
 

1 

 

 

 
     “Towards Sustainable Aviation” Summit 

     28 – 30 January 2025, Toulouse - France 

 

Conceptual Aircraft Design and AI: Developing a functional relationship 

for the rapid realisation of future drone concepts 

 

Mars Burke (1) and Alvin Gatto(2) 
(1Dept. of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH, 

UK, Email:mars.burke@brunel.ac.uk, Email:alvin.gatto@brunel.ac.uk 
(2)Dept. of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH, 

UK, Email:alvin.gatto@brunel.ac.uk 

 
 

ABSTRACT 
 

The use of Unmanned Aerial Vehicles(UAVs) has 

expanded rapidly over the last decade. These systems 

have an almost limitless scope of application with 

resupply, surveillance, monitoring, and logistics 

representing but a few. Having such a wide scope, a 

means to rapidly, efficiently and accurately develop new 

designs fit-for-purpose would offer a significant 

advantage to developers given their inherent need to 

maximise potential within a competitive marketplace. 

This paper attempts to leverage the capabilities of 

Artificial Intelligence(AI) for this purpose through the 

development of functional synergies to predict maximum 

rated engine power from limited inputs and datasets. 

Overall, the use of AI techniques was found to offer the 

potential to substantial improve and enhance the design 

process with also the possibility for the creation of more 

cost-effective and efficient software tools that could 

significantly streamline the process.  

 

1. INTRODUCTION 

Artificial intelligence (AI) has become a transformative 

tool in aircraft design, addressing the growing 

complexity of systems and the need for optimization 

across multiple disciplines. From aerodynamics and 

propulsion to structural integrity and systems integration, 

AI techniques have proven instrumental in enabling 

faster, more efficient, and innovative designs.  

The integration of AI into aerodynamic optimization is 

one area of particular note widely considered. Traditional 

aerodynamic design relies on computationally expensive 

methods like computational fluid dynamics (CFD) or 

wind tunnel testing, which often limit the scope of 

exploration in the design space. AI techniques have 

emerged as a practical alternative, reducing 

computational costs while maintaining accuracy. 

Techniques such as genetic algorithms (GAs) have 

emerged as powerful tools for navigating such complex 

design spaces, enabling a multi-objective optimization 

formulation by simultaneously considering dissimilar 

variables like aerodynamic performance, structural 

weight, and fuel efficiency. Haryanto et al. (2014) 

demonstrated the use of such techniques to optimize 

airfoil configurations for maximum lift-to-drag ratios, 

allowing for significant performance gains while 

reducing computational demand. Similarly, Duvigneau 

and Visonneau (2004) combined GAs with artificial 

neural networks (ANNs) to create hybrid optimization 

frameworks, leveraging the exploratory capabilities of 

GAs with the predictive efficiency of ANNs.  

Wei et al. (2024) also used NNs when introducing 

DeepGeo, a neural network-based framework that 

simultaneously optimized shape and mesh deformation. 

This model was found to simplify the parameterization 

process, allowing for faster convergence to optimal 

aerodynamic designs. Their study also highlighted the 

potential of AI to directly handle high-dimensional 

geometric and aerodynamic variables, making it a 

valuable tool for complex design scenarios. Similarly, 

Mandia et al. (2024) demonstrated the use of multi-

fidelity modelling in optimizing winglet configurations. 

By combining high and low-resolution datasets, their 

approach was considered to have achieved a balance 

between computational efficiency and predictive 

accuracy; both critical factors in early aircraft design 

stages. Another study by Ghoreyshi et al. (2024) further 

explored reduced-order modelling techniques such as 

Proper Orthogonal Decomposition (POD), undertaking 

efforts to simplify the often very complex flow dynamics 

into manageable computational problems, further 

accelerating the design process. Osco et al. (2021) has 

also demonstrated the use of Convolutional Neural 

networks(CNNs) to identify flow patterns and predict 

aerodynamic coefficients, significantly reducing the need 

for extensive simulations. 

Predictive modelling is another domain where AI has 

made significant contributions, particularly in evaluating 

aircraft performance metrics. Predictive tools developed 

using AI can facilitate the rapid assessment of multiple 

design candidates, enabling more informed decision-

making during conceptual and preliminary design 

phases. Trani et al. (2004) applied artificial neural 

networks to model fuel consumption across different 
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flight phases, achieving high predictive accuracy. These 

models could allow designers to evaluate the fuel 

efficiency of various configurations without relying on 

costly physical tests or simulations. Similarly, Tong 

(2020) employed machine learning algorithms to predict 

thrust-specific fuel consumption (TSFC) and engine core 

size, providing a reliable framework for optimizing 

propulsion systems. 

The use of reinforcement learning in aircraft design has 

also shown considerable promise. Unlike traditional 

optimization methods, reinforcement learning adapts 

dynamically to feedback, allowing for iterative 

refinement of designs. Zhang et al. (2024) applied deep 

reinforcement learning to wing optimization, 

demonstrating its ability to evolve configurations that 

achieve superior aerodynamic efficiency compared to 

conventional approaches. By simulating complex flow 

environments, these algorithms refine design parameters 

to optimize performance metrics such as lift, drag, and 

stability characteristics. This adaptability makes 

reinforcement learning particularly valuable for 

addressing non-linear, multi-objective challenges 

inherent in aircraft design. 

In addition to optimization, AI has been instrumental in 

addressing challenges related to structural design and 

materials. Similarly, the design of lightweight yet strong 

aircraft structures also involves balancing competing 

objectives such as load-bearing capacity, fatigue 

resistance, and manufacturability. Azizi Oroumieh et al. 

(2013) employed fuzzy logic and neural networks to 

model key structural parameters for light business jets. 

By leveraging AI, engineers can identify optimal 

configurations that balance competing objectives, 

streamlining the development process and reducing 

costs. Machine learning algorithms, including support 

vector machines and decision trees, have also been used 

to model and predict material properties based on 

experimental and computational data(Sun & Wang, 

2019). Transfer learning, which leverages pre-trained 

models for new tasks, has been particularly effective in 

this area, enabling researchers to apply insights from 

existing datasets to new material systems (Dong & Ai, 

2023).  

The role of AI within the design space also extends to 

encompass integrated system design. Modern aircraft 

comprise highly interconnected subsystems, including 

propulsion units, avionics, and environmental controls. 

Coordinating these subsystems to achieve optimal 

performance necessitates sophisticated optimization 

frameworks. Garriga et al. (2019) developed an AI-

enabled multi-disciplinary platform that evaluates 

aircraft configurations at varying fidelity levels. This 

system was deployed in advancing electrification of 

primary flight control systems and landing gear, aligning 

with the industry's push toward sustainable aviation. 

Multi-objective optimization frameworks that 

incorporate AI techniques have also been successfully 

applied to balance subsystem interactions (Haryanto et 

al., 2014) as well as reinforcement learning to manage 

trade-offs between conflicting design goals, such as 

maximizing thrust while minimizing noise pollution 

(Zhang et al., 2024). 

Autonomous systems design has also emerged as a 

critical area of research within AI-driven aircraft design. 

UAVs are increasingly incorporating autonomous design 

features, requiring robust decision-making algorithms 

capable of handling dynamic environments. Within this 

theme, Reinforcement learning and fuzzy logic systems 

have been applied to optimize control strategies for 

autonomous flight (Ali, 1990). These methods enable 

adaptive behaviour, such as real-time trajectory 

adjustments and mission planning, enhancing the 

reliability and efficiency of autonomous systems. 

Explainable AI techniques, like SHAP and LIME, are 

also being integrated into these systems to provide 

transparency in decision-making processes, an important 

precursor to adequately addressing regulatory and safety 

concerns (Ramrao et al., 2023; Sun & Wang, 2019). 

Data-driven approaches have further expanded the scope 

of AI in aircraft design. The vast amounts of data 

generated during design and testing phases, including 

telemetry, wind tunnel experiments, and CFD 

simulations, provide a rich foundation for machine 

learning models. Gradient boosting and ensemble 

methods have been employed to analyze these datasets, 

extracting actionable insights that inform design 

decisions (Dong & Ai, 2023). Transfer learning has 

enabled the application of insights from one domain to 

another, such as adapting UAV design principles to 

commercial aviation applications (Sun et al., 2019). 

Transformer architectures, with their ability to process 

sequential data, have also been explored for applications 

such as dynamic load prediction and flutter analysis (Li 

et al., 2023). 

Despite its successes, the use of AI in aircraft design 

faces several challenges. One significant issue is the 

interpretability of AI models, particularly in safety-

critical applications. Black-box models, while potentially 

accurate, often lack the transparency needed for 

regulatory approval and operational trust (Ali, 1990; 

Brunton et al., 2021). Some techniques seek to offer 

solutions to these issues by providing interpretable 

explanations for model predictions, however, their 

integration into complex design workflows continues to 

remain ongoing. 

Data availability and quality are further challenges, 

particularly in early-stage design. High-fidelity data 

required for training machine learning models is often 

scarce and/or expensive to obtain. Synthetic data 

generation and data augmentation techniques are gaining 

some traction through solutions enabling researchers to 

simulate realistic datasets that enhance model robustness 

(Duvigneau & Visonneau, 2004; Mandia et al., 2024). 

Computational efficiency also remains a significant 
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concern, especially for real-time applications. While 

surrogate models and reduced-order methods have 

mitigated some of these challenges, scaling AI 

frameworks to handle the growing complexity of aircraft 

systems still requires further consideration(Haryanto et 

al., 2014; Kou & Zhang, 2023). 

This work aims to explore and leverage the use of AI in 

developing a functional relationship for the prediction of 

maximum rated engine power for bespoke UAV 

platforms. To that end, this work describes; 1) the 

formulation, manipulation, characterisation, and rational 

behind the generation of the baseline dataset; 2) use of 

this dataset for the deployment and training of a 

developed AI architecture for future adoption within a 

more streamlined and efficient conceptual design 

process; 3) subsequent efforts at both verification and 

validation, and lastly; 4) overall assessments of the 

capabilities of the method for this purpose and 

identification of a suitable architecture construct. 

 

2. DATABASE CHARACTERISATION 

The database used for all subsequent analysis included a 

array of 96 individual UAV platforms of varying 

configuration, type, and application. Rotary wing 

configurations were not included with sole focus centred 

on traditional fixed-wing variants. One of the main aims 

of the database was to seek out and include as many 

relevant examples over as varied and diverse range as 

possible to ensure maximum applicability and 

representation to future developed models. The scope 

therefore was deliberately selected to encompass from 

the nano/micro sector(< 0.3 m) through to the large UAV 

category(~ 30 m) and see if Machine learning 

methodology use is appropriate and worthwhile. All 

information collated for the database was obtained from 

both online and reference text sources(Janes, 2024) with 

online information typically derived directly from the 

manufacturer.   

After completion, the database included UAV platforms  

dating back to the late 1950’s through to present day. 

Countries of origin were taken from examples all over the 

world with entry into service including operational status 

both active and retired. Also included were examples 

which are within active development and or production. 

In total UAVs that were/are manufactured from all over 

the world by many individual companies were cited with 

specified ranges(R) extending from 1.5 km to 3324 km, 

endurance(E) from 15min to 2400min, maximum rated 

engine powers(P) between 9W to 895kW, wing spans(S) 

from 0.15m to 26m and maximum operational 

altitudes(Alt) of between 0m to 16km above ground level 

Propulsion layouts included both tractor and pusher 

propellers operating both electric and internal 

combustion engine powerplant sources. Many were 

 
1 Not to be confused with the inverse of power loading defined as 

‘current’ platform weight divided by generated horsepower. 

catapult launched variants (i.e electric, hydraulic, 

pneumatic), with other possessing a conventional landing 

functionality, parachute, airbag, parafoil recovery 

systems, deep-stall, automated belly landers, or skids as 

a landing mechanism. Both high tail configurations, low 

tail with a high wing and low wing inclusive are included. 

A select few had an offensive/attack capability/mission 

set with some armament deployment functionality, with 

others tasked within an Intelligence, Surveillance and/or 

Reconnaissance (ISR) remit. 

 
Figure 1. Range vs P/W ratio 

 

3. BASIC TRENDS AND CORRELATIONS  

Before deploying higher order models, cursory 

examination of the general trends existing within the 

dataset was considered worthwhile in order to establish 

any obvious characteristics and relationships. This 

analysis would also be beneficial, at the very least 

anecdotally, in establishing if the presented comparisons 

meet with general qualitative expectations. For this 

purpose, Figures 1-6 show various performance and 

baseline metric comparisons representative of those that 

could be specified early within an initial conceptual 

design phase as a result of customer drone requirements 

and needs. Included are range, endurance, maximum 

altitude and speed, all compared against maximum rated 

engine power normalised by MTOW1 as well as wing 

span verses overall length. These metrics represented the 

most cited parameters from the various sources consulted 

during dataset assembly with other metrics much more 

difficult to obtain in the required quantities for 

widespread characterisation. On first inspection, 

significant data scatter within most figures is 

characteristic, making trend and correlation 

identification somewhat challenging. This is particularly 

evident within Fig. 1 highlighting Range and P/W. 

Overall, results tend to suggest for the varied array of 

platforms included, a wide bandwidth of Ranges exist 

across all P/W ratios presented with the possible 

exception of the highest P/W. In this case, appearance 
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seems to favour lower range expectations. This appears 

somewhat logical at first glance as higher P/W may 

suggest a higher energy consumption, and possibly,  less 

efficient flight characteristics. Another feature of 

potential interest is the apparent wide scope of achievable 

ranges(0 < R < 800km) for P/W  150 W/kg leading to 

the possible conclusion that this may represent an ideal 

operating point within this particular dataset. It should be 

remembered however, that datapoint number supporting 

this assertion remains relatively low and a more extensive 

dataset is needed for absolute confirmation. Overall, the 

indicative trend tends to suggest lower range capabilities 

with increasing P/W.   

Figure 2 highlighting the relationship between endurance 

and P/W shows similar attributes. In this instance 

however, significantly greater indicative data scatter 

appears to exists at lower P/W (< 250 W/kg). Within this 

region, the scope of achievable endurance is large 

seemingly encompassing just minutes to many hours. 

Results also appear to suggest, in general agreement with 

Figure 1, that endurance is inversely correlated to P/W 

with distinctly lower endurance values at higher P/W 

ratios. Somewhat expectedly, these particular 

characteristics appear to confirm that focus on platform 

metrics and features towards flight efficiency and energy 

consumption are important considerations in determining 

overall flight endurance. 

 

 
Figure 2. Endurance vs P/W ratio 

 

Figure 3. Altitude vs P/W ratio 

 

 
Figure 4. Maximum speed vs P/W ratio 

 

The variation of Altitude with P/W continues the 

overarching trend of observed data scatter(Fig. 3). In this 

case, notwithstanding some data outliers, altitude also 

appears to be loosely correlated with the inverse of P/W 

ratio. This seems to further reinforce the obvious basic 

premise that flight efficiency and minimising energy 

consumption are important as well as the well know fact 

that engine power output normally decreases with 

increase in altitude. 

 

A seemingly more obvious trend is evident in Figure 4 

which shows the relationship between maximum level 

speed and P/W. In this case, and while significant data 

scatter remains, achievable maximum speed appears 

generally correlated with increasing P/W. This result 

would also tend to agree with expectations given higher 

P/W platforms would normally be designed, along with a 

higher wing loading, for such applications.     
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Figure 5. Wing span vs P/W ratio 

 

 
Figure 6. Overall length vs Wing span 

 

Fig. 5 further supports this premise providing additional 

supporting evidence that smaller wing span 

configurations are correlated with higher P/W ratio. This 

relationship again appears much more variable and 

uncertain at lower values of P/W but at higher P/W, 

appear much less so. A more obvious correlation is also 

shown in Figure 6 with overall platform UAV length and 

wing span. This is remarkably well defined within the 

chosen dataset with platform length approximately half 

that of specified wing span. 

   

 
 

Figure 7. Generalised simple ANN structure 

 

4. AI MODEL ARCHITECTURE 

The machine learning model chosen for all subsequent 

analysis was a Feedforward Neural Network (FNN). This 

type of artificial neural network(ANN) attempts to 

effectively map the relationship between a set of input 

parameters to target outputs modelled on the working of 

the human brain (Khanna,1996). Figure 7 shows a 

generalised structure composed of an input layer(i) of 

depth a, n hidden layers, each with its own individual 

depth(in this case b, c, and for the nth layer, m), and a 

final output layer, o, of depth r. Each hidden neuron is 

characterised as a summation node with individual 

weights from each preceding neuron(along with a bias) 

fed forward through a non-linear activation function to 

subsequent layers. Error assessments are then made and 

weights modified thereafter for another subsequent cycle. 

This process is repeated continuously using the complete 

dataset(epoch) until acceptable or set fidelity is achieved. 

Typically, the dataset is presplit into 

training/validation/test sets (i.e 70/15/15 split); the 

former used to learn data characteristics; validation used 

to assess model performance on as yet unseen data points 

and to tune hyperparameters; with the latter, to test and 

assess the final trained and fine-tuned validated model 

against another independent set of data. This 

methodology was adopted here. 

Various accuracy metrics can be used to assess network 

performance each with its own advantages and 

disadvantages. Ultimately, this choice depends largely on 

either the goals of the modelling and/or dataset character. 

In this instance, a combination of Mean Squared 

Error(MSE), Mean Averaged Percentage Error (MAPE) 

and R-sqaured metrics were used to assess overall model 

capabilities and fitness for purpose.  

MSE remains one of the most common metrics for 

assessing predictive accuracy within regression 

applications with MSE representing the average squared 

difference between the predicted(ŷi) and target(yi) values 

over N samples(Eq.1). The aim of using this model is to 

minimize MSE with better indicative performance 

achieved with smaller MSE. MAPE is similar to MSE, 

however in this case the percentage error between the 

predicted(ŷi) and target(yi) values is calculated and 

averaged over N samples(Eq. 2). This model therefore 

gives a similar perspective to MSE but is notably a 

reference to dependent variable magnitude. As such, 

datasets with zero of infinite entries need to be avoided. 

Finally, R-squared uses a Sum of Squares of Errors (SSE) 

to the Total Sum of Squares (SST) relationship (Eq. 3) to 

indicate how closely two datasets relate to one another. 

Overall, R-squared has a maximum of one for perfectly 

fit data with below that (including less than zero) 

suggesting the model cannot fully represent the data 

characteristics. 
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𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1   (Eq. 1) 

      

𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑ (|

𝑦𝑖− 𝑦̂𝑖

𝑦𝑖
|  x 100)𝑁

𝑖=1   (Eq. 2) 

 

𝑅2 =  1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
   (Eq. 3) 

 

5. TRAINING, VALIDATION AND 

TESTING 

To train and validate the selected AI model architecture, 

an iterative, automated process, was developed and 

applied to encompass a wide array of hidden layer and 

neurons number per layer. Various parameters including 

the influence of dropout and epoch number were also 

considered, albeit for the latter, most training and 

validation occurred at an imposed limit of 2000 epochs 

as a trade-off between computational resources and 

achievable model performance. Within this optimisation 

loop, the number of hidden layers was varied from one to 

ten with each layer containing up to a maximum of 50 

neurons each. Given the scope of the investigation and to 

minimise training time scales, the number of neurons in 

each hidden layer was configured to be identical per layer 

as the indexing process took place each time. Five 

inputs(MTOW, S, R, E, and V) and one output(P) were 

nominally using to construct the model.  

 

The training and validation methodology adopted 

deployed supervised learning on proportionally split, 

normalised, randomly shuffled, data segments in each 

case(70%/15%). A further data segment(15%) processed 

in a similar way was also split for test use; this set 

representing a further independent, never before been 

seen, number of example cases. Prior shuffling of the 

data ensured captured, unrelated patterns within data that 

were order-based were omitted. This can be an important 

consideration particularly when dealing with relatively 

small, wide-ranging datasets. In this case, shuffling 

randomly rearranged the data order prior to each epoch 

ensuring no data order visibility during each epoch exists 

helping to promote generalization. During training, the 

FNN sought to minimise prediction errors by iteratively 

adjusting weights and biases using the Adam 

optimisation algorithm guided by a MSE loss function. 

All hidden layers used the ReLU activation function in 

order to capture the inherent complex, non-linear 

relationships within the dataset with the single node 

output layer deploying a linear activation function to 

provide predicted values. Unless otherwise indicated, a 

20% dropout, where 20% of randomly selected neurons 

during training were deactivated encouraging network 

generalisation while limiting/preventing overfitting, was 

also used with every hidden layer. Throughout this 

process, the Gradient Descent algorithm was adopted to 

minimize the loss function via iterative parameter model 

weight and bias updating. 

The final performance evaluation of the FFN against the 

test data subset used both MAPE and R-squared metrics 

to assess fidelity. Considered in unison, these metrics 

were considered most appropriate to provide insights into 

the network's capabilities in terms of accuracy and 

generalization. These results, combined with a parallel 

investigation into the impact of other configurable input 

parameters already cited was considered sufficient for the 

assessment of the value of this FNN methodology and 

approach to the future application goal within aircraft 

conceptual design.  

 

 
Figure 6. Training/validation loss results for 5-hidden-

layer, 48 neuron FNN. 

 

6. MODEL ASSESSMENT 

The basic methodology adopted in developing the FNN 

was notionally one of exploratory investigation and 

interactive result interpretation with subsequent 

development/feedback. As a first step in this process, the 

initial model architecture was set to an upper limit of five 

hidden layers, with up to 50 neurons per layer, and 2000 

epochs without dropout. Tab. 1 highlights the lowest final 

normalised MSE training and validation loss (including 

neuron numbers per hidden layer) as well as results 

indicating the best MAPE(lowest) and R-

squared(highest) for the test data subset predictions. On 

first inspection, as would be expected, the level of 

training loss reduces with increase in hidden-layer count 

with the number of neurons per layer during this 

transition largely bias towards higher numbers 

approaching the maximum. Validation loss surprisingly 

seems much less sensitive to the same change seemingly 

reaching a minimum at 4 hidden layers with 27 neurons 

per layer. In each of these cases, it can be also be seen 

that although minimum MAPE results for the test subset 

are somewhat encouraging (and surprising at 1%), the 

related R-squared metric indicates very low correlated 

behaviour suggesting these particular model 

architectures are unlikely to represent and predict unseen 

test data adequately. Reasonable values of R-squared 

however do exist under these conditions when the 

number of neurons changes from 1 (albeit with very high 

relative training and validation losses), to 12, 24, and 46 

then 42, suggesting, as would be expected, a higher 
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fidelity predictive trend with increase neuron count per 

hidden layer. To establish the character of the 

training/validation process, Fig. 6 shows this data with 

increasing epochs(minimum training loss case for 5 

hidden layer and 48 neuron case – see Tab. 1). 

 

Table 1. Results from initial up to 5 hidden layer, 50 

neuron FNN(green highlights absolute minimum for this 

hidden layer configuration). 

 
Hidden 

layers 

Training 

loss 

Validation 

loss 

MAPE 

(%) 

R-

squared 

No. 

Neurons 

1 0.00013 0.0143 17.38 -5.499 49 

0.00051 0.0104 28.06 -1.724 15 

0.00016 0.0204 0.79 -2.941 40 

0.71846 0.3828 13.19 0.631 1 

2 0.00010 0.0616 7.39 -5.641 22 

0.0008 0.0109 4.12 -2.389 47 

0.0018 0.0277 0.85 -2.210 46 

0.6045 0.0255 6.81 0.741 12 

3 0.00009 0.0381 9.45 -0.272 39 

0.00015 0.0117 7.01 -3.221 32 

0.00017 0.0489 1.11 -3.988 22 

0.00073 0.0518 16.20 0.743 24 

4 0.00007 0.0297 9.27 0.068 44 

0.00028 0.0073 8.46 0.416 27 

0.00051 0.0283 0.88 -6.846 9 

0.00168 0.0379 23.17 0.701 46 

5 0.00005 0.0232 2.14 -0.264 48 

0.00154 0.0137 9.29 -8.87 18 

0.00204 0.1155 0.62 -3.16 7 

0.00043 0.0236 18.02 0.74 42 

 

Table 2. Impact of data shuffle on the predictive 

capabilities of the FNN architecture. 

 

Table 3. Impact of 20% dropout on the predictive 

capabilities of the FNN architecture. 

 
Hidden 

layers 

Training 

loss 

Validation 

loss 

MAPE 

(%) 

R-

squared 

No. 

Neurons 

1 0.00867 0.02687 13.92 0.421 36 

0.02921 0.01626 1.99 0.466 33 

0.02921 0.01626 1.99 0.466 33 

0.03436 0.03081 6.00 0.853 43 

2 0.00795 0.02340 5.66 0.402 44 

0.06389 0.01751 11.96 0.438 41 

0.32273 0.02496 1.24 0.737 31 

0.91 0.04363 83.69 0.875 5 

3 0.00779 0.02761 0.61 0.777 41 

0.02066 0.01297 79.00 -1.091 34 

0.00779 0.02761 0.61 0.777 41 

0.01512 0.01492 57.81 0.858 19 

4 0.01094 0.02576 3.48 0.841 50 

0.23194 0.01276 42.05 0.777 17 

0.01902 0.02227 1.10 0.856 47 

0.07262 0.02340 16.82 0.907 47 

5 0.01502 0.03149 20.30 0.89 40 

0.37961 0.01803 1.12 0.77 36 

0.01986 0.03707 0.79 0.77 47 

0.09459 0.02445 48.73 0.92 21 

 

Dropout was the next influence considered. Tab. 3 shows 

these results with an applied 20% level. As can been seen, 

application of dropout seems to have a had a marked 

influence on R-squared with several instances of R-

squared > 0.9. In each case, these model architectures 

seem to favour the higher hidden layer count and number 

of neurons(i.e R- squared = 0.907 and 0.92 for 4 and 5 

hidden layers respectively). For the 4 hidden layer 

configuration, MAPE also shows encouraging predictive 

capabilities being 16.82%. Given these results, it appears 

that the application of dropout has materially improved 

model correlation beyond that of non-inclusion while 

maintaining adequate MAPE. It should also be noted that 

significantly lower MAPE is also observable with 

different architectures < 2% albeit with markedly lower, 

but still statistically reasonable R-squared(0.737-0.856 -  

utilising 31, 41, 47, and 47 neurons with 2, 3, 4, and 5 

hidden layers respectively).   

To further understand the achievable upper limit of R-

squared, the maximum number of hidden layers was 

subsequently increased to 10 and the same model re-run. 

Tab. 4 highlights these results with both the training and 

validation losses relatively trendless however more 

importantly, R-squared shows relatively higher 

correlation magnitudes and consistency up until the 

addition of the 8th hidden layer before reducing with the  

9th and 10th. The 8th hidden layer architecture (47 

neurons) also indicated a reasonable MAPE at 11.26% 

with both training and validation losses near all-time 

lows for this setup. This seems to suggest that the best 

overall hidden layer number is 8 based on these metrics. 

To further highlight that this is indeed the case, Fig. 7 

shows the extracted variation of R-squared against 

neuron number for this case. As indicated, R-squared 

appears to have plateaued and converged at just above 0.9 

with no further improvement evident.     

 

Table 4. Impact of additional hidden layers on the 

predictive capabilities of the FNN architecture. 

 
Hidden 

layers 

Training 

loss 

Validation 

loss 

MAPE 

(%) 

R-

squared 

No. 

Neurons 

6 0.01332 0.03413 48.59 0.896 50 

0.06352 0.02146 50.96 -8.361 38 

0.06539 0.02814 24.08 0.828 35 

0.03128 0.02483 43.63 0.912 42 

7 0.01959 0.03991 122.77 0.768 44 

0.02168 0.02161 48.22 0.907 40 

0.17071 0.02361 7.20 0.834 49 

0.08083 0.02827 35.10 0.926 36 

8 0.01933 0.03638 31.03 0.865 39 

0.10479 0.01543 78.18 0.868 46 

0.02703 0.01673 11.26 0.913 47 

0.02703 0.01673 11.26 0.913 47 

9 0.01667 0.02992 98.64 0.691 50 

0.04286 0.01560 102.24 0.707 35 

0.15331 0.07574 65.81 -0.322 14 

0.08207 0.02819 85.33 0.870 39 

10 0.02762 0.05626 73.37 0.49 42 

0.16797 0.02594 130.17 0.65 36 

0.06705 0.03779 48.33 0.80 49 

0.06705 0.03779 48.33 0.80 49 
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Figure 7. R-squared variation with number of neurons 

for the 8th hidden layer FFN. 

 

As a final exploratory step, the number of epochs was 

increased from 2000 to 10000 for the same 8-hidden 

layer architecture to identify if any subsequent 

improvement was possible. Tab. 5 shows these results 

with the best R-squared showing consistency with Tab. 4 

and Fig. 7 (at the same number of neurons), however it 

appears at the cost of a significantly increased MAPE. It 

seems therefore that no substantial extra correlation 

benefit is obtained with the extra computational cost of 

increasing epoch number for this model architecture.    

 

Table 4. Results from 10000 epochs on the 8-hidden 

layer model architecture. 

 
Hidden 

layers 

Training 

loss 

Validation 

loss 

MAPE 

(%) 

R-

squared 

No. 

Neurons 

8 0.00856 0.02434 47.28 0.741 45 

0.01655 0.01710 39.21 0.746 35 

0.01172 0.02748 29.04 0.738 36 

0.02840 0.02168 57.69 0.91 47 

                     

7. CONCLUSIONS 

Application of an AI machine learning feed-forward 

neural network to rapidly predict the maximum rated 

engine characteristics of UAV platforms has been 

presented. The architecture investigated for this problem 

involved using a single input layer consisting of five 

variables (maximum take-off weight, wing span, range, 

endurance, and maximum level speed) with a single 

output, maximum rated engine power. In between the 

input and output layers, a variable hidden layer 

architecture(up to 10) was constructed each containing 

up to a maximum of 50 neurons per layer. Other 

properties also assessed was the use of 20% dropout and 

epoch numbers up to 10000 from a baseline of 2000. 

Overall, the FNN architecture was found to predict the 

characteristics of the limited dataset used with reasonable 

fidelity. The optimal setup was identified as having 8 

hidden layers with 20% dropout. Overall this 

configuration achieved a very reasonable 11.26% mean 

average percentage error and 0.913 R-square. Overall, 

this model performance gives some confidence that with 

further dataset expansion and model development, use of 

such techniques as a means for the rapid an efficient 

realisation of future drone platforms, within the initial 

conceptual design phase, is possible.  
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