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Abstract—In this work, a covert offloading framework is estab-
lished for unmanned aerial vehicle (UAV) system. Specifically, one
UAV-enabled mobile edge computing (MEC) server is deployed
to assist the offloading for multiple ground users, while the
offloading behavior might be exposed and detected due to the
existence of a malicious warden. To enhance the covertness, each
user splits a part of its power to transmit jamming signal, and the
relationship between users’ power split ratio and the warden’s
minimum detection error probability (DEP) is investigated.
Then, an efficient energy minimization algorithm is designed by
optimizing users’ power split, computing resource allocation and
deployment of the UAV-MEC server jointly, subject to specific
covertness, power and transmission rate constraints. Finally,
simulation results are provided to demonstrate the effectiveness
of our covert offloading design.

Index Terms—UAV, MEC, jamming, covert offloading.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), which can be deployed
on-demand to provide seamless and prompt communication
services, are strong technical supporters for sixth-generation
(6G) wireless network [1], [2]. In [3], a multi-UAV commu-
nication system was devised with the objective of achieving
substantial throughput gains. In this system, UAVs function
as aerial base stations, facilitating connectivity and commu-
nication services from the skies. Furthermore, [4] employed
stochastic geometry to conduct a statistical analysis of both
single- and multi-swarm UAV configurations, with a focus
on maximizing coverage probability using millimeter wave
(mmWave) propagation techniques.
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In addition to communication functionalities, computing
plays a significant role in the development of 6G networks [5].
Integrating computing resources onto UAV provides new op-
portunities to address the scarcity of computation services in
remote areas, facilitated by the fast and flexible deployment
capability of UAVs [6], [7]. In [8], to support the computa-
tional services in the Internet of Things (IoT), a collaborative
UAV-aided edge computing system was introduced, employing
centralized and distributed frameworks. Moreover, in [9],
the latency and energy performance of a multi-UAV-aided
MEC system was discussed by employing deep reinforcement
learning (DRL) scheme.

However, the broadcast openness of UAV ground-to-air
(G2A) propagation channel may lead to the easy detection
of offloading behavior by malicious wardens [10]. This could
potentially expose privacy information, including location and
transmission status, and increasing the risk of ongoing at-
tacks [11], [12]. Thus, guaranteeing the covertness and security
of UAV communications is crucial [13], [14]. In [15], an
energy-efficient covert communication strategy was designed
for UAV-aided backscatter communication by leveraging noise
uncertainty. In [16], a covert UAV-enabled intelligent reflection
surface (IRS) system was proposed where the covertness is
achieved by introducing the uncertainty of IRS phase shifting.

While existing works on UAV communications, such
as [12], [15], [16], have addressed covertness, they primarily
focused on communication functionalities without considering
computing, and cannot be implemented in UAV-MEC system.
Although MEC-related measurements such as latency and
energy were minimized in UAV-MEC systems, the designed
frameworks in [8], [9] remain vulnerable to malicious attacks,
thus compromising the security performance. To the best of
our knowledge, no prior work has been devoted to protect the
UAV-MEC system from being detected by a malicious warden,
thus strongly motivating this work.

To fill this gap, in this paper, a covert UAV-enabled
offloading MEC framework is developed where one UAV-
MEC server is deployed to assist the offloading for multiple
ground users, in the presence of a malicious warden who
attempts to detect the offloading behavior. From the covertness
perspective, each user splits part of its power to send jamming
signal and confuse the warden under channel uncertainty.
We envision that such a covert offloading design can be
implemented to support IoT applications in remote areas, such
as data collection in power grids, environmental monitoring,
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Fig. 1. A covert UAV-MEC system.

and green agriculture. The main contributions of this paper are
summarized as follows.

• A covert offloading framework is proposed for UAV com-
munications with power split on multiple ground users to
send communication and jamming signals respectively, in
the presence of a warden who detects the offloading of
all ground users. The relationship between the covertness
measurement and users’ power split ratio is studied.

• An efficient energy minimization algorithm is designed
for the UAV-MEC server subject to covertness, power
and transmission rate constraints by optimizing the users’
power split ratio, computing resource allocation and de-
ployment of UAV-MEC server jointly.

• Simulation results are provided to show the effectiveness
of our design. Moreover, the fundamental trade-off be-
tween energy consumption and covertness is revealed.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, a covert UAV-MEC system is es-
tablished where K ground users with computing-intensive
missions need to offload their tasks to the UAV-MEC server,
in the presence of a malicious warden who launches detection
attacks to confirm the offloading status of all users. To assist
the offloading to be carried out covertly and securely, each user
splits part of its power to send jamming signal and confuse the
warden. Denote the amount of task generated by all ground
users as D = {D1, D2, · · ·, DK}. Each user offloads its task
to the UAV-MEC server one by one via time-division multiple
access (TDMA), as shown in Fig. 2.

A. Communication Model

Define the horizontal locations of user k and warden as rk =
(xk, yk)

T ,∀k ∈ K and rw = (xw, yw)
T , respectively. The

UAV-MEC server hovering at an altitude of H m is deployed
with horizontal position of ru = (xu, yu)

T . Consider that the
G2A channels experience line-of-sight (LoS) and non line-
of-sight (NLoS) propagation, where the LoS probability that
depends on the elevation angle is given by [17]

PL,k =
1

1 + a exp(−b[θk − a])
, (1)

with a and b being the environmental constants. Moreover,
θk = 180

π tan−1
(

H
||ru−rk||

)
is the elevation angle between

user k and the UAV-MEC server. Denote hL,k as the path-loss

Fig. 2. Time schedule.

between user k and UAV-MEC server for LoS propagation,
which is given by

hL,k =
β0

(||ru − rk||2 +H2)
αL
2

, (2)

where β0 represents the G2A channel gain at a reference
distance of one meter and αL is the path-loss exponent for LoS
link. As the NLoS link suffers from additional attenuation,
thus, the achievable rate for the NLoS link is much lower
than that can be achieved via LoS link [18]. Moreover, as the
users and UAV-MEC server are within a same coalition to
against the warden, thus, the jamming signal from the users
can thus be perfectly canceled at the UAV-MEC server via
successive interference cancellation (SIC) technical. As such,
the achievable rate between user k and UAV-MEC server is
approximated by its LoS part, and can be given by

Rk ≈ PL,kB log2

(
1 +

pckhL,k

σ2
u

)
, (3)

where pck is the transmission power at user k to offload tasks.
Moreover, σ2

u denotes the noise power at the UAV-MEC server
and B is the pre-allocated bandwidth.

For terrestrial communications, a Rayleigh fading channel
is adopted due to the obstacles and blockages. The channel
gain of user k-warden link is given by

hk,w =
β1gk

||rk − rw||α
= ckgk, (4)

where ck = β1

||rk−rw||α , α is the path-loss exponent for ground
communications and β1 represents the terrestrial channel gain
at a reference distance of one meter. Moreover, gk follows an
exponential distribution with mean value of one, i.e., fG(gk) =
exp(−gk).

B. Computing Model

In this work, we consider that each user offloads all of
its tasks to the UAV-MEC server for computing. As shown
in Fig. 2, once the task from all users have been uploaded
successfully, the UAV-MEC server allocates its computing
resource to compute the tasks for each user simultaneously.
When user k is associated, the time consumed for offloading
Dk bits of data is given by

to,k =
Dk

Rk
,∀k. (5)

Moreover, the time consumed for computing the tasks of user
k is given by

tc,k =
DkF

fk
, ∀k, (6)
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where F is the number of central processing unit (CPU)
cycles that will be used to compute one bit of data. Here,
the downlink delay for result return is ignored due to the
small data size of the result [19]. In addition, fk represents
the computing resource provided by the UAV-MEC server to
compute Dk, where the sum of which should be bounded by
the maximum budget fmax, i.e.,

∑K
k=1 fk ≤ fmax.

C. Energy Model

From UAV’s perspective, energy is mainly consumed for
two parts. One part is for hovering, and the other part is
for computing. Specifically, as shown in Fig. 2, the UAV-
MEC server needs to hover in the air during the period of
th =

∑K
k=1 to,k +max(tc,k) with a hovering power of ph =

(3−3/4 + 31/4)b
1/4
1 b

3/4
2 , where b1 and b2 are environmental

constants. Thus, the hovering energy is given by

Eh = thph =

(
K∑

k=1

Dk

Rk
+max

(
DkF

fk

))
ph. (7)

Moreover, when UAV computes the tasks for the k-th user,
as the power for computing is νf3

k , thus, the corresponding
computing energy to process the tasks for user k is given by

Ek = νf3
k × DkF

fk
= νf2

kDkF, (8)

where ν is a coefficient related to the power in UAV-MEC
server. Thus, the overall energy consumption at the UAV is
given by

E =

(
K∑

k=1

Dk

Rk
+max

(
DkF

fk

))
ph +

K∑
k=1

DkFνf
2
k . (9)

D. Covertness Performance

We consider that the warden judges the offloading behavior
based on the detected power for each offloading. If user k
is associated, the corresponding binary hypothesis test can be
formulated as

Pk =

{
H0 : pjkhk,w + σ2

w

H1 : (pjk + pck)hk,w + σ2
w,

(10)

where pjk is the power for sending the jamming signal at user k,
and σ2

w is the noise power at warden. The null hypothesis H0

implies that user k is not offloading data while the alternative
hypothesis H1 indicates that user k is offloading data to
the UAV-MEC server. Moreover, the statistic of this test is

Pk

D1

≷
D0

τ , where τ is the corresponding detection threshold. In

addition, D0 and D1 are the decisions in favor of H0 and H1,
respectively.

1) False Alarm Probability (FAP): FAP depicts the proba-
bility that the warden detects the offloading behavior of user
k when H0 occurs, and can be given by

PFA,k = Pr(D1|H0) = Pr(pjkckgk ≥ τ − σ2
w)

=

 exp

(
−τ − σ2

w

pjkck

)
, if τ ≥ σ2

w

1, if τ ≤ σ2
w,

(11)

where Pr(·) represents the occurrence probability of the event.
2) Miss Detection Probability (MDP): In contrast, MDP

depicts the probability that warden does not detect the of-
floading behavior of user k when H1 happens, thus can be
expressed as

PMD,k = Pr(D0|H1) = Pr((pjk + pck)ckgk ≤ τ − σ2
w)

=

1− exp

(
− τ − σ2

w

(pjk + pck)ck

)
, if τ ≥ σ2

w

0, if τ ≤ σ2
w.

(12)

3) Minimum Detection Error Probability (DEP): When
H0 and H1 occur with equal probability, the DEP, i.e.,
ϵk = PFA,k + PMD,k, can be expressed as

ϵk =

1 + exp

(
σ2
w − τ

pjkck

)
− exp

(
σ2
w − τ

(pjk + pck)ck

)
, if τ ≥ σ2

w

1, if τ ≤ σ2
w.

(13)
From warden’s perspective, the lower the DEP, the better the

detection accuracy. Thus, it would like to intelligently select
an optimal detection threshold, to achieve the minimum DEP.
Next, we focus on the case when τ ≥ σ2

w and investigate the
minimum DEP, ϵk,min, in the following lemma.

Lemma 1. The minimum DEP is given by

ϵk,min = 1 + exp

(
− ln(1 + ok)

ok(1 + ok)−1

)
− exp

(
− ln(1 + ok)

ok

)
,

(14)
where ok = pck/p

j
k is defined as user k’s covert power split

ratio.

Proof. To show this, by taking the first-order derivative of ϵk
with respect to τ , we have

∂ϵk
∂τ

=
exp

(
− τ−σ2

w

(pj
k+pc

k)ck

)
(pjk + pck)ck

−
exp

(
− τ−σ2

w

pj
kck

)
pjkck

. (15)

By solving (15), it can be seen that ∂ϵk
∂τ ≤ 0 when τ ≤ τ∗,

while ∂ϵk
∂τ ≥ 0 when τ ≥ τ∗, where τ∗ is the optimal detection

threshold that satisfies ∂ϵk
∂τ = 0, which can be expressed as

τ∗ =
ln(1 + ok)(p

j
k + pck)ckp

j
k

pck
+ σ2

w. (16)

By taking τ∗ into Eq. (13), Lemma 1 is proved.

Remark 1. The minimum DEP ϵk,min is a decreasing function
in terms of user k’s covert power split ratio ok = pck/p

j
k.

Proof. To show this, by taking the first-order derivative of
ϵk,min in terms of ok, we have

∂ϵk,min

∂ok
=

(1 + ok)
− 1

ok

(ok)2
ln(1 + ok)

(
− ok
1 + ok

)
≤ 0. (17)

Thus, Remark 1 is proved.

Remark 2. The minimum DEP ϵk,min is independent of
warden’s location rw.
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As we can see from (14), ϵk,min only relies on the power
split ratio ok and is independent of warden’s location. Since
the warden would like to hide in somewhere to launch attack,
its location information is usually unknown to users. Thus, the
proposed covert UAV-MEC framework that is independent of
warden’s location is attractive in practical scenarios.

E. Problem Formulation

In this work, aimed to minimize the energy consumption at
the UAV-MEC server, an optimization problem is formulated
subject to covert offloading, transmission rate and power
constraints, by optimizing users’ power split {pj ,pc}, UAV
deployment ru, and UAV computing resource allocation f
jointly. Thus, the optimization problem can be formulated as

minimize
pj ,pc,f,ru,Tc

(
K∑

k=1

Dk

Rk
+ Tc

)
ph +

K∑
k=1

DkFνf
2
k (18a)

s.t. ϵk,min ≥ 1− κ, ∀k (18b)
Rk ≥ R0, ∀k (18c)

Tc ≥ DkF

fk
, ∀k (18d)

pjk + pck ≤ pk,max, ∀k (18e)
K∑

k=1

fk ≤ fmax (18f)

xmin ≤ xu ≤ xmax, ymin ≤ yu ≤ ymax, (18g)

where Tc corresponds to the maximum computing time
amomg all K users. Constraints (18b) and (18c) ensure that the
covertness and transmission rate requirements are satisfied for
each user’s offloading, respectively. Constraint (18e) implies
that the power consumption at each user should not exceed
the budget. Moreover, (18f) and (18g) are the constraints of
overall computing resource and feasible range for deployment
of UAV-MEC server, respectively.

III. ENERGY MINIMIZATION ALGORITHM FOR COVERT
UAV-MEC SYSTEM

In this section, an efficient solution is designed to solve
Problem (18) via monotonicity and convexity analysis, as well
as successive convex approximation (SCA) method.

A. Computing Resource Optimization

First, since the computing resource variable f only makes
impact to the computing energy and one part of the hovering
energy without coupling with other variables, by removing the
constant terms, the computing resource allocation problem can
be equivalently transformed as

minimize
f,Tc

phTc +
K∑

k=1

DkFνf2
k (19a)

s.t.
K∑

k=1

fk ≤ fmax, Tc ≥
DkF

fk
,∀k. (19b)

It can be noticed that Problem (19) is convex, which can be
solve efficiently via standard optimization tool, such as CVX.

B. Optimal Power Split at Users

Next, as users’ power split only affects another part of
hovering energy, by removing constant terms, the power split
problem can be formulated as

minimize
pj ,pc

K∑
k=1

phDk

Rk
(20a)

s.t. ϵk,min ≥ 1− κ,∀k, (20b)
Rk ≥ R0,∀k (20c)

pjk + pck ≤ pk,max,∀k. (20d)

According to Remark 1, on the one hand, we see that
ϵk,min decreases with increasing user k’s covert power split
ratio ok. On the other hand, increasing pck, which corresponds
to increasing ok, is beneficial to enhance Rk and minimize
the objective function. With above monotonic characteris-
tics, to minimize

∑K
k=1 phDk/Rk subject to a given ϵk,min

constraint, the optimal o∗k can be obtained by meeting con-
straint (20b) exactly with equality, resulting in

o∗k = {ok|ϵk,min(o
∗
k) = 1− κ}, (21)

which can be found via bisection search method. Next, by
rewriting pjk = pck/o

∗
k, (20d) can be re-expressed as

pck
o∗k

+ pck ≤ pk,max, ∀k. (22)

As Rk is an increasing function with respect to pck, to minimize∑K
k=1

phDk

Rk
, (22) should be met with equality, and the optimal

powers are given by

pck
∗ =

o∗kpk,max

1 + o∗k
, pjk

∗
=
pk,max

1 + o∗k
. (23)

We note that pck
∗ and pjk

∗
only rely on the optimal power

split ratio o∗k, power budget, and covertness requirement, and
they are independent of UAV deployment. Moreover, since
the optimal power split is designed to maximize Rk, thus,
this optimization is feasible only if (20c) is satisfied with
optimal pck

∗.

C. UAV Deployment Optimization

Then, by introducing four sets of auxiliary variables
{χ,ω, ι,ψ} and removing constant terms, the UAV deploy-
ment can be obtained by solving

minimize
ru,χ,ω,ι,ψ

K∑
k=1

phDk

Bχk
(24a)

s.t.
1

ιk
log2

(
1 +

sk
ωk

)
︸ ︷︷ ︸

Wk

≥ R0

B
, ∀k (24b)

xmin ≤ xu ≤ xmax, ymin ≤ yu ≤ ymax (24c)
χk ≤ Wk, ∀k (24d)

ωk ≥ (||ru − rk||2 +H2)
αL
2 , ∀k (24e)

ιk ≥ 1 + a exp(−b[ψk − a]) (24f)

ψk ≤ 180

π
tan−1

(
H

||ru − rk||

)
, (24g)
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where sk = β0p
c
k/σ

2
u. To proceed, it can be verified that

1
x log2

(
1 + 1

y

)
is jointly convex in terms of x and y [18],

and tan−1(1/z) is convex in terms of z.
As such, we observe that the non-convexity of Problem (24)

arises from constraints (24b), (24d), and (24g). To tackle the
non-convexity, we consider to approximate these constraints
via SCA based on the first-order Taylor expansion as follows.

(24b) → R0

B
≤ W lb

k , ∀k, (25)

where W lb
k represents the lower bound of Wk and is given by

W lb
k =

1

ιk[n]
log2

(
1 +

sk
ωk[n]

)
− ιk − ιk[n]

(ιk[n])2
log2

(
1 +

sk
ωk[n]

)
− sk(ωk − ωk[n])

ιk[n](skωk[n] + (ωk[n])2) ln 2
, ∀k,

(26)
with ιk[n] and ωk[n] being the values of ιk and ωk in the n-th
iteration, respectively. Similarly, (24d) can be approximated as

(24d) → χk ≤ W lb
k ,∀k. (27)

In addition, constraint (24g) can be approximated as

(24g) → ψk ≤ 180

π
tan−1

(
H

||ru[n]− rk||

)
− 180

π

H(||ru − rk|| − ||ru[n]− rk||)
||ru[n]− rk||2 +H2

, ∀k,
(28)

where ru[n] is the value of ru in the n-th iteration.
With above transformation, the UAV deployment can be

obtained by solving

minimize
ru,χ,ω,ι,ψ

K∑
k=1

phDk

Bχk
(29a)

s.t. (24c), (24e), (24f), (25), (27), (28).

Now that Problem (29) is convex, it can thus be solved via
standard optimization software, i.e., CVX.

D. Overall Algorithm

We summarize the main steps of our proposed solution
in Algorithm 1, where computing resource allocation, users’
optimal power split and UAV deployment are solved.

Algorithm 1 Proposed Energy Minimization Algorithm for
Covert UAV-MEC Systems.

1: Initialization: Deploy the UAV at centroid among all users. Set
pck = 0.5 W, pjk = 2 W, fk = fmax/K, ∀k.

2: Update computing resource allocation of UAV-MEC server f by
solving (19);

3: Update users’ power allocation pc, pj based on (21) and (23),
respectively;

4: repeat
5: Update UAV deployment ru by solving Problem (29);
6: until convergence

IV. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the performance of our proposed energy minimization
solution for covert UAV-MEC systems. We consider that
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Fig. 3. DEP versus detection threshold.

Fig. 4. Colormap of energy consumption with different UAV locations.

5 users need to offload their tasks which follow uniform
distributions Dk ∼ U(0.1, 1) MB to the UAV-MEC server.
As shown in Fig. 4, all users are randomly distributed within
the range of [500 m, 500 m] with the power budgets that
follow pk,max ∼ U [3, 5] W . The warden is located at
[250.45m, 300.24m]. Moreover, we set B = 1 MHz, κ = 0.2,
F = 500 cycles/bit, β0 = β1 = 10−3, σ2

u = σ2
w = −110 dB,

α = 2.5, fmax = 10 GHz, H = 100 m, R0 = 0.5 Mbit/s,
αL = 2.2, a = 9.61, b = 0.16, ν = 10−27, b1 = 0.002,
b2 = 70.698 [20].

In Fig. 3, the relationship between DEP and detection
threshold τ is plotted with different jamming powers of the 1-
st user. We observe that the theoretical results for the minimum
DEP that are obtained via Eq. (14), i.e., green dots as shown
in Fig. 3, match the simulation results well, thus verifying the
correctness of our derived theoretical expression. Moreover,
we see that the larger the jamming power, the higher the DEP.
This phenomenon can be understood since the uncertainty
of warden’s received power increases with a higher jamming
power, resulting in a high probability that the warden makes
an incorrect decision.

In Fig. 4, we plot the colormap of energy consumption
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Fig. 5. Comparison with benchmark schemes.

with different UAV locations. Specifically, the locations of
users and warden are represented by the white circles and
purple diamond, respectively. We observe that our optimized
UAV deployment, which is shown as the red triangle, achieves
a low energy consumption of 7.89 Joule, thus verifying the
effectiveness of our UAV deployment optimization.

To further demonstrate the superiority of our proposed
solution, in the simulation, we compare our Algorithm 1 with
the following two benchmark schemes.

• Benchmark 1: In this scheme, the UAV is hovering in the
centroid among all users, and the users’ power split and
UAV computing resource are optimized via Algorithm 1.

• Benchmark 2: In this scheme, the users’ power split and
UAV deployment are obtained by Algorithm 1, while the
UAV assigns its computing resource for executing the
data of each user equally, i.e., fk = fmax/K,∀k.

In Fig. 5, we compare our proposed Algorithm 1 with
benchmark schemes on energy consumption over a wide range
of covertness requirements. Several interesting observations
can be found according to Fig. 5. First, we observe that with
a more strict covertness requirement, i.e., a higher value of
1−κ, the consumed energy increases at the UAV-MEC server,
revealing that there exists a fundamental trade-off between
covertness and energy consumption. This is because when
the covertness is more challenging to achieve, according to
Remark 1, a lower covert power split ratio ok = pck/p

j
k is

expected, resulting in a reduced transmission rate Rk and
increased energy consumption. Moreover, it can be seen that
our proposed Algorithm 1 contributes to the lowest energy
consumption when compared to benchmark solutions, indicat-
ing the importance of our joint design.

V. CONCLUSIONS

In this paper, a UAV-aided covert offloading framework was
developed with power split at users to send communication and
jamming signals, respectively. Specifically, the relationship
between covertness measurements and users’ power split ratio
was investigated theoretically. Moreover, an effective energy
minimization algorithm was designed. Finally, simulation re-
sults were provided to demonstrate the effectiveness of our

proposed solution. For our future work, the extension to
consider mobile UAV with trajectory design and short-packet
offloading will be further studied.
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