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ABSTRACT 
 
Cancer progression involves the sequential accumulation of genetic alterations that cumulatively 
shape the tumour phenotype. In prostate cancer, tumours can follow divergent evolutionary 
trajectories that lead to distinct subtypes, but the causes of this divergence remain unclear. While 
causal inference could elucidate the factors involved, conventional methods are unsuitable due 
to the possibility of unobserved confounders and ambiguity in the direction of causality. Here, we 
propose a method that circumvents these issues and apply it to genomic data from 829 prostate 
cancer patients. We identify several genetic alterations that drive divergence as well as others 
that prevent this transition, locking tumours into one trajectory. Further analysis reveals that these 
genetic alterations may cause each other, implying a positive-feedback loop that accelerates 
divergence. Our findings provide insights into how cancer subtypes emerge and offer a foundation 
for genomic surveillance strategies aimed at monitoring the progression of prostate cancer. 
 
Key words: causality, causal inference, cancer evolution, evolutionary divergence, prostate 
cancer 

 
INTRODUCTION 
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Most cancers evolve in a similar way to species and are subject to the same core evolutionary 
principles of mutation, natural selection and genetic drift1,2. One of the key evolutionary 
mechanisms in the natural world is divergent evolution, which can ultimately lead to the 
emergence of new distinct species from a common ancestor in a process known as speciation3. 
In the context of cancer, divergent evolution can happen within an individual tumour, leading to 
distinct subgroups of cancer cells with different properties, such as metastatic potential4 or 
resistance to treatment5. Divergent evolution also occurs across individuals, where tumours from 
similar progenitor cells evolve into genetically and phenotypically distinct cancer subtypes, 
paralleling the concept of speciation in nature. 
 
In prostate cancer (PCa), our recent study6 revealed two evolutionary pathways known as the 
canonical and alternative trajectories. To explain how the pathways were related, we proposed 
the evotype model of prostate cancer evolution, in which tumours start on the canonical trajectory 
but some will diverge onto the alternative trajectory. The cause(s) of this divergence remain 
unknown, although we found tumours on each pathway. We used these properties to infer the 
evolutionary trajectory for each tumour and classify them into evolutionary disease types, or 
evotypes, which revealed that Alternative-evotype tumours displayed a worse prognosis than 
those of the Canonical-evotype6. Therefore, understanding the mechanisms that drive this 
evolutionary divergence would provide valuable insights into the aetiology of these clinically 
relevant subtypes, aiding clinical decision-making and potentially enabling targeted therapeutic 
interventions. 
 
The observed association with AR disruption in Alternative-evotype tumours provides clues into 
the underlying evolutionary dynamics. AR is a central driver of prostate cancer7-9, and its 
behaviour changes throughout disease progression, from normal prostate epithelia, to localised 
tumours, through to metastatic disease10. There is evidence that AR behaviour can be disrupted 
by specific genetic alterations, most notably CHD1 loss11-14, which are significantly enriched in 
Alternative-evotype6 tumours. Taken together, these findings suggest that certain genetic 
alterations lead to acquired AR dysregulation, which in turn promotes progression along the 
alternative trajectory. As direct evidence for this mechanism is lacking, we therefore sought to 
investigate the causal role of these events in driving divergence in prostate cancer evolution. 
 
Determining causality during cancer evolution is fraught with difficulties. Experimental methods 
have been developed that can replicate single nucleotide variants15 but producing copy number 
alterations (CNAs), which are more commonly observed in prostate cancer16, is more difficult to 
perform in the laboratory.  Furthermore, there are no established evotype analogues in cell lines, 
organoids or model organisms making it difficult to relate any experiments back to the human-
derived evotypes. As such, the only option is to infer causality from observational data, although 
this approach presents its own challenges. The standard method for investigating causality 
involves adjusting for confounders, but in complex systems like cancer evolution, it is not 
reasonable to assume that all confounders can be measured and controlled for. We therefore 
need to account for the action of unobserved confounders which requires more nuanced 
probabilistic approaches such as Mendelian Randomisation17-18. However, even these methods 
generally rely on assumptions that are unlikely to hold in the context of cancer evolution. Recently, 
alternative treatments of confounders in cancer pathways were also studied using principal 
components25 and by inferring the causal network39 from the data. However, these studies 
assume linear relationships between variables which may not generally hold. 
 
We therefore propose a semi-parametric two-step method to infer causal relationships in cancer 
evolution from cross-sectional data. We first provide a non-technical introduction to causal 
inference, discuss why current methods are not suitable for this application and describe how our 



method can resolve these issues. We then apply our inference method to CNAs identified in 
prostate tumours from 829 patients from the Pan Prostate Cancer Group (PPCG) data set19. The 
PPCG has assembled a clinically well annotated and diverse collection of WGS data from 1,209 
fresh frozen prostate samples from 1,001 patients. WGS data has been reanalysed with 
standardised pipelines, annotating high-accuracy somatic variant calls, driver mutations and 
mutational signatures. Here, we use this dataset to first investigate causal effects in the chain of 
events from loss of the CHD1 gene, through AR dysregulation, to evolution along the alternative 
trajectory. We then refine our approach to incorporate the direction of causality, allowing us to 
investigate the causal effect of CHD1 loss on the fixation of other genetic alterations. Next, we 
show how our method can be used to identify other possible genetic alterations that may also 
induce AR disruption and therefore cause divergence toward the alternative trajectory.  Finally, 
we discuss the implications of our findings. 

 
 

 
Figure 1 | Causal inference models a) The standard instrumental variables/Mendelian Randomisation model that can be used to 

estimate the causal effect of the exposure on the outcome. b) An invalid instrumental variable model as it has potential confounders 

that affect the instrument and outcome. c)  The proposed causal model that links the cause X and outcome Y, through a mediator 

M, while incorporating two sets of confounders. d) the effective parametric model after U confounder is subsumed into the network 

via do-calculus 

RESULTS 
 
A two-stage approach for causal inference in cancer evolution 
 
Approaches for causal inference using observational data are widely applied, but no single 
method suits every scenario20-21.  As biological processes are inherently stochastic in nature, we 
are interested in a probabilistic, rather than deterministic, framing of causality, wherein a cause 
increases the probability of an outcome rather than guarantying it. In biomedical applications, 
Mendelian Randomisation (MR) is commonly used to infer causality using inherited single 



nucleotide polymorphisms (SNPs) as instrumental variables (IVs)22-24 (Figure 1a). To establish 
causality, we need to account for unobserved confounders (V) that affect both the exposure, Z, 
and the outcome Y. MR achieves this by leveraging genetic variants (X) that are associated with 

the exposure but not directly causal on the outcome. Since the distribution of SNPs in the 
population is essentially random with respect to the exposure, a SNP associated with the 
exposure can be used to replicate the random assignment of participants in a randomised 
controlled trial, thus allowing us to isolate the effect of the exposure on the outcome.   
 
In principle, MR could therefore be applied to cancer evolution to investigate the causal effects 
between an exposure, such as AR dysregulation, and an outcome, such as divergence to the 
alternative trajectory. Indeed, there are a number of somatic genetic alterations that are 
associated with AR dysregulation as potential instruments instead of SNPs. However, unlike 
inherited SNPs, these genetic alterations are not randomly distributed in the population as their 
occurrence and subsequent fixation in the tumour cell population could be influenced by a number 
of unforeseen external factors (Figure 1b).  This violates a key MR assumption, since factors may 
affect both the presence of these genetic alterations and the likelihood of evolutionary divergence. 
A more accurate model therefore incorporates both sets of confounders (i.e. merges the graphs 
in Figures 1a and 1b), but causal inference would be intractable via the MR/IV approach.   
 
We therefore propose a new approach in which the instrument is modified so it is the cause (X) 
of some mediator (M), which itself causes the outcome (Y). This set up allows us to first account 
for unobserved confounders U using a causal inference framework known as do-calculus11, and 
then estimate the maximal confounding effect of V using a semi-parametric approach. This two-
step method therefore allows us to mitigate the effect of both sets of unobserved confounders 
(Figure 1c) whilst retaining tractability in the calculations. We can use this approach to calculate 
causal effect sizes between the mediator (M) and the outcome (Y), mimicking the causal inference 
performed by MR.  Furthermore, we can also quantify the causal effect between cause X and 
outcome Y, mediated by M. Performing inference over the entire causal chain provides additional 

information about the complete process underlying our observations. 
 
We calculate the causal effects through a metric known as the Average Causal Effect (𝐴𝐶𝐸), 
which quantifies the increase or decrease in the probability of observing the effect when X has 

occurred compared to when it does not. Using do-calculus, we first expressed the 𝐴𝐶𝐸 in terms 
of conditional probabilities that remove the influence of confounder U, denoted as 𝐴𝐶𝐸𝑈. As it is 
not possible to incorporate confounding through V using do-calculus, we instead sought to identify 

bounds for 𝐴𝐶𝐸𝑈 in the presence of high, but plausible, levels of confounding through V. If the 
causal effect remains consistent after considering these bounds, it therefore indicates that the 
causal association is robust and holds even in the presence of these potential confounders.  
 
We calculated these by setting up a logistic regression model for the system after application of 
do-calculus to mitigate for U (Figure 1d). We then followed Imbens’ approach26-27 to estimate the 
parameters of this model inclusive of a high, but still realistic, level of confounding through V.  In 

brief, we first performed parameter estimation without confounding through V (i.e. setting 𝜃1 =
 𝜃2 = 0), then used these parameter estimates to set plausible values for 𝜃1 and 𝜃2 (Methods).  
We then performed a second parameter estimation for the remaining parameters to get the final 
estimates for 𝑏1,  𝑏2  and 𝑑.  We found that the effect of confounding by V differs depending on the 
signs of the associated parameters. If 𝜃1 and 𝜃2 have the same sign, then V acts to diminish the 

impact of M → Y, giving the bound 𝐴𝐶𝐸𝑈,𝑉𝑠. However, if 𝜃1 and 𝜃2 have mixed (opposing) signs, 

V acts to enhance the causal association between M and Y, providing the bound 𝐴𝐶𝐸𝑈,𝑉𝑚(𝑀, 𝑌). 

These provide lower and upper bounds for 𝐴𝐶𝐸𝑈,𝑉 in the presence of confounding through V, 



although the bound direction depends on the context of the relationships in the causal chain.  In 
practice, we only utilise the bound with the smallest absolute value. If this bound does not cross 
zero relative to 𝐴𝐶𝐸𝑈, we conclude that the causal effect is robust to confounding by V. We report 
both bounds in this manuscript to aid understanding of the outputs of the method. A full 
explanation of the approach, including what constitutes plausible values for 𝜃1 and 𝜃2 are given 

in Methods.    
 
This allowed us to calculate six causal metrics: 

1) The 𝐴𝐶𝐸𝑈(𝑀, 𝑌) between M → Y, if V can be assumed to be negligible 

2) The 𝐴𝐶𝐸𝑈(𝑋, 𝑌) of the causal chain X → M → Y, if V can be assumed to be negligible. 

3) The 𝐴𝐶𝐸𝑈,𝑉𝑠(𝑀, 𝑌) of the causal chain M → Y with confounding by V as a common cause 

of M and Y 

4) The 𝐴𝐶𝐸𝑈,𝑉𝑚(𝑀, 𝑌) of the causal chain M → Y with confounding by V having opposing 

effects on M and Y 

5) The 𝐴𝐶𝐸𝑈,𝑉𝑠(𝑋, 𝑌) of the causal chain X → M → Y with confounding by V as a common 

cause of M and Y 

6) The 𝐴𝐶𝐸𝑈,𝑉𝑚(𝑋, 𝑌) of the causal chain X → M → Y with confounding by V having opposing 

effects on M and Y 

 
Confidence intervals for these ACE values can be calculated using a bootstrap approach. If these 

do not span 0 then we say the causal effect is significant.   
 
AR dysregulation and CHD1 loss are causal to the Alternative-evotype 
 
A fundamental unresolved question in the evotype model is whether acquired AR dysregulation 
causes divergence toward the alternative trajectory. To investigate this, we identified a genetic 
alteration that causes AR dysregulation. Of the genes affected by genetic alterations significantly 
(Fisher exact, p < 0.05) associated with the Alternative-evotype6, we found that loss of CHD1 is 

known to disrupt the AR cistrome11 as the protein is a known co-factor of AR in DNA binding8. 
Furthermore, loss of heterozygosity (LOH), of a DNA segment spanning the CHD1 gene occurs 
in approximately 85% of Alternative-evotype tumours. Therefore, there is strong evidence that 
CHD1 LOH is causal to AR dysregulation.   
 
Using previously developed algorithms6 we first extracted binary variables corresponding to 
CHD1 LOH (CHD1-), AR dysregulation (AR), and Alternative-evotype (ALT) for 829 patients in the 

PPCG data set (Methods). We then calculated the causal effect between AR dysregulation and 
adherence to the Alternative-evotype for a single confounder U. This yielded 𝐴𝐶𝐸𝑈(𝐴𝑅, 𝐴𝐿𝑇) =
0.69 with a confidence interval CI:[0.52, 0.87] (for %95 confidence level), so this result is 

significant. This can be interpreted as the probability of developing into an Alternative-evotype 
tumour if AR dysregulation had occurred is 0.69 higher than if it had not. This is a very strong 
result considering the range of probability lies in [0,1]. When considering the second confounder 
V,  this gave 𝐴𝐶𝐸𝑈,𝑉𝑠(𝐴𝑅, 𝐴𝐿𝑇) = 0.42, with CI:[0.33, 0.60], again showing statistical significance. 

As this constitutes a lower bound for the causal effect, this is strong evidence that AR is the 
primary factor that drives evolution toward the alternative trajectory. 
 
We can also use our method to investigate how CHD1 LOH itself promotes evolution toward the 
Alternative evotype. Calculating 𝐴𝐶𝐸𝑈,𝑉𝑠(𝐶𝐻𝐷1−, 𝐴𝐿𝑇) gave 0.23 (CI:[0.16, 0.30]), also indicating 

that the full causal chain was significant. If the effect of V were negligible, we find 

𝐴𝐶𝐸𝑈(𝐶𝐻𝐷1−, 𝐴𝐿𝑇) = 0.28, CI:[0.21, 0.36]. This shows that CHD1 loss can be an initiating factor 
in the observed evolutionary divergence. 



   
CHD1 LOH is causally linked to other Alternative-evotype aberrations 
 
We extended our analysis to investigate whether CHD1 loss and AR dysregulation drive the 
fixation of other CNAs, rather than just evolutionary trajectory (i.e. 𝐶𝐻𝐷1 𝐿𝑂𝐻 → 𝐴𝑅 →  𝐶𝑁𝐴j), 

where j is the index of the CNA. One issue with this is that we do not know whether these other 
CNAs could themselves causally influence CHD1 loss as do-calculus does not implicitly account 
for the possibility of reverse causation. We therefore expanded the method to incorporate a 
fundamental principle of causality that cause must precede effect, ensuring that the direction of 
causality is correct in the calculation (Figure 2a). 
 
To determine event order, we utilised the cancer cell fraction (CCF), which quantifies the 
proportion of tumour cells carrying each genetic alteration. We created a set of rules based on 
the CCF values of each CNA for each patient and used this to create new binary inputs and 
outputs that can be input into our method (Methods). The principle is that if the proportion of cells 
harbouring the first CNA in the model, 𝐶𝑁𝐴1, exceeds that of the second, 𝐶𝑁𝐴2, (i.e. 𝐶𝐶𝐹(𝐶𝑁𝐴1) >
𝐶𝐶𝐹(𝐶𝑁𝐴2)), it suggests that all cells with 𝐶𝑁𝐴2 also exhibit 𝐶𝑁𝐴1, which is only possible is 𝐶𝑁𝐴1 

had occurred before 𝐶𝑁𝐴2. In this case we set 𝑋 = 1 , 𝑌 = 0 (and vice versa if the CCF relationship 
is inverted).  However, when the CCFs are equal as the order of these events cannot be inferred. 
If 𝐶𝐶𝐹(𝐶𝑁𝐴1) =  𝐶𝐶𝐹(𝐶𝑁𝐴2) = 0, then we set 𝑋 = 0 , 𝑌 = 0 as we have no evidence the events 
will occur at all, yet alone what order they are in. If 𝐶𝐶𝐹(𝐶𝑁𝐴1) =  𝐶𝐶𝐹(𝐶𝑁𝐴2) = 1, then we know 

both CNAs have occurred but not in what order they occurred.  In this case, we calculate the 
proportion of the population where 𝐶𝐶𝐹(𝐶𝑁𝐴1) > 𝐶𝐶𝐹(𝐶𝑁𝐴2) and assign this proportion (adjusted 
for AR status (Methods)) of the 𝐶𝐶𝐹(𝐶𝑁𝐴1) =  𝐶𝐶𝐹(𝐶𝑁𝐴2) = 1 patients to 𝑋 = 1, 𝑌 = 1, with the 

remaining proportion set to 𝑋 = 0, 𝑌 = 1.  We can use these new data to calculate a metric we 
refer to as the temporal ACE (𝑡𝐴𝐶𝐸).  A full description is given in Methods. 
 
We calculated the 𝑡𝐴𝐶𝐸 of 𝐶𝐻𝐷1 loss toward the set of genetic alterations investigated in our 
previous study6. To aid interpretation, we categorised and ordered the various genetic alterations 
based on whether they are significantly associated (Fisher exact, p<0.05) with the Canonical or 
Alternative-evotypes and hence referred to these as Canonical or Alternative events. By 

calculating 𝑡𝐴𝐶𝐸𝑈(𝐶𝐻𝐷1– , 𝐶𝑁𝐴𝑗) (Figure 2b), we found that CHD1 loss displayed a significant 

positive causal effect on LOH:2q, LOH.13q (RB1, EDNRB), GAIN:7, GAIN:8q (MYC), and 
GAIN.3q; all of these are Alternative events.  In contrast, we observed a negative causal effect 
for some Canonical events following a CHD1 LOH, particularly LOH:17p (TP53) and LOH:21 (the 
LOH associated with the TMPRSS2/ERG fusion) and HD:10q22 (PTEN) – we therefore describe 
these associations as anti-causal.  Conceptually, we consider this effect as blocking divergence 
to the Canonical pathway. Calculating the lower bound incorporating potential confounding 

through 𝑉, 𝑡𝐴𝐶𝐸𝑈,𝑉𝑠(𝐶𝐻𝐷1– , 𝐶𝑁𝐴𝑗), revealed that the causal effect of CHD1 LOH on Alternative 

events is preserved, except for GAIN:8p (Figure 2c). Similarly, for 𝑡𝐴𝐶𝐸𝑈,𝑉𝑚(𝐶𝐻𝐷1– , 𝐶𝑁𝐴𝑗), the 

upper bound for the effect of 𝑉, showed the anti-causal relationship between CHD1 LOH and 

Canonical events LOH:17p (TP53), LOH:21 (TMPRSS2/ERG fusion), and HD:10q22 (PTEN) still 
hold after confounding.  
 
 
 
 
 
 



  

Figure 2 | (a) A schematic showing how the graph showing the causal chain between CHD1 loss and other genetic alterations is 

confounded by unknown direction of causality (left); after modifying the inputs with our CCF-based rules we can establish the 

direction of the causal links between the nodes in this graph (right)   (b) heat map of computed 𝑡𝐴𝐶𝐸𝑈(𝐴𝑅, 𝑌) (middle row) with 

upper CI boundary (top row) and lower CI boundary  (bottom row)) (c) heat map of computed 𝑡𝐴𝐶𝐸𝑈,𝑉(𝐴𝑅, 𝑌) with negligible 

interference of V (middle row); with interference of  Vm (top row); with  interference of Vs (bottom row) (d) heat map of computed 

𝑡𝐴𝐶𝐸𝑈(𝐶𝐻𝐷1– , 𝑌) (middle row) with upper CI boundary (top row) and lower CI boundary  (bottom row (d) heat map of computed 

𝑡𝐴𝐶𝐸𝑈,𝑉(𝐶𝐻𝐷1– , 𝑌) with negligible interference of V (middle row); with interference of  Vm (top row); with  interference of Vs 

(bottom row). The events are displayed in the order of their respective associations with the evotypes - Canonical events to the left 

followed by events with no significant associations to either evotype in the middle and followed by Alternative events to the right. 

 

Next, we calculated the direct causal effect of AR dysregulation on these CNAs, 𝑡𝐴𝐶𝐸𝑈(𝐴𝑅, 𝐶𝑁𝐴𝑗) 

(Figure 2d), which revealed a very similar pattern to the results from 𝑡𝐴𝐶𝐸𝑈(𝐶𝐻𝐷1– , 𝐶𝑁𝐴𝑗) (Figure 

2b). The main difference was that LOH:6q (MAP3K7) displayed greater values for the point 

estimate and the confidence intervals. Similar behaviour was found in the 𝐴𝐶𝐸𝑈,𝑉(𝐴𝑅, 𝐶𝑁𝐴𝑗) 

calculation (Figure 2e). This indicates that while AR dysregulation may act to promote fixation of 
this genetic alteration, it is not necessarily initiated through CHD1 loss.   
 

Alternative-evotype aberrations can cause each other but are blocked by certain CNAs of 
the Canonical-evotype 
 
By relaxing this requirement of an established causal link between the cause and the mediator, 
we can use our method to calculate causal effects for other potential initiating events. This allows 



us to screen all CNAs and identify those that could themselves be potential causes of subsequent 
CNAs, mediated through AR dysregulation (i.e., 𝐶𝑁𝐴𝑖 → 𝐴𝑅 → 𝐶𝑁𝐴𝑗).   

 
We calculated 𝑡𝐴𝐶𝐸 in a pairwise fashion between CNAs, evaluating each CNA’s ability to cause 
others through AR dysregulation (Figure 3). We observe that there are four main quadrants to 
each subfigure of Figure 3, with the top left and bottom right quadrants showing how CNAs of 
associated with the same evotype influence each other, and the bottom left and top right 
quadrants showing how CNAs associated with different evotypes affect each other. The lower 
right quadrant indicates that Alternative-evotype alterations are generally all causal to each other. 
The exception to this is when MAP3K7 LOH or CHD1 LOH was the second event, in which case 
they were only caused by each other, as well as 13qLOH (RB1, EDNRB) and 2q LOH. This implies 
that CHD1, MAP3K7, EDNRB and 2q LOH are the primary driving events in divergence toward 
the Alternative-evotype. Experimental validation of this observation is outside the scope of this 
study, although there are previous studies that show MAP3K7 LOH drives enhanced AR signalling 
which is then amplified through AR cistrome modifications mediated through CHD1 loss29-30. 
 
 

 

 
Figure 3 | Heat map of tACEs between pairs of CNAs. a) temporal causal effect with confounding through U only, 

𝑡𝐴𝐶𝐸𝑈(𝐶𝑁𝐴𝑖 , 𝐶𝑁𝐴𝑗) (b) temporal causal effect with confounding through Vs set to provide a lower bound for Alternative events, 

𝑡𝐴𝐶𝐸𝑈,𝑉𝑠(𝐶𝑁𝐴𝑖, 𝐶𝑁𝐴𝑗). (c) temporal causal effect with confounding through Vm set to provide an upper bound for alternative 

events, 𝑡𝐴𝐶𝐸𝑈,𝑉𝑚(𝐶𝑁𝐴𝑖 , 𝐶𝑁𝐴𝑗).  Greyed out associations are not possible (they cannot cause themselves and an LOH always has 

to precede an HD of the same region). 

 



The upper left quadrant shows the 𝑡𝐴𝐶𝐸 between genetic alterations of the Canonical-evotype.  
These generally have a low absolute 𝑡𝐴𝐶𝐸, indicating very weak causal effects through the AR 

mechanism, if any. Most notably, LOH:17p (TP53) and LOH:21q (TMPRSS2/ERG) show a 
positive causal effect to the other Canonical alterations. This counter-intuitive result arises from 
the fact that the calculations for the ACE and tACE via do-calculus are invariant to whether the 
binary variable for AR dysregulation is 1 for dysregulated or 1 for tumours with no dysregulation.  
Therefore, if AR is very rarely dysregulated in these tumours, it implies that it is actually 
unperturbed AR behaviour that is the link in the causal chain, and this gives the positive tACE 
value. This could indicate that tumours with TP53 loss and TMPRSS2/ERG fusions actually 
require normal AR binding, and that AR dysregulation drives tumour cells into an evolutionary 
dead end so they will die out. This would also explain the mechanism by which they act to “block” 
the transition to the Alternative-evotype and fixation of other Alternative-evotype associated 
CNAs. 
 
The lower left quadrant shows the 𝑡𝐴𝐶𝐸 of Canonical-evotype aberrations when an Alternative-
evotype aberration occurs first.  Interestingly, all of the events are anti-causal to PTEN, TP53 LOH 
and LOH:21q. This can be understood under our hypothesis that alternative events and AR 
dysregulation are positively (causally) linked. Then it, follows, from the  𝑡𝐴𝐶𝐸𝑈,𝑉(𝐴𝑅, 𝑌) calculations 

in the previous section displayed in Figure 2e that the relationships should be anti-causal. Finally, 
the top-right quadrant shows that Canonical alterations are anti-causal to almost all Alternative-
evotype aberrations, particularly CHD1, MAP3K7, EDNRB and 2q LOH – genetic alterations that 
strongly promote convergence to the Alternative-evotype. This supports the aforementioned 
behaviour that Canonical-alterations act as “blockers” to the alternative trajectory. 
 

 

DISCUSSION 
 
Cancer evolution is a complex process, involving a multitude of interacting factors that may 
directly affect (cause) the evolutionary trajectory or emerge as a consequence (effect).  While 
associations between genetic alterations and evolutionary outcomes are simple to calculate using 
significance tests or machine learning feature selection methods, distinguishing causal drivers 
from downstream effects remains a major challenge. 
 
While the instrumental variable/Mendelian Randomisation method ostensibly provided an 
appealing framework, it was ultimately not applicable due to potential confounding between the 
instrument (genetic variant) and the outcome. By reframing the instrumental variable as a causal 
event, we were able to utilise do-calculus augmented by a semi-parametric modelling approach 
to estimate causal effects along a three-event causal chain, while accounting for two sources of 
potential confounders. We treated the effects of confounding between the mediator and the 
outcome as a realistic "worst-case" scenario, providing three causal effect values: one where this 
confounding is negligible and lower and upper bounds when it is high. The ability to generate 
bounds in both directions is critical as the lower and upper bounds allow us to determine if both 
causal and anti-causal effects respectively are sufficiently strong to persist after confounding.  
Conceptually, the ‘upper bound’ is itself an interesting construct as it implicitly models the 
presence of confounders that are causal to one process but anti-causal to another. This is a 
departure from many standard causal inference approaches in which the confounder acts as a 
“common cause” for all the process to which it is linked. The ability to explicitly model confounders 
with opposing effects is particularly desirable in biological systems, where positive and negative 
feedback mechanisms often intertwine. 
 



With the inclusion of confidence intervals derived from bootstrapping, our approach therefore 
provides several layers of information on the robustness of the causal inference.  We believe this 
is the first true causal inference method that can be applied to cancer evolution as methods 
proposed previously only invoke causality in a loose sense, for instance utilising Suppes’ criteria 
to rule out implausible causal associations rather than estimating the causal effects between 
nodes directly31. The scope of these studies differs to ours in that they aim to identify networks of 
evolutionary interactions, so it may be possible to integrate our approach into these to provide 
additional evidence for the network links. 
 
We used our approach to investigate the factors driving evolutionary divergence in prostate 
cancer evolution using genomic data from 829 patients.  Since CHD1 loss is known to cause AR 
dysregulation, we designated these as the cause and mediator, respectively. We found that AR 
behaviour was a statistically significant driver of the evolutionary divergence toward the alternative 
trajectory, with a probability increase of up to 0.7 in evolving along this pathway when 
dysregulation had occurred. We believe that this finding constitutes the first robust evidence for a 
strong causal mechanism underlying the evolution of cancer subtypes in any solid tumour and 
will inspire future studies using causal inference in cancer evolution. In prostate cancer, it reveals 
the pivotal role AR plays in driving the evolution of disease subtypes, indicating that AR 
dysregulation itself could serve as the most informative biomarker in establishing the evolutionary 
fate and therefore risk profile of a tumour.   
 
We also investigated the evolutionary process at a more granular level, incorporating temporal 
information into our approach to enable investigation of the causal effects of CHD1 loss and 
subsequent AR dysregulation in the emergence and fixation of other genetic alterations. We 
identified both positive and negative (“anti-“) causal effects (Figure 2), indicating that the 
behaviour of AR can serve to either enhance or inhibit the fixation of other genetic alterations. 
This indicates the development of a cellular or tumour microenvironment that is (un)favourable to 
the fixation of other genetic alterations. These findings were borne out when we allowed the 
causal association between the first two events in the chain to be assumed rather than evidenced 
(Figure 3). Observing anti-causal associations between genetic alterations associated with 
different evotypes indicate that evolutionary progression can be blocked to some degree, 
suggesting that evolutionary steering via therapeutic interventions may be possible to guide the 
evolutionary progression to a more favourable outcome.  This anti-causality captures known 
underlying exclusive relationships; for instance, the synthetic essentiality of CHD1 in PTEN-
deficient tumours12 manifests as PTEN LOH exhibiting the strongest anti-causal effect observed 
when CHD1 LOH was treated as the outcome (Figure 3a). 
 
The pairwise analysis between genetic alterations also revealed differences in the evolutionary 
dynamics of tumours in the canonical and alternative trajectories. In particular, we found that 
Alternative-evotype-associated alterations were generally positively causal to each other, 
implying the presence of a positive-feedback loop in which the probability of adherence to the 
alternative trajectory exponentially increases with the number of these genetic alterations.  In 
contrast, the genetic alterations associated with the Canonical-evotype were causally neutral to 
each other, implying that locking a tumour onto the canonical trajectory is dependent on the 
stochastic acquisition of a few key genetic alterations. This information could be used to inform 
risk-stratification models.  
 
Although our analysis has provided new insights into the evolutionary dynamics of prostate 
cancer, there are limitations to the method. Any model is a necessary simplification of the 
underlying processes, and our approach is no exception. By reducing our analysis to a three-step 
causal chain, we enhance interpretability and tractability, but this simplification may overlook other 



potential interactions between genetic alterations. To mitigate such model misspecification, we 
restricted the initial analysis to a well-established causal link between CHD1 loss and AR 
dysregulation and incorporated temporal information to ensure the correct direction of causality. 
We therefore believe that our approach, which mimics individual interventions in an experimental 
system, provides a level of evidence comparable to other reductionist methods that only focus on 
relationships that may be part of bigger networks, such as Mendelian Randomisation. 
 
METHODS 
 
Data 
 
We used whole-genome sequencing (WGS) data from the Pan Prostate Cancer Group (PPCG), 
comprising an original set of 1,172 samples from 1,001 prostate cancer donors. Further quality 
control and filtering of this dataset based on sample quality control, copy-number quality and 
blacklisting is described in a companion manuscript10. Alignment and QC, SNV, indel, CNA and 
SV calling were performed as described in a companion manuscript. Driver somatic alterations 
and mutational signatures were also available for this cohort and are reported in two companion 
manuscripts34-35. 
 
Using established methodology36 we determined, for each tumour, which mutations were shared 
across all cancer cells (hereafter described as ‘clonal’), hence defining the MRCA, and which 
mutations were present in just a fraction of cancer cells (‘subclonal’). Clusters of mutations 
appearing at similar cancer cell fraction36 (CCF) were used to define subclones. As subclonal 
mutations necessarily occur after clonal mutations, they may be used to interrogate the temporal 
dynamics of prostate cancer evolution and mutational processes. To ensure sensitive detection 
of subclonal mutations in this study, we limited our analysis to prostate cancers that passed all 
filtering criteria and with a minimum coverage of at least 10 reads per chromosome copy, as 
previously described37. 
 
Copy number alteration calls. CNAs were called by the Battenberg algorithm38 and categorised 
into LOH, HD and Gain.  Binary variables denote if the CNA was present of absent in each tumour. 
AR dysregulation. – DNA double strand breaks (DSBs) can be caused by AR DNA binding8,9. 
We can therefore infer the behaviour of AR by observing the frequency of DSBs proximal to AR 
binding sites (ARBS).  If AR dysregulation had occurred, then the frequency of ARBS-proximal 
DSBs was significantly lower than if they had occurred at random. We calculated this with a 
permutation test and output a binary variable to signify if significance had been reached or not. 
Evotype. The evotypes were established using the approach developed previously6 and 
presented as a binary variable of belonging to the Alternative-evotype or not. 
 
 
Background on Causality and Inference 
 
Causal inference is a cornerstone of scientific research, particularly in fields like epidemiology, 
social sciences, and increasingly in molecular biology and genetics. At its core, causal inference 
seeks to understand not just the associations or correlations between variables, but the underlying 
causal relationships that drive these associations. In the context of prostate cancer research, 
particularly in studying the Alternative-evotype, causal inference allows us to discern the 
relationships between genetic alterations (CNAs), disruptions in androgen receptor (AR) binding, 
and subsequent changes in the cellular environment. 
 
Causation Flow and Directed Acyclic Graphs (DAGs) 



 
The relationships between various variables can be effectively visualized using Directed Acyclic 
Graphs (DAGs). A DAG is a type of graph comprising nodes (representing variables) and directed 
edges (illustrating the directional influence between these variables). These edges in the DAG 
articulate the conditional (in)dependence structure that exists within the data, mirroring the 
probabilistic relationships among the variables. 
 
In DAGs, each node symbolizes a distinct variable, connected by directed edges, denoted by 
arrows (→). The directional nature of these connections is crucial; for instance, if one has  A → 𝐵, 

then 'A' is considered a parent of 'B', and 'B' a child of 'A'. A vital characteristic of DAGs is the 
absence of cycles – no node is an ancestor or descendant of itself, eliminating any sequence of 
directed edges that circles back to the originating node. This acyclic nature ensures clarity in the 
representation of conditional independencies within the graph. A second assumption throughout 
the paper is the so-called Markov assumption which, in essence means that a node in a DAG is 
independent of all its non-descendants when conditioned on its parents. Then a DAG not only 
visually represents these relationships but also admits an associated joint probability density 
function that aligns with the conditional independence restrictions imposed by the graph's 
structure. For instance, in a toy example given by A→ B, C→A, C→B with Markov Assumption, 
one would have 
 
       𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴|𝐶)𝑃(𝐵|𝐴, 𝐶)𝑃(𝐶).    

 
In the context of prostate cancer, a DAG might represent how a specific CNAs (X) influence AR 
binding distribution and how these interactions lead to another CNA event (Y). 
 
 
Intervention and Identification: The 'Do' Operator and Observational Probabilities 
 
In the causal framework, the influence of one variable on another is conceptualised through 
interventionist principles. A variable X is said to have a causal influence on Y if altering X leads 
to observable changes in Y's distribution.  
 
To clarify the distinction between observational correlation and causal intervention, Pearl 
introduced the concept of the 'do-operator'. This operator differentiates between the observational 
distribution 𝑃(𝑌|𝑋 = 𝑥), representing the process of seeing, and the interventional distribution 
𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) representing the process of doing. While the former describes the likely values of 

Y when X is observed to be x, the latter predicts the values of Y when X is deliberately set to x, 
simulating an intervention. For example, ‘𝑑𝑜(𝑋 = 𝑥)' in our prostate cancer application could 
simulate the effect of setting a specific CNA event X to a particular state.  
 
The remaining task is evaluating the post-interventional distribution in terms of the knowledge 
available from observational distributions through mathematical manipulations which is known as 
the identification, a fundamental aspect of the causal inference. When we can transform an 
interventional expression (with the 'do' operator) into an observational one (without the 'do'), the 
expression is said to be identifiable.  
 
Confounding Effects  
 
One of the challenges in causal inference is dealing with confounding variables. A confounder (U) 
is a variable that influences both the cause and the effect, potentially leading to biased or spurious 
associations if not appropriately accounted for. In prostate cancer research, confounders could 



include genetic predispositions, environmental factors, or other molecular changes not directly 
part of the primary causal pathway but influencing both CNAs and AR disruption. 
 
Identifying and adjusting for confounders is critical for accurate causal inference. In our study, we 
propose a basic model (detailed in the Introduction and beginning of Results) which 
acknowledges the presence of an unobserved confounders (U and V) that influences both initial 
CNA events and the AR disruption (denoted by 𝑈) as well as AR distribution and the outcome 

variable (denoted by 𝑉). Hence one needs to deal with these confounders using ideas of do-
calculus. To distinguish the spurious correlation effects from the real causal effects one works 
with a probabilistic measure of causal strength, known as the average causal effect, defined, for 
binary variables as:  
 
   𝐴𝐶𝐸𝑋,𝑌 = 𝐸[𝑌|𝑑𝑜(𝑋 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑋 = 0)]     (1a) 

 
As an alternative measure, it will be convenient and useful to present the causal influence via the 
concept of odds ratio (OR). OR measures the relative change in the odds of an event with respect 
to the (multiplicative) probability change in X and ranges from zero to infinity. Values larger than 
unity indicates positive causality. It is particularly useful in breaking down the causal flow between 
different nodes.  The causal odds ratio (COR) for a binary outcome can be defined by  
 
 

   𝐶𝑂𝑅𝑋,𝑌 =
𝑃[𝑌=1|𝑑𝑜(𝑋=1)

𝑃[𝑌=0|𝑑𝑜(𝑋=1)
  

𝑃[𝑌=0|𝑑𝑜(𝑋=0)

𝑃[𝑌=1|𝑑𝑜(𝑋=0)
     (1b) 

 
In the next section, we present tractable mathematical expressions for the specific model we 
propose and evaluate these quantities for various outcomes Y.  
 
Causal Modelling of AR Pathways in Prostate Cancer 
 
Here we first describe our model assumptions and provide a base model for analysis 𝐶𝐻𝐷1 𝐿𝑂𝐻 

and its 𝐴𝑅 mediated impact on other CNA events where causal effects can be quantitatively 
estimated. We then consider generalisation of the base model taking into account the timing effect 
and possible secondary confounders. We note at the outset that we do not claim to have 
developed the exact model with complete set of causal connections. Indeed, knowing the full 
details of every possible genetic interaction is neither (currently) accessible nor practical as such 
a full-scale model would be intractable for mathematical analysis. Rather, we propose a simple 
model which is capable of capturing the basic features of the AR mechanism. 
 
The Base (One-Confounder) Causal Model: CHD1 LOH triggered AR Mechanism for CNAs   
 
Firstly, based on recent experimental evidence, we know that CHD1 loss causes AR disruption11 

Furthermore, previous experimental studies and recent machine learning classifications6  suggest 
that there is a strong correlation with CHD1 LOH, AR disruption and an the Alternative-evotype 
which hints that there may be a causal link from AR to those CNA events which have high 
prevalence in the Alternative-evotype. This intuition can be stated as the first assumption of the 
base model 
 

(i) There is a causal link from CHD1 LOH to other CNA events. If it turns out, upon the 
results of the analysis, that such causal effect is close to zero, this will indicate that 
either there is no causal link, or the model needs improvement. Secondly, it is 
intuitively the case that there are no obvious reasons why a CNA event should directly 



affect another CNA event. But we do know that deviation of AR from a random 
redistribution is associated with a set of CNA events. Therefore, it is plausible that AR 
has an impact on a range of CNA events. We therefore make the assumption. 

(ii) the main causal influence of CHD1 LOH on other CNA events Y is carried solely via 
AR route and other causal channels from CHD1 LOH to Y are of lower importance to 
first degree approximation and are ignored. In other words, the causal effect of CHD1 
LOH on other CNA events is fully mediated by AR. Such a relationship can be 
symbolically described as X → 𝐴R → 𝑌. Hence, extrapolating the findings of Augello et. 
al11 to other CNA events, we look at the causality in X-Y relationship. 

(iii) There is an unobserved confounder U that is affecting both X and Y (symbolically 
described as U → 𝑋, U → 𝑌).  
 

It is also plausible that there may be some confounding between AR and Y which is denoted by 
V. Since this work is a first attempt for the AR dysregulation process, at the simplest level, keeping 
a balance between modelling and the complexity of reality, we first consider the base model where 
that AR→Y link is not confounded. However, the influence of possible confounding between AR 
and Y is also investigated as explained further below. 
 
Having laid out the main tenets of our model, we need to carry out mathematics for identifying the 
net causal influence of event X on Y which we state here20-21 
       𝑃(𝑌|𝑑𝑜(𝑋)) = ∑ 𝑃(𝑌|𝐴, 𝑋′)𝑃(𝑋′)𝑥′ ,         (2a) 

 
       𝑃(𝑌|𝑑𝑜(𝑋)) = ∑ 𝑃(𝐴|𝑋)𝑎 ∑ 𝑃(𝑌|𝐴, 𝑋′)𝑃(𝑋′)𝑥′ ,       (2b) 
 
where 𝑋′ under the summation denotes the first event (𝑋′ = {0,1}) as a dummy variable. The 
above expressions quantify the causal relationships between AR and Y; X and Y. For the net 
causal effect, one computes the difference in the average of these interventional probabilities, 
i.e., the ACEs. Doing these yields, for  𝐴𝐶𝐸𝑈 between AR and Y 

𝐴𝐶𝐸𝑈(𝐴𝑅, 𝐴𝐿𝑇) = 𝐸(𝑌|𝑑𝑜(𝐴 = 1) − 𝐸(𝑌|𝑑𝑜(𝐴 = 0)) 

  =  ∑ (𝑃(𝑌 = 1|𝐴 = 1, 𝑋′) − 𝑃(𝑌 = 1|𝐴 = 0, 𝑋′))𝑃(𝑋′)𝑥′   (3) 
  
  
Order of CNA Events and Relevance of Time 
 
In the first part of the Results, the causal effects were calculated between the CHD1 LOH event 
and Alternative-evotype implicitly assumed that the causal mechanisms were unidirectional, 
CHD1 LOH → ALT. Between more granular events (between pairs of CNAs) it may be possible 
to observe Y causing X.  
 
In this section we extend methods of causal identification making use of the additional time 
information related to the CNA events. To be more specific, we take the information on cancer 
cell fractions (CCF) as a proxy for time. That is, roughly speaking, given a sample, a higher CCF 
value indicates earlier occurrence in time and therefore rules out the possibility that the potential 
‘effect’ could have occurred earlier than that. Then, predicated on this principle we show how the 
timing information can be used to extend the causal inference. 
 
Firstly, timing information can be used to completely disallow events that when the time-ordering 
of events are certain. However, one still needs a way to deal with cases where there is uncertainty. 
This can be done by exploiting the information of definitive cases. Let us consider a simple causal 
mechanism where, initially, both directions of causal flow are allowed, that is, we have 𝑋 → 𝐴𝑅 →



𝑌 as well as 𝑌 → 𝐴𝑅 → 𝑋. We can decompose and restructure the data by a set of rules which will 
respect time ordering. Let 𝑋𝑖 , 𝑌𝑖 be CNA events for observation 𝑖  

(i) If 𝐶𝐶𝐹(𝑋𝑖 , ) > 𝐶𝐶𝐹(𝑌𝑖), then set 𝑋𝑖 = 1, 𝑌𝑖 = 0. 
(ii) If 𝐶𝐶𝐹(𝑋𝑖 , ) < 𝐶𝐶𝐹(𝑌𝑖) then set 𝑋𝑖 = 0, 𝑌𝑖 = 1. 
(iii) If 𝐶𝐶𝐹(𝑋𝑖 , ) = 𝐶𝐶𝐹(𝑌𝑖) = 0 then set 𝑋𝑖 = 0, 𝑌𝑖 = 0. 
(iv) If 𝐶𝐶𝐹(𝑋𝑖 , ) = 𝐶𝐶𝐹(𝑌𝑖) = 1 then assign this observation to category (i), i.e. set 𝑋𝑖 =

1, 𝑌𝑖 = 0  with probability of relative occurrence of 𝐶𝐶𝐹(𝑋𝑖 , ) > 𝐶𝐶𝐹(𝑌𝑖) or set 𝑋𝑖 =
0, 𝑌𝑖 = 1 with probability of relative occurrence of 𝐶𝐶𝐹(𝑋𝑖 , ) < 𝐶𝐶𝐹(𝑌𝑖) (both cases 
adjusted by 𝐴𝑅 status, i.e.,  by adjusting, for each patient, the assignment according 

to the relative occurrences for each of the 𝐴𝑅 = 0 and 𝐴𝑅 = 1 classes) . 
 
With this process the causal direction ambiguity is removed, and methods of do-calculus can 
readily be applied (Equations (2), (3) in particular).  
 
 
Two-confounder model 
 
The previous section focussed on the refinement of the causal relationships on the base model 
utilising the time information. Here, we further the causal analysis in a different way, by increasing 
the complexity. The base model assumes that the information flow from M to Y is not disrupted 
whereas it may be contaminated with extra confounders affecting both M and Y, i.e., a doubly 
confounded system. Symbolically this introduces a second (unobserved) confounder V → 𝑀, V →
𝑌. Diagrammatically, the generalised model is depicted in Figure 1c. We then need to assess how 
inclusion of extra confounding affects the causal relationships between X (the 1st event), M (the 
mediator) and Y (the 2nd event) in a way such an analysis can be viewed as sensitivity of the 
system to possible confounding effects on the original model.  
 
Here, we take an approach due to Imbens26 and Rosenbaum & Rubin27 for the sensitivity analysis 
using a semi-parametric model. The main difference is that our system has double 
confoundedness where interference of the confounder U between X and Y is treated fully non-
parametrically and second confounder V is treated parametrically. The goal is to estimate the 
parameters of the observable variables using maximum likelihood estimator (MLE). The idea is 
to obtain a form for the maximum likelihood for the observable system by summing out the first 
confounder 𝑈, and thereby reduce the full system to a simpler single confounder system. We then 

relate model variables in the causal graph regressing 𝑌 by 𝑀, 𝑋, 𝑉 and regressing 𝑀 by 𝑋, 𝑉. Since 
all variables are binary, a logistic form will be appropriate 

 
𝑃(𝑌|𝑀, X, V) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑑𝑋 + 𝑏2𝑀 + 2𝑉 + 𝑐2), 

𝑃(𝑀|𝑋, 𝑉) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑏1𝑋 + 1𝑉 + 𝑐1) 

   𝑃(𝑌, 𝑀, 𝑋, 𝑉) = 𝑃(𝑋)𝑃(𝑀|𝑉, 𝑋)𝑃(𝑌|𝑀, 𝑋 𝑉)𝑃(𝑉),   (4) 

 
where 𝑑,  𝑏2, 2, 𝑐2,  𝑏1, 1, 𝑐1  are model parameters that quantify the strengths of the 
relationships as shown in Figure 1d. The use of do-calculus essentially transforms confounding 
by U into a probabilistic association between X and Y, which is parameterised by d in this model. 
The coupling of the 𝑉 interferes with the maximum likelihood estimates of the observable 

parameters depending on the strength of 𝑉 term. When V is negligible one easily arrives at 

𝑃(𝑌, 𝑀, 𝑋), the probability of a single observable instance (X, M, Y triplet). For the general case, 
however, we need to sum over U, which, now requires more care and also sum over V which is 
done explicitly given its coupling strengths 1,2. This means that the model parameters 
𝑑,  𝑏2,   𝑐2,  𝑏1, 𝑐1 will be functions of 1,2. Then, one needs plausible ranges for the parameters’ 



strength of the ‘interference’ term V. A reasonable assumption is as follows. One considers an 
extreme hypothetical ‘bad’ scenario where there is no real causal effect of X on AR and AR on Y 
and the relationship is purely correlational due to V. Such a scenario could be imagined simulating 
observations if 1 was as large as 𝑏1 and 2 as large as  𝑏2. Hence, for our analysis, a plausibly 

strong strength for the V interference term can be taken as that its coupling parameters do not 
exceed the parameter strength of the observable variables, that is, 

|1| ≤ |𝑏1|,     |2| ≤ 𝑚𝑎𝑥 (|𝑏2|, |𝑑|). 

Then, we regard the original base model as robust if the interference of V does not lead to 
changes in the conclusions of the causal outcome which can be calculated via do-calculus:  
       𝑃(𝑌|𝑑𝑜(𝐴𝑅)) = ∑ 𝑃(𝑌|𝐴𝑅, 𝑋, 𝑉)𝑃(X)𝑥,𝑣         (5a) 

 
       𝑃(𝑌|𝑑𝑜(𝑋)) = ∑ 𝑃(𝐴|𝑋, 𝑉 )𝑎,𝑣 ∑ 𝑃(𝑌|𝐴, 𝑋′, 𝑉)𝑃(𝑋′)𝑥′        (5b) 

 
Lastly, for the Methods, we discuss a point that is partly tangential to our work but still relevant. 
 
 
Selection Bias, Causal Odds Ratio and Collapsibility 
 
It should be noted that the genetic events that have been studied here are not the existence of a 
CNA or dysregulation of AR, but rather the event of our observing a CNA or our observing 
dysregulation. Our powers to observe these events are linked to the selection of these cases 
(patients’ symptoms, cancer stage etc.). Furthermore, criteria for selection can vary systematically 
between cohorts. The latter problem can be mitigated by carrying out the causal analysis for each 
cohort and verifying that the causal relationships do not change fundamentally from one cohort to 
another. The former problem concerning the available/observed cases to be outcome dependent 
can be partially addressed by focusing on the individual causal links between the nodes. In below 
these questions are investigated. 
 
To quantify the causal strength, we used both ACE and the causal OR. The results for the ACE 
were presented in the Results. For COR of CHD1 LOH on the Alternative Evotype, based on the 
full PPCG data, we found 𝐶𝑂𝑅𝐶𝐻𝐷1−,   𝐴𝐿𝑇 =4.09 (CI:[2.99, 6.38]). We complement this finding by 

reporting the results from different cohorts. 
 
 
The PPCG data consists of cohorts from several countries, namely the UK, Germany, Canada 
and Australia.  We therefore evaluated whether there were any systematic differences between 
cohorts that fundamentally alter the nature of the causal relation by calculating the ACE and COR 
for each cohort individually. The results are shown in Table 1. All statistics for all cohorts remained 
significant, although Germany and Australia generally displayed lower values; this could possibly 
be attributed to sampling differences between the cohorts (Germany - Early Onset, Australia – 
High Risk, Canada and UK – Low to Intermediate Risk). 

 
Table 1. ACE and COR results from different cohorts of PPCG 

 PPCG UK Germany Canada Australia 

𝑨𝑪𝑬𝑪𝑯𝑫𝟏−,   𝑨𝑳𝑻 0.28 [0.21, 0.36] 0.40 [0.26, 0.55] 0.08 [0.02, 0.18] 0.34 [0.18, 0.45] 0.12 [0.07, 0.17] 

𝑪𝑶𝑹𝑪𝑯𝑫𝟏−,   𝑨𝑳𝑻 4.09 [2.99, 6.38] 4.47 [2.92, 8.16] 5.49 [1.89, 45.8] 3.98 [2.24, 9.20] 2.33 [1.40, 4.41] 

 
To further assess the effect of selection bias, we utilise the (conditional) causal odds ratio as the 
measure of causality and focus on the (more interesting) link 𝐴𝑅 →  𝐴𝐿𝑇. In mathematical terms, 

this amounts to estimate  𝐶𝑂𝑅𝑈
𝐶 (𝐴𝑅, 𝐴𝐿𝑇. ) where the superscript  𝐶 subset of our choice (the 

subset odds ratios are calculated over).  In our case, the subset can refer to a select set (i.e., 



prostate cancer cases from the cohorts that the data is collected from). Thus, the original causal 
diagram (Figure 1.b) can be amended appropriately with the inclusion of an additional link from 
the outcome variable, i.e., 𝐴𝐿𝑇 → 𝑆.   
 
Before we proceed, it is appropriate to introduce a concept that comes useful when dealing with 
subsets of population is and is also of relevance to our work: collapsibility. Collapsibility refers to 
the idea that it is possible to make valid inferences on a subset of variables after marginalizing 
over others. In our context, collapsibility is particularly important because it allows to generalise 
the associations found in a sampled subgroup (such as cancer progressing) to the whole target 
population. Hence, we focus on odds ratios as a measure of association as they are suitable for 
outcome-dependent sampling scenarios. 
 

Definition (Collapsibility of Odds Ratios)32. For binary variables X and Y, and disjoint sets of 
variables B and C, the odds ratio 𝑂𝑅𝑋,𝑌(𝐵, 𝐶)  or 𝑂𝑅𝑌,𝑋(𝐵, 𝐶) given B and C is said to be collapsible 

over B if: 

𝑂𝑅𝑋,𝑌(𝐵 = 𝑏, 𝐶 = 𝑐) = 𝑂𝑅𝑋,𝑌(𝐵 = 𝑏′, 𝐶 = 𝑐) = 𝑂𝑅𝑋,𝑌(𝐶 = 𝑐)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏 ≠ 𝑏′.  

This means the odds ratio remains consistent when we collapse over B. The following theorem 
is useful for inferring causality in outcome dependent sampling. 

Theorem (Whittemore, 1978)33. For the conditional odds ratio 𝑂𝑅𝑋,𝑌(𝐵 = 𝑏, 𝐶 = 𝑐) to be 

collapsible over B, one of the following conditions is sufficient: 

(i) 𝑋 ∐ 𝑆 | 𝑌, 𝐶 

(ii) 𝑌 ∐ 𝑆 | 𝑋, 𝐶 

These conditions allow for consistent estimation of the odds ratio when collapsing over the 
variable B. 

To recover the true COR from the observed/selected (computed) COR values (which are based 
on the available PPCG data) one needs to work with carefully chosen subsets (i.e., conditioning).  
and make use of collapsibility results for OR14 (see Methods).  To that end we condition on the 
set 𝐶 = (𝑆, 𝐶𝐻𝐷1 𝐿𝑂𝐻) and hence  

𝐶𝑂𝑅𝑈
𝐶𝐻𝐷1−,   𝑆(𝐴𝑅, 𝐴𝐿𝑇. ) = 𝑂𝑅𝑈

𝐶𝐻𝐷1−,   𝑆(𝐴𝑅, 𝐴𝐿𝑇. ) =  𝑂𝑅𝑈
𝐶𝐻𝐷1−(𝐴𝑅, 𝐴𝐿𝑇. ), 

 
where the first equality follows from the fact that all back door paths from 𝐴𝑅 to 𝐴𝐿𝑇 are blocked 

by conditioning on 𝐶𝐻𝐷1 𝐿𝑂𝐻. And the second equality is allowed by observing 

𝐴𝑅 ∐ 𝑆 | 𝐶𝐻𝐷1 𝐿𝑂𝐻, 𝐴𝐿𝑇. and hence one can collapse the 𝑂𝑅𝑈
𝐶𝐻𝐷1−,𝑆(𝐴𝑅, 𝐴𝐿𝑇. ) over S, thereby 

untangling the effect of selection (S) from the causal analysis. This shows that selection bias does 
not alter the overall conclusion that we can draw from the causal analysis. 
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