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Forecasting the movement of populations during conflict outbreaks remains a significant challenge 
in contemporary humanitarian efforts. Accurate predictions of displacement patterns are crucial 
for improving the delivery of aid to refugees and other forcibly displaced individuals. Over the past 
decade, generalized modeling approaches have demonstrated their ability to effectively predict such 
movements, provided that accurate estimations of conflict dynamics during the forecasting period 
are available. However, deriving precise conflict forecasts remains difficult, as many existing methods 
for conflict prediction are overly coarse in their spatial and temporal resolution, rendering them 
inadequate for integration with displacement models. In this paper, we propose a hybrid methodology 
to enhance the accuracy of conflict-driven population displacement forecasts by combining machine 
learning-based conflict prediction with agent-based modeling (ABM). Our approach uses a coupled 
model that combines a Random Forest classifier for conflict forecasting with the Flee ABM—a model 
of the movements of refugees and internally displaced persons (IDPs). The coupled model is validated 
using case studies from historical conflicts in Mali, Burundi, South Sudan, and the Central African 
Republic. Our results demonstrate comparable predictive accuracy over traditional methods without 
the need for manual conflict estimations in advance, thus reducing the effort and expertise needed for 
humanitarian professionals to provide urgent displacement forecasts.
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Over the past decades, conflict, persecution, and violence have had profound effects on both the economy and 
society. The impacts of these factors include global food insecurity1,2, loss of life, infrastructure disruption, and 
forced displacement. By the end of 2024, the number of forcibly displaced people worldwide due to these factors 
reached 123.2 million (UNHCR: 20253). Conflicts often last several years, leading to increased displacement and 
a growing need to support these displaced people in their countries of asylum, typically neighboring countries. 
Understanding and predicting the movement of people is crucial for policymakers. The allocation of resources—
such as local support and material aid—by states or humanitarian organizations depends critically on the ability 
to accurately anticipate where and when displacement will occur.

Forecasting conflicts is essential in this regard, as the onset and escalation of conflicts are primary drivers 
of forced displacement. By accurately anticipating conflicts, policymakers and humanitarian organizations can 
better prepare for potential surges in displacement and ensure timely and effective allocation of resources such as 
food, shelter, and medical aid. This foresight enables the development of contingency plans and the establishment 
of support systems in regions likely to receive large numbers of displaced individuals. Additionally, early conflict 
forecasting can facilitate international cooperation and coordination, enhancing the overall capacity to manage 
migration flows and mitigate the humanitarian impact on affected populations.

Forecasting conflicts is inherently challenging due to their complex and multifaceted nature. Conflicts often 
arise from a mix of political, economic, social, and cultural factors, making accurate predictions difficult. The 
unpredictable nature of human behavior, involvement of multiple stakeholders with conflicting interests, and 
rapidly changing circumstances further complicate the process. Conflicts can escalate quickly and unexpectedly, 
driven by sudden events like political assassinations or economic collapses. Existing forecasting techniques, 
which rely on historical data and statistical models, often fail to capture the dynamic and non-linear nature of 
conflicts and struggle to incorporate real-time information and adapt to fast-paced developments. Traditional 
methods, such as regression models or time-series analyses, may not account for emergent behaviors and 
interactions between different actors in conflict scenarios.
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Agent-based models (ABMs) offer a different approach by simulating the actions and interactions of 
individual agents to assess their effects on the system as a whole. This ability to model complex systems makes 
ABMs particularly suitable for migration modeling, as they aggregate the behavior of artificial agents and the 
interactions between them4,5. ABMs have been widely used in fields such as economics, biology, engineering, 
and social sciences6.

Yet, although various ABMs have been developed to model forced displacement7,8, few studies have 
incorporated conflict forecasting into their models. Recognizing this gap, our paper makes a novel contribution 
by coupling a machine learning-based conflict forecasting model with an ABM to predict forced migration. 
Specifically, we introduce a random forest (RF) classifier to forecast potential future conflict patterns, which 
then informs the Flee ABM9 to simulate primary displacement. In particular, the primary displacement could be 
either internal displacement or displacement of people to neighboring countries, while secondary displacement 
refers to the subsequent movements of those displaced people in neighboring countries.

We apply this hybrid approach to four real-world conflicts in Africa, taken from studies10,11, including 
the conflicts in Mali (2012), Burundi (2015), South Sudan (2013), and the Central African Republic (2013). 
Experimental results have shown its potential to improve the accuracy and relevance of migration predictions.

The key contributions of this paper can be summarized as follows: 

	1.	 A machine learning-based conflict forecasting model is proposed, where the RF model is trained on geo-
graphical information (e.g., terrain and altitude) and covariates (e.g., GDP per capita and population density) 
from the Peace Research Institute Oslo (PRIO), and conflict data from the Armed Conflict Location and 
Event Data Project (ACLED), using spatial and temporal inputs to predict conflict events. Our conflict fore-
casting model has demonstrated its capability of providing conflict forecasts on a daily basis, at the locality 
level, and spanning a couple of years.

	2.	 A coupled model that reflects the relationship between conflict and forced population displacement is de-
veloped by integrating conflict forecasts into the Flee ABM. A simulation development approach is designed 
to construct, run and validate agent-based simulations of migration patterns, forecasting the number of 
displaced people over the simulation period.

	3.	 The coupled model is validated using case studies from historical conflicts in Mali (2012), Burundi (2015), 
South Sudan (2013), and the Central African Republic (2013). Experimental results demonstrate that the 
coupled model achieves better predictive accuracy than the original Flee ABM, used in10,11. Furthermore, 
our model shows potential for application in real-world forecasting contexts, where ground truth conflict 
progression information does not exist and simulations cannot be done in the conventional way.

Related work
Conflict forecasting
The prediction of future conflicts is of both substantive and practical importance for governments and non-
governmental organizations in humanitarian operations. Recently, research on conflict forecasting has drawn 
increasing attention. Expert knowledge, often provided by political analysts and pundits, offers valuable 
insights into future conflict based on their research and personal experience12,13. However, expert predictions 
on geopolitical events have been shown to lack accuracy and, in some cases, perform no better than random 
guesses12.

The recent use of machine learning techniques in conflict forecasting marks a considerable evolution beyond 
traditional statistical models. Classic methods such as logistic regression have the advantage of interpretability, 
but often fall short in capturing the multidimensional and non-linear relationships intrinsic to conflict14–16. 
Machine learning algorithms such as RF, Support Vector Machines, and Neural Networks have been increasingly 
adopted for their superior predictive accuracy, especially in the context of voluminous and imbalanced data12,17,18. 
These models have been employed to predict various outputs, including the onset of conflict, changes in conflict 
intensity, fatalities, and even specific types of conflict such as genocide or civil unrest19–21.

Various conflict-related events have been of interest. Some studies focus on predicting the onset of conflict 
within specific geographic units and time frames, while others aim to forecast changes in conflict intensity, 
measured through variables such as the number of fatalities or incidents22–24. More targeted research has looked 
at predicting specific types of events like genocide, using features that encompass not just economic or political 
instability but also indicators like hate speech or ethnic tensions20,25.

High-quality data are of vital importance for these conflict forecasting approaches in producing timely and 
truly useful forecasts. A number of widely used conflict datasets, such as the Uppsala Conflict Data Program 
(UCDP, https://ucdp.uu.se/downloads/)26 and the Armed Conflict Location and Event Dataset (ACLED, ​h​t​t​p​s​:​
/​/​w​w​w​.​a​c​l​e​d​d​a​t​a​.​c​o​m​/​d​a​t​a​​​​​​​2​7​​ provide very detailed and regularly updated information on conflict events. These 
datasets have been extensively applied in conflict forecasting studies, such as ViEWS (Violence Early Warning 
System), which provides conflict predictions at the country and subnational level23 and ABSCIM (Agent-Based 
Simulator for Conflict-Induced Migration), which integrates a conflict model forecasting discrete daily conflict 
events28.

Combining ABMs with machine learning (ML) methods is becoming increasingly common29. ML techniques 
can be integrated into ABMs for various purposes. For example, they can assist in data processing and model 
calibration. Modeling accuracy can be enhanced through reinforcement learning, or data preprocessing can 
be performed using decision trees30. Moreover, ML can help estimate micro-level variables within ABMs, 
rather than focusing only on macro-level system behavior, as demonstrated in31 in the context of the housing 
market. Conversely, deep learning models can be trained on data generated by ABMs, as shown in32, which 
explores the interplay between conflict and disease spread. ML models can also provide real-time predictions 
in ABM frameworks33, enabling established models, such as the Flee model, to run in real time without 
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requiring observed data. Although ML-driven conflict forecasting has not yet been fully integrated into ABMs, 
related spatial methods have been applied in conflict studies, including join count statistics34 and the Langevin 
diffusion equation35. Additionally, more traditional machine learning techniques have been employed to 
address discrepancies in data frequency, for example, when aligning conflict and climate data to infer causal 
relationships36. ML methods have also been used to predict fine-grained patterns of violence, as demonstrated 
in the cases of Colombia and Indonesia37. These studies explore fine-grained geographic scales but remain coarse 
in the temporal dimension, typically operating at the yearly or monthly level.

Forced migration modeling
Forced migration is a complex social phenomenon, often driven by conflicts in the country of origin38,39. Agent-
based modeling is a popular simulation approach for forecasting the movements of forcibly displaced populations. 
In existing ABMs for conflict-driven forced migration, modeling approaches for future conflict events are often 
simplistic, relying mainly on expert knowledge or some basic approaches. For example, Suleimenova et al.40 
developed an ABM for the Tigray Crisis, where the generation of future conflict progression was according 
to the description of domain experts from Save The Children41. In addition, Groen et al.42 developed a hybrid 
model that combines a conflict generator, Flare, with an existing forced migration model. The Flare uses a 
highly stochastic algorithm to randomly generate conflict events and predict conflict events over time, while the 
migration model integrates conflict information as input to model refugee movements. Since the evolution of 
conflict events is artificially generated, it limits the models’ ability to accurately reflect the dynamics of real-world 
conflicts and their impact on migration patterns.

Recent advances have developed various approaches for integrating conflict forecasting into ABMs. For 
example, Mehrab et al.28 proposed an agent-based framework to predict conflict-induced migration, which 
utilizes a Log-Cox Gaussian point process model with a spatial mesh to generate future conflict events. One 
limitation of this framework is that it can predict future daily refugee flows but not their destination. Searle and 
van Vuuren43 proposed a generic framework for aiding in the development of ABMs to forecast the movement 
of refugees, undocumented migrants and IDPs, where the conflict progression is modeled based on the rules 
of a typical cellular automata. However, the simulation lacks systematic validation and is limited to predicting 
refugee arrivals in a neighboring country at the country level.

Although a number of ABMs have been designed for forced migration28, it is crucial to enable rapid 
development to support timely humanitarian responses to conflict-induced displacement, given a particular 
conflict situation. The general simulation development approach (SDA), presented in10, provides a structured 
methodology for developing simulations in conflict scenarios, ensuring rapid simulation development. SDA 
comprises six phases: selecting a specific conflict scenario, collecting relevant data from various repositories such 
as UNHCR, ACLED and Bing Maps, constructing a network-based ABM, refining the model with additional 
inputs such as population data and border policies, executing simulations using the Flee simulation code, 
and validating results against the full UNHCR refugee numbers. This approach was tested in three different 
historical conflict scenarios, achieving over 75% accuracy in predicting destinations in these cases. Its scalability 
in different conflict scenarios and flexibility in integrating diverse data sources make it particularly suitable 
for future conflict scenarios. Nevertheless, this approach cannot predict population displacement in future 
conflicts, highlighting the need to integrate advanced machine learning-based conflict forecasting tools into 
well-established ABMs, such as the Flee model.

Methods
Flee ABM
This study employs the Flee9 model to predict conflict-driven population displacement due to its ability to 
rapidly develop simulations for conflict scenarios following the SDA process in10. The Flee model has been 
applied in real-world scenarios, such as the Tigray crisis (2020)40, to support Save The Children by simulating 
the distribution of displaced people. As aid budgets are usually limited, by understanding refugee movement 
patterns, governments, organizations and non-governmental organizations can save time in the response phase 
and improve the targeting of aid41.

In the Flee model, people fleeing a conflict are modeled as agents, with their decision-making processes 
simulated using a predefined ruleset. These agents interact within a location graph that represents the spatial 
environment. Figure 1 illustrates a location graph for a historical South Sudan conflict, comprising 58 locations 
and 69 routes, where each vertex denotes a location, such as conflict zones, camps, or major settlements. During 
the simulation period, the Flee code spawns a certain number of agents in conflict zones, who then navigate the 
location graph on a daily basis to search for camps/settlements. As a baseline, we have adopted the assumption in 
the latest version of the Flee code (https://github.com/djgroen/flee/releases/tag/v3.1)44. Supplementary Table 1 
presents the simulation configuration settings and assumptions for this study. Please refer to10 for more details. 
It is worth mentioning that the Flee model utilizes conflict progression data based on ground truth (ACLED 
conflict data). ACLED conflict data are converted into input for the simulation runs, using binary numbers 
to record whether a conflict event occurred at a specific location each day. This conversion is based on the 
assumption that once a conflict starts at a specific location, it will continue until the end of the simulation (Fig. 
1).

Conflict forecasting model
We adopt two different methods to predict conflicts. One method aims to forecast the real conflict events at the 
daily level in a binary classification of conflict/no conflict. The other method focuses on identifying the initial 
onset of conflict in each locality and considers it as a continuous conflict zone until the end of the simulation. 
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The Flee model was originally designed with this method. Finally, we compare both forecasting methods to 
determine which one aligns better with the needs of the Flee model. Both models use the same input data.

Data. Our conflict forecasting model includes three types of inputs. The first component is derived from 
the PRIO-GRID v.2.0 dataset (available at https://grid.prio.org/#/download), which provides geographical 
information supplied by the Peace Research Institute Oslo (PRIO). The PRIO-GRID data is a geo-referenced 
dataset that standardises a wide range of variables potentially influential to conflict at a granular geographic 
level. These variables may include indicators related to demography, political stability, and economic conditions, 
among others. The PRIO-GRID data incorporates both static and dynamic variables. Static variables include 
factors that are relatively constant over time, such as terrain and altitude, administrative boundaries, and the 
distribution of ethnolinguistic groups. Dynamic, or yearly, variables capture changes in indicators like GDP per 
capita, governance quality, population density, as well as conflict history and social variables. For each target 
location, we assign the covariate values based on the PRIO-GRID cell in which the target is located.

The second component of the input relates to spatial diffusion. In particular, the model collates the occurrences 
of conflicts in the other locations of the study for two distinct periods: the past week and the past month. This 
aggregation serves two key functions. First, it captures short-term fluctuations in conflict patterns, enabling the 
model to adapt to sudden escalations or de-escalations at a larger geographical scale. Second, it incorporates the 
longer-term context of a month to uncover any trends or cycles.

Ruleset Conflict name ARD Flee (recorded conflict) Flee (predicted conflict [RF-daily]) Flee (predicted conflict [RF-onset])

Ruleset 1.0

Mali 2012(300 days)
Mean 0.3576 0.2021 0.2133

Std 1.60E-03 8.53E-04 3.15E-03

Burundi 2015(396 days)
Mean 0.5595 0.4837 0.4535

Std 1.23E-03 3.24E-03 1.79E-03

South Sudan 2013(604 days)
Mean 0.4603 0.3147 0.3819

Std 1.99E-03 1.33E-03 2.97E-03

CAR 2013(820 days)
Mean 0.2930 0.4497 0.3586

Std 6.95E-04 8.89E-04 4.99E-04

Ruleset 2.0

Mali 2012(300 days)
Mean 0.3577 0.1827 0.1951

Std 1.81E-03 1.41E-03 2.89E-03

Burundi 2015(396 days)
Mean 0.4402 0.3861 0.3131

Std 1.52E-03 2.52E-03 1.98E-03

South Sudan 2013(604 days)
Mean 0.4329 0.3361 0.3767

Std 1.85E-03 9.25E-04 3.06E-03

CAR 2013(820 days)
Mean 0.2743 0.4168 0.3441

Std 4.65E-04 7.19E-04 4.45E-04

Table 1.  ARD values of three simulation instances for four conflict scenarios.

 

Fig. 1.  Graphical overview of South Sudan conflict location graph (58 locations and 69 routes)45.
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Finally, the third input is an autoregressive element that incorporates data from the last 31 days to indicate 
the presence or absence of a conflict event in the location of interest. For each day within the preceding 31-
day period, a binary value is assigned to represent whether or not a conflict event occurred in that specific 
geographical location. The conflict information is extracted from the ACLED event dataset, available through 
the Data Export Tool (https://acleddata.com/data-export-tool/), by selecting events within a 0.1◦ buffer around 
each locality’s longitude and latitude (approximately 11 km at the equator). This array of binary values forms a 
temporal sequence for each conflict zone, effectively capturing the recent history of conflict events or non-events 
in that area. This enables the model to identify recurring patterns or seasonality in conflict events.

The outcome of the conflict forecasting model is a daily prediction for each location to allow the network-
based migration model to run properly.

An issue often encountered in conflict data is the class imbalance between ‘events’ and ‘non-events’. To 
address this, a specific proportion of ‘non-event’ observations is randomly sampled. These sampled ‘non-events’ 
are then amalgamated with ‘event’ observations to form a balanced subset of features. This procedure ensures 
that the learning algorithm is not biased toward the majority class, thereby enhancing its predictive accuracy.

Algorithm. The algorithm used for the predictive modeling task is the RF classifier. This algorithm is 
particularly well-suited for the problem at hand due to its capacity to model complex, non-linear relationships 
while avoiding overfitting. The decision to use only tree-based models, such as RF, is driven by the specific 
challenges of the conflict forecasting task. Tree-based models are well-suited for handling high-dimensional 
data and imbalanced classes, whereas other machine learning models, such as Support Vector Machines, have 
limited performance in such settings. This has been a topic of ongoing discussion in the conflict forecasting 
literature17,46. Moreover, leading models in the field have adopted RF frameworks23.

The foundation of the RF model is justified by the exacting specifications of the Flee model’s input prerequisites. 
The necessary forecasts are expected to be on a daily basis, at the locality level, and spanning a couple of years. 
The substantial temporal and spatial granularity poses a significant challenge in designing the model, making it 
exceptionally complex. In contrast, existing models in the literature typically operate at a monthly-country level, 
with a maximum horizon generally up to 12 months (Fig. 2).

The RF classifier is trained on the balanced subset of features, which includes not only the transformed 
autoregressive sequences but also the spatial information and covariates for each grid cell. The labels for training, 
in this case, indicate the presence or absence of a conflict event. Specifically, the model was trained on conflicts 
in Mali (2012), the Central African Republic (2013), Burundi (2015), and South Sudan (2013). The code for the 
algorithm is publicly available at: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​T​h​ o​m​a​​s​S​c​h​i​​n​c​a​/​c​o​​n​f​l​i​c​t​​_​f​o​r​e​c​​a​s​t​_​c​o​l​a​b.

Coupled model
We propose a framework to aid in the design of a coupled model that integrates conflict forecasts generated by 
the RF classifier into the Flee ABM for simulating conflict-driven population displacement, as illustrated in Fig. 
2. This framework, which is based on the generalized SDA introduced by Suleimenova et al. in10, provides a 
structured approach for constructing, refining, executing and validating forced displacement simulations. Our 
framework consists of six phases: (i) Select Situation, (ii) Obtain Data, (iii) Construct Model, (iv) Refine Model, 
(v) Execute Simulation, and (vi) Analysis.
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Fig. 2.  Simulation development framework of the coupled model for predicting refugee migration patterns.
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The Select Situation phase involves defining the geographic and temporal context of the simulation. We select 
a country where conflict has led to large-scale forced migration and an appropriate time period. The time period 
of the simulation could be: (i) a historical time period, to support retrospective validation using observed refugee 
data; (ii) a future time period, to predict the number of refugees in camps over time; or (iii) a combination of 
both, to simulate an ongoing conflict across past and future periods for both validation and prediction purposes.

The Obtain Data phase focuses on acquiring relevant data for both the conflict forecasting model and the 
Flee model:

•	 For the conflict forecasting model, relevant historical conflict event details are derived from ACLED, while 
geographical information and covariates are obtained from PRIO. Then, the RF classifier is trained on histor-
ical data over the last five years before the start of a conflict period. This model “predicts” conflict events in 
the historical conflict period, and its performance is evaluated based on the real conflict progression dataset. 
This model is fine-tuned to find the best balance between precision and recall, by optimising its performance 
on both accuracy and the ability to capture conflict events.

•	 For the Flee model, we obtain predicted conflict progression generated by the conflict forecasting model, 
along with information on camp names and refugee counts sourced from the United Nations High Commis-
sioner for Refugees (UNHCR) database (https://data2.unhcr.org/en/situations), and geospatial information 
extracted from OpenStreetMap (OSM) platform (https://www.openstreetmap.org) or Bing Maps plaform 
(http://www.bing.com/maps) for constructing the location graph.

In the Construct Model phase, an initial coupled model is constructed by integrating conflict forecasts generated 
by the conflict forecasting model into the Flee model. The initial coupled model is defined as a network-based 
ABM in comma-separated values (CSV) format, representing conflict zones, camps, and towns, along with 
routes connecting them. Conflict forecasts are stored in a conflicts.csv file, which records daily conflict events at 
various locations during the forecast period and serves as input for the Flee model. This file I/O approach enables 
seamless integration of conflict forecasts into the simulation. For further details on the model construction 
process and CSV formats, please refer to47.

In the Refine Model phase, the coupled model is then refined to satisfy different conflict scenarios. This 
involves configuring the conflicts and locations for running simulations and updating the general ruleset and 
simulation settings.

The Execute Simulation phase involves a series of simulation runs to produce main simulation results: (1) 
ensemble validation runs, which utilize an automated ensemble execution function in FabFlee, a plugin of the 
FabSim3 automation toolkit48, to compare the outputs of these replicas against observed UNHCR validation 
data and automatically generate validation results44; and (2) replication runs for aleatoric uncertainty, which 
perform ensemble runs with multiple replicated instances (replicas) to produce predictions to account for 
aleatoric uncertainty in the coupled model.

Lastly, in the Analysis phase, we use these results to extract the accuracy of forced migration forecasts and 
aleatoric uncertainty. In addition, to investigate whether the coupled model can achieve comparable accuracy 
to the original Flee model, we compare the predicted daily camp arrivals generated by the coupled model with 
those produced by the original Flee model.

Results
We conducted case studies on four historical African conflicts: (1) The Mali conflict with a simulation period of 
300 days from 29th February 2012, (2) Burundi conflict with a simulation period of 396 days from 1st May 2015, 
(3) South Sudan conflict with a simulation period of 604 days from 15th December 2013, (4) Central African 
Republic conflict with a simulation period of 820 days from 1st December 2013. While these conflicts started in 
different contexts, they share common driven factors, such as violence political instability and civil war, which 
have led to large-scale displacement. The chosen time periods capture the critical phases of each conflict, where 
major forced displacement crises occurred, and ensure the availability of reliable data for model validation. The 
conflict instance for each country is denoted as Mali 2012, Burundi 2015, South Sudan 2013, and CAR 2013, 
respectively.

Daily conflict/no conflict prediction using the RF model
Our initial analysis reveals a significant imbalance in our dataset, with over 95% of the data points representing 
periods of peace (value 0) across all four scenarios. This imbalance poses a challenge for our forecasting task, 
particularly because we need to predict conflict for various time horizons, ranging from one year to several years 
into the future. It is particularly problematic because our training data is heavily skewed towards peace (value 0), 
while the test data is less skewed. This discrepancy leads to the model underpredicting conflicts (value 1) across 
different time horizons.

To address this challenge, we employ a downsampling technique on the training dataset, where we randomly 
omit a portion of the peaceful events. The downsampling factor was determined through an optimisation process, 
aiming to strike a balance between accuracy and recall. Accuracy tends to be exceptionally high if we exclusively 
predict peaceful events, considering their preponderance in the dataset. Conversely, recall provides insight into 
how effectively we predicted conflict-related events. Our objective is to strike the optimal balance aligned with 
the requirements of the migration model. Supplementary Fig. 1 displays the metric’s performance under various 
downsampling values. In this graph, the downsampling factor ‘k’ corresponds to the reduction factor applied 
to the training dataset featuring zero values. Our analysis indicates that the most favourable compromise is 
achieved by downsizing the peaceful observations by a factor of 20, corresponding to k = 20.
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We evaluate the performance of the RF Classifier by comparing it against two baseline models, both based on 
a Bernoulli distribution. The first model uses a Bernoulli distribution with p = 0.5, simulating a coin toss. The 
second model uses a Bernoulli distribution with p equal to the proportion of 1s in the actual data, reflecting the 
true distribution of observed values.

Figure 3 shows the recall, accuracy, and ROC-AUC score across three conflict forecasting models (RF 
model, Bernoulli distribution, and random guess). The ROC curve score measures how well a model can tell the 
difference between conflict and no-conflict cases. It measures the area under the curve of the true positive rate 
against the false positive rate. A score of 1 means perfect predictions. A score of 0.5 or lower means the model is 
no better than random guessing (Fig. 3).

As can be seen, the RF model consistently outperforms other models, achieving the highest scores in both the 
product of recall and accuracy, as well as in the ROC-AUC metric (see Supplementary Table 2 for more detailed 
results). In contrast, the Random and Bernoulli models exhibit low standard deviations in accuracy and recall 
across all study cases, with their observations clustered around specific points: (0.5, 0.5) for the random guess 
and (0, 1) for the Bernoulli model. These patterns can be attributed to the inherent characteristics of each model. 
The Bernoulli model, predicting mostly zeros, achieves high accuracy in unbalanced datasets but struggles to 
correctly identify conflict events (low recall). The random guess, by definition, predicts an equal proportion 
of ‘1’s and ‘0’s, resulting in scores of approximately 0.5 for both recall and accuracy. The RF model, however, 
demonstrates more varied performance across cases. It achieves excellent scores for Burundi (with a product of 
recall and accuracy around 0.6), average performance for Mali and the Central African Republic (CAR), and a 
low recall score for South Sudan—though still twice as high as the Bernoulli model (0.053 compared to 0.026). 
The RF model’s ROC-AUC scores further highlight its superiority, particularly in the case of Burundi where it 
achieves a score of 0.78. For CAR, the RF model shows a slight improvement (0.65), while for Mali and South 
Sudan, its performance is comparable to that of the Random and Bernoulli models. This analysis underscores the 
RF model’s potential for conflict prediction, especially in certain contexts, while also highlighting the variability 
in its performance across different cases.

The forecasting classification confusion matrices are displayed in Fig. 4. In the four cases, we are overpredicting 
conflict events, or we have high values of false positives. However, the majority of cases are predicted as peaceful, 
especially in South Sudan in 2013, with 93% of True negative cases. Only Burundi has slightly higher false 
positive rate with 24% of the cases, compared to 16% and 13% for Mali and Central African Republic. This can 
be explained by the slight difference in the peaceful event distribution, as Burundi has a slighter lower percentage 
around 95% when the mean value is 97%. It is also the studied case with the higher True positive rate with almost 
4% of the observations. On the other side, the RF model has high false negative value with South Sudan 2013 
with around 2.5% and only 0.15 % of true positive observations.

The favourable outcomes observed in Burundi may be attributed to the relatively short prediction 
horizon (approximately 1 year) and the limited number of locations (7). Conversely, South Sudan presents a 
more challenging scenario with 25 localities to forecast and an extended prediction period of almost 2 years. 

Fig. 3.  Comparison of recall vs accuracy across models: the circle shape represents the RF model, the diamond 
shape a Bernoulli distribution, and the square shape a random guess. The plain shape represents the mean 
value and the transparent markers represent the four simulations for each model. The ROC-AUC score is 
illustrated by a gradient red color, where a deeper red shade indicates a higher score. The dotted line is the 
product of accuracy and recall when equal to 0.3 and 0.6.
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Additionally, in the 5 years preceding the prediction period, 5 localities (constituting 20% of the total) accounted 
for approximately 50% of the conflict events. This concentration could lead our model to centralize predictions 
around these areas and potentially overlook the broader distribution of conflict events. Similar patterns emerge 
in the Central African Republic, where our model accurately forecasts high-conflict localities but may miss the 
dispersion in others. Lastly, in Mali, the scarcity of conflict events (approximately 1% of the overall test set) 
prompts the RF model to overpredict.

We also evaluated eXtreme Gradient Boosting (XGBoost) as an alternative to the RF model for daily conflict/
no-conflict prediction over a future time period. As shown in Supplementary Table 3, XGBoost performs worse 
than the RF model in terms of recall, accuracy, and the ROC-AUC metrics. Additional analysis on the impact of 
the forecast horizon on the classification metrics is presented in the Supplementary Fig. 2. As expected, the score 
decreases with time in the Burundi and CAR examples. In Mali and South Sudan, time brings more and more 
fluctuations in the F1-score, showing increasing uncertainty in the predictions.

First conflict onset prediction using the RF model
We use the RF model to predict the time until the first conflict onset at the locality level, measured in days over 
a future time period. Once a conflict is predicted to begin in a specific region, we assume that it will persist for 
the remainder of the simulation period. This assumption simplifies the model while still capturing the often 
protracted nature of local conflicts.

Similarly to the daily conflict/no conflict prediction, we encounter a challenge with non-events, which in 
regression results in a higher value for the upcoming onset in terms of the number of days. To tackle this issue, 
we also implement a downsampling technique for the outputs that extend beyond 120 days in the training 
set. To evaluate the performance of the RF model, we use the same benchmark models, Bernoulli distribution 
and random guess, as in the daily conflict/no conflict prediction. We simulate when each model makes its first 
‘conflict’ prediction. The day this happens is recorded as the predicted onset of conflict.

To evaluate the forecast results, the log ratio of the Mean Squared Error (MSE) of the benchmark model 
over the RF model is plotted in Fig. 5. As can be seen, our model has significantly better results than the two 

Fig. 4.  Confusion matrices in percentage for the four studied cases. Top-left: Mali 2012, top-right: Central 
African Republic 2013, bottom-left: Burundi 2015 and bottom-right: South Sudan 2013; predicted in x-axis 
and actuals in y-axis.
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benchmark models. A positive log ratio implies a higher MSE, and hence worse performance for the benchmark 
model compared to our model. We find that 66% of the localities (represented by grey points) have a positive log 
ratio for the Bernoulli model (with p the proportion of one in the data), while 75% for the Random model. The 
mean values of the log ratios are 0.51 and 0.47, respectively. The statistical evaluation highlights this superiority, 
with a p-value of 0.003 for the Bernoulli model and 0.02 for the random model, derived from a t-test on the log 
ratio, testing its deviation from zero.

The XGBoost model was also tested for the first conflict onset prediction. Supplementary Fig. 3 plots the log 
ratio of MSE of the benchmark models over XGBoost. As can be seen, the model’s log ratios with benchmark 
models were not significantly different from zero. One potential explanation is the tendency of XGBoost to 
overfit, especially with the noisy fatalities covariates. Unlike XGBoost, RF has unrelated random trees, which 
avoid the risk of overfitting.

Conflict-driven population displacement simulation
To evaluate the added value of two types of conflict progressions generated by the RF model in predicting the 
displacement of people, we compared our method with the Flee model presented in10. We constructed three 
simulation instances, each corresponding to a different conflict progression input: (1) Flee (recorded conflict), 
where conflict progression is based on the ground truth (i.e., ACLED conflict data) as used in10; (2) Flee 
(predicted conflict [RF-daily]), where conflict progression is generated by daily conflict/no-conflict prediction 
using the RF model; and (3) Flee (predicted conflict [RF-onset]), where conflict progression is generated by first 
conflict onset prediction using the RF model.

The accuracy of three simulation instances was assessed by the Average Relative Difference (ARD) metric, 
which is calculated as follows:

	
E(t) =

∑
x∈S

(|nsim,x,t − ndata,x,t|)
Ndata,all,t

� (1)

where nsim,x,t denotes the number of refugees predicted by a simulation in each camp x of the set of all camps 
S at time t, ndata,x,t denotes the observational data from UNHCR for each camp x of the set of all camps S at 
time t, and Ndata,all,t is an aggregation of the observational data from UNHCR for all camps at time t. The 
ARD is a linear error measure which complies that every mismatch in the estimation of a human arrival should 
contribute equally to the error score. As a result, both an overprediction and an underprediction of arrivals by 
100% would result in an ARD score of 1.0. An ARD value of 0.0 indicates that a simulation is completely in line 
with the validation data (0% error). It is possible for ARD values to be higher than 1.0. This occurs when the 
Flee model overpredicts actual arrivals by more than 100%, a phenomenon that frequently occurs in very early 
stages of an armed conflict. For ease of communication and consistency with previous literature, we will indicate 
a simulation to have an error of 50% when the ARD is 1.0 and an error of 0% when the ARD is 0.0.

Fig. 5.  Boxplot comparing the log ratios of two models, Bernoulli and random guess, with the RF model. Each 
point represents an individual data sample. The red triangles denote the mean value of MSE log ratio for each 
model. The p-values indicate the statistical significance of the difference between the log ratios for each model 
from 0. A positive log ratio implies a higher MSE, and worse performance for the benchmark model compared 
to our model.
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To configure simulations using the Flee code, we modified the default assumptions, resulting in two different 
rulesets: ruleset 1.0, which follows the assumptions proposed in47, and ruleset 2.0, which provides a more realistic 
version by incorporating additional movement rules to simulate more complex behaviors. See supplementary 
materials for a description of the two rulesets.

Similar to many other simulation codes, Flee is non-deterministic, resulting in variations in results with 
each execution. To reduce the impact caused by aleatoric uncertainty, we execute 100 replicas of each individual 
simulation. To reduce the execution time for all conflict instances, we apply the FabFlee automation tool and a pilot 
job mechanism, i.e., QCG-PilotJOB49, to efficiently run ensemble forecasts on the ARCHER2 supercomputer.

Table 1 presents the ARD results of all simulation instances in four conflict scenarios. To interpret these 
results, we need to acknowledge that a conflict forecast that exactly corresponds to the recorded ACLED data 
would result in a near-perfect match in ARD scores, as only aleatoric uncertainty of the probabilistic Flee 
algorithm, which is typically around 0.5%, would introduce noise in the results. Therefore, when this ARD 
difference is systematically very small, we can choose to produce forecasts reliably using the Flee model without 
having to rely on ACLED data (which covers only historical events).

As shown in Table 1, the ARD values range between 0.25 and 0.6 in all cases, which means that the simulation 
is at least 70% correct relative to the UNHCR data in all. Among the three simulation instances, both Flee 
(predicted conflict [RF-daily]) and Flee (predicted conflict [RF-onset]) obtain lower ARD values (i.e., better 
validation scores) than Flee (recorded conflict) in all conflict scenarios except for CAR 2013. Flee (predicted 
conflict [RF-daily]) outperforms Flee (predicted conflict [RF-onset]) in Mali 2012 and South Sudan 2013, while 
it performs worse in the remaining cases. The change from Ruleset 1.0 to the more realistic Ruleset 2.0 results in 
lower ARD values in most scenarios, which indicates that more realistic movement assumptions have a positive 
impact on the simulation of conflict-driven population displacement. Moreover, the three simulation instances 
show relatively low standard deviations of ARD, indicating the robustness of the predictions. In summary, 
simulations incorporating predicted conflict progressions achieve comparable accuracy to those using recorded 
conflicts. Namely, the coupled model is effective in modeling conflict dynamics even without using ACLED data, 
providing an alternative to forecast future conflicts.

In Fig. 6, we present the daily number of arrivals in camps predicted by three simulation instances in a 
single simulation run and observed data from UNHCR (Fig. 6a, c, e, g), and ARD values for simulation results 
compared to observational data from UNHCR (Fig. 6b, d, f, h) under ruleset 1.0 for the four conflict scenarios. 
For Mali 2012 in Fig. 6a, both Flee (predicted conflict [RF-daily]) and Flee (predicted conflict [RF-onset]) 
overestimate the number of arrivals in camps after the initial days of the simulation, while Flee (recorded 
conflict) underestimates during the majority of the simulation period. The ARD of Flee (predicted conflict [RF-
daily]) fluctuates more significantly compared to Flee (predicted conflict [RF-onset]), particularly between days 
50 and 150, reaching 0.9, as shown in Fig. 6b. Flee (predicted conflict [RF-onset]) performs better than Flee 
(recorded conflict), with lower or similar ARD values for most of the simulation period.

In Burundi 2015 situation (Fig. 6c), Flee (predicted conflict [RF-onset]) and Flee (recorded conflict) 
significantly underestimate the number of arrivals in camps during the early and middle simulation period and 
overestimate the numbers at the later stage of simulation, while Flee (predicted conflict [RF-daily]) significantly 
underestimates the number of arrivals in camps during the whole simulation period. As can be seen in Fig. 6d, 
Flee (predicted conflict [RF-onset]) performs better than Flee (recorded conflict), with lower ADR during most 
of the days in the simulation, while Flee (predicted conflict [RF-daily]) performs worse than Flee (recorded 
conflict) during the middle and later simulation period (after around day 180).

For South Sudan 2013 (Fig. 6e), Flee (predicted conflict [RF-onset]) predicts a lower number of arrivals in 
camps than observational data from UNHCR at the early stage of simulation and overestimates the numbers 
afterwards, while Flee (predicted conflict [RF-daily]) predicts lower numbers for most of the simulation 
period. Flee (recorded conflict) predicts a much lower number of arrivals in camps than the UNHCR data 
at the beginning of the simulation, and then the difference between the predicted numbers and the UNHCR 
data becomes less. Fig. 6f shows that Flee (predicted conflict [RF-daily]) achieves lower ARD values than Flee 
(recorded conflict) during most of the simulation period, achieving ARD values below 0.5 after around day 250. 
Although Flee (predicted conflict [RF-onset]) obtains higher ARD values (0.8-1) in the initial stage, the ARD 
decreases significantly afterwards and maintains an ARD lower than 0.2 from the middle stage of the simulation. 
Flee (recorded conflict) performs the worst, with ARD values above 0.5 for the first half of the simulation.

In CAR 2013 situation, as shown in Fig. 6g and h, Flee (predicted conflict [RF-onset]) predicts similar results 
with Flee (recorded conflict), but with slightly higher ARD values. Flee (predicted conflict [RF-daily]) predicts a 
lower number of arrivals in camps than the UNHCR data during the whole simulation period, with higher ARD 
values than the other two models for most of the simulation period. Among the three simulation instances, Flee 
(recorded conflict) achieves the lowest ARD values for most of the simulation period. Flee (predicted conflict 
[RF-daily]) and Flee (predicted conflict [RF-onset]) achieve ARD values lower than 0.5 for about two-thirds 
of the simulation period, but Flee (predicted conflict [RF-onset]) achieves much lower ARD values than Flee 
(predicted conflict [RF-daily]). The main reason for the lower accuracy of the coupled model on this conflict 
instance could be that the prediction of conflicts becomes less accurate when predicting for a longer time.

Conclusion
In this paper, we have developed a novel approach for predicting real-world conflict-driven displacement. By 
combining machine learning-based conflict forecasting with ABM, the coupled model automatically generates 
potential future conflict progression, eliminating the need for expert estimates. The RF model has been 
employed for designing conflict forecasting models, and two types of predicted conflict progress as output have 
been integrated into the Flee ABM to forecast the number of camp populations in neighboring countries. We 
have conducted experiments on four historical conflicts with different simulation periods, and the accuracy of 
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(a) Mali 2012 (b) Mali 2012

(c) Burundi 2015 (d) Burundi 2015

(e) South Sudan 2013 (f) South Sudan 2013

(g) CAR 2013 (h) CAR 2013

Fig. 6.  The number of camp populations predicted by three simulation instances in a single simulation run 
and observed data from UNHCR (left), and ARD values for simulation results compared to observed data from 
UNHCR (right) under ruleset 1.0 for the four conflict scenarios. Blue line: Flee (recorded conflict), yellow line: 
Flee (predicted conflict [RF-daily]), green line: Flee (predicted conflict [RF-onset]), red line: observational data 
from UNHCR.
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simulations has been validated using the ARD metric. The ARD results have shown that using the Flee ABM 
to forecast without ACLED data is certainly feasible, and the coupled model has demonstrated comparable 
predictive accuracy versus the original Flee ABM on all tested conflict instances under two versions of simulation 
rulesets.

One might have assumed that the distortion in ARD in our migration forecasts would correlate somehow 
with the accuracy or confusion matrices of the conflict prediction validation. However, as far as we can tell, 
this is not clearly the case across these four conflicts, and a broader study would be required to investigate the 
possible existence of such a relation. If indeed there is no correlation between the accuracy of the conflict and 
the change in ARD of the migration forecasts, as our results seem to hint at, then there can be other causes that 
may lead to the discrepancy in ARD. For example, it is possible that ACLED did not accurately capture all major 
conflict events across the four conflicts, or that our encoding of the ACLED events into conflict input files is 
too simplistic. Another possible cause may be that the UNHCR data itself is not a complete reflection of the 
ground truth, as it is known to have omissions and can be subject to (political) bias. Given that the ARD actually 
decreases in 12 of our 16 simulation comparisons when adopting a (more approximate) conflict forecasting tool, 
we certainly need to remain aware of these possible causes.

Overall, this study emphasizes the potential of the proposed model in a real-world migration forecasting 
context, where ground truth conflict progression information does not exist and simulations cannot be done in 
a conventional way. There are several directions for future work. First, one limitation of the work we present here, 
and of the Flee ABM in general, is that we are not yet able to accurately estimate how many persons are displaced 
in a future conflict. However, being able to forecast the conflict itself constitutes an important step towards lifting 
this limitation, and indeed we intend to investigate this topic as part of our future work. Inclusion of the intensity 
of conflict is another potential source of improvement. Second, we plan to adopt additional evaluation metrics, 
such as the Mean Absolute Scaled Error (MASE)10, to further evaluate simulation accuracy across different 
conflict scenarios. Third, the current model assumes homogeneous (identical) agents. Future extensions of the 
model will incorporate demographic characteristics such as age, gender, and education level, along with different 
behavioral rules, to better capture the complexity and diversity of real-world displacement dynamics.

Data availability
The input and output data are publicly available on Figshare with DOI ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​7​6​3​3​/​r​d​.​b​r​u​n​e​l​.​2​8​4​0​
1​1​1​6​.​v​1​​​​​, under a CC-By 4.0 license.
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