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Abstract—Interior control signals derived from motor 

controllers have gained increasing attention in closed-loop 
motor drive systems for interturn short-circuit fault 
diagnosis. Mainstream diagnosis methods generally rely on 
the extraction of control signals within experimental 
settings featuring high sampling rates, such as 10 kHz or 
40 kHz. However, in practical engineering, the industrial 
sampling rate of control signals typically reaches only 1 
kHz or even lower. This limitation makes it challenging for 
control signals to intuitively distinguish between healthy 
and faulty states. To address this practical constraint, an 
intelligent diagnosis method, termed the prior knowledge 
integrated contrastive diagnosis model (PK-CDM), is 
proposed. First, space voltage vectors of interior control 
signals are extracted as inputs of the PK-CDM to detect the 
interturn short circuit in a closed-loop motor drive system. 
Second, the physical variation regularity of space voltage 
vectors is formulated as the prior diagnostic knowledge to 
compensate for the lack of information under low sampling 
rate conditions. Finally, a contrastive pre-training strategy 
is employed to facilitate the construction of the PK-CDM at 
an industrially low sampling rate. Experimental results 
demonstrated that the proposed PK-CDM solves the issue 
of information loss under industrial low sampling rate 
conditions by integration of prior diagnostic knowledge 
with a contrastive learning strategy, thereby yielding 
superior diagnostic accuracy compared to other state-of-
the-art (SOTA) methods. 

Index Terms—Intelligent diagnosis, electrical faults, 
closed-loop motor drives, interior control signals, low 
sampling rate. 

I. INTRODUCTION

S the core component of high-end equipment such as 
industrial robots, the closed-loop motor drive serves as a 

typical electromechanical carrier, encompassing an electrical 
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machine, a motor controller, and an inverter [1]. Unlike open-
loop motor drives, closed-loop motor drives can compensate for 
system asymmetry through the regulating effect of closed-loop 
control, thereby ensuring operational stability [2]. Given their 
critical importance in industrial applications, the reliability and 
safety of closed-loop motor drives have become a focal point of 
extensive research [3]. 

In the field of closed-loop motor drive diagnosis, interturn 
short-circuit faults (ISCFs) in motor stators pose one of the 
most critical challenges to the operational reliability, primarily 
due to their high occurrence probability, weak incipient fault 
signatures and propensity for rapid progression to phase-to-
phase or phase-to-ground faults under continuous operation. 
The primary challenge lies in addressing the issue that the 
regulating effect of closed-loop control alters behaviors of 
ISCFs and complicates the diagnosis procedure. This regulating 
mechanism operates by having the motor controller enforce 
balanced phase currents and suppress any additional negative-
sequence components caused by ISCFs or other electrical faults 
[4]. The impact of closed-loop control on rotor fault diagnosis 
in induction motor drive systems has been explored in [5], with 
findings demonstrating that the straightforward application of 
the motor current signature analysis is rendered ineffective. In 
[6], a comparative study utilizing different monitoring signals 
for a stator FOC drive system revealed that closed-loop control 
impedes the efficient detection of stator high-resistance 
connection faults. Consequently, the regulating effect of closed-
loop control prevents traditional monitoring signals from 
accurately representing diagnostic information, leading to 
incorrect identification of the true state of the faulty device. 

Current research on ISCF diagnosis in closed-loop motor 
drives has demonstrated substantial advancements in incipient 
ISCF detection capabilities under diverse control schemes. In 
[7], the third harmonic component of stray flux was employed 
for ISCFs diagnosis in field-oriented control (FOC) drive 
systems, facilitating accurate fault coil localization through the 
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installation of a fluxgate sensor. In [8], an external magnetic 
loop antenna was used to detect ISCFs in direct torque control 
(DTC) drive systems, and the harmonics in the measured flux 
leakage spectrum were proposed as fault signatures containing 
abundant diagnostic information. In [9], a discrete wavelet 
transform method was introduced to extract fault features from 
the cost function, which enables ISCF diagnosis in model 
predictive current control (MPCC) drive systems without 
additional monitoring signals. Moreover, in [10], a generalized 
ISCF detection method was proposed with the αβ-axis current 
residuals, achieving independence from cost functions and 
exhibiting compatibility with both MPCC and model predictive 
torque control (MPTC). However, the practical implementation 
of these methods is significantly constrained by the narrow 
applicability to specific control schemes or the necessity for 
supplementary sensing devices. 

Given the sensorless and non-invasive characteristics of 
interior control signals [11], researchers have explored how 
these advantages can mitigate the influence of closed-loop 
control and enhance the diagnosis of closed-loop motor drives. 
In [12], the constant component and the double-fundamental 
harmonic component of internal signals were employed for 
ISCF diagnosis in direct FOC drives, exhibiting superiority 
over classical motor current signature analysis (MCSA) 
methods. In [13], an adaptive nonlinear diagnostic model using 
a self-recurrent wavelet neural network was introduced for 
multi-phase motor drives. This model utilized gate signals 
collected from motor controllers as inputs to identify open 
switch faults in less than 1 ms without extra sensors. In [14], a 
novel indicator was presented to enhance the robustness of 
ISCF detection in permanent magnet synchronous motor 
(PMSM) drive systems under varying controller bandwidths. 
This method incorporated the second harmonics of control 
currents and voltages with the Rayleigh quotient function. In 
[15], it is demonstrated that space voltage vectors obtained from 
a motor controller are effective for diagnosing ISCFs in closed-
loop motor drives with FCS-MPC. This method utilized 
controller outputs as a fault indicator, exhibiting universal 
applicability for diverse control schemes. Furthermore, several 
popular deep learning models were constructed in [16], using 
statistical data of space voltage vectors as inputs for the 
diagnostic models. The integration of deep neural networks has 
mitigated the negative impact of operational conditions on 
ISCF diagnosis, thereby enhancing the diagnostic efficiency. 

While the feasibility of using interior control signals for 
ISCF diagnosis without interference from closed-loop control 
has been established, existing research has overlooked 
challenges arising from industrial low sampling rates. Most 
studies on electrical fault diagnosis for closed-loop motor 
drives assume the availability of high sampling rates for interior 
control signals, such as 10 kHz or 40 kHz [12]-[16]. However,
due to actual limitations in communication bandwidth and 
hardware costs, the sampling rate of interior control signals for 
industrial robots and other typical applications typically only 
reaches 1 kHz or even lower. In [17], the torque signal from a 
motor controller in a 6-degree of freedom (DOF) industrial 
welding robot was employed for the gearbox fault detection at 
a sampling rate of 1 kHz. In [18], for the operation safety of a 
wafer transfer robot with five axes, current and velocity signals 

were extracted from motor controllers at 1 kHz to enable fault 
diagnosis of harmonic drive and timing belt components. It is 
noteworthy that a low sampling rate in interior control signal 
acquisition may lead to signal distortion and information loss, 
impeding the accurate fault diagnosis through signal analysis. 
The impact of different sampling rates on usage frequencies of 
space voltage vectors from a motor controller of industrial 
robots is depicted in Fig. 1. At a high sampling rate, usage 
frequencies of space voltage vectors in a fault state are 
significantly higher than in a healthy state. However, as the 
sampling rate decreases, the information loss occurs in these 
statistics calculated over the whole operation period, causing a 
notable reduction in the amplitude difference. At a low 
sampling rate, distinguishing between healthy and faulty data 
becomes challenging, rendering traditional diagnosis methods 
ineffective. Thus, it is essential to develop a closed-loop motor 
drive diagnosis method capable of utilizing interior control 
signals at low sampling rates for industrial applications.  

Early works on fault diagnosis at a low sampling rate have 
concentrated on developing novel signal processing methods 
that are insensitive to the reduction in sampling rates, fulfilling 
practical requirements for industrial deployment. In [19], the 
integration of a digital notch filter with discrete-time Fourier 
transform and autoregressive-based spectrum methods enabled 
the effective detection of broken rotor bar (BRB) faults in 
induction motors (IMs) at low sampling rates. In [20], the 
stationary wavelet packet transform (SWPT) was employed for 
feature extraction from current signals, significantly improving 
the diagnostic accuracy of BRB faults in IMs at low sampling 
rates. As operational conditions become complex, the impact of 
information loss and signal distortion caused by low sampling 
rates on fault diagnosis accuracy has become more pronounced, 
rendering signal processing methods ineffective. Although the 
potential of deep learning methods has been proven in fault 
diagnosis for power electronics and other fields [21]-[25], 
mature SOTA methods have poor robustness to complex 
working conditions at low sampling rates. Few studies have 
introduced novel deep learning-based diagnosis methods to 
address the issue of fault information loss at low sampling rates. 

Fig. 1.  Interior control signal of industrial robots under different sampling 
rates and its amplitude changes. 
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In [26], a generative adversarial network (GAN) was used to 
enhance the original coding data of arc faults at low sampling 
rates, combined with an adaptive asymmetric convolutional 
neural network to improve the fault feature extraction ability. 
In [27], a deep residual architecture with a feature-sharing 
mechanism was proposed, achieving accurate motor bearing 
fault diagnosis even when the sampling rate of vibration signals 
was reduced to one-fourth of the original. Recent research on 
ISCF diagnosis in closed-loop motor drives using interior 
control signals has overlooked the low sampling rate constraint. 
Their sampling rates in industrial applications are reduced to 
1/10 or 1/40 of those achievable in laboratory settings, posing 
significant challenges for incipient ISCF diagnosis. To address 
this issue, an intelligent method known as the prior knowledge 
integrated contrastive diagnosis model (PK-CDM) is proposed. 
This method uses space voltage vectors of interior control 
signals to mitigate the effects of closed-loop control. Then, the 
physical variation regularity of these vectors is formulated as 
prior diagnostic knowledge to counteract the information loss 
inherent at low sampling rates. To further enhance diagnostic 
accuracy within industrial low sampling rate constraints, a 
contrastive pre-training strategy is applied, incorporating data 
augmentation techniques and a hybrid contrastive loss function 
to aid in the construction of the PK-CDM. 

The main contributions of this paper are as follows: 
1) An intelligent prior knowledge integrated contrastive

diagnosis model (PK-CDM) is introduced for diagnosing 
electrical faults in closed-loop motor drives. The variation 
regularity of control signals is formulated and represented 
through a fully-connected prior knowledge integrated 
subnetwork, enabling the observation of more valuable 
information even at industrial low sampling rates. 

2) Space voltage vectors extracted from a motor controller
are employed as inputs for the proposed PK-CDM, with an 
analysis of the impact of closed-loop control on fault 
information extraction. Fault diagnosis unaffected by closed-
loop influences is accomplished by sampling and monitoring 
changes in the duration of space voltage vectors. 

3) A contrastive pre-training strategy is applied to develop
the fault feature encoder, which maximizes the distinction 
between healthy and faulty states under industrial low sampling 
rate conditions. Besides, tailored data augmentation methods 
and a hybrid contrastive loss function are designed to enhance 
the utilization of restricted information at low sampling rates. 

The remainder of this paper is organized as follows. Section 
II introduces challenges of electrical fault diagnosis for closed-
loop motor drives at low sampling rates. Section III provides a 
detailed explanation of the proposed PK-CDM. In Section IV, 
the superiority of the PK-CDM is experimentally validated. 
Finally, Section V presents the conclusion. 

II. CHALLENGES OF ELECTRICAL FAULT DIAGNOSIS AT

LOW SAMPLING RATES 

In this section, space voltage vectors from a motor controller 
are utilized as a substitute for traditional monitoring signals to 
diagnose ISCFs in closed-loop motor drives, thereby avoiding 
the adverse effects of closed-loop control. Then, the problem of 
industrial low sampling rates is discussed when using space 
voltage vectors for the closed-loop motor drive diagnosis. 

A. Regulating Effect of Closed-Loop Control

The regulating effect of closed-loop control is exemplified
using an incipient ISCF, which represents one of the most 
significant electrical faults in motor drives. Incipient ISCFs can 
be modeled as disturbances to the motor's electromagnetic 
torque [28], [29] and analyzed using transfer functions of the 
motor drive system within the synchronous reference frame. 

The closed-loop transfer function of the current loop is 
defined by (1). Then, the transfer function relating the q-axis 
current iq to the torque disturbance Tm can be derived as in (2): 
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where ωc is the bandwidth of a current loop controller, Ksp is 
the proportional term of a speed loop controller, τs  is the 
integral term, Jm is the motor inertia parameter, Kvf is the feed-
back gain constant, and  Kt is the motor torque constant. 
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Frequency-response analysis is applied to evaluate the 
transfer functions in (3) and (4). The values of τs, Jm, Kvf and Kt 
in (4) are determined according to [30]. The order of the 
numerator and denominator indicates that the system possesses 
filtering capabilities, resulting in the suppression of fault 
components caused by ISCFs within motor current signals. 

Based on this frequency-response analysis, the amplitude 
variation of ISCF components within motor current signals 
under different control parameters is depicted in Fig. 2. When 
comparing Fig. 2 (a) with Fig. 2 (b), the results across various 
operating frequencies demonstrate that the amplitude variation 
tendency decreases significantly with changes in closed-loop 
control parameters. Thus, the regulating effect of closed-loop 
control masks valuable information, thereby impeding the 
extraction of electrical fault signatures from motor currents. 

Fig. 2.  Amplitude variations of fault components in current signals under
different control parameters. (a) Amplitude variations under different
proportional terms. (b) Amplitude variations under different bandwidths. 
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B. Electrical Fault Diagnosis by Space Voltage Vectors

Given the negative impact of the closed-loop control scheme
on extracting fault information from motor currents, space 
voltage vectors derived from a motor controller are proposed as 
an alternative approach for achieving electrical fault diagnosis 
in closed-loop motor drives. 
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Suppose that ua(t), ub(t), and uc(t) are phase voltages of a 
closed-loop motor drive. In (5), the representation of these 
signals in the α-β reference frame can be obtained by the 
application of Clark transformation [31]. 

Then, the space voltage vector uδ(t) can be defined in the α-
β reference frame in (6): 

2 3 4 3

( ) ( ) ( )
2

( ) ( ) ( )
3

2

j j
a b c

j
m

t t j t

t t e t e

u e

  

 



 

    


u u u

u u u  (6) 

where um  is the peak value of phase voltages and θ  is the 
rotation angle of space voltage vectors. 

As shown in Fig.3, the motion trajectory of space voltage 
vector uδ(t)  is circular at the health state, and its trajectory 
transforms into an elliptical shape affected by ISCFs [32]. 
uδ(t)  can be decomposed into the combination of two 

adjacent basic voltage vectors, such as u1(t) and u2(t). During 
one electrical period Tc , the integral of decomposed voltage 
vectors by time satisfies the following formula: 
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where 0 is the zero-voltage vector, a, b and c are the duty ratio 
of basic voltage vectors and a zero voltage vector respectively. 
The angle between two adjacent basic voltage vectors is π 3⁄ . 

In the α-β reference frame, the vector norm of uδ(t) has the 
following relationship with u1(t) and u2(t): 
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Letting the norm of the basic voltage vector u1(t) and u2(t) 
be two-thirds of the system bus voltage udc , the duration of 
basic voltage vectors can be calculated in (9). 

Based on the above decomposition principle of space voltage 
vectors, the motion trajectory change caused by ISCFs can be 
represented by the duration change. Thus, the non-intrusive 
ISCF diagnosis for closed-loop motor drives without the 
negative effect of closed-loop control can be realized by 
sampling and monitoring the duration change of space voltage 
vectors at health and fault states. 

C. Problem Statement of Low Sampling Rates

In the discrete sampling process of space voltage vectors
obtained from a motor controller, the duration changes of space 
voltage vectors can be characterized by their usage frequencies 
within each operational period. Consequently, the issue of 
industrial low sampling rates can be described by observing 
changes in the statistical distribution of usage frequencies. 

Fig. 4 illustrates the statistical distribution of the basic 
voltage vector u1(t) alongside its adjacent basic voltage vectors 
u2(t) and u6(t) when an ISCF occurs in phase A of the motor 
stator. In this figure, the horizontal coordinate represents the 
usage frequency recorded over a unit operational period, while 
the vertical coordinate denotes the probability of the frequency 
distribution. A comparative analysis of Fig. 4 (a), Fig. 4 (b) and 
Fig. 4 (c) reveals that the occurrence of ISCFs leads to a rise in 
the mean value of frequency distribution for u1(t), whereas 
u2(t) and u6(t) exhibit opposing changes at a high sampling rate. 
These observations are consistent with the decomposition 
mechanism of space voltage vectors, providing a fault indicator 
for ISCF detection. However, as shown in Fig. 4 (d), Fig. 4 (e), 
and Fig. 4 (f), the usage frequency recorded over a single 
operational cycle is significantly reduced, and the statistical 
distribution discrepancies between healthy and fault states 

Fig. 4.  Distribution discrepancy of space voltage vectors at healthy and
faulty states at different sampling rates. (a) u1 at high sampling rates. (b) 
u2 at high sampling rates. (c) u6  at high sampling rates. (d) u1  at low 
sampling rates. (e) u2 at low sampling rates. (f) u6 at low sampling rates.

Fig. 3.  Motion trajectory of space voltage vector in the α-β reference
frame. (a) Health state. (b) Fault state. 
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weaken at lower sampling rates. Consequently, the issue of low 
sampling rates results in the information loss of space voltage 
vectors, hindering information extraction by diagnostic models. 

III. INTELLIGENT DIAGNOSIS METHOD UNDER INDUSTRIAL

LOW SAMPLING RATE CONDITIONS 

In this section, to address the challenge of diagnosing closed-
loop motor drives at industrial low sampling rates, a novel PK-
CDM method is depicted in Fig. 5. Initially, the usage 
frequencies of space voltage vectors serve as inputs for a prior 
knowledge integrated subnetwork, fusing correlation changes 
among space voltage vectors to mitigate information loss. In the 
contrastive representation learning branch, a contrastive pre-
training strategy is introduced to extract fault features, thereby 
enhancing intra-class similarity and amplifying inter-class 
dissimilarity. Finally, the diagnostic classifier learning branch 
aims to construct a binary classifier based on the pre-trained 
encoder, aligning with the requirements of electrical fault 
diagnosis tasks. 

A. Prior Knowledge Integrated Subnetwork

The mechanism analysis presented in Section Ⅱ demonstrates 
that when ISCFs occur, the trajectory of space voltage vectors 
transitions from a circular to an elliptical shape. The long axis 
of this elliptical fault trajectory aligns with the direction of the 
basic voltage vector associated with the faulty phase. 

Take the occurrence of ISCFs in the motor phase A as an 
example. The long axis of this space voltage vector trajectory 
tends to the direction of u1(t) and u4(t), extending their duration. 
Based on the decomposition principle of space voltage vectors 
in Section Ⅱ, when the duration of u1(t) increases, the duration 
of adjacent voltage vectors u2(t) and u6(t) will decrease, which 
is also verified in Fig. 4. Thus, when ISCFs occur, the prior 
knowledge about correlation changes between space voltage 
vectors can be formulated as follows: 
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where ui(t) is the original basic voltage vector and ωi  is the 
correlation weight. m  is the index of the m th related space 
voltage including the original basic voltage vector, while ωm 
represents the corresponding weight for each vector. Hence, the 
fusion representation ui_fus(t)

ᇱ  of correlation changes is 
computed by the weight summation and normalization of the 
basic voltage and their adjacent vectors. Then, ui_fus, p+(t)ᇱ and 
ui_fus, p-(t)

ᇱ are the positive and negative fusion vectors in the 
same phase, representing the fault state of corresponding motor 
stator coil in (11) corporately. 

The prior knowledge of space voltage vectors formulated by 
(10) and (11) can be expressed by a fully-connected network to
construct a prior knowledge integrated subnetwork PK (∙). In
this subnetwork, the fused weights of space voltage vectors are
represented by the learnable parameters, endowing the vector
fusion process with adaptive optimization. Therefore, this
subnetwork is able to observe the correlation change between
space voltage vectors from a global perspective to extract more
fault information, and solve the problem of industrial low
sampling rates without excessive addition of model size.

B. Contrastive Representation Learning Branch

This branch includes three core components: data
augmentation methods Augment (∙), a feature encoder module 
Encoder (∙) and a supervised contrastive loss Lsc(∙). 

Augment (∙): Based on the data augmentation principle that 
cannot change the semantic meaning of raw inputs [33], three 
methods, Gaussian noise, random scaling and mask noise, are 
used to supplement the insufficiency of useful information for 
space voltage vectors under low sampling rate scenarios. 

Let 𝑖∈I ≡ ሼ1…2Nሽ be the index of raw and augmented input 
ui of space voltage vector datasets. Concrete operations of data 
augmentation methods are as follows: 

, ~ (0,0.01)i i G G N u u (12) 

, ~ (1,0.01)i i N  u u (13) 

i i u u M (14)

where ui෥  is the augmented sequence, the noise G  obeys a 
Gaussian distribution N (0,0.01), the scaling factor λ obeys a 
Gaussian distribution N (1,0.01), the element of mask matrix M 
obeys a Bernoulli distribution and ⊗ stands for the element-
wise multiplication. Besides, the above methods are carried out 
with the augmentation probability of 0.5. 

Encoder (∙): The contrastive pre-training strategy is able to 
select a backbone network flexibly as the fault feature encoder 
according to various downstream tasks. To balance the model 
complexity and feature extraction ability at low sampling rates, 
the residual network proposed in [34] is chosen as the encoder 
in this paper and pre-trained by the supervised contrastive 
learning strategy [35]. Then, high-dimensional features from 
this encoder are fed into the Proj (∙) which includes a fully-
connected layer and an l2 normalization layer for the feature 
distance measurement. 

Lsc(∙): In order to encourage the encoder to extract fault 
representations with higher intra-class similarity and inter-class 
dissimilarity at low sampling rates, a supervised contrastive loss 
is calculated as (15). 

Fig. 5.  The architecture of proposed PK-CDM. 
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where τ∈R+  is a scalar temperature parameter, the anchor 
feature zi=Proj (Encoder (ui෥ )), zp is the positive feature of zi, za 

is a feature from the set which not containing zi, a∈A(i) is the 

index of za, p∈P(i) is the index of all positive features, |P(i)| 
is the cardinality of all positives. 

C. Diagnostic Classifier Learning Branch

Set the ISCF diagnosis as a binary classification task. Raw
inputs of space voltage vector datasets are fed to PK (∙), taking 
full use of the prior knowledge. Then, encoder parameters pre-
trained by contrastive representation learning are frozen and 
transferred to match the downstream task of ISCF diagnosis. 
Besides, a hybrid loss function is applied to improve the 
classification accuracy at low sampling rates, formulated as 
(16). 

hybrid sc ce( ) ( ) (1 ) ( )L L L        (16) 

where this hybrid loss Lhybrid(∙) is the linear combination of the 
supervised contrastive loss Lsc(∙)  and the cross-entropy loss 
Lce(∙). And β represents the penalty coefficient. 

Afterwards, a linear classifier module Clf (∙) , including a 
fully-connected network and a softmax layer, is adopted to give 
final diagnosis results under low sampling rate scenarios. 

IV. CASE STUDIES

In this section, space voltage vector datasets collected from 
a closed-loop motor drive platform are implemented to evaluate 
the diagnostic accuracy of incipient ISCFs at low sampling rates. 
Moreover, the diagnosis results of proposed method are 
compared with several advanced diagnosis methods under an 
industrial low sampling rate scenario. 

A. Data Description

As shown in Fig. 6, the electrical fault diagnosis for incipient
ISCFs is conducted in a closed-loop motor drive development 
platform [16]. This motor drive system realizes an incipient 
ISCF by shorting the lead points of 2 turns in the A-phase coil 

of an experimental motor, corresponding to around 1.92% short 
circuit ratio. Besides, a motor microcontroller and a 2L-VSI are 
integrated into a development kit of TMDXIDDK379D from 
Texas Instruments. The design parameters of the experimental 
motor are given in Table I. 

This platform opens an interactive interface to acquire space 
voltage vector datasets. As tabulated in Table Ⅱ, a total of 34 
space voltage vector datasets are acquired at healthy and faulty 
states under six working conditions. For each dataset, the 
original sampling rate of space voltage vectors is set to be 40 
kHz and 22000 elements are recorded every 0.55 seconds. 
However, it is difficult to extract space voltage vectors from a 
motor controller at a high sampling rate of 40 kHz in 
engineering practice. To match the real industrial scene with a 
low sampling rate of 1 kHz, a down-sampling operation is 
further carried out. 

B. Experimental Setup

1) Network Configuration: The hyperparameters are tuned
by cross-validations in training datasets, and the final results are 
listed in Table Ⅲ. Concretely, trainable weights and biases of 
PK-CDM are updated iteratively, utilizing SGD optimizer with 
a mini-batch size of 128. The initial learning rate and weight 
decay are set to be 0.05 and 0.0005 respectively. After 50 
training epochs, the best diagnosis model is utilized to 
recognize the incipient ISCF in testing datasets. 

2) SOTA Methods and Metrics: To demonstrate the
superiority of proposed PK-CDM at low sampling rates, several 
SOTA methods are selected for a comprehensive comparison. 

TABLE I 
DESIGN PARAMETERS OF THE EXPERIMENTAL MOTOR 

Parameter Value Parameter Value

Apparent power 640 VA Magnetizing inductance 98 mH 
Stator current 2.9 A Stator resistance 2.3 Ω 
Stator voltage 128 V Rotor resistance  3.1 Ω 

Max frequency  75 Hz Number of pole pairs 2 
Flux linkage 0.3 Wb Number of turns per phase 104 

TABLE II 
DATASET DESCRIPTION OF SPACE VOLTAGE VECTORS 

Working 
condition  

Rotating speed/ 
Load torque 

Training 
datasets 

Testing 
datasets 

High 
sampling 

rate 

Low 
sampling 

rate 

Case 1 
1500 rpm/ 
0.3 N∙m 

H:1 F:1 H:1 F:1 40 kHz 1 kHz 

Case 2 
2250 rpm/ 
0.3 N∙m 

H:2 F:2 H:1 F:1 40 kHz 1 kHz 

Case 3 
2250 rpm/ 
1.25 N∙m 

H:2 F:2 H:1 F:1 40 kHz 1 kHz 

Case 4 
3750 rpm/ 
0.3 N∙m 

H:2 F:2 H:1 F:1 40 kHz 1 kHz 

Case 5 
3750 rpm/ 
1.25 N∙m 

H:2 F:2 H:1 F:1 40 kHz 1 kHz 

Case 6 
4500 rpm/ 
0.3 N∙m 

H:2 F:2 H:1 F:1 40 kHz 1 kHz 

TABLE III 
HYPERPARAMETER SETTINGS 

Hyperparameter Value Hyperparameter Value 

Mini-batch size 128 Max epochs 50 
Learning rate 0.05 Weight decay 0.0005 

Optimizer SGD Momentum coefficient 0.9
Penalty coefficient 0.5 Temperature coefficient 0.1 

Fig. 6.  Experimental platform of a closed-loop motor drive. 
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As shown in Table Ⅳ, the baseline method with a convolutional 
neural network (CNN) [16], the transformer neural network 
(TNN) [36] and the bidirectional gated recurrent neural network 
with dual attention mechanism (DCA-BiGRU) [37] represent 
three mainstream deep learning models for fault diagnosis. The 
class-weighted supervised contrastive learning quadratic 
network (CCQNet) [38] is the novel implementation of 
contrastive learning for fault diagnosis. The PKIN incorporates 
our proposed prior knowledge integration subnetwork into a 
residual CNN framework. In following studies, recognition 
accuracy (Acc), F1-score (F1) and Matthews correlation 
coefficient (MCC) are used to assess the diagnosis ability 
comprehensively. To reduce the impact of randomness, the 
results of each evaluation metric are calculated ten times. 

C. Performance Analysis at Low Sampling Rates

In the process of fault diagnosis for closed-loop motor drives
by space voltage vectors, the influence of low sampling rates is 
discussed experimentally. Then, the comparison with SOTA 
methods proves that PK-CDM is able to ensure the highest 
diagnosis accuracy when the sampling rate becomes low. 

1) Impact of Industrial Low Sampling Rates: In the
discrete sampling process of space voltage vectors from a motor 
controller, the duration can be characterized by their activation 
states during each electrical period. Taking one operation 
period as the unit observation interval, usage frequencies of 
each basic voltage vector, such as u1 and u4, are calculated by 
statistical quantification of their activation states. Consequently, 
these discrete activation states can be mathematically converted 
into continuous signals in Fig. 7, representing the variation of 
space voltage vectors during the whole operation. In Fig. 7 (a), 
when the ISCF occurs, there is a significant increase in the 
usage frequencies of u1 and u4 at a high sampling rate of 40 
kHz. However, in Fig. 7 (b), it is challenging to observe this 

variation at a low sampling rate of 1 kHz. 
The above observations indicate that industrial low sampling 

rates result in the lack of available diagnosis information, 
making traditional methods hard to detect the discrepancy 
between the health and fault state. 

2) Feature Visualization at Different Sampling Rates:
Space voltage vector datasets under the working condition of 
Case 3 are utilized to conduct the feature visualization and 
performance analysis of PK-CDM at different sampling rates. 

Through the dimension reduction of t-distributed stochastic 
neighbor embedding (t-SNE), Fig. 8 shows a two-dimensional 
visualization of features extracted by PK-CDM under different 
sampling rate scenarios. In Fig. 8 (b), although there is a 
minimal overlap between the distribution of health and fault 
features, PK-CDM is still able to learn an appropriate decision-
making boundary for the incipient ISCF diagnosis at a low 
sampling rate of 1 kHz. 

3) Comparison Results with SOTA Methods: To verify
the validity of PK-CDM, five SOTA methods listed in Table Ⅳ 
are chosen for fault diagnosis under different sampling rate 
conditions. Diagnosis results of comparing PK-CDM with other 

TABLE V 
PERFORMANCE COMPARISON RESULTS ON SPACE VOLTAGE VECTOR DATASETS UNDER DIFFERENT SAMPLING RATES 

Diagnosis method 
Acc F1 MCC Time consumption

Params 
40 kHz 1 kHz 40 kHz 1 kHz 40 kHz 1 kHz Training Testing 

Baseline [16] 92.81 ± 1.28 89.57 ± 1.02 92.81 ± 1.28 89.56 ± 1.50 85.79 ± 2.55 79.31 ± 2.06 455.25 ms 3.02 ms 0.1681 M 

TNN [36] 92.22 ± 1.05 82.13 ± 1.60 92.22 ± 1.05 82.10 ± 1.61 84.55 ± 2.07 64.46 ± 3.18 468.12 ms 1.99 ms 0.8264 M 

DCA-BiGRU [37] 95.96 ± 0.48 87.65 ± 1.87 95.96 ± 0.48 87.60 ± 1.90 92.13 ± 0.94 75.89 ± 3.55 4538.98 ms 20.95 ms 0.1791 M 

CCQNet [38] 100.0 ± 0.00 91.24 ± 1.17 100.0 ± 0.00 91.17 ± 1.19 100.0 ± 0.00 83.79 ± 2.02 13975.24 ms 21.94 ms 0.7503 M 

PKIN (Ours) 100.0 ± 0.00 95.85 ± 0.55 100.0 ± 0.00 95.84 ± 0.55 100.0 ± 0.00 92.03 ± 1.02 1846.16 ms 12.97 ms 0.2438 M 

PK-CDM (Ours) 100.0 ± 0.00 98.89 ± 0.42 100.0 ± 0.00 98.89 ± 0.42 100.0 ± 0.00 97.81 ± 0.81 5032.95 ms 14.96 ms 0.2673 M 

The format of results (%) is average value ± standard deviation. 

TABLE IV 
DESCRIPTIONS OF METHODS USED IN THE COMPARISON  

Method Description Category

Baseline [16] Convolutional neural network 

Deep learning TNN [36] Transformer neural network 

DCA-BiGRU [37] 
Recurrent neural network with 

attention mechanism 

CCQNet [38] 
Quadratic neural network with 

contrastive loss 
Contrastive learning 

PKIN (Ours) 
Prior knowledge integrated 

convolutional neural network 
Deep learning with 

prior knowledge  

PK-CDM (Ours) Proposed method 
Contrastive learning 
with prior knowledge 

Fig. 7.  Usage frequencies of space voltage vectors at various sampling
rates. (a) u1 and u4 at 40 kHz. (b) u1 and u4 at 1 kHz. 

Fig. 8.  Feature visualization. (a) Results at a high sampling rate of 40
kHz. (b) Results at a low sampling rate of 1 kHz. 
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methods are summarized in Table Ⅴ. Theses comparison results 
denoted that the PK-CDM outperforms other methods under all 
the sampling rate conditions. More specifically, compared with 
three deep learning methods without prior knowledge, i.e., the 
baseline method, TNN, and DCA-BiGRU, the PK-CDM 
obtained higher diagnosis accuracy with the smallest deviation. 
Moreover, the results of PKIN revealed that with the integration 
of the prior knowledge module, fault diagnosis precision can be 
improved at low sampling rates, without requiring the complex 
diagnosis model design. This validated that the proposed prior 
knowledge module is unaffected by the reduction in sampling 
rates, effectively compensating for fault information loss at low 
sampling rates. Additionally, it can be found that contrastive 
learning-based methods outperform classical deep learning 
methods under low sampling rate conditions. This is attributed 
to the design of data augmentation and contrastive loss within 
the contrastive learning framework, which enhances the ability 
to extract features with useful fault representation information 
even at low sampling rates. 

 Notably, our proposed PK-CDM does not significantly 
increase the computational consumption for completing a single 
diagnostic task in Table Ⅴ. Although our contrastive learning 
mechanism increases the offline training time per epoch, the 
short testing time denoted that PK-CDM is able to achieve 
online fault diagnosis within one operation cycle. And 
parameter counts of PKIN and PK-CDM indicated that the 
proposed prior knowledge integrated module and contrastive 
learning mechanism do not require excessive memory usage 
during the model operation. Therefore, the PK-CDM is able to 
ensure the highest accuracy at industrial low sampling rates and 
satisfy the requirement of real industrial applications. 

D. Adaptability Analysis at Various Working Conditions

Given the complex working conditions encountered in
engineering practice, an adaptability analysis of the proposed 

method under complex operational scenarios was conducted at 
an industrial low sampling rate of 1 kHz. 

The comparison results across different working conditions 
are illustrated in Fig. 9. In scenarios involving low rotational 
speed and light load torque, such as Case 1 and Case 2, PK-
CDM and other methods achieved satisfactory diagnostic 
performance at the 1 kHz sampling rate. However, as rotational 
speed and load torque increased, the F1-score and MCC for 
other methods showed a marked decline. On the one hand, the 
negative effect of low sampling rates on fault diagnosis can be 
amplified by the high rotational speed. Under low sampling rate 
conditions, the increased rotational speed causes a proportional 
reduction in available space voltage vectors within a single 
sampling period, exacerbating the loss of useful information. 
On the other hand, the increased load torque also aggravates the 
fluctuation in monitoring signals, further masking signal 
variations caused by incipient ISCFs. Consequently, it is hard 
for conventional fault diagnosis methods to extract useful fault 
features at an industrial low sampling rate, especially under 
complex working conditions. 

In contrast, our PK-CDM demonstrated the capability to 
extract valuable features and maintain acceptable diagnostic 
accuracy even under extreme operational scenarios, as observed 
in Case 5 and Case 6. The reason is that the proposed prior 
knowledge, which is not affected by working conditions, can be 
employed to guide signal fusion and amplify signal variations 
induced by incipient ISCFs. The results of PKIN also revealed 
that the prior knowledge module can ensure the fault diagnosis 
precision under complex working conditions. Moreover, with 
the assistance of our contrastive learning mechanism, the PK-
CDM is able to extract invariant fault features to further 
improve the robustness of complex working conditions, thereby 
achieving the best diagnostic results across all tested scenarios. 

This adaptability analysis across various working conditions 
confirms that the diagnostic accuracy of PK-CDM is not only 
superior but also more stable compared to other advanced fault 
diagnosis methods operating at an industrial low sampling rate. 

E. Ablation Studies of Proposed Method

To evaluate the effectiveness of the submodules within PK-
CDM for addressing closed-loop motor drive diagnosis at an 
industrial low sampling rate, an ablation experiment was 
conducted using the datasets from Case 6. In this experiment, 
three different versions of the model were tested. Version 1 
utilized only the backbone network of PK-CDM as a diagnostic 
model. Version 2 incorporated the prior knowledge integrated 

Fig. 9.  Comparison results of our proposed method and other SOTA
methods under different working conditions. (a) F1-score. (b) MCC. 

TABLE VI 
PERFORMANCE ESTIMATION RESULTS OF ABLATION EXPERIMENT 

Version Acc F1 MCC 
Time consumption 

Params 
Training Testing 

1 
88.06  
± 0.99 

87.88  
± 1.03 

78.39  
± 1.66 

1819.70 ms 12.96 ms 0.2441 M 

2 
90.43  
± 1.05 

90.34  
± 1.07 

82.32  
± 1.88 

1846.16 ms 12.97 ms 0.2438 M 

3 
90.33  
± 0.94 

90.24  
± 0.97 

82.15  
± 1.60 

4982.06 ms 13.96 ms 0.2676 M 

Ours 
96.96  
± 0.41 

96.96  
± 0.41 

93.97  
± 0.81 

5032.95 ms 14.96 ms 0.2673 M 
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submodule (PKIS) in combination with Version 1. In Version 
3, a contrastive pre-training strategy (CPS) was added to 
Version 1. Performance results are listed in Table Ⅵ. 

PK-CDM demonstrated the highest diagnostic accuracy, F1-
score, and MCC, with minimal deviations at a low sampling 
rate of 1 kHz. The results from Version 1 indicated that, under 
an industrial low sampling rate scenario, a residual network 
serves effectively as the backbone network for PK-CDM. As 
shown in Table Ⅵ, incorporating the enhanced components of 
PKIS and CPS significantly improves diagnostic accuracy at 
the 1 kHz sampling rate. Meanwhile, the reduction of Params 
in Version 2 revealed that the PKIS is able to decrease model 
channels and related parameters. Version 3 also denoted that the 
CPS only moderately rises offline training time consumption, 
with minimal impact on the inference time of online fault 
diagnosis and the storage requirement for model deployment. 
Thus, by integrating PKIS and CPS, PK-CDM is capable of 
capturing more diagnostic information to ensure diagnostic 
accuracy at an industrial low sampling rate, without 
significantly increasing time complexity and space complexity 
of diagnosis model in practical applications. 

V. CONCLUSION

In this paper, the PK-CDM method has been introduced to 
achieve ISCF diagnosis in closed-loop motor drives at an 
industrial low sampling rate. In PK-CDM, space voltage 
vectors from a motor controller have been utilized as input 
signals to avoid the negative effects of closed-loop control. 
Additionally, PK-CDM has formulated the physical variation 
regularity of space voltage vectors as a prior knowledge 
subnetwork and has established a contrastive pre-training 
strategy to extract discriminative features suitable for industrial 
low sampling rate scenarios. The proposed PK-CDM has been 
experimentally validated using datasets of space voltage vectors 
acquired from a closed-loop motor development platform. The 
results have demonstrated that PK-CDM provides superior 
diagnostic results compared to other advanced methods at an 
industrial low sampling rate and that its diagnostic accuracy 
remains more stable under different working conditions. 
Furthermore, the ablation study of PK-CDM has shown that 
each improved submodule plays a crucial role in enhancing 
diagnosis accuracy under industrial low sampling rate scenarios. 

For future improvements, the prior knowledge of interior 
control signals will be integrated with other non-invasive 
signals to achieve fault diagnosis for closed-loop motor drives 
under complex, time-varying operational conditions. 
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