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ABSTRACT
Existing occluded person re‐identification methods employ hard or soft partition strategies to explore fine‐grained information.
However, the hard partition strategy which extracts region‐level features may impair the semantic connectivity of correlated
human body parts. A pose‐guided soft partition establishes correlations among human keypoints, while the generated pixel‐
level embeddings may lose the surrounding semantic information. In this paper, we propose a keypoint‐guided feature parti-
tion (KGFP) method that consists of a feature extractor, a hard partition branch, and a soft partition branch. Specifically, we
adopt a vision transformer and a pose estimator to extract features and keypoint information. In the hard partition branch, we
partition features into distinct groups and classify them into nonoccluded, semi‐occluded, and occluded features to obtain
region‐level features and filter out occlusions. Furthermore, we design a dissimilarity loss to reduce the similarity between semi‐
occluded and occluded features. In the soft partition branch, we introduce a graph attention network and consider global and
keypoint embeddings as nodes of a graph to discover interrelationships. Additionally, we formulate image alignment as a graph
matching problem and propose a feature alignment‐based graph to reduce position misalignment. Extensive experiments
demonstrate that the proposed method achieves superior performance compared to state‐of‐the‐art methods on Occluded‐
DukeMTMC, Markt1501, and DukeMTMC‐reID.

1 | Introduction

Person re‐identification (Re‐ID) presents a challenging task in
image‐based retrieval, which aims to match pedestrian images of
the same identity across multiple nonoverlapping cameras [1]
deployed in different locations or at different times. Because of
challenges posed by various body poses, different views of

cameras and cluttered backgrounds, the Re‐ID task has gained
considerable attention. Most existing methods [2–4] assume that
a pedestrian's entire body is completely visible. However, pedes-
trians are easily occluded by various obstacles (i.e., vehicles,
nontarget pedestrians and warning signs). These occlusions,
including differences in colour, size, shape and structural posi-
tion, have a detrimental impact on the overall person re‐
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identification performance. Therefore, numerous advancements
have introduced occluded person re‐identification to mitigate the
effect of occlusions.

In occluded person Re‐ID tasks, the presence of obstacles within
occluded regions often leads to mismatches. Therefore, learning
discriminative features from nonoccluded regions is crucial.
Several methods [2–9] in the holistic person re‐identification
task have proved that various feature partition strategies are
effective in extracting fine‐grained features, which is helpful in
capturing discriminative features. Inspired by that, most
methods [10–16] also introduce these strategies for occluded
person re‐identification tasks, which can extract discriminative
features and further alleviate the negative impact of occlusions.
Feature partition strategies can be divided into two categories:
hard partition strategy and soft partition strategy. The hard
partition strategy does not require part labelling, which can
divide the feature maps into stripes or patches. However, the
soft partition strategy leverages external cues obtained from a
pose estimator to capture part features. Figure 1a–c employ a
hard partition strategy that splits the image into horizontal
stripes, vertical stripes and patches. These splittings offer region‐
level fine‐grained information. However, they may separate
highly semantically correlated regions, thus destroying the in-
terconnections among body parts. In contrast, Figure 1d dem-
onstrates the partitioning outcome obtained by the pose
estimator, which generates keypoint embeddings and preserves
the relationships among keypoints. However, the keypoint
embeddings obtained are pixel‐level feature representations,
which lose the detailed information around keypoints.

The advantages and limitations of these two partition strategies
are found to be complementary. Inspired by the above observa-
tions, we propose a keypoint‐guided feature partition (KGFP)
method, aiming to explore fine‐grained region‐level information
and the interconnections among human body parts. Specifically,
the proposed KGFP method comprises of a feature extractor, a
hard partition branch and a soft partition branch. In the feature
extractor,we employ theVisionTransformer (ViT) [17] to capture
the global feature and patch tokens, alongside the pose estimator
to generate the landmark and heatmap of each keypoint. In the
hard partition branch, the patch tokens are divided into groups
and then fed into a shared transformer layer to investigate region‐
level information. To extract nonoccluded features, we classify

groups into three categories including nonoccluded, semi‐
occluded and occluded groups via coordinates and visibility of
these keypoints. Additionally, we introduce a dissimilarity loss to
push semi‐occluded and occluded features away to focus on hu-
man body parts. In the soft partition branch, a graph attention
network is introduced, then the global feature and keypoint em-
beddings are viewed as node features for the purpose of mining
their interconnections inside. Furthermore, image alignment is
regarded as a graph matching problem and the corresponding
keypoint embeddings are compared to calculate the distance for
query and gallery images during testing. Therefore, we further
alleviate the impact of position misalignment and occlusion
problem, and achieve an improved retrieval accuracy. The main
contributions are summarised as belows:

1. We propose a novel keypoint‐guided feature partition
(KGFP) method, which integrates hard and soft partition
strategies, enabling the extraction of discriminative region‐
level information while preserving interconnections
among human body parts. Extensive experiments demon-
strate its remarkable performance.

2. We propose a hard partition branch that splits patch to-
kens obtained from ViT into different groups, which have
been classified into nonoccluded, semi‐occluded, and
occluded features based on coordinates and visibility of
body keypoints. Additionally, a dissimilarity loss is intro-
duced to effectively separate semi‐occluded and occluded
features and enhance focus on the human body.

3. We propose a soft partition branch to investigate the
connectivity among global and keypoint embeddings,
which aggregates and updates semantic information with a
graph attention network.

4. We consider image alignment as a graph matching prob-
lem and propose a feature‐alignment‐based graph strategy
to minimise the retrieval misalignment.

2 | Related Works

2.1 | Occluded Person Re‐Identification

Occluded person Re‐ID differs from holistic person Re‐ID, as the
latter assumes the whole human body is visible [18]. In contrast,

FIGURE 1 | Different strategies for splitting an image. (a) Horizontal stripes, (b) vertical stripes, (c) patches, and (d) pose estimator.
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occluded person Re‐ID concentrates on pedestrian images that
are obstructed by diverse obstacles (e.g., cars, warning signs,
trees, and nontarget pedestrians). With the recent progress in
deep learning, numerous methodologies for occluded person
Re‐ID have been introduced. To learn discriminative features
from nonoccluded regions, numerous methods split the feature
map to concentrate on nonoccluded features. Generally, split-
ting strategies can be divided into hard partition strategy and
soft partition strategy. The hard partition strategy, which does
not require part labelling, primarily splits an image into stripes
or patches to filter out occluded regions and background clut-
ters. PCB [2] simply evenly partitions the image into horizontal
stripes to mine fine‐grained information. Zhang et al. [10] and
Kim et al. [19] also split the image based on PCB and extracts
centre parts from the vertical direction under the presumption
that the target pedestrian is positioned in the middle of the
bounding box. As local features make varying contributions,
Wang et al. [11] propose to predict quality scores of each part
and introduce an attention mechanism focusing on common
nonoccluded regions. To further reduce the impact of occlu-
sions, He et al. [9] introduce the ViT to split the image into
patches. However, these methods may lose some highly
semantically correlated information and interconnections
among body parts. The soft partition strategy needs to utilise
external cues to focus on the nonoccluded features. DRL‐Net
[15] and PAT [13] introduce a learnable semantic representa-
tion to target discriminative human body parts. Additionally,
PMFB [12], Yang et al. [14], and DAReID [16] split feature maps
into horizontal stripes and categorise them as either non-
occluded or occluded features by comparing the confidence of
keypoints with the threshold. They determine that if a local
region contains visible keypoints, it is considered as a non-
occluded region, whereas if not, it is classified as occluded.
However, if a local region contains both visible and invisible
keypoints simultaneously, it will be regarded as a nonoccluded
region in the above methods, even though it still introduces the
noise caused by invisible keypoints.

Unlike existing methods, our approach involves constructing a
graph to establish the linkage of each human body part in the
soft partition branch. Furthermore, we classify region‐level
features into nonoccluded, semi‐occluded, and occluded fea-
tures to more effectively filter out occlusions in the hard parti-
tion branch.

2.2 | Feature Alignment

Person Re‐ID presents numerous challenges including occlu-
sion, pose changes, viewpoint variation, and background
clutter. These obstacles frequently lead to misalignment
among pedestrians of the same identity, and subsequently, a
reduction in matching accuracy. Sun et al. [2] have attempted
to resolve these issues by splitting the feature map into
horizontal stripes and matching corresponding stripes in a
one‐to‐one manner. However, it ignores the mismatching
between pedestrians and their backgrounds, as well as the
significance of global features. Zhang et al. [20] propose to
compute the shortest path between two sets of local features,

while also retaining the global feature to compute the global
similarity. Zhao et al. [21] and Li et al. [22] employ an
attention mechanism that concentrates on human body parts,
thereby successfully achieving feature alignment. To obtain
discriminative features and robust alignment, Wang et al. [23]
perceive person Re‐ID as a graph matching problem, and
propose a CGEA layer to achieve local feature alignment with
topology information. We consider person Re‐ID as a graph
matching problem and design a graph‐based new feature
alignment strategy that relies on human skeleton to improve
the retrieval precision.

2.3 | Graph Convolution Network

Graph convolution networks (GCNs) have been successful in
computer vision applications including gait recognition [24],
image recognition [25] and person re‐identification. Specifically,
Zhang et al. [26] and Pan et al. [27] split the feature map into
stripes and use GCNs to model potential relations between local
features of image patches for holistic person Re‐ID. HOReID
[23] constructs a graph based on human keypoints and proposes
a cross‐graph embedded alignment method to alleviate the
impact of occlusions for occluded person Re‐ID. Liang et al. [28]
utilise the GCN based on the pose to alleviate the impact of
modality discrepancy for visible‐infrared person Re‐ID. Chen
et al. [29] propose pose‐assisted GCN to mine temporal infor-
mation for video person Re‐ID.

Our method differs from previous studies in two main aspects.
Firstly, we jointly combine GCN with human skeleton infor-
mation to investigate the connectivity between human body
parts. Secondly, whilst GCN treats all neighbouring nodes
equally for a node, certain node features pertain to occluded
features, we introduce the attention mechanism in GCN to
minimise the interference of occlusions.

3 | The Proposed Method

As illustrated in Figure 2, the proposed KGFP mainly includes
three parts: feature extractor, hard partition branch, and soft
partition branch. Specifically, feature extractors extract patch
tokens with a ViT architecture and keypoint information by
pose estimator. For the hard partition branch, we split patch
tokens into groups and feed them into a shared transformer
layer to mine the region‐level local information, and further
classify them into nonoccluded, semi‐occluded, and occluded
features by the visibility label of keypoints to alleviate the
impact of occlusions. Moreover, we develop a dissimilarity loss
to push the semi‐occluded and occluded features away to focus
on human body parts. For soft partition branch, we view the
global feature and keypoint embeddings as node features and
introduce a graph attention network to explore the linkage of
global and keypoint embeddings. Additionally, we consider
image alignment as a graph matching problem, and propose a
feature‐alignment‐based graph to reduce the impact of occlu-
sions and position misalignment in testing.

3
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3.1 | Feature Extractor

3.1.1 | Transformer‐Based Framework

Vision Transformer possesses a strong capability to extract the
patch tokens. We build a feature extractor and use ViT as the
basis. When given an image x ∈ RH ×W ×C, with H, W and C
denoting the height, width, and channel dimensions of x
respectively, we split the image into N nonoverlapping patches
{xp ∣ p = 1, 2,…,N}, and the number of patch tokens can be
described as follows:

N = ⌊H − P
S

+ 1⌋ × ⌊W − P
S

+ 1⌋. (1)

where S denotes the stride size, and P denotes the size of each
image patch. And then we map the N fixed‐size patches se-
quences to D dimensions via a trainable linear projection and
obtain the patch embeddings E ∈ RN ×D. We introduce a learn-
able position embedding EP to preserve position information.
Additionally, we set a learnable parameter Ecm to alleviate the
impact of camera perspective following the existing method [9].
Simultaneously, a learnable class token xcls is defined to serve as
global feature representation, which is presented to the patch
embeddings. Finally, the definitive input can be described as
follows:

Einput = {xcls;E} + Ep + λcmEcm. (2)

where λcm is the ratio of camera embeddings. Then the ViT
takes Einput as input. The output of the feature extractor is
f ∈ R(N + 1) ×D, which contains one global feature fg ∈ R1×D and
N patch tokens fp ∈ RN ×D.

3.1.2 | Pose Estimator

Pedestrian images with occlusions suffer from performance
degradation as they lack full‐body information, and the occlu-
sions and backgrounds could be similar. In order to address this
issue, we utilise a human pose estimator to retrieve crucial key-
point information. Specifically, given an image x, the pose esti-
mator extract M landmarks, with the coordinate and confidence
score of each landmark {Li = {yi, xi, ci} ∣ i = 1, 2,…,M}. These
landmarks are utilised to generate heatmaps HT = {HT1,

HT2,…,HTM}. We set a threshold δ to distinguish visible and
occluded landmarks in pedestrian images. If a landmark is
occluded, the confidence score is below δ. Conversely, if a land-
mark is visible, the confidence score exceeds δ. Formally, the
visible label of a landmark vl can be illustrated as follows:

νli =
⎧⎨

⎩

0 ci < δ
1 ci ≥ δ

(i = 1,…,M). (3)

where ci denotes the confidence score of i‐th landmark.

3.2 | Hard Partition Branch

The soft partition strategy via the pose estimator provides the
adjacency relationship of human body parts. However, the
keypoint features extracted are at pixel level, which loses
the highly correlated information around keypoints. Therefore,
we propose to extract region‐level features in the hard partition
branch. The local features are obtained by regrouping patch
tokens and feeding them into a shared transformer layer. Then,
we refine and classify them by filtering occlusions based on the
visibility of keypoints. Specifically, patch tokens fp are firstly

FIGURE 2 | The architecture of the proposed keypoint‐guided feature partition (KGFP).
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rearranged into a new form according to their original position
information. The size of the rearranged patch tokens is
⌊H −P

S + 1 ⌋ × ⌊ W −P
S + 1⌋, and then it is divided intom groups

from a horizontal view. The shared global token fg is concate-
nated with each group. After that, m groups are inputted into a
shared transformer layer to learn the relationship of global and
local features, represented as { f jl ∣ j = 1, 2,⋯,m} and f jl is the
output of j‐th group. For the occluded person Re‐ID task, it is
crucial to explore discriminative features from nonoccluded
regions. We introduce the coordinate and visible label of human
keypoints offered by the pose estimator to judge whether a local
region is nonoccluded. Existing methods state that if a local
region contains visible keypoints, it is deemed to be non-
occluded. However, when a local region has visible and invisible
key points simultaneously, some nonoccluded regions may still
contain occlusions. Therefore, we propose to classify local fea-
tures into three categories: nonoccluded features, semi‐occluded
features, and occluded features for better filtering of occlusions.
Formally, since the canvas size of coordinates is same with the
size of the input image, we map the canvas size of coordinates to
be consistent with the rearranged patch tokens, which facilitates
the retrieving of the amount of keypoints in group features.
Then, group features are divided into nonoccluded, semi‐
occluded, and occluded features according to the visibility of
all key points in each group feature. And the division criterion
is: if all human keypoints are visible within a certain local re-
gion, it is termed a nonoccluded region fnon; Conversely, if all
human keypoints are invisible or nonexistent within a local
region, it is considered as an occluded region focc; Otherwise, it
is considered as a semi‐occluded region fsemi.

3.3 | Soft Partition Branch

Although region‐level features obtained by the hard partition
strategy preserve the local region information, they ignore the
correlated relationship of each human body part. Therefore, we
propose to learn interconnections among human body parts in
the soft partition branch. By introducing a pose estimator, we
can directly extract keypoint embeddings. Furthermore, we

introduce a graph attention network to identify in-
terconnections between different human body parts and
aggregate features from global and keypoint embeddings.

Firstly, we construct the graph, denoted by G = (V, E), and

generate the keypoint embeddings V = { f 1kp, f
2
kp,…, f

M
kp} via

element‐wise product of the global feature fg and the heatmaps
HT = {HT1,HT2,…,HTM}. As represented in Figure 3a, the
obtained keypoint embeddings serve as nodes within the graph,
with edges categorised into two distinct types: keypoint‐
keypoint edges Ekk and global‐keypoint edges Egk. The former
defines interconnections among the inherent joints in the hu-
man keypoints, and also includes the self‐connection of nodes.
In contrast, the latter defines fully relationships extending from
global aspect to each keypoint (for simplicity, only one dotted
line is used to illustrate global‐keypoint edges). Besides, we
define the adjacent matrix in Figure 3b, where the value is set to
1 when there is an adjacent relationship between keypoints, or
0 otherwise.

Then, we introduce a graph attention network to update the
embedding of each node by aggregating features from its adja-
cency nodes. The graph attention network consists of eight
graph attention layers, and the structure of each layer [30] is
shown in Figure 4. Specially, as represented in Figure 4a, we
initially compute the weight eij for each edge, representing the
relevance of the neighbouring node j to the current node:

eij = a( [Wvi∥Wvj]); j ∈N i. (4)

where W ∈ Rd× d and a ∈ R2d are learnable parameters for
transforming input node embeddings, the [ ∥ ] denotes the
operation of embedding concatenate and N i is the set of adja-
cent nodes. Then we normalise the edge weights across all the
neighbouring nodes for current node to calculate the attention
coefficient αij:

αij = Softmax( eij) =
exp(LeakyReLU( eij))

∑k∈N i
exp(LeakyReLU(eik))

. (5)

FIGURE 3 | The designs in adjacent matrix. (a) The setting of nodes and edges in the defined graph. Solid line defines the relationships between
keypoints, and the dotted line defines the relationships between global and keypoints. (b) The definition of adjacent matrix.
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With normalised attention coefficient, the updated node
embedding vi is computed by all neighbouring nodes and
summed by the average weights in Figure 4b:

ví = LeakyReLU(∑ j∈N i
αijWvj). (6)

Finally, we obtain global‐keypoint embedding fgk and keypoint
embeddings f ḱp as outputs. Graph representation learning is
introduced to establish relationships between the keypoint and
global embeddings. It aggregates semantic features with speci-
fied edges, preserving the semantic information of human body
parts.

The graph attention network evaluates the significance of each
edge, and aggregates the node embedding by the attention co-
efficient among adjacent nodes, lessening the unfavourable
impact of occlusions.

3.4 | Optimisation

The KGFP framework is trained in an end‐to‐end manner using
the multi‐task loss functions: an identity loss, a triplet loss, a
centre loss and a dissimilarity loss.

3.4.1 | Identity Loss

The person re‐identification can be regarded as a multi‐class
task for feature learning, where each person ID is a class. We
adopt a cross‐entropy loss as the identity loss for global features,
nonoccluded features, and semi‐occluded features. The loss is
formulated as follows:

Lid = Lid( fg) + Lid( fnon) + Lid( fsemi). (7)

3.4.2 | Triplet Loss

The triplet loss involves an anchor sample, a positive sample,
and a negative sample. By minimising the distance between

positive sample pairs, while maximising the distance between
negative pairs to make the model learn more discriminative
features, we implement the triplet loss for global features, non‐
occluded features, and semi‐occluded features, and the loss
function is expressed as follows:

Ltri = Ltri( fg) + Ltri( fnon) + Ltri( fsemi). (8)

3.4.3 | Dissimilarity Loss

The semi‐occluded feature contains partial human body parts,
while the occluded feature contains nonhuman body parts. The
semi‐occluded feature and occluded feature should not have
strong similarities. If the semi‐occluded and occluded features
are similar, the model is prone to mistakenly learn human‐body
parts as nonhuman body features. To mitigate this, we develop
a dissimilarity loss to make the model focus on human body
parts in the hard partition branch. The loss can be formulated
as follows:

f śemi = avgpooling( fsemi). (9)

f ócc = avgpooling( focc). (10)

Ldis = D( f śemi, f ócc). (11)

where D(,) denotes the cosine similarity.

3.4.4 | Centre Loss

Because of the varying capture times of images and the contin-
uous movement of pedestrians, there are pose variations among
images of the samepedestrians.We introduce the centre loss from
the face recognition problem, which can further mitigate the in-
fluence of pose variation. We employ the centre loss for global‐
keypoint embedding to constrain the feature distribution of
each keypoint and the loss can be formulated as follows:

Lce =
1
2
∑
B

j=1
∥ fgkj − cyj∥

2
2. (12)

FIGURE 4 | The framework of graph attention network. (a) The process of computing the weight eij via the attention mechanism and
normalising the edge weight to calculate the attention coefficient αij. (b) The aggregating operation of keypoint graph attention.

6 CAAI Transactions on Intelligence Technology, 2025
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where B is the number of batch size, cyj denotes the class centre
feature labelled yj and yj denotes the label of j‐th image in a mini‐
batch. The overall objective function can be illustrated as follows:

L = λ1Lid + λ2Ltri + Ldis + Lce. (13)

where λ1 and λ2 are set to 1, which denotes the balance factor
between identity loss and triplet loss.

3.5 | Feature‐Alignment‐Based Graph

To improve the accuracy and performance in testing an image
retrieval task Re‐ID, most existing methods propose matching
strategies to alignhumanbodyparts.As shown inFigure 5, PCB [4]
splits the image into stripes and matches the corresponding local
features between the query and gallery images. However, occlu-
sions and misalignment of positions are disregarded. PMFB [12]
proposes to compare the commonly visible parts in the query and
gallery images. However, this method is only suitable for images
with strong occlusion. Otherwise, it still introduces occlusions. To
reduce the impact of occlusions, when aligning two images, we
take it as a graphmatching problem and further propose a feature‐
alignment‐based graph strategy to calculate the distance of graph
representation between the query and gallery images. Further-
more, the confidence is considered as aweight to preventmatching
occluded keypoint embeddings, allowing us to fully utilise non-
occluded features and improve performance. The skeleton dis-
tance between the query and gallery images is defined as follows:

dsk =∑
M
i=1c

q
i c

g
i d( f ʹq

kpi , f
ʹg
kpi). (14)

where cqi and cgi are the confidence score of i‐th keypoint of
query and gallery image; f ʹq

kpi and f ʹg
kpi denote the keypoint em-

beddings of i‐th keypoint of query and gallery image, and d(, )
denotes the cosine similarity.

Besides, we compute part‐based distance by the following
equation:

dp = d( f qg , f
g
g) + d( f qnon, f

g
non) + d( f qgk, f

g
gk). (15)

where fg and fnon and fgk are the global feature, nonoccluded
features, and global‐keypoint feature of the query and gallery
images, respectively.

The total distance is computed through simply adding the dis-
tance of skeleton graph and part‐based features as follows:

dist = dsk + dp. (16)

where dist denotes the final distance.

4 | Experiments

4.1 | Datasets and Evaluation Metrics

In order to demonstrate the effectiveness of the proposed
method, we conduct extensive experiments on three large‐scale
datasets, including Occluded‐DukeMTMC [31], Market1501
[32] and DukeMTMC‐reID [33]. The Cumulative Matching
Characteristic (CMC) and mean average precision (mAP) met-
rics are adopted to evaluate the performance.

4.2 | Implementation Details

Both the training and testing images are resized to 256 × 128. The
training images are augmented through random horizontal flip-
ping, padding, random cropping, and random erasing as outlined
in ref. [34]. The initial weights of ViT are pre‐trained on Image-
Net21K and then finetuned on ImageNet‐1K. In this paper, we
perform all the experiments with one Nvidia A100 GPU using
PyTorch. The batch size is set to 64 with 4 images per ID, and the
model is trained for 120 epochs. SGDoptimiser is employedwith a
momentum of 0.9 and a weight decay of 1e‐4. The learning rate is
initialised as 0.008with cosine learning rate decay. The stride size
is 16 × 16. To detect landmarks from images, we adopt HRNet
[35] pre‐trained on theCOCOdataset. The threshold δ is set to 0.2.
The number of groups m is set to 16.

4.3 | Comparison With State‐of‐The‐Art Methods

4.3.1 | Results on Occluded Dataset

In experiments, we compare our proposed method with the pre-
vailing occluded person Re‐ID methods, and implement the
standardViTmethod as baseline. As shown in Table 1, we present
the evaluation results on theOccluded‐DukeMTMC.Wecompare
the accuracy of Rank‐1, Rank‐5, and Rank‐10, as well as the mAP
metric of these methods. Existing methods are roughly divided

FIGURE 5 | Different matching strategies. (a) Matching corresponding local features. (b) Matching commonly visible local features. (c) The
proposed matching strategy matches commonly visible keypoints.
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into three categories, including methods based on hard partition
strategy, methods based on soft partition strategy, and methods
based on hybrid partition strategies.

In Table 1, the proposed method KGFP exhibits impressive re-
sults, with a performance of 67.0% Rank‐1 and 58.4% mAP ac-
curacy, outperforming all existingmethods.Notably, compared to
the methods in the first group, the proposed KGFP addresses the
limitations of the hard partition strategy by additionally exploring
the interconnections among human body parts through a graph
attentionnetwork.Compared to themethods in the secondgroup,
the proposed KGFP introduces an attention mechanism in the
graph convolution network to reduce the impact of occlusions.
This is in contrast to the graph convolution network that equally
treats every node. In addition, the keypoint embedding is a pixel‐
level feature representation that loses the contextual information
around the keypoint. To address these limitations, we add region‐
level features to enrich the feature representation in the hard
partition strategy branch. Compared to the methods in the third
group, which use the hybrid partition strategies for feature
learning and achieve image matching by strict alignment, the
proposed KGFP considers image alignment as a graph matching
problem and has surpassed them by at least þ2.6% Rank‐1 and
þ7.1% mAP, which demonstrates the effectiveness of feature‐
alignment‐based graph in the proposed method.

4.3.2 | Results on Holistic Datasets

We also conduct experiments on two holistic datasets, including
Market1501 and DukeMTMC‐reID, where the full body of the
pedestrian is available.As shown inTable 1, thesemethods canalso
be divided into three categories: hard‐partition based, soft‐partition
based, and hybrid‐partition based. It is evident that while the re-
sults on Market1501 may not meet initial expectations, they still
demonstrate comparable performance to some existing methods,
suggesting that our method possesses generality and universality
for the Re‐ID task. In comparison to other methods, our method
attains the best Rank‐1 andmAP on the DukeMTMC‐reID dataset
with 89.8% and 80.8%. It is obvious that the proposed method can
obtain an impressive performance on DukeMTM‐reID, which
contains complex scenes and occlusions in real environment.
These results also indicate that the proposed method is robust and
applicable to both occluded Re‐ID and holistic Re‐ID tasks.

4.4 | Ablation Studies

In this section, we conducted extensive ablation experiments on
the proposed modules to validate their effectiveness. As depicted
in Table 2, we present various settings for the proposed three
modules and perform a detailed comparison in each module.
The ablation experiments adopt the Occluded‐DukeMTMC
dataset and all research modes by default.

4.4.1 | Effectiveness of the Hard Partition Branch

As shown in Table 2, we first train the baseline method. In the
hard partition branch, the hard1 (Index‐2) denotes that local

features are divided into nonoccluded and occluded features
under the guidance of the visibility of keypoints, and the hard2
(Index‐3) denotes that local features are divided into non-
occluded, semi‐occluded, and occluded features. It can be
noticed that splitting local features by the visibility of keypoints
can contribute to performance improvements. The hard1 divides
local features into two categories, and as long as a local region
has visible keypoints, it is a nonoccluded region. However, the
region still contains noise when both visible and invisible key-
points exist simultaneously. In contrast, the hard2 further clas-
sify the nonoccluded regions into a nonoccluded region when
all keypoints are visible and a semi‐occluded region when both
visible and invisible keypoints exist simultaneously. The results
exhibit that the proposed method improves with +0.7% Rank‐1
and +0.5% mAP, which exhibits the effectiveness of the hard
partition branch.

4.4.2 | Effectiveness of the Soft Partition Branch

In the soft branch, we set up three different experimental set-
tings. The soft1 (Index‐4) involves extracting keypoint embed-
dings by keypoint heatmaps without incorporating graph
learning. Subsequently, we introduce a graph learning to
explore the relationship of keypoint‐keypoint embeddings in the
soft2 (Index‐5), and add global‐keypoint edges to mine in-
terconnections among global and keypoints embeddings in the
soft3 (Index‐6). Compared with Index‐1, adding keypoint in-
formation by pose estimator B+ soft1 can bring a slight
improvement in performance. By introducing the graph atten-
tion network to explore relationships among keypoints, B+ soft2
achieves the performance 62.5% Rank‐1 and 54.5% mAP, which
shows the crucial significance of exploring keypoint relation-
ships. Additionally, by adding the global keypoint edges in the
graph attention network, the performance of the Index‐6 further
increases by +1.8% Rank‐1 and 2.5% mAP. It demonstrates that
we can extract discriminative local features under the guidance
of keypoints and graph learning.

4.4.3 | Effectiveness of Feature‐Alignment‐Based Graph

The match1 (Index‐7) denotes computing the distance only by
part‐based features, and we add the graph matching in the
match2 (Index‐8) to calculate the distance of keypoint features.

TABLE 2 | Ablation studies of the hard partition branch, the soft
partition branch and the feature‐alignment‐based graph.

Index Methods R‐1 R‐5 R‐10 mAP
1 Baseline (B) 60.2 76.5 82.0 53.2

2 B þ hard1 64.5 78.5 83.3 56.3

3 B þ hard2 65.2 78.8 82.9 56.8

4 B þ soft1 60.6 76.7 82.3 53.5

5 B þ soft2 62.5 78.9 84.1 54.5

6 B þ soft3 64.7 78.8 83.5 57.0

7 B þ hard2 + soft3 + match1 66.5 80.0 83.8 57.4

8 B þ hard2 +soft3 + match2 67.0 80.4 85.3 58.4
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Existing image‐matching strategies split images into stripes and
compare the corresponding stripes, which cannot achieve
impressive performance when occlusions occur or position
misalignment happens. We view image alignment as a graph
matching problem, which can solve the position misalignment
problem and alleviate the influence of occlusions. As shown in
Index‐8, our method achieves the best performance at 67.0%
Rank‐1 and 58.4% mAP, which further increases by +0.5%
Rank‐1 and +1.0% mAP compared to Index‐7, which further
illustrates the effectiveness of graph matching.

4.5 | Parameters Analysis

4.5.1 | Analysis of Groups m

In the hard partition branch, we divide the feature map into m
groups and the number of groups denotes the size of region. For
the convenience of locating key points in that horizontal stripe,
we map the coordinates into 16 × 8. We set the m as 4, 8, and
16 to analyse the impact of groups. And we consider that when
all keypoints are visible in a region, it is a nonoccluded feature.
Therefore, when m is smaller, a group contains more keypoints,
and it is more easily defined as a semi‐occluded feature. It will
further negatively affect the discriminative feature learning of
nonoccluded features. As shown in Table 3, it can be observed
that when m = 16, we get the best results 67.0% Rank‐1 and
58.4% mAP, which demonstrates the importance of region‐level
features.

4.5.2 | Analysis of Threshold δ

The threshold is defined to generate the visibility label of key-
points, which contributes to explicitly classifying local features.
To find the most suitable threshold δ, we conduct extensive
experiments by varying δ from 0 to 0.7. When the threshold is
set smaller than 0.2, all keypoints may be viewed as visible.
Specifically, when δ = 0, it indicates that all local features are
visible. Although it is inevitable to introduce noise, including
background clutters and occlusions, we still achieve 65.0%
Rank‐1 and 56.7% mAP. When the threshold is set larger than
0.2, it is easy to incorrectly classify visible local features as
invisible features, which leads to some certain visible body part
regions being lost. As shown in Figure 6, when the threshold
δ = 0.2, it achieves the best performance, which demonstrates
the robustness of the proposed method to filter out background
clutters and occlusions.

4.6 | Effectiveness of Each Loss

4.6.1 | Identity Loss

Lid trains Re‐ID models as a classification task by predicting the
identity for every image. As shown in Table 4, when Lid is
removed, the performance drops by +7.5% Rank‐1 and +6.0%

TABLE 3 | Parameter analysis of groups m.

m R‐1 R‐5 R‐10 mAP
4 64.0 78.7 83.6 55.5

8 66.6 79.7 85.0 57.3

16 67.0 80.4 85.3 58.4
Note: Comparison in CMC and mAP with different settings of the group m in
hard partition branch on Occluded‐DukeMTMC.

FIGURE 6 | Parameter analysis of threshold δ. Comparison in Rank‐1 and mAP with different settings of threshold δ on Occluded‐
DukeMTMC.

TABLE 4 | Effectiveness of each component of the overall loss
function over the Occluded‐DukeMTMC.

Lid Ltri Lce Ldis R‐1 R‐5 R‐10 mAP
✓ ✓ ✓ ✓ 67.0 80.4 85.3 58.4

✗ ✓ ✓ ✓ 59.2 74.9 81.0 52.3

✓ ✗ ✓ ✓ 61.4 75.4 80.5 50.1

✓ ✓ ✗ ✓ 66.0 80.5 84.8 57.9

✓ ✓ ✓ ✗ 66.0 79.3 83.8 57.0

10 CAAI Transactions on Intelligence Technology, 2025

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.70057 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [15/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



mAP, which indicates that the Lid plays a fundamental role in
discriminative feature learning.

4.6.2 | Triplet Loss

Ltri trains Re‐ID models as a rank problem, ensuring that an
image of a specific person is closer to intra‐class images than
inter‐class images. As depicted in Table 4, by removing Ltri, the
performance drops +5.3% Rank‐1 and +8.2% mAP, which
shows that Ltri can enhance the discriminative capability of the
Re‐ID task.

4.6.3 | Centre Loss

Lce aims to provide a centre feature for each class, minimising
the distance between intra‐class. To this end, it further alleviates
the interference of pose variation. As shown in Table 4, when
Lce is removed, the performance drops +0.7% Rank‐1 and +0.4%
mAP, validating its effectiveness in mitigating the impacts of
pose variation.

4.6.4 | Dissimilarity Loss

Dissimilarity loss Ldis aims to push the semi‐occluded and
occluded features away, making the model focus on human
body parts. To this end, it further mitigates the influence of
occlusions. As shown in Table 4, without the Ldis, the perfor-
mance drops +0.7% Rank‐1 and +1.3% mAP, which validates
the effectiveness in reducing the impacts of occlusions.

4.7 | Visualisation

We compare the retrieval results between the baseline and the
proposed KGFP method on Occluded‐DukeMTMC. The results
are organised from left to right based on their similarity score.
The green rectangles represent correct matches, while the red

rectangles represent incorrect matches. As presented in Figure 7,
our method can almost accurately match the same person, which
proves the effectiveness of our proposed method.

5 | Conclusion

In this paper, we propose a new keypoint‐guided feature partition
(KGFP) method for occluded person Re‐ID tasks. We develop
innovativemodules in the hard partition branch and soft partition
branch under the guidance of keypoint information, respectively.
In the hard partition branch,wefirstly split patch tokens obtained
by ViT into groups to explore the region‐level features, which can
repair information around keypoints in the soft partition branch.
And then,we classify them into nonoccluded, semi‐occluded, and
occluded features by the visibility label of each keypoint to reduce
the impact of occlusions. In the soft partition branch, in order to
enhance interconnections among human parts, a graph attention
network is introduced to furthermine the human semantic graph
structure. Moreover, person Re‐ID is treated as a graph‐matching
problem, and a feature‐alignment‐based graph strategy is pro-
posed to improve the retrieval accuracy during the reference
stage. Besides, a dissimilarity loss is designed that pushes the
semi‐occluded and occluded features away to focus on human
parts. Experiments on the Occluded‐DukeMTMC, Market1501,
and DukeMTMC‐reID demonstrate the effectiveness of the pro-
posed KGFP method.
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Data Availability Statement

[Occluded‐DukeMTMC]

The Occluded‐DukeMTMC dataset used in this study is derived from the
DukeMTMC‐reID dataset. The resources are available at https://github.
com/lightas/Occluded‐DukeMTMC‐Dataset. Researchers wishing to use
this dataset must first obtain the DukeMTMC‐reID dataset indepen-
dently and then apply the conversion script [31].

[Market1501]

The Market‐1501 dataset that supports the findings of this study is
openly available in the public domain. The dataset contains training,
query, and gallery partitions for person re‐identification research and
can be downloaded from the original release site at https://www.kaggle.
com/datasets/sachinsarkar/market1501, or from other repositories
hosting the dataset. These data are freely accessible under the original
licencing terms [32].

[DukeMTMC‐reID]

The DukeMTMC‐reID dataset used in this study is a subset of the
original DukeMTMC multi‐camera tracking dataset. The dataset
is available at https://www.kaggle.com/datasets/igorkrashenyi/dukemt
mc‐reid. Researchers should ensure compliance with licencing and
ethical use requirements when downloading and using this dataset [33].

References

1. L. Zheng, Y. Yang, and A. G. Hauptmann, “Person Re‐Identification:
Past, Present and Future,” arXiv preprint arXiv:1610.02984 (2016).

2. Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond Part
Models: Person Retrieval With Refined Part Pooling (and a Strong
Convolutional Baseline),” in Proceedings of the European Conference on
Computer Vision (ECCV) (Springer, 2018), 480–496.

3. C. Song, Y. Huang, W. Ouyang, and L. Wang, “Mask‐Guided
Contrastive Attention Model for Person Re‐Identification,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (IEEE CVPR, 2018), 1179–1188.

4. Z. Zhang,C. Lan,W.Zeng,X. Jin, andZ.Chen, “Relation‐AwareGlobal
Attention for Person Re‐Identification,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (IEEE CVPR,
2020), 3186–3195.

5. G. Wang, Y. Yuan, X. Chen, J. Li, and X. Zhou, “Learning Discrim-
inative Features With Multiple Granularities for Person Re‐
Identification,” in Proceedings of the 26th ACM International Confer-
ence on Multimedia (ACM MM, 2018), 274–282.

6. Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang, “Person Re‐
Identification With Deep Similarity‐Guided Graph Neural Network,”
in Proceedings of the European Conference on Computer Vision (ECCV)
(Springer, 2018), 486–504.

7. G. Chen, T. Gu, J. Lu, J. A. Bao, and J. Zhou, “Person Re‐Identification
via Attention Pyramid,” IEEETransactions on Image Processing 30 (2021):
7663–7676, https://doi.org/10.1109/TIP.2021.3107211.

8. X. Qian, Y. Fu, T. Xiang, Y. G. Jiang, and X. Xue, “Leader‐Based
Multi‐Scale Attention Deep Architecture for Person Re‐Identification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence 42, no. 2
(2019): 371–385, https://doi.org/10.1109/TPAMI.2019.2928294.

9. S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “TransReID:
Transformer‐Based Object Re‐Identification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (IEEE ICCV,
2021), 15013–15022.

10. G. Zhang, C. Chen, Y. Chen, H. Zhang, and Y. Zheng, “Fine‐
Grained‐Based Multi‐Feature Fusion for Occluded Person Re‐

Identification,” Journal of Visual Communication and Image Represen-
tation 87 (2022): 103581, https://doi.org/10.1016/J.JVCIR.2022.103581.

11. P. Wang, C. Ding, Z. Shao, Z. Hong, S. Zhang, and D. Tao, “Quality‐
Aware Part Models for Occluded Person Re‐Identification,” IEEE
Transactions on Multimedia 25 (2022): 3154–3165, https://doi.org/10.
1109/TMM.2022.3156282.

12. J. Miao, Y. Wu, and Y. Yang, “Identifying Visible Parts via Pose
Estimation for Occluded Person Re‐Identification,” IEEE Transactions
on Neural Networks and Learning Systems 33, no. 9 (2021): 4624–4634,
https://doi.org/10.1109/TNNLS.2021.3059515.

13. Y. Li, J. He, T. Zhang, X. Liu, Y. Zhang, and F. Wu, “Diverse Part
Discovery: Occluded Person Re‐Identification With Part‐Aware Trans-
former,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (IEEE CVPR, 2021), 2898–2907.

14. J. Yang, J. Zhang, F. Yu, et al., “Learning to Know Where to See: A
Visibility‐Aware Approach for Occluded Person Re‐Identification,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (IEEE ICCV, 2021), 11885–11894.

15. M. Jia, X. Cheng, S. Lu, and J. Zhang, “Learning Disentangled
Representation Implicitly via Transformer for Occluded Person Re‐
Identification,” IEEE Transactions on Multimedia 25 (2022): 1294–
1305, https://doi.org/10.1109/TMM.2022.3141267.

16. Y. Xu, L. Zhao, and F. Qin, “Dual Attention‐Based Method for
Occluded Person Re‐Identification,” Knowledge‐Based Systems 212
(2021): 106554, https://doi.org/10.1016/J.KNOSYS.2020.106554.

17. A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An Image Is Worth
16 � 16 Words: Transformers for Image Recognition at Scale,” arXiv
preprint arXiv:2010.11929 (2020).

18. K. Wang, H. Wang, M. Liu, X. Xing, and T. Han, “Survey on Person
Re‐Identification Based on Deep Learning,” CAAI Transactions on In-
telligence Technology 3, no. 4 (2018): 219–227, https://doi.org/10.1049/
TRIT.2018.1001.

19. M. Kim, M. Cho, H. Lee, S. Cho, and S. Lee, “Occluded Person Re‐
Identification via Relational Adaptive Feature Correction Learning,” in
ICASSP 2022‐2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (IEEE, 2022), 2719–2723.

20. X. Zhang, H. Luo, X. Fan, et al., “AlignedReID: Surpassing Human‐
Level Performance in Person Re‐Identification,” arXiv preprint
arXiv:1711.08184 (2017): abs/1711.08184.

21. L. Zhao, X. Li, Y. Zhuang, and J. Wang, “Deeply‐Learned Part‐
Aligned Representations for Person Re‐Identification,” in Proceedings of
the IEEE International Conference on Computer Vision (IEEE ICCV,
2017), 3219–3228.

22. W. Li, X. Zhu, and S. Gong, “Harmonious Attention Network for
Person Re‐Identification,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (IEEE CVPR, 2018), 2285–2294.

23. G. Wang, S. Yang, H. Liu, et al., “High‐Order Information Matters:
Learning Relation and Topology for Occluded Person Re‐Identification,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (IEEE CVPR, 2020), 6449–6458.

24. J. Zhang, G. Ye, Z. Tu, et al., “A Spatial Attentive and Temporal
Dilated (SATD) GCN for Skeleton‐Based Action Recognition,” CAAI
Transactions on Intelligence Technology 7, no. 1 (2022): 46–55, https://
doi.org/10.1049/CIT2.12012.

25. Z. M. Chen, X. S. Wei, P. Wang, and Y. Guo, “Multi‐Label Image
Recognition With Graph Convolutional Networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(IEEE CVPR, 2019), 5177–5186.

26. J. Zhang, J. P. Ainam, W. Song, Lh Zhao, X. Wang, and H. Li,
“Learning Global and Local Features Using Graph Neural Networks for

12 CAAI Transactions on Intelligence Technology, 2025

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.70057 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [15/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/lightas/Occluded-DukeMTMC-Dataset
https://github.com/lightas/Occluded-DukeMTMC-Dataset
https://www.kaggle.com/datasets/sachinsarkar/market1501
https://www.kaggle.com/datasets/sachinsarkar/market1501
https://www.kaggle.com/datasets/igorkrashenyi/dukemtmc-reid
https://www.kaggle.com/datasets/igorkrashenyi/dukemtmc-reid
https://doi.org/10.1109/TIP.2021.3107211
https://doi.org/10.1109/TPAMI.2019.2928294
https://doi.org/10.1016/J.JVCIR.2022.103581
https://doi.org/10.1109/TMM.2022.3156282
https://doi.org/10.1109/TMM.2022.3156282
https://doi.org/10.1109/TNNLS.2021.3059515
https://doi.org/10.1109/TMM.2022.3141267
https://doi.org/10.1016/J.KNOSYS.2020.106554
https://doi.org/10.1049/TRIT.2018.1001
https://doi.org/10.1049/TRIT.2018.1001
https://doi.org/10.1049/CIT2.12012
https://doi.org/10.1049/CIT2.12012


Person Re‐Identification,” Signal Processing: Image Communication 107
(2022): 116744, https://doi.org/10.1016/J.IMAGE.2022.116744.

27. H. Pan, Y. Bai, Z. He, and C. Zhang, “AAGCN: Adjacency‐Aware
Graph Convolutional Network for Person Re‐Identification,”
Knowledge‐Based Systems 236 (2022): 107300, https://doi.org/10.1016/J.
KNOSYS.2021.107300.

28. T. Liang, Y. Jin, W. Liu, S. Feng, T. Wang, and Y. Li, “Keypoint‐
Guided Modality‐Invariant Discriminative Learning for Visible‐
Infrared Person Re‐Identification,” in Proceedings of the 30th ACM In-
ternational Conference on Multimedia (ACM MM, 2022), 3965–3973.

29. D. Chen, A. Döring, S. Zhang, J. Yang, J. Gall, and B. Schiele,
“Keypoint Message Passing for Video‐Based Person Re‐Identification,”
in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36
(AAAI, 2022), 239–247.

30. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph Attention Networks,” arXiv preprint arXiv:1710.10903
(2017).

31. J. Miao, Y. Wu, P. Liu, Y. Ding, and Y. Yang, “Pose‐Guided Feature
Alignment for Occluded Person Re‐Identification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (IEEE ICCV,
2019), 542–551.

32. L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
Person Re‐Identification: A Benchmark,” in Proceedings of the IEEE
International Conference on Computer Vision (IEEE ICCV, 2015), 1116–
1124.

33. Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled Samples Generated by
GAN Improve the Person Re‐Identification Baseline in Vitro,” in Pro-
ceedings of the IEEE International Conference on Computer Vision (IEEE
ICCV, 2017), 3754–3762.

34. Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random Erasing
Data Augmentation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34 (AAAI, 2020), 13001–13008.

35. K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep High‐Resolution Rep-
resentation Learning for Human Pose Estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(IEEE CVPR, 2019), 5693–5703.

36. M. Huang, C. Hou, Q. Yang, and Z. Wang, “Reasoning and Tuning:
Graph Attention Network for Occluded Person Re‐Identification,” IEEE
Transactions on Image Processing 32 (2023): 1568–1582, https://doi.org/
10.1109/tip.2023.3247159.

37. Z. Liu, X. Mu, Y. Lu, T. Zhang, and Y. Tian, “Learning Transformer‐
Based Attention Region With Multiple Scales for Occluded Person Re‐
Identification,” Computer Vision and Image Understanding 229 (2023):
103652, https://doi.org/10.1016/J.CVIU.2023.103652.

38. H. Fan, X. Wang, Q. Wang, S. Fu, and Y. Tang, “Skip Connection
Aggregation Transformer for Occluded Person Reidentification,” IEEE
Transactions on Industrial Informatics 20, no. 1 (2023): 442–451, https://
doi.org/10.1109/tii.2023.3266372.

39. S. Han, D. Liu, Z. Zhang, and D. Ming, “Spatial Complementary and
Self‐Repair Learning for Occluded Person Re‐Identification,” Neuro-
computing 546 (2023): 126360, https://doi.org/10.1016/J.NEUCOM.
2023.126360.

40. J. Wang, P. Li, R. Zhao, R. Zhou, and Y. Han, “CNN Attention
Enhanced ViT Network for Occluded Person Re‐Identification,” Applied
Sciences 13, no. 6 (2023): 3707, https://doi.org/10.3390/app13063707.

41. Y. Zhai, X. Han, W. Ma, X. Gou, and G. Xiao, “PGMANet: Pose‐
Guided Mixed Attention Network for Occluded Person Re‐
Identification,” in 2021 International Joint Conference on Neural Net-
works (IJCNN) (IEEE IJCNN, 2021), 1–8.

42. Y. Fan, X. Gong, and Y. He, “DSF‐Net: Occluded Person Re‐
Identification Based on Dual Structure Features,” Neural Computing

and Applications 35, no. 4 (2023): 3537–3550, https://doi.org/10.1007/
S00521‐022‐07927‐6.

43. S. Zhou and M. Zhang, “Occluded Person Re‐Identification Based
on Embedded Graph Matching Network for Contrastive Feature Rela-
tion,” Pattern Analysis and Applications 26, no. 2 (2023): 487–503,
https://doi.org/10.1007/S10044‐022‐01123‐X.

44. Z. Liu, Q. Wang, M. Wang, and Y. Zhao, “Occluded Person Re‐
Identification With Pose Estimation Correction and Feature Recon-
struction,” IEEE Access 11 (2023): 14906–14914, https://doi.org/10.1109/
ACCESS.2023.3243113.

45. M. Zhu and H. Zhou, “EcReID: Enhancing Correlations From
Skeleton for Occluded Person Re‐Identification,” Symmetry 15, no. 4
(2023): 906, https://doi.org/10.3390/SYM15040906.

46. Z. Ma, Y. Zhao, and J. Li, “Pose‐Guided Inter‐and Intra‐Part Rela-
tional Transformer for Occluded Person Re‐Identification,” in Pro-
ceedings of the 29th ACM International Conference on Multimedia (ACM
MM, 2021), 1487–1496.

47. Y. Pang, H. Zhang, L. Zhu, D. Liu, and L. Liu, “Feature Generation
Based on Relation Learning and Image Partition for Occluded Person Re‐
Identification,” Journal of Visual Communication and Image Represen-
tation 91 (2023): 103772, https://doi.org/10.1016/J.JVCIR.2023.103772.

48. S. Zhou and W. Zou, “Fusion Pose Guidance and Transformer
Feature Enhancement for Person Re‐Identification,” Multimedia Tools
and Applications 83, no. 7 (2023): 1–19, https://doi.org/10.1007/s11042‐
023‐15303‐2.

49. Z. Li, H. Zhang, L. Zhu, J. Sun, and L. Liu, “Effective Occlusion
Suppression Network via Grouped Pose Estimation for Occluded Person
Re‐Identification,” in 2023 IEEE International Conference on Multimedia
and Expo (IEEE ICME, 2023), 2645–2650.

13

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.70057 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [15/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/J.IMAGE.2022.116744
https://doi.org/10.1016/J.KNOSYS.2021.107300
https://doi.org/10.1016/J.KNOSYS.2021.107300
https://doi.org/10.1109/tip.2023.3247159
https://doi.org/10.1109/tip.2023.3247159
https://doi.org/10.1016/J.CVIU.2023.103652
https://doi.org/10.1109/tii.2023.3266372
https://doi.org/10.1109/tii.2023.3266372
https://doi.org/10.1016/J.NEUCOM.2023.126360
https://doi.org/10.1016/J.NEUCOM.2023.126360
https://doi.org/10.3390/app13063707
https://doi.org/10.1007/S00521-022-07927-6
https://doi.org/10.1007/S00521-022-07927-6
https://doi.org/10.1007/S10044-022-01123-X
https://doi.org/10.1109/ACCESS.2023.3243113
https://doi.org/10.1109/ACCESS.2023.3243113
https://doi.org/10.3390/SYM15040906
https://doi.org/10.1016/J.JVCIR.2023.103772
https://doi.org/10.1007/s11042-023-15303-2
https://doi.org/10.1007/s11042-023-15303-2

	A Keypoint‐Guided Feature Partition Network for Occluded Person Re‐Identification
	1 | Introduction
	2 | Related Works
	2.1 | Occluded Person Re‐Identification
	2.2 | Feature Alignment
	2.3 | Graph Convolution Network

	3 | The Proposed Method
	3.1 | Feature Extractor
	3.1.1 | Transformer‐Based Framework
	3.1.2 | Pose Estimator

	3.2 | Hard Partition Branch
	3.3 | Soft Partition Branch
	3.4 | Optimisation
	3.4.1 | Identity Loss
	3.4.2 | Triplet Loss
	3.4.3 | Dissimilarity Loss
	3.4.4 | Centre Loss

	3.5 | Feature‐Alignment‐Based Graph

	4 | Experiments
	4.1 | Datasets and Evaluation Metrics
	4.2 | Implementation Details
	4.3 | Comparison With State‐of‐The‐Art Methods
	4.3.1 | Results on Occluded Dataset
	4.3.2 | Results on Holistic Datasets

	4.4 | Ablation Studies
	4.4.1 | Effectiveness of the Hard Partition Branch
	4.4.2 | Effectiveness of the Soft Partition Branch
	4.4.3 | Effectiveness of Feature‐Alignment‐Based Graph

	4.5 | Parameters Analysis
	4.5.1 | Analysis of Groups m
	4.5.2 | Analysis of Threshold δ

	4.6 | Effectiveness of Each Loss
	4.6.1 | Identity Loss
	4.6.2 | Triplet Loss
	4.6.3 | Centre Loss
	4.6.4 | Dissimilarity Loss

	4.7 | Visualisation

	5 | Conclusion
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement


