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Abstract. The aerodynamic performance of rotorcraft blades critically impacts rotor system efficiency, directly 
influencing lift, fuel consumption, and aircraft endurance. Conventional fixed-blade designs constrain 
aerodynamic optimisation across varying flight conditions. Refining techniques applied to rotational aerodynamics 
presents significant challenges: (a) high complexity, (b) time consumption, and (c) susceptibility to errors. In 
parallel with advances in non-conventional rotor blade designs, artificial intelligence (AI) has emerged as a 
transformative technology in aerodynamic modelling, offering enhanced computational capabilities and efficiency. 
This paper demonstrates how integrating AI-driven aerodynamic modelling facilitates rapid approximation of 
performance parameters. Specifically, the study addresses three objectives: 1) streamlining methodology while 
maintaining accuracy, 2) substantially reducing calculation time, and 3) minimising or eliminating errors in manual 
processing. A Python-based Automation Logic (PAL) algorithm is employed to automate estimation of 
aerodynamic parameters, reducing reliance on iterative, labour-intensive techniques. Processing time decreased 
from approximately 200 hours to under 7; a 97% reduction, while preserving computational fidelity and 
eliminating the ~1.4% rounding error found in manual integration. The findings underscore the transformative 
potential of AI-driven methodologies in rotorcraft aerodynamics, enabling faster, more reliable, and 
computationally efficient analyses. Ultimately, the study illustrates how accuracy, speed, and innovation can co-
exist rather than be mutually exclusive.

1 Introduction 
Over the past few years, Artificial Intelligence (AI) has 
asserted itself not as a fleeting novelty but as a 
transformative pillar within the evolving landscape of 
aerospace engineering, particularly in the realm of 
aerodynamics. When judiciously trained; balancing the 
pitfalls of overfitting and underfitting, AI methodologies 
have shown remarkable efficacy in augmenting and, in 
select cases, rivalling traditional approaches such as 
Computational Fluid Dynamics (CFD) and wind-tunnel 
experimentation. While these classical techniques remain 
benchmarks for fidelity and physical accuracy, they are 
undeniably constrained by prohibitive computational and 
temporal demands. What has become increasingly evident 
is that data-driven AI frameworks, particularly those 
grounded in machine learning, afford an unprecedented 
combination of computational expediency, predictive 
reliability, and adaptability. These systems can resolve 
complex aerodynamic flow features in a fraction of the 
time required by conventional solvers, and more 
importantly, facilitate real-time optimisation cycles, a 
capability previously inaccessible at this scale. Moreover, 
they enable exploration of aerodynamic regimes that 
would otherwise remain impractical due to the sheer cost 
or intricacy of exhaustive simulations or experimental 
investigations. Their capacity to interpolate and, in some 
instances, extrapolate (performance parameters and rated 
engine power, to name but a few) with a high degree of 
fidelity renders them an invaluable asset in both 
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preliminary design and detailed analysis phases. The 
maturation of AI (an on-going process, expected to 
accelerate significantly over the next decade) as a 
methodological counterpart, if not successor, to legacy 
aerodynamic tools marks a paradigm shift in the design 
and analysis of aerospace systems. This study does not 
suggest the obsolescence of classical aerodynamic 
methodologies; rather, it demonstrates that Artificial 
Intelligence fundamentally enhances and expands the 
aerodynamicist’s analytical arsenal. We are witnessing 
the advent of a methodological convergence; one in which 
accuracy, computational velocity, and design innovation 
are no longer opposing forces to be balanced, but 
synergistic attributes to be simultaneously realised. In this 
light, AI does not replace tradition; it elevates it, 
signalling a transformative chapter in the evolution of 
aerodynamic science. Aulich et al. [1] developed a 
transformer-based AI model for rapid 3D flow prediction 
in turbomachinery compressors, bypassing CFD mesh 
dependencies by directly mapping geometry and 
boundary conditions to flow fields. The model, with ~47 
million parameters, was trained on 1,500 samples derived 
from 500 RANS simulations and achieved a 20-90× 
speed-up over traditional CFD (10–15 s vs. 5-15 min per 
case) whilst overpredicted isentropic efficiency by ~1%, 
a significant margin in compressor optimisation. Despite 
this, it preserved relative performance rankings, making it 
suitable for early design filtering. However, only 8 of 100 
AI-optimised designs converged in CFD, underscoring 
limitations in physical reliability when extrapolating 
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beyond the training set. The authors suggest its strength 
lies in multi-fidelity frameworks where speed outweighs 
strict accuracy. Similarly, another AI-enhanced Blade 
Element Momentum (BEM) approach was introduced by 
Prajapat et al. [2]. Their method integrated neural network 
algorithms directly into traditional BEM formulations for 
wind turbine performance prediction, enabling significant 
gains in computational speed and predictive accuracy. 
Despite these advantages, this hybrid approach remained 
sensitive to the quality and size of training datasets, 
limiting its robustness in certain operational scenarios. 
Further extending the potential of AI in aerospace 
simulations, Axios (2025) described advancements 
utilising AI-powered simulation environments such as 
Altair’s HyperWorks® and PhysicsAI™. These platforms 
substantially reduced traditional aerodynamic simulation 
times from weeks to mere seconds (i.e. up to 1,000x faster 
than traditional solver-driven simulations), profoundly 
accelerating iterative design processes. However, the 
interpretability of these AI algorithms posed challenges, 
particularly concerning validation, transparency, and 
regulatory acceptance in practical aerospace 
environments [3]. Bauersfeld et al. [4] introduced 
NeuroBEM, a hybrid quadrotor dynamics model 
combining Blade Element Momentum (BEM) theory with 
a neural network to capture residual aerodynamic forces 
and torques. Trained on 1.8 million datapoints from 96 
flights (up to 65 km/h, 46.8 m/s²), the model learns from 
50 ms of state history using a TCN-medium architecture. 
The hybrid model achieved a 50% reduction in 
force/torque RMSE (to 0.335 N and 0.012 Nm) versus 
existing methods and lowered positional RMSE in closed-
loop simulations from ~0.8 m to <0.3 m. It also 
demonstrated only ~20% degradation when trained on 
low-speed data, outperforming models like PolyFit which 
failed entirely under the same conditions. However, 
limitations include increased computational cost ~100 µs 
per step for BEM and NN components, versus 1 µs for 
simple parametric models. Purely learned models also 
occasionally introduced unstable feedback loops. While 
NeuroBEM showed strong generalisation, its advantage 
diminished at low speeds (<5 m/s), where traditional 
models remained competitive at lower computational 
cost. 

Wei et al. [5] also used Neural Networks(NNs) when 
introducing DeepGeo, a neural network-based framework 
that simultaneously optimised shape and mesh 
deformation. This model was found to simplify the 
parameterization process, allowing for faster convergence 
to optimal aerodynamic designs. Their study also 
highlighted the potential of AI to directly handle high-
dimensional geometric and aerodynamic variables, 
making it a valuable tool for complex design 
scenarios.Yan et al. [6] developed an optimisation 
framework for aerodynamic shape design that combined 
reinforcement learning (RL) and transfer learning (TL) to 
enhance efficiency and accuracy. The framework used the 
deep deterministic policy gradient (DDPG) algorithm and 
reduced CFD calls by over 62.5%. Compared to 
traditional methods such as Multi-Objective Particle 
Swarm Optimisation (MOPSO) and Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II), the RL-TL 
approach achieved an 18.67% improvement in lift-to-drag 

ratio and faster convergence, demonstrating its 
effectiveness for efficient aerodynamic optimisation. 

Dabaghians et al. [7] proposed NN-BET, a hybrid 
surrogate model that integrates Neural Networks (NN) 
with Blade Element Theory (BET) to predict rotor 
aerodynamic loads. The approach utilises a neural 
network to estimate mean inflow, which is then passed 
into the BET framework to compute aerodynamic forces, 
effectively embedding physical knowledge into the 
learning pipeline. To evaluate the effectiveness of this 
physics-informed structure, NN-BET was benchmarked 
against a conventional NN trained with the same data and 
architecture. NN-BET achieved higher predictive 
accuracy, validating the advantage of incorporating 
domain-specific physics. Additionally, it delivered results 
at ~10× faster speeds compared to the conventional Blade 
Element Momentum Theory (BEMT), while maintaining 
comparable fidelity. The key strengths of NN-BET 
include its computational efficiency, enhanced 
generalisation, and suitability for design optimisation and 
multidisciplinary analysis workflows, where both speed 
and accuracy are critical. The study also underscores the 
value of physics-based hybrid modelling, showing that 
embedding intermediate aerodynamic variables improves 
model interpretability and reduces reliance on large 
datasets. While no major limitations were reported, the 
approach assumes that the predicted mean inflow 
adequately captures unsteady effects, which may not 
generalise to all rotorcraft regimes. 

Phillips et al. [8] proposed an efficient Uncertainty 
Quantification (UQ) framework for Design Under 
Uncertainty (DUU) that integrates analytical derivatives 
into multidisciplinary design optimisation using NASA’s 
OpenMDAO platform. The approach replaces 
conventional gradient estimation techniques (e.g., finite 
differences) with non-intrusive Polynomial Chaos 
Expansion (PCE), enabling direct differentiation of 
confidence intervals. This significantly reduces the 
computational burden of UQ, cutting function calls by 
87%, from 30,952 to 3,816, in a representative case study. 
The method was demonstrated on aerodynamic wing 
design problems. In a range-optimisation task, the 
uncertain-optimal design achieved a 10.2% higher lower-
bound range compared to the nominal-optimal design, 
despite a modest 1.2% reduction in mean range and a 
trade-off in structural mass (wing weight increased from 
8,338 kg to 9,291 kg). In a separate lift-to-drag ratio (L/D) 
optimisation, the robust solution yielded a significantly 
better worst-case L/D (12.71 vs. 8.03) while maintaining 
an acceptable central value (15.73 vs. 16.11). Key 
advantages include the framework’s modularity, 
compatibility with gradient-based optimisers, and 
suitability for incorporating confidence-bound objectives 
or constraints directly into the optimisation. However, the 
method relies on reasonably accurate prior statistical 
estimates (e.g., mean and variance) and may struggle with 
vanishing gradients when confidence bounds lie far from 
nominal predictions. The reviewed literature reveals a 
broad and rapidly evolving landscape of advanced AI-
driven and automated algorithmic techniques that are 
reshaping methodologies within aerospace engineering; 
particularly in aerodynamics. From hybrid neural-BET 
models and transformer-based surrogates to 



reinforcement learning optimisers and uncertainty-aware 
frameworks, these innovations consistently demonstrate 
substantial gains in speed, scalability, and predictive 
capability. In most instances, the benefits decisively 
outweigh the limitations, which primarily stem from two 
persistent challenges: (a) the need for extensive training 
time, and (b) the risks of overfitting or underfitting. 
Encouragingly, recent studies show that such limitations, 
especially prolonged training times, are becoming 
increasingly manageable with the emergence of more 
efficient, physics-informed, and data-efficient 
architectures. Included within this investigation is an 
automated, AI-based study that demonstrates how 
artificial intelligence can serve as a powerful extension of 
the aerodynamicist’s toolkit; enhancing accuracy, 
predictability, and supporting or even streamlining 
traditionally manual tasks such as Blade Element Method 
(BEM) calculations. This integration underscores and 
supports the argument that AI’s emerging role is not as a 
replacement, but as a valuable augmentative force in 
advancing aerodynamic analysis and design. 

2 Methodology and setup  
In this investigation, we examine the aerodynamic 
behaviour of a morphing rotor blade based on the 
geometry of the Sea King helicopter. The study focuses 
on evaluating key performance parameters; lift coefficient 
(CL), drag coefficient (CD), and the lift-to-drag ratio 
(CL/CD), using a combination of three tools: CROTOR, 
Blade Element Method (BEM) calculations, and a 
custom-built Python-based Automation Logic AI 
algorithm. The methodology begins with the rotor blade 
being designed to precise specifications (Table 1) within 
the CROTOR environment. CROTOR is then used to 
simulate the blade’s performance under defined operating 
conditions, generating the initial raw aerodynamic output 
data. From this point, the process diverges into two 
analysis paths: 

 
(a) A manual route, wherein the CROTOR-

generated outputs are processed using traditional 
BEM equations to compute the CL/CD values 
numerically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Manual processing architecture to approximate CL/CD  
(b) An automated route, which employs a AI-

assisted Python-based Automation Logic 
algorithm to process the raw output data, perform 
real-time calculations, and iterate through the 
processing in a looped structure; thereby 
streamlining what would otherwise be a labour-
intensive computation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Automation Logic AI-Assisted Processing to 

calculate CL/CD  
 

These two approaches are then compared across three 
critical dimensions: 1) streamlining of the methodology, 
2) time required to obtain results, and 3) susceptibility to 
human or computational error. The aim is to evaluate 
whether AI-driven automation can meaningfully enhance 
aerodynamic performance analysis, particularly in the 
context of morphing rotor configurations. 
 
 
 

 
 
 
 
 

Fig. 3. Baseline Sea King Rotor Blade in a 5-Blade 
Configuration as Defined by CROTOR 
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Fig. 4. Baseline outputs for Sea King rotor blade in a 5-blade 
configuration(untwisted) as defined by CROTOR 
 

Figure 4. presents the baseline outputs for the Sea 
King rotor blade(untwisted). The input parameters are 
from Table 1. Additionally, the local ܥ௟  and ܥௗ values 
along the baseline rotor blade’s span (Radii) are 
presented in Table 2.  

 

Table 1. Characteristics for Sea King Rotor Blade and 
operational environment 

Parameter Symbol                Unit 

in-flow velocity vi                                 1 m/s 
rotor radius 
hub radius 
angle of attack 
positive twist angle 
rotations per minute 
chord length 
flight segment 
NACA 
environmental 
conditions 

R                             8.7 m 
HR                      0.375 m 
AOA                      º 
+Φ                    º 
RPM                  203 
c                               0.053R (0.44 m) 
Hover 
0012 
SLS                    Sea Level Standard 

 
 
 

Table 2. Baseline segment-specific lift (dL) and drag (dD) 
outputs for the baseline at specific radii positions 

      Radii Local Cl (ri) Local Cd (ri) 

0.09348 0.01647 0.01324 
0.11797 1.00268 0.01206 
0.15665 1.42647 0.01276 
0.20123 1.49432 0.01446 
0.24812 1.50350 0.01741 
0.29580 1.50649 0.02033 
0.34350 1.50816 0.02308 
0.39079 1.50940 0.02577 
0.43737 1.51047 0.02853 
0.48299 1.51147 0.03145 
0.52748 1.51247 0.03462 
0.57066 1.51350 0.03810 

0.61239 1.51457 0.04194 
0.65253 1.51570 0.04621 
0.69096 1.51691 0.05094 
0.72756 1.51820 0.05620 
0.76221 1.51958 0.06210 
0.79482 1.52105 0.06926 
0.82529 1.52261 0.07837 
0.85354 1.52428 0.08985 
0.87948 1.52605 0.10395 
0.90304 1.52792 0.12075 
0.92416 1.52990 0.14016 
0.94276 1.53197 0.16200 
0.95881 1.53414 0.18599 
0.97225 1.53639 0.21180 
0.98305 1.53873 0.23907 
0.99117 1.54115 0.26745 
0.99660 1.54363 0.29662 
0.99932 1.54617 0.32630 

 
Now that the raw data has been extracted from CROTOR, 
the next step involves applying the Blade Element Method 
(BEM) to evaluate rotor performance. Firstly, the (a) 
manual route is undertaken, whereby the extracted data 
is processed using classical BEM formulations to 
numerically compute the CL/CD values. This involves 
calculating the local lift and drag forces across discrete 
blade elements, integrating these contributions spanwise, 
and deriving the overall aerodynamic performance 
metrics under the defined flight conditions. 
For a differential blade element segment at radius (r) and 
width (dr), the segment-specific lift(dL) and drag (dD) in 
Hover(µ≈0) are given by the equations (1) and (2).  

 
 

                                                                              (1) 
 

 
                                     (2)  

                       
 

The momentum theory determines the induced velocity 
(vi) which is essential for calculating (Vrel). In its most 
basic application(hover), equations (3) and (4) apply. 

 
 
                              (3) 
 
 
                                               (4) 
 
 

These quantities are then integrated along the span of the 
rotor blade. The total lift coefficient (CL) for the rotor blade 
at hover condition can be estimated using BEMT (5).  

 
 
 
 
 
 
 
 
 
                               (5) 



Solving this format is notably time-consuming, not only 
for the baseline case but especially for hundreds of 
iterations involving different blade spanwise locations 
and twist angles. To mitigate this, the integral is 
reformulated using the trapezoidal rule, allowing for its 
approximation as a summation as presented in equation 
(6).  

 
 
 
 
                                 (6) 
 

The derived formula is the modified trapezoidal method 
when applied to BEMT for a helicopter rotor blade in 
hover mode. The summation form allows to calculate the 
(CL) value by iterating over the blade's span. Similarly, 
the (CD) can be obtained(equation 7). 
 

 
 
 

                (7) 

 
Equations 6 and 7 represent the modified-trapezoidal 
BEM summation approximation of the total lift and drag 
coefficients for a rotor blade in hover. The following is 
the numerical process used to solve for both of these 
equations. 

 
 
 
 
 
 
CL/CD = 17.6127 
 
 

This finalises the extraction of the total lift-to-drag 
ratio (CL / CD) based on the segment-specific lift (dL) and 
drag (dD) values for the manual numerical approach.  
For the current baseline configuration, a total of 58 
radial blade segments were defined. Local 
aerodynamic parameters; namely, the lift coefficient, 
drag coefficient and segmental area, were carefully 
retrieved and tabulated. Each value was independently 
processed to calculate elemental lift and drag, followed 
by numerical integration across the entire blade. This 
resulted in a final total lift-to-drag ratio of (17.6127), 
marking the successful completion of the manual 
method. However, it is important to note that this full 
calculation, across all 58 points, required 
approximately 2 hours of manual effort to complete. 
For the problem at hand, this numerical approach is 
intended to be extended to a morphing rotor blade 
configuration, where multiple fixed and actively 
variable geometries are introduced along the blade 
span. Specifically, morphing is applied to five 
delineated sections at relative spanwise positions of 
r/R=0.75, 0.80, 0.85, 0.90, and 0.95. For each section, 
20 discrete twist angle variations (ranging from 0° to 
+40° in 2° increments) are considered, yielding a total 

of 100 morphing configurations. Given the previous 
timing benchmark, this would result in an estimated 
200 hours of empirical numerical work to complete; 
making this approach prohibitively time-intensive for 
detailed optimisation studies and heavily susceptible to 
errors. To address this, the same computational process 
has been implemented in a fully automated Python 
loop, which reproduces the numerical BEM summation 
with identical methodology and accuracy, but at a 
fraction of the computational time. The use of such an 
automated framework enables rapid iteration over all 
morphing scenarios and provides a scalable, 
repeatable, and robust tool for aerodynamic evaluation 
in morphing rotor blade design. 

3 Discussions  
Figure 2 illustrates the automation logic with its loop-
based architecture, designed to systematically process 
new morphing blade data sets. This procedure involved 
an initial training phase of approximately 1 hour, 
during which the AI-based algorithm was calibrated 
and tested against validated inputs. Once fully 
operational, the loop architecture allowed for each new 
configuration to be processed in roughly 3 minutes, 
with an additional 30-second verification step included 
at the end of each iteration to ensure no runtime or 
logical errors had occurred. Given the total of 100 
morphing configurations under study, the complete 
automated analysis required: 
1 hour (initial training) + 100 × 3.5 minutes = 410 
minutes ~6.83 hours, rounded to approximately 7 hours 
for streamlined reporting. This represents a substantial 
reduction in total analysis time from the original 200 
hours required for manual empirical calculations, 
bringing the total burden down to just 3.5% of the 
original workload. While this 7-hour figure is based on 
an idealised pipeline benchmarked for this study, even 
accounting for operational inefficiencies, the actual 
effort rarely exceeded 10 hours in practice; still a 
dramatic improvement over the exhaustive manual 
route, which could have easily surpassed the original 
estimate due to fatigue, transcription delays, or rework 
from accumulated numerical rounding. Moreover, by 
comparing the manually obtained results with those 
produced by the automated loop, it was found that the 
manual method exhibited an average error of 
approximately 1.4% relative to the automated output 
(i.e. CL/CD = 17.61 manual vs CL/CD = 17.85 
automated). This discrepancy is attributed primarily to 
cumulative rounding errors, typically from truncating 
intermediate values at 3 or 4 decimal places. In 
contrast, the automated approach maintained full 
floating-point precision across all operations, 
effectively eliminating this source of error and 
improving result fidelity. Taken together, the 
application of an AI-based Python automation 
framework has not only streamlined the process, but 
also improved computational efficiency, accuracy, and 



practical scalability, making it an indispensable tool for 
rotor blade aerodynamic studies involving high-
dimensional morphing parameter spaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. AI-assisted automation logic processing vs manual 
method metrics 

4 Conclusions  
This study demonstrates the feasibility and 
effectiveness of integrating AI-driven automation 
within the aerodynamic analysis of morphing rotor 
blades. By combining traditional blade element theory 
with a Python-based Automation Logic loop 
architecture, the methodology significantly reduced the 
computational burden; from over 200 hours of manual 
processing to less than 10 hours of automated runtime, 
while preserving accuracy and improving consistency. 
The automated approach eliminated cumulative 
rounding errors observed in manual calculations 
(1.4%). These improvements not only streamline the 
process for high-resolution aerodynamic evaluation but 

also provide a scalable framework adaptable to a broad 
range of rotor geometries and mission profiles. As 
demonstrated, AI can be used as a tool to supplement 
the classical aerodynamic methods; offering a hybrid 
pathway to greater efficiency, precision, and 
innovation in rotorcraft design. Future applications 
may include real-time optimisation, adaptive morphing 
controls, and integration with digital platforms for 
morphing rotor systems. 
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