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ABSTRACT 
This work demonstrates a method of testing a machine learning model’s 
extrapolation accuracy, a capability that is significant to efficiently aid 
with discovery of improved alloys and presents the application of a pure 
data-driven method to make steps to reduce this extrapolation error. By 
using linear models to capture general trends in the data and then the 
subsequent application of more complex machine learning methods, 
extrapolation capabilities can be reduced. Being purely data-driven, this 
type of model can be coupled with other Delta-Machine Learning 
techniques such as those that utilize physics-domain knowledge, and 
coupled with active learning methods, with better extrapolation 
capabilities reducing the number of iterations needed to outperform 
existing alloys. 
 

1. Introduction 
When using machine learning techniques to attempt to improve upon an 
existing dataset, the extrapolation, and consequentially generalization 
ability, of a model needs to be a priority for a model to accurately predict 
beyond what has come before. The prediction of mechanical properties of 
an alloy given its composition and processing is often a goal of many 
models, with the aim of using such a model to find inputs which result in 
improved properties. 
Testing of such models generally demonstrates high accuracies when 
using standard cross validation techniques, but few fail to demonstrate 
their poor performance when attempting the aim of accurate predictions 
of properties beyond the dataset, with models generally being 
phenomenological, generalizing poorly [1]. 
Linear regression models generalize a great deal and as such often result 
in poor accuracies, but capture the underlying, linear, relationships in a 
dataset. However, in combination with a higher bias models, linear models 
can provide the general trend which other models then predict the 
difference of, resulting in higher accuracies [2]. 
Delta machine learning models are such models where a primary model 
maps a generalized view of the domain, with a secondary model providing 

predictions of the errors, or deltas, of the first.   
 

2. Experimental procedures 
Using data collected from the online database, MatMatch [3], the 
composition, processing, and yield strength of aluminum alloys was 
recorded into a database. The composition of the alloys and the temper 
that each entry received was used to form the input to models with yield 
strength predictions as the target output.  
To test extrapolation capabilities, the top 20% of alloys based on yield 
strength values were set aside to be used as an extrapolation test set, with 
the remaining 80% used as an interpolation set. Of this interpolation set, a 
subsequent split was made of 80% for training data, and 20% for the 
judgement of interpolation accuracy. Models were then trained upon this 
interpolation training set and evaluated on both interpolation and 
extrapolation capabilities using respective datasets.  
Delta models consisted of an initial, high-generalization model, linear 
regression, used to make general predictions, the errors of which a 
subsequent higher bias model would attempt to predict. Through the 
combination of both general predictions from the first model, and error 
predictions of the second, a final prediction from the Delta model is made. 
Linear models, Random Forests, SVRs, Neural Networks, and Delta 
models were all tested with standard scaling techniques used where 
appropriate, and all implemented within python utilizing Scikit-learn and 
modules made to conform to its API [4]. 

3. Results and discussion 

The results shown in Figure 1 demonstrate the improved extrapolation 
capability of this data-driven delta model.  
Delta models, under different names, have been used for materials 
problems before [5], but are often based upon a physics model as the initial 
generalization model, these can result in good accuracies, but a physics-
based domain model is often not available. This data driven delta model 
can be applied quickly and separately or in combination with such 
methods to achieve further improvements. 
These models also have active learning use cases, as a substitute model 
with better extrapolation capabilities, aiming to reduce the number of 
iterations needed to outperform datasets which the extension to this work 
will attempt to show. 

Figure 1. The prediction of yield strength of the dataset using a a) Linear 

regression model, b) Neural network, c) Delta Model composed of linear 

regression and Random Forest, d) Delta model composed of Linear 

regression and Neural Network. While the Neural network achieves the 

best interpolation results, it is surpassed in extrapolation accuracy by the 

Delta model composed of linear regression and random forest. 
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