑛𝑑𝐴𝑢𝑐𝑡𝑖𝑜𝑛 function to finalize 
the process. If the highest bid meets or exceeds the reserve price, the smart contract transfers ownership of the asset to the highest 
bidder, and the seller receives the corresponding payment. However, if the reserve price is not met or no bids are placed, the auction 
ends without a sale. In this case, the asset is returned to the seller, and any previous highest bidders receive a refund after penalty 
deductions.

4.2. Bid shill score computation and dynamic penalty fee model

We propose a dynamic penalty fee model, 𝐹𝑖,𝑗,𝑘, designed to discourage SB. This bid fee is determined based on the Bid Shill Score 
(BSS), which identifies nine suspicious bidding patterns previously highlighted by researchers [1]. The concept of BSS builds on the 
Shill Score Algorithm (SSA), originally proposed by Trevathan et al. [19], which detects six SB patterns either at the end of an auction 
or during different auction stages using the Live Shill Score (LSS) [32].

Building on this work, we extend the detection scope from six to nine SB patterns and apply it dynamically with each bid to compute 
penalty fees in real time. As a bidder’s score increases due to detected suspicious bidding behaviours, the penalty fee proportionally 
rises. This mechanism discourages SB by making aggressive bidding across multiple accounts financially costly.

Before introducing the metrics, we define the sets and notations used throughout the model.

Let:

• 𝐵: The set of all bidders participating in the auction system. Each bidder is denoted as 𝑖 ∈ 𝐵.

𝐵 = {𝑖1, 𝑖2, 𝑖3,… , 𝑖𝑛}

Where 𝑖1, 𝑖2,… , 𝑖𝑛 represent individual bidders.

• 𝑆 : The set of all sellers that listed auctions in the system. Each seller is denoted as 𝑠 ∈ 𝑆 .

𝑆 = {𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑛}

Where 𝑠1, 𝑠2,… , 𝑠𝑛 represent individual sellers.
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Fig. 5. Class diagram of the blockchain-based auction system. 
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Fig. 6. Sequence diagram for interactions in the auction process. 

• 𝐴: The set of all auctions. Each auction is denoted as 𝑗 ∈𝐴. The number of auctions in which bidder 𝑖 has participated is donated 
as 𝑚𝑖, and the number of auctions where bidder 𝑖 participated in with a specific seller 𝑠 is represented as 𝑚𝑠

𝑖
.

𝐴 = {𝑗1, 𝑗2, 𝑗3,… , 𝑗𝑚}

Where 𝑗1, 𝑗2,… , 𝑗𝑚 represent individual auctions.

• 𝑏𝑖,𝑗,𝑘: A specific bid placed by bidder 𝑖 in auction 𝑗 at time 𝑡𝑖,𝑗,𝑘, where 𝑘 denotes the sequence of bids placed by bidder 𝑖 in 
auction 𝑗 and 𝑡𝑗,𝑘−1 represents the time of the previous bid in auction 𝑗.
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• 𝐵𝑗 : The set of all bids placed in auction 𝑗. The size of this set is denoted as 𝑛𝑗 . The total number of bids placed by bidder 𝑖 in 
auction 𝑗 is donated by 𝑛𝑗

𝑖
, and the number of times bidder 𝑖 outbids themselves in auction 𝑗 is donated 𝑛self,𝑗

𝑖
.

𝐵𝑗 = {𝑏𝑗,1, 𝑏𝑗,2,… , 𝑏
𝑗,𝑛

𝑗

𝑖

}

• 𝑊𝑖: The set of auctions won by bidder 𝑖. The size of this set is donated 𝑤𝑖

𝑊𝑖 = {𝑗1, 𝑗2,… , 𝑗𝑤}

Where 𝑗1, 𝑗2,… , 𝑗𝑤 represent the auctions won by bidder 𝑖.
• 𝑡

𝑗

start and 𝑡𝑗
end

: The start and end times of auction 𝑗, respectively.

• Δ𝑝
𝑗

𝑖
: The difference between consecutive bids placed by bidder 𝑖 in auction 𝑗.

• Δ𝑝
𝑗

min
: The minimum bid increment in auction 𝑗.

• Δ𝑝
𝑗
max: The maximum bid increment in auction 𝑗.

• 𝑆𝑗 : The starting price of auction 𝑗.

• 𝑃avg: The average price of similar items in the market for auction 𝑗.

• 𝜙 = 10000: A fixed scaling factor used to normalize metric values in Solidity smart contract That allows the representation of 
percentages with two decimal places of precision.

4.2.1. Patterns metrics

To detect SB and calculate the BSS, we use a set of metrics that evaluate bidders’ patterns during auctions. These metrics were 
initially introduced and validated by Trevathan et al. [19] and Alzahrani et al. [18]. In this study, we have refined and extended 
these metrics to better capture fraudulent bidding patterns. Specifically, we introduced the Early Bidding and Late Bidding metrics 
to capture the tendencies of bidders who place bids more either at the beginning or end of an auction. Furthermore, we propose 
the Successive Outbidding metric to track how frequently bidders outbid themselves, and the Bidder Tendency metric to identify 
new accounts or accounts with a high participation rate in auctions from the same seller. These metrics have been adapted for 
blockchain-based auctions and are designed to be efficiently implemented in smart contracts using Solidity [33].

• Early Bidding (𝛼): Measures how early a bidder starts bidding in relation to other participants using Equation (1). Shill bidders 
often bid very early to influence the auction from the beginning.

𝛼
𝑗

𝑖,𝑘
=

𝜙 × (𝑡𝑗
end

− 𝑡𝑖,𝑗,𝑘)

𝑡
𝑗

end
− 𝑡

𝑗

start

(1)

• Bid Increment (𝛽): Evaluates the increase in bid value made by a bidder in successive bids using Equation (2). Shill bidders tend 
to place small incremental bids to slowly raise the price without drawing suspicion.

𝛽
𝑗

𝑖,𝑘
= 𝜙−

𝜙 × (Δ𝑝
𝑗

𝑖,𝑘
−Δ𝑝

𝑗

min
)

Δ𝑝
𝑗
max −Δ𝑝

𝑗

min

(2)

• Outbid Time (𝛾): Captures how quickly a bidder places bids compared to the average outbid time in the auction using Equa

tion (3). Shill bidders bid much faster than legitimate bidders to create fake competition with honest bidders.

𝛾
𝑗

𝑖,𝑘
= 𝜙 

𝑛
𝑗

𝑖

𝑛
𝑗

𝑖∑
𝑘=1

(
𝜙−

𝑡𝑖,𝑗,𝑘 − 𝑡𝑗,𝑘−1

𝑇
𝑗
avg

)
(3)

Where:

– 𝑇
𝑗
avg: The average outbid time for all bids in auction 𝑗, calculated as:

𝑇 𝑗
avg

= 1 
𝑛𝑗 − 1

𝑛𝑗∑
𝑘=2

(𝑡𝑗,𝑘 − 𝑡𝑗,𝑘−1)

• Bid Frequency (𝛿): Captures how often a bidder places bids in a single auction using Equation (4). A higher bid frequency 
suggests the bidder is driving up the price without intending to win.

𝛿
𝑗

𝑖,𝑘
=

𝜙 × 𝑛
𝑗

𝑖

𝑛𝑗
(4)

• Bidder Tendency (𝜖): Measures how frequently a bidder participates in auctions held by the same seller using Equation (5). 
Bidders with a high frequency of participation in the same seller’s auctions are more likely to be shill bidders.

𝜖𝑖 =
𝜙 × (𝑚𝑠

𝑖
−𝑤𝑠

𝑖
)

𝑚𝑖

(5)
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• Winning Ratio (𝜁 ): Tracks how often a bidder loses auctions in which he participates, using Equation (6). Shill bidders avoid 
winning auctions to not incur the cost of winning.

𝜁𝑖 = 𝜙−
𝜙 ×𝑤𝑖

𝑚𝑖

(6)

• Successive Outbidding (𝜂): Measures how often a bidder outbids their own bid, which is a common indicator of SB. This is 
calculated using Equation (7).

𝜂
𝑗

𝑖,𝑘
=

𝜙 × 𝑛
self,𝑗

𝑖

𝑛
𝑗

𝑖

(7)

• Auction Starting Price (𝜅): indicates how the initial auction price relates to previous similar auctions as shown in Equation (8). 
Auctions with low starting prices are more susceptible to SB as they attract more bidders and allow greater price manipulation.

𝜅𝑗 = 𝜙−
𝜙 ×𝑆𝑗

𝑃avg

(8)

• Late Bidding (𝜄): Captures how late a bidder places his bid relative to other participants using Equation (9). Shill bidders stop 
placing bids before the last stage of the auction duration. In the other hand, Strategic last-moment bidding, or sniping, is common 
sign for legitimate bidders who aim to secure the auction closer to the end.

𝜄
𝑗

𝑖,𝑘
=

𝜙 × (𝑡𝑖,𝑗,𝑘 − 𝑡start)

𝑡
𝑗

end
− 𝑡

𝑗

start

(9)

These metrics are designed to capture a broad range of suspicious behaviours, making it difficult for attackers to evade detection 
without substantially altering their strategies. For instance, Bidder Tendency and Winning Ratio identify repeated interactions with 
specific sellers, including cases involving multiple accounts. In parallel, Bid Frequency, Bid Increment, Outbid Time, and Successive 
Outbidding highlight coordinated bidding patterns and timing-based collusion.

4.2.2. The bid shill score

After calculating the nine metrics (𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 𝜁 , 𝜂, 𝜅, 𝜄), the 𝐵𝑆𝑆𝑖,𝑗,𝑘 for a bid 𝑏𝑖,𝑗,𝑘 is calculated using Equation (10). The weights 
assigned to each metric in this equation are 𝑤1 = 8,𝑤2 = 5,𝑤3 = 4,𝑤4 = 2,𝑤5 = 7,𝑤6 = 8,𝑤7 = 7,𝑤8 = 3,𝑤9 = 2, where 𝑛 = 9 repre

sents the total number of suspicious behaviours considered in the model. These weights were determined through experimentation 
and simulated auctions, as proposed by Trevathan et al. [19] and Sadaoui et al. [18], and further validated through additional sim

ulations by us. The assignment of these weights was guided by the direct impact of each pattern on shill bidding behaviour. Metrics 
strongly related to seller collusion or manipulation (such as Bidder Tendency, Successive Outbidding, and Winning Ratio) were as

signed higher weights. In contrast, patterns that may also appear in honest aggressive bidding (such as Late Bidding and Auction 
Starting Price) received lower weights to avoid false positives. This deterministic weight configuration aligns with smart contract 
requirements, ensuring verifiability and consistent application of penalties on-chain. the 𝐵𝑆𝑆𝑖,𝑗,𝑘 value ranges between 0 and 100, 
where a higher BSS indicates a higher likelihood that the bidder is engaging in SB.

𝐵𝑆𝑆𝑖,𝑗,𝑘 = 2000 ×

(
𝑤1𝛼𝑖 +𝑤2𝛽

𝑗

𝑖
+𝑤3𝛾𝑖 +𝑤4𝛿

𝑗

𝑖
+𝑤5𝜖

𝑗

𝑖
+𝑤6𝜁

𝑗

𝑖
+𝑤7𝜂

𝑗

𝑖
+𝑤8𝜅𝑗 −𝑤9𝜄

𝑗

𝑖

)
𝑛 

(10)

The current model uses fixed weights to ensure transparency and consistency, which aligns with the deterministic nature of smart 
contracts. This design allows the penalty mechanism to function as a consensus layer, with rules agreed upon at the beginning of the 
auction. As a result, participants can independently verify that penalties are correctly computed and enforced, without relying on 
any off-chain logic or subjective interpretation.

4.2.3. The dynamic penalty fees calculation

Once the shill score 𝐵𝑆𝑆𝑖,𝑗,𝑘 is determined, the percentage of the penalty fee is The dynamic penalty fee 𝐹𝑖,𝑗,𝑘 for a bid 𝑏𝑖,𝑗,𝑘 is 
calculated as a percentage of the bid amount. This percentage increases as the shill score rises, following Equation (11), where 𝑃base

set at 2%, which is the base percentage of the bid amount that is applied to all participants. This approach is inspired by the work 
of Kaur et al. [24]. Additionally, The maximum penalty percentage 𝑃max can base up to 5% of the bid amount, depending on the 
bidder’s shill score.

𝐹𝑖,𝑗,𝑘 =
𝑏𝑖,𝑗,𝑘

𝜙 
×
(
𝑃base +

𝐵𝑆𝑆𝑖,𝑗,𝑘 × 𝑃max

𝜙 

)
(11)

4.2.4. Financial impact of dynamic penalties on shill bidding

SB is primarily motivated by the potential for higher profits than the reserve price 𝑃reserve, which represents the minimum accept

able price set by the seller. By placing fake bids, a seller manipulates the auction to drive up the final price 𝑃final. The potential profit 
a seller can achieve from SB, before accounting for any costs, is given by Equation (12):
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𝑃profit = 𝑃final − 𝑃reserve (12)

However, in our proposed system, shill bidders 𝑆 incur costs due to transaction fees 𝑇fee,𝑖,𝑗,𝑘 and penalties 𝐹𝑖,𝑗,𝑘. The total cost 
𝐶total accounts for both penalties applied to fraudulent bids and the gas fees required to execute these transactions. This cost is defined 
in Equation (13).

𝐶total =
∑
𝑖∈𝑆 

𝑛
𝑗

𝑖∑
𝑘=1

(
𝐹𝑖,𝑗,𝑘 + 𝑇fee,𝑖,𝑗,𝑘

)
(13)

If 𝐶total exceeds the potential profit 𝑃profit, then engaging in SB becomes economically unfeasible. The net profit 𝑅profit, defined 
in Equation (14), determines whether the seller benefits from fraudulent activities or incurs a financial loss.

𝑅profit = 𝑃profit −𝐶total (14)

5. Implementation details

Here, we present the implementation of the blockchain-based online auction system with SB prevention. The 𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐻𝑜𝑢𝑠𝑒 smart 
contract serves as the auctioneer, managing the entire auction lifecycle while ensuring transparency and fairness without reliance 
on a trusted third party. The 𝑆𝐵𝑀𝑜𝑛𝑖𝑡𝑜𝑟 smart contract tracks bidding behaviour, computes the 𝐵𝑆𝑆 , and enforces penalties on 
bidders. These smart contracts are deployed on the Ethereum blockchain to guarantee secure and immutable enforcement of auction 
rules.

The main functionalities of these smart contracts, illustrated in Fig. 6, follow a structured workflow:

1. The seller creates and activates an auction.

2. Bidders submit bids within the auction duration.

3. The smart contract processes penalties by computing the 𝐵𝑆𝑆 , storing the penalty value, and refunding the previous highest 
bidder after deducting the penalty fee.

The implementation focuses on the core functions related to SB prevention, including: placeBid, processPenalty, calcu

lateShillScore, and calculateTransactionFee.

The 𝑝𝑙𝑎𝑐𝑒𝐵𝑖𝑑 function, shown in Listing 1, validates first the bid amount and ensures the bidder is not the auction owner. It also 
confirms that the auction remains active.

1 f u n c t i o n p l a c e B i d ( u i n t a u c t i o n I d ) e x t e r n a l p a y a b l e o n l y L i v e ( a u c t i o n I d ) o n l y N o t O w n e r ( a u c t i o n I d ) a u c t i o n E x i s t s ( 
a u c t i o n I d ) r e t u r n s ( b o o l ) { 

2 u i n t 2 5 6 a m o u n t = m s g . v a l u e ; 
3 A u c t i o n s t o r a g e a = a u c t i o n s [ a u c t i o n I d ] ; 
4 B i d d e r S t a t s s t o r a g e s t a t s = b i d d e r S t a t s [ m s g . s e n d e r ] ; 
5 
6 i f ( a . c u r r e n t B i d > = a m o u n t ) { 
7 r e v e r t B i d N o t H i g h E n o u g h ( " C u r r e n t b i d i s n o t h i g h e n o u g h " ) ; 
8 } 
9 

10 i f ( s t a t s . a u c t i o n S t a t s [ a u c t i o n I d ] . b i d C o u n t = = 0 ) { 
11 s t a t s . a u c t i o n s P a r t i c i p a t e d + + ; 
12 } 
13 
14 / / U p d a t e a u c t i o n ’ s c u r r e n t b i d a n d a d d n e w b i d 
15 a . c u r r e n t B i d = a m o u n t ; 
16 a . b i d s . p u s h ( B i d ( { 
17 b i d d e r : m s g . s e n d e r , 
18 a m o u n t : a m o u n t , 
19 t i m e s t a m p : b l o c k . t i m e s t a m p 
20 } ) ) ; 
21 
22 / / C a l l t h e p r o c e s s P e n a l t y f u n c t i o n f o r t h e p r e v i o u s b i d d e r 
23 p r o c e s s P e n a l t y ( m s g . s e n d e r , a u c t i o n I d , a m o u n t , b i d I d x , a ) ; 
24 
25 e m i t B i d P l a c e d ( a u c t i o n I d , m s g . s e n d e r , a m o u n t ) ; 
26 r e t u r n t r u e ; 
27 } 

Listing 1: Solidity Function for Placing a Bid.

As bids are placed, the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑃 𝑒𝑛𝑎𝑙𝑡𝑦 function, shown in Listing 2, executes three steps. First, it calls 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆ℎ𝑖𝑙𝑙𝑆𝑐𝑜𝑟𝑒

to compute the bidder’s 𝐵𝑆𝑆𝑖,𝑗,𝑘. Next, calculateTransactionFee determines the dynamic penalty fee 𝐹𝑖,𝑗,𝑘 based on the 𝐵𝑆𝑆 value. 
Finally, the penalty fee is deducted from the refundable deposit, and the remaining balance is returned to the previous highest bidder.
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1 f u n c t i o n p r o c e s s P e n a l t y ( a d d r e s s b i d d e r , u i n t 2 5 6 a u c t i o n I d , u i n t 2 5 6 a m o u n t , u i n t 2 5 6 b i d I d x , A u c t i o n s t o r a g e a ) 
i n t e r n a l { 

2 B i d d e r S t a t s s t o r a g e s t a t s = b i d d e r S t a t s [ b i d d e r ] ; 
3 u i n t 2 5 6 s h i l l S c o r e = c a l c u l a t e S h i l l S c o r e ( b i d d e r , a u c t i o n I d ) ; 
4 u i n t 2 5 6 t r a n s a c t i o n F e e = c a l c u l a t e T r a n s a c t i o n F e e ( a m o u n t , s h i l l S c o r e ) ; 
5 
6 / / U p d a t e b i d d e r s t a t i s t i c s 
7 s t a t s . a u c t i o n S t a t s [ a u c t i o n I d ] . s h i l l S c o r e = s h i l l S c o r e ; 
8 s t a t s . a u c t i o n S t a t s [ a u c t i o n I d ] . t r a n s a c t i o n F e e = t r a n s a c t i o n F e e ; 
9 

10 / / R e f u n d t h e p r e v i o u s h i g h e s t b i d d e r 
11 i f ( b i d I d x > 0 ) { 
12 B i d s t o r a g e p r e v i o u s B i d = a . b i d s [ b i d I d x - 1 ] ; 
13 u i n t 2 5 6 r e f u n d A m o u n t = p r e v i o u s B i d . a m o u n t - ( p r e v i o u s B i d . a m o u n t * p r e v i o u s F e e ) ; 
14 r e f u n d s [ p r e v i o u s B i d . b i d d e r ] + = r e f u n d A m o u n t ; 
15 e m i t R e f u n d P r o c e s s e d ( p r e v i o u s B i d . b i d d e r , r e f u n d A m o u n t , s t a t s . a u c t i o n S t a t s [ a u c t i o n I d ] . t r a n s a c t i o n F e e ) ; 
16 } 
17 } 

Listing 2: Solidity Function for Processing Penalty.

The data used to compute the 𝐵𝑆𝑆 and 𝐹𝑖,𝑗,𝑘 is structured and stored on the blockchain, ensuring transparency and efficient 
retrieval of bidder activity. The 𝐵𝑖𝑑𝑑𝑒𝑟𝑆𝑡𝑎𝑡𝑠 and BidderAuctionStats structs, shown in Listing 3, define the relationship between 
a bidder and their bidding history. They track participation and behaviour across auctions, including bid frequencies, outbidding 
patterns, and interactions with sellers.

1 
2 s t r u c t B i d d e r S t a t s { 
3 u i n t 2 5 6 a u c t i o n s P a r t i c i p a t e d ; 
4 u i n t 2 5 6 w o n A u c t i o n s ; 
5 m a p p i n g ( u i n t 2 5 6 = > B i d d e r A u c t i o n S t a t s ) a u c t i o n S t a t s ; / / a u c t i o n I d = > B i d d e r A u c t i o n S t a t s 
6 } 
7 
8 s t r u c t B i d d e r A u c t i o n S t a t s { 
9 u i n t 2 5 6 b i d C o u n t ; 

10 u i n t 2 5 6 l a s t B i d T i m e ; 
11 u i n t 2 5 6 l a s t B i d A m o u n t ; 
12 u i n t 2 5 6 l a s t O u t b i d T i m e D i f f ; 
13 u i n t 2 5 6 t o t a l O u t b i d T i m e D i f f ; 
14 u i n t 2 5 6 l a s t B i d I n c r e m e n t ; 
15 u i n t 2 5 6 s u c c e s s i v e O u t b i d s ; 
16 u i n t 2 5 6 s h i l l S c o r e ; 
17 u i n t 2 5 6 t r a n s a c t i o n F e e ; 
18 } 

Listing 3: Solidity Structs for Bidder and Status.

The mappings in Listing 4 represent the relationships between auctions, sellers, and bidders. This structure enables efficient 
retrieval of bidder data without loops, reducing gas costs during contract execution. In Ethereum-based smart contracts, gas costs 
determine execution and deployment expenses, as each computational step consumes gas units. Since one of our main objectives is to 
optimize the cost of running the auction system, minimizing gas consumption is essential. Using mappings instead of arrays reduces 
unnecessary computations, lowering transaction fees and improving efficiency and scalability [34].

1 m a p p i n g ( a d d r e s s = > u i n t 2 5 6 [ ] ) p u b l i c a u c t i o n s R u n B y U s e r ; 
2 m a p p i n g ( a d d r e s s = > u i n t 2 5 6 [ ] ) p u b l i c a u c t i o n s B i d O n B y U s e r ; 
3 
4 m a p p i n g ( a d d r e s s = > m a p p i n g ( a d d r e s s = > u i n t 2 5 6 ) ) p u b l i c s e l l e r B i d d e r P a r t i c i p a t i o n s ; 
5 
6 / / M a p p i n g t o t r a c k w h e t h e r a b i d d e r h a s p a r t i c i p a t e d i n a s p e c i f i c a u c t i o n w i t h a s e l l e r 
7 m a p p i n g ( a d d r e s s = > m a p p i n g ( a d d r e s s = > m a p p i n g ( u i n t 2 5 6 = > b o o l ) ) ) p u b l i c b i d d e r P a r t i c i p a t e d I n A u c t i o n W i t h S e l l e r ; / / b i d d e r 

= > s e l l e r = > a u c t i o n I d = > b o o l 
8 
9 / / M a p p i n g t o t r a c k t h e n u m b e r o f a u c t i o n s w o n b y a b i d d e r w i t h a s p e c i f i c s e l l e r 

10 m a p p i n g ( a d d r e s s = > m a p p i n g ( a d d r e s s = > u i n t 2 5 6 ) ) p u b l i c b i d d e r A u c t i o n s W o n W i t h S e l l e r ; / / b i d d e r = > s e l l e r = > c o u n t 
Listing 4: Solidity Mappings for Auction and Bidder Tracking.

5.1. Testing

The system was tested and validated using Ganache Truffle Suite (v2.7.1) [35] to ensure that its logic functions correctly, main

taining fairness and security in the auction process. The system was evaluated by executing the main smart contract functions under 
various scenarios.
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Fig. 7. Create and activate auction output details. 

Fig. 8. 𝑝𝑙𝑎𝑐𝑒𝐵𝑖𝑑 function output details. 

Fig. 9. 𝑒𝑛𝑑𝐴𝑢𝑐𝑡𝑖𝑜𝑛 function output details. 

1. Auction Creation and Activation

This test verifies the creation and activation of an auction. The seller initiates the auction by setting parameters such as the 
starting price, reserve price, and duration before enabling bidding. As shown in Fig. 7, an auction with ID 0 was successfully 
created and activated, with a transaction cost of 0.0083 ETH for creation and 0.0012 ETH for activation.

2. Bid Submission

Once the auction is active, bidders can place bids. This test evaluates the 𝑝𝑙𝑎𝑐𝑒𝐵𝑖𝑑 function, ensuring correct bid processing and 
real-time computation of 𝐵𝑆𝑆 and 𝐹𝑖,𝑗,𝑘. As shown in Fig. 8, Bidder 0𝑥5𝑒92𝐹4𝑒4𝐹0𝑏1𝐹2𝑎03𝐹38𝑐𝐷𝑐𝐹𝐶𝐶8𝑓68𝐷808𝐴𝑐6𝑓5
placed the ninth bid. The contract tracks the bidder’s patterns and applies the calculated penalty.

3. Auction Termination

The 𝑒𝑛𝑑𝐴𝑢𝑐𝑡𝑖𝑜𝑛 function ensures that the auction closes once the predefined duration has elapsed, preventing further bids. As 
shown in Fig. 9, the function successfully finalises the auction based on the highest valid bid.

6. Discussion

The decision to implement SB prevention through smart contracts ensures a transparent, decentralized, and tamper-proof mecha

nism. Smart contracts serve as a consensus layer between bidders and sellers, enforcing predefined rules without requiring a trusted 
third party. This makes fraudulent auction manipulation unprofitable for dishonest sellers while discouraging malicious behaviour 
through automated penalties. Additionally, smart contracts manage assets, handle deposits, and securely store transaction history in 
a decentralized environment, making them well-suited for addressing auction fraud [8].

Shill bidders intend to inflate auction prices beyond the reserve to boost seller profits. To evaluate the robustness of the proposed 
BSS model, simulations were conducted to replicate a variety of advanced manipulation strategies observed in online auctions. These 
included single-account SB, multi-account coordination, and time-based collusion. Each scenario was executed over 50 independent 
auction runs to evaluate consistency and detection accuracy.

Table 1 summarises the manipulation tactics and indicates which BSS metrics were most affected in each case. The results confirm 
that the model captures distinct behavioural patterns associated with different forms of SB.

The results show a clear distinction between the manipulation strategies. As illustrated in Fig. 10, the median BSS reached 
approximately 76% for multi-account SB, 72% for single-account shilling, and 68% for time-based collusion. In contrast, honest 
participants—including aggressive but fair bidders—consistently displayed substantially lower BSS values. These stable outcomes 
across multiple runs indicate the system’s capacity to distinguish legitimate competitive behaviour from manipulative bidding. The 
scoring also remained consistent and reproducible, with repeated simulations showing minimal variance, confirming the reliability 
of the detection mechanism under varied auction conditions.

Beyond simulated testing, the system was also evaluated in a controlled auction scenario reflecting real bidding patterns involving 
both honest and shill bidders. Table 2 presents a case where two shill bidders were actively engaged to inflate the auction price 
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Table 1
Mapping of BSS Metrics Impact for Different SB Strategies.

BSS Metric Single-Account SB Multi-Account SB Time-Collusion SB 
𝛼 High Medium Low 
𝛽 Medium Medium High 
𝛿 High High High 
𝜖 High High Medium 
𝛾 Medium Medium High 
𝜂 Medium High High 
𝜅 Low Low Low 
𝜁 High High Medium 
𝜄 Low Low High 

Fig. 10. BSS results across 50 auction simulations for Single-Account, Multi-Account, and Time-Collusion SB strategies. 

Table 2
Bid history of auction test with shill bidders.

Bidder Address Bid Time Bid amount (ETH) Shill Score (%) Penalty 
ShillBidder1 10:43:32 0.40 83.76 0.0176 
ShillBidder1 10:43:59 0.50 84.10 0.022 
ShillBidder2 11:30:06 0.70 50.83 0.012 
ShillBidder2 11:30:35 1.00 60.42 0.032 
ShillBidder2 11:30:49 1.30 67.70 0.047 
ShillBidder2 11:31:02 1.40 81.83 0.06 
HonestBidder1 11:38:32 1.45 43.00 0.034 
ShillBidder2 11:41:54 1.55 76.98 0.063 
HonestBidder2 11:42:42 1.71 45.66 0.042 
HonestBidder1 11:59:28 1.72 42.82 0.04 
HonestBidder2 11:59:30 1.77 57.77 0.055 
ShillBidder1 13:26:17 1.87 69.26 0.068 
HonestBidder1 13:29:38 1.91 37.12 0.039 
ShillBidder1 13:30:00 2.21 57.21 0.068 
ShillBidder1 13:30:16 2.31 67.31 0.082 
ShillBidder1 13:30:44 2.51 65.15 0.087 
ShillBidder2 14:11:10 2.81 54.25 0.082 
HonestBidder2 14:13:55 2.94 45.31 0.072 
ShillBidder1 14:14:13 3.04 64.86 0.11 
HonestBidder1 14:14:25 3.06 35.47 0.06 

above the reserve. Using separate accounts, the malicious participants executed successive bids characterized by early bidding, rapid 
outbidding intervals, and incremental price steps. The reserve price was set at 2 ETH, and the auction progressed with layered SB 
actions until honest bidders intervened. 

We compare the seller’s profit before and after applying penalties. Without penalties, the seller’s net profit 𝑃profit, as defined in 
Equation (14), would be 1.06 ETH. After applying 𝐹𝑖,𝑗,𝑘, the total cost 𝐶total charged to shill bidders, calculated using Equation (13), is 
0.85 ETH. Consequently, the seller’s actual net profit 𝑅profit is reduced to 0.21 ETH, which is only 10% higher than the reserve price. 
The observed reduction in profit removes the financial motivation for SB, making continued manipulation economically unviable. 
In the simulated auction, two coordinated shill bidders employed a range of deceptive tactics, including early bidding, successive 
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Table 3
Comparison of SB Techniques.

Paper System Type Prevention or 
Detection

Technique Real-time Data Source Scalability 
Challenge

Cost 
Sensitivity

Majadi et al. [32] Centralized Detection Live Shill Score Algorithm Partial Synthetic + Real ✗ ✗ 
Anowar et al. [21] Centralized Detection Machine learning ✗ Synthetic ✓ ✗ 
Kaur et al. [24] Centralized Prevention Variable Bid Fee ✓ Not Required ✗ ✗ 
Our Work Decentralized Prevention Smart Contract + Dynamic Penalty ✓ Synthetic + Real ✓ ✓(Gas fees) 

Table 4
Estimated On-Chain Storage vs. Hybrid Storage and Reduction.

Component Current On-Chain Size Hybrid On-Chain Size Reduction 
Auction 448 bytes 300 bytes 33% 
Bid (100 bids) 8,400 bytes 100 bytes (hash) 99% 
BidderAuctionStats (10 bidders) 4,480 bytes 200 bytes 95%

Total per auction 13,300 bytes (13.3 KB) 600 bytes 95% 
Total for 1,000 auctions 13.3 MB 0.6 MB 95% 

outbidding, short bid intervals, and bid layering across two separate accounts. These behaviours were reflected in the recorded bidding 
sequence and were successfully identified by the system. The ability to detect both timing-based and identity-obscured manipulations 
confirms that the combined metric model can reliably capture advanced collusion strategies. These results indicate that the system 
can recognise not only isolated suspicious signals but also coordinated patterns consistent with real-world auction fraud.

Compared to earlier methods summarised in Table 3, previous solutions have largely focused on offline or post-auction detection 
within centralised environments. These approaches are susceptible to data tampering and lack transparency. In contrast, the proposed 
system enforces detection directly on-chain, enabling real-time monitoring in English auctions. The open bidding process is well 
aligned with blockchain’s transparency, allowing bids to be evaluated as they are submitted. Prior work, such as Trevathan’s Shill 
Score Algorithm [32] and Rubin’s anomaly-based reputation system [20], operate only after the auction concludes. By contrast, our 
system introduces deterrence during the bidding process itself. Machine learning approaches [21] offer strong detection capabilities, 
but face scalability challenges in real-time contexts and rely on stochastic processes, which are incompatible with the deterministic 
execution required by smart contracts. Kaur’s fixed-fee scheme [24], while simple, lacks adaptability—its static penalties may unfairly 
penalise legitimate bidders. The proposed model addresses these limitations by introducing dynamic penalties that scale with the 
degree of suspicious behaviour, ensuring fair treatment for competitive but honest participants. It is implemented using lightweight 
logic and efficient storage, tailored for smart contract environments. By combining tamper resistance, real-time enforcement, and 
economic disincentives, the system provides a reliable approach for fraud detection in open decentralised auctions. Additionally, 
all interactions are recorded on-chain, supporting retrospective analysis and enabling the smart contract to function as a consensus 
mechanism between participants. 

As this represents the first approach to preventing SB in decentralized auctions using smart contracts, further validation is re

quired. In particular, testing must be conducted with actual blockchain-based auction data to evaluate the effectiveness of the nine 
selected metrics and to standardize their application in identifying suspicious bidders. While Solidity mappings and event logs im

prove data access efficiency, gas fees and storage overhead remain concerns, particularly in high-volume scenarios. To assess the gas 
cost implications of the proposed system, we conducted an experiment measuring both gas consumption and execution latency for 
core smart contract operations, including auction creation, activation, bidding, and finalisation. Multiple iterations were performed, 
with specific attention to the performance impact introduced by the SB detection and dynamic penalty logic embedded within the 
placeBid function. Fig. 11 presents the results of this evaluation, conducted in a simulated environment using Ganache. As shown 
in Fig. 11a, gas consumption for placeBid increases linearly with the number of bids, reaching approximately 35,000 gas units for 
auctions involving 100 bids. This reflects the cost of storing bidder histories and performing real-time behavioural checks on-chain. 
Although mappings and event logs reduce redundancy and improve data retrieval, maintaining detailed records entirely on-chain 
remains expensive. Nevertheless, gas usage for placeBid remains within a practical range, especially when compared to more 
resource-intensive functions such as createAuction. This suggests that while the system adds complexity to support secure and 
fair bidding, the overhead remains acceptable for typical workloads. This highlights a broader limitation of the current architecture, 
which stores all bid data, bidder statistics, and auction records on-chain to ensure transparency and verifiability. To quantify the 
storage impact, we conducted an estimation based on the smart contract’s data structures, as summarised in Table 4. For a scenario 
involving 1,000 auctions with 100 bids each, the estimated on-chain storage requirement is approximately 13.3 MB. This would 
incur considerable gas costs and present scalability challenges. To mitigate this issue, a hybrid storage approach could be adopted. 
By retaining only essential data—such as the final bid, bidder address, and verification hashes—on-chain, and offloading detailed 
bidding histories and statistics to decentralised storage platforms such as IPFS, the on-chain footprint can be reduced by over 90%. 
This makes the system more suitable for large-scale, high-frequency auction settings.

To assess potential latency concerns associated with deploying the BSS model on-chain and computing nine metrics per bid, we 
evaluated the system’s performance under increasing load. Fig. 11b shows the average transaction latency for key contract functions 
across varying numbers of bids. The results indicate that the placeBid function maintains stable latency, averaging around 300 ms 



Information Sciences 718 (2025) 122374

16

M.A. Bouaicha, G. Destefanis, T. Montanaro et al. 

Fig. 11. Evaluation of gas usage, latency, and scalability of system functions. 

even with 100 bids, despite the additional overhead introduced by behaviour analysis and metric computation. This remains within 
acceptable bounds for decentralised auction environments. For context, most eBay auctions receive fewer than 50 bids [36], with the 
Palm Pilot PDA dataset reporting a maximum of 51 bids [37]. Fig. 11c compares the latency of the proposed function with a baseline 
version. While the dynamic function introduces additional delay due to real-time score computation, it scales linearly and reaches 
approximately 200 ms at 100 bids, compared to 30 ms for the baseline. A parallel stress test using 100 accounts (Fig. 11d) shows 
peak latency of 120 ms, confirming that the penalty mechanism does not cause excessive delay or compromise responsiveness. Even 
under high load, the bidding process remains responsive and does not show signs of slowdown or vulnerability to denial-of-service 
behaviour. It is important to note, however, that these results were obtained in a controlled environment using the Ganache network, 
which does not fully replicate the characteristics of live Ethereum testnets or mainnet. Real-world deployments are subject to greater 
variability in gas prices, network congestion, and block confirmation times. Future testing on public testnets will be conducted to 
better capture these operational conditions. 

7. Limitations

While the proposed blockchain-based auction system effectively mitigates SB, certain limitations present opportunities for further 
research and development.

7.1. Scalability considerations

The execution of operations on the Ethereum blockchain is faced with scalability challenges due to the cost of on-chain computa

tion. As previously discussed in the performance evaluation, functions such as placeBid demonstrated increasing gas usage as bid 
volumes grew, reaching approximately 35,000 gas units for auctions with 100 bids. Despite optimisations using Solidity mappings 
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and memory-e˙icient data structures, transaction fees remain a major challenge for large-scale deployment. To address this, future 
implementations can explore layer-2 solutions or alternative blockchains with lower transaction costs to improve scalability.

7.2. Storage overhead

Storing full bidder histories and behavioural metrics on-chain results in substantial storage costs. As shown in our analysis, 
supporting 1,000 auctions with 100 bids each requires approximately 13.3 MB of on-chain data, making large-scale deployment 
economically challenging. While mappings optimise data access, the cost of maintaining large volumes of persistent data remains 
high. A hybrid storage model could address this limitation by keeping only essential information—such as verification hashes—on

chain, while storing detailed bidding records off-chain. This approach can reduce on-chain storage requirements by over 90% and 
significantly improve system scalability.

7.3. Validation opportunities

Blockchain-based auctions are relatively new, and no real-world data exists to test SB patterns in decentralised environments. While 
the proposed metrics are derived from previous research on auction fraud in centralised environments, additional empirical testing 
would provide stronger validation for different auction scenarios. One possible future work would include developing simulation 
frameworks and collecting empirical data as blockchain auctions see more use.

7.4. Deployment variability

Although initial results from simulation are promising, testing was conducted on a controlled local network. Real-world deploy

ments on testnets or mainnets experience higher variability in gas prices, network congestion, and transaction confirmation times. 
Further testing in live environments is necessary to capture these dynamics and fine-tune system performance.

7.5. Detection refinement

The transparency of blockchain transactions ensures trust but also allows shill bidders to observe and adapt their bidding strategies 
in order to avoid detection. While the current model uses fixed-weight scoring for simplicity and verifiability, we acknowledge that 
such static configurations may be vulnerable to evolving adversarial behaviour. To address this, future research will explore adaptive 
scoring mechanisms and feedback-based weight tuning to enhance resilience. Further extensions may also target more sophisticated 
forms of collusion beyond the nine core patterns addressed in this work, ensuring the system remains robust over time and effective 
in increasingly complex auction environments.

7.6. User experience balance

The penalty system applies to all participants, which may impact legitimate bidders who adopt aggressive but honest bidding. 
While the current system provides a good balance between deterrence with usability, future improvements can introduce new ap

proaches that minimize false positives while maintaining strong fraud prevention capabilities.

These limitations do not detract from the contributions of this work but instead highlight potential directions for advancing 
secure and transparent auction systems. This framework represents a foundational step toward blockchain-based SB prevention, 
demonstrating its effectiveness in making fraudulent behaviour economically unfeasible.

8. Conclusion and future work

This paper presents a blockchain-based English auction system with an integrated anti-shill bidding mechanism. The proposed 
framework addresses one of the most challenging vulnerabilities in online auctions by using smart contracts to detect and deter SB 
in real time. The system makes three contributions to decentralized auction security.

First, we introduce a dynamic penalty mechanism based on the Bid Shill Score (BSS) and the dynamic penalty fee model, which 
evaluate nine distinct bidding patterns to identify and deter suspicious bidders. Unlike traditional post-auction analysis methods, this 
approach prevents manipulation in real time, making fraudulent bidding economically unviable. Simulation results confirmed the 
effectiveness of this approach, with median BSS values successfully distinguishing between honest and shill bidders across multiple 
advanced attack scenarios. Notably, coordinated multi-account and time-collusion attacks produced BSS scores exceeding 68--76%, 
while honest bidders remained significantly lower.

Second, the implementation demonstrates that blockchain technology guarantees a transparent and tamper-proof auction ecosys

tem while maintaining decentralization. The consensus mechanism via smart contracts ensures applying the predefined rules, ensuring 
fairness for legitimate bidders. Testing confirms that the system effectively reduces the profitability of SB for sellers.

Third, the framework balances detection accuracy with computational efficiency, which is essential for real-world deployment. 
Performance evaluations showed that the bidding function maintained low latency, averaging around 300 ms even with 100 bids, 
while gas consumption remained within reasonable bounds. These results indicate that the approach is practical and scalable for 
typical auction volumes.
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Future work will focus on further validation and optimization. We aim to explore an agent-based simulation environment with 
actual auction data to validate and refine the BSS accuracy. Furthermore, we look into off-chain data storage methods and layer-2 
scaling solutions to reduce gas costs while maintaining security guarantees, which will make the system more feasible for high

frequency auctions. Furthermore, the model currently relies on fixed-weight scoring, which may be susceptible to adaptive adversaries. 
Future research will address this by investigating adaptive scoring and reinforcement-based tuning to enhance detection robustness. 
Additionally, full formal verification and live testnet deployments are planned to further validate the security and resilience of the 
proposed solution.

This study provides a foundation for secure and transparent decentralized auction systems. By making SB economically unfeasible, 
the proposed framework supports fair competition and enhances confidence in blockchain-based online commerce. As decentralized 
marketplaces continue to develop, this work contributes to ensuring their integrity and long-term sustainability.
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