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Abstract 

Over the past few decades, 3D digital human modeling has emerged as a vibrant field of 

research, playing a foundational role in various applications such as film production, 

sports, medical sciences, and human-computer interaction. Early research efforts 

predominantly focused on artist-driven modeling techniques or relied on expensive 

scanning equipment. Our objective, however, is to leverage recent advances in deep 

learning technology to automatically generate personalized virtual avatars using only 

low-cost monocular cameras. In this dissertation, we present significant advancements in 

3D digital human reconstruction from monocular images. By developing methods that 

effectively integrate temporal information and realistically reconstruct from sparse data, 

we address this challenging task. Given images and videos captured from monocular 

cameras, we have, for the first time, successfully reconstructed not only the 3D pose but 

also the complete 3D geometry of a person, including facial features, hair, and clothing. 

 

In our initial work, we trained a neural network with a partial attention mechanism to 

estimate 3D human poses from a single image. The network outputs a 3D mesh model 

that encapsulates body shape and posture but lacks surface details. This approach yielded 

promising results. In subsequent work, we advanced the optimization of the nude model 

obtained from the first study by incorporating multi-view human images to reduce errors 

caused by occlusions. By predicting the pose for each frame, we re-aligned the standard 

model and projected it onto each image for further optimization. We then employed 

shape-from-shading techniques to enhance surface details. 

 

In this dissertation, we explore methods for digital human reconstruction from monocular 

images and videos, enhanced by deep learning techniques. We present reconstruction 

approaches that focus on accuracy, simplicity, usability, and visual fidelity, utilizing multi-

view image optimization. Through extensive evaluations, we provide a thorough analysis 
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of key parameters, reconstruction quality, and the robustness of our methods. For the 

first time, our approach enables camera-based, user-friendly digitization for personal 

users, opening up exciting new applications such as telepresence and virtual try-on in 

online fashion shopping. 
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1. Introduction  

The task of capturing and modeling the 3D human body from monocular video or 

photographs represents a fundamental challenge in both the domains of Computer 

Vision and Computer Graphics. Over the past few decades, the focus has primarily been 

on estimating the 3D pose of a subject, characterized by the spatial arrangement of 

distinct body parts or articulated through joint angles. This pursuit has remained a central 

theme in Computer Vision, continuing to be an active area of research with widespread 

applications in scene analysis, medical diagnostics, and human-computer interfaces. 

 

In recent times, there has been a noticeable shift towards the automatic 3D reconstruction 

of the entire human body, marking a significant development in this field. This 

advancement goes beyond merely estimating a 3D skeleton; instead, the objective is to 

reconstruct the complete 3D human shape, encompassing intricate details such as hair, 

clothing, and overall appearance. The ultimate goal is to generate avatars that are virtually 

indistinguishable from real humans. 

 

The emergence of consumer hardware for Virtual Reality (VR) and Augmented Reality 

(AR) has laid the groundwork for innovative avenues in entertainment, communication, 

and online shopping. In these applications, the creation of personalized and highly 

realistic 3D avatars holds paramount importance. These avatars need to faithfully 

replicate all the nuances that contribute to our individual identities, including precise 

body shapes, intricately reconstructed faces, detailed clothing, and realistic hair. Failures 

in the reconstruction process result in avatars that are not easily identified by others and, 

more critically, can lead to users feeling disconnected or misrepresented in their virtual 

self. 

 

It is noteworthy that the acquisition process for these avatars should be streamlined, swift, 
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and accessible without the need for specialized equipment or training. However, the 

conventional approach in Computer Graphics for 3D modeling of virtual humans relies 

heavily on manual effort and expert knowledge. Specially trained artists are typically 

involved in defining the 3D geometry of the body and clothing, which is then rigged to 

facilitate animation. The avatar's 3D motion is often dictated by labor-intensive 

keyframe-based animation or marker-based motion capture. This intricate and time-

consuming process poses a practical barrier, particularly for applications in entertainment, 

communication, and online shopping. 

 

In contrast, the focus of this work is to leverage the ubiquity of cameras in today's 

environment to develop automatic methods that efficiently harness images and video for 

realistic 3D avatar creation and animation. This shift towards automation aims to 

overcome the practical challenges associated with manual processes, ensuring a more 

accessible and scalable approach to generating lifelike virtual representations of humans. 

 

This thesis delves into the burgeoning field of 3D reconstruction of human shape and 

pose from monocular images. Within this exploration, we introduce innovative 

methodologies aimed at reconstructing and tracking mesh-based 3D representations of 

humans, as captured in both monocular videos and individual photographs. Our research 

contributes fundamental advancements to the intricate task of 3D human model 

reconstruction from monocular images. 

 

One key aspect of our work involves the development of methods that efficiently fuse 

information from multiple points in time. This temporal integration enhances the 

reconstruction process, allowing for the realistic completion of 3D human avatars from 

sparse observations. By addressing the challenges associated with sparse data, our 

methodologies pave the way for significant strides in the realm of 3D reconstruction from 

monocular images. 
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A notable achievement of our research is the facilitation of easy acquisition of animatable 

3D avatars for a broad audience. By leveraging our novel approaches, individuals can 

now readily obtain 3D avatars that are not only accurate but also capable of dynamic 

animation. This democratization of 3D avatar acquisition marks a groundbreaking shift, 

making sophisticated virtual representations accessible to a wider range of users. 

 

Furthermore, our work opens avenues for various exciting new applications. The ability 

to effortlessly generate animatable 3D avatars introduces transformative possibilities 

across diverse fields. From virtual communication to entertainment and beyond, our 

research sets the stage for the integration of lifelike 3D avatars into applications that were 

previously constrained by complex acquisition processes. 

 

In essence, this thesis contributes significantly to the evolving landscape of 3D human 

avatar reconstruction from monocular images. Through our novel methodologies, we 

overcome challenges associated with sparse data and temporal integration, making the 

acquisition of animatable 3D avatars accessible to everyone. This research not only 

pushes the boundaries of technology but also unlocks the potential for innovative 

applications that harness the power of realistic virtual representations. 
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1.1 Background 

In the narrow sense, digitizing the human body primarily involves geometric 

reconstruction and texture estimation for a specific individual, allowing the faithful 

representation of their real digital image on a computer. This problem has long been a 

challenging subject of research in the fields of computer graphics and computer vision, 

with complexity manifesting in two main aspects: geometric and textural color 

complexities. 

 

The geometric characteristics of the human body are influenced by various factors, 

including gender, body posture, race, and stance. Particularly, the variations in posture 

result in large-scale non-rigid deformations, making it challenging to directly apply linear 

deformation methods such as BlendShape and Principal Component Analysis (PCA), 

commonly used for facial shape blending, to the deformation of the entire human body. 

Additionally, the presence of clothing in real-world scenarios introduces a high level of 

complexity to the shape of the human body, involving various materials, clothing styles, 

and intricate interactions between clothing and the body. These complexities impose 

stringent requirements on the accuracy of reconstruction algorithms and the expressive 

capabilities of topological changes. 

 

 

Figure 1.1: Relightable [1]: Google developed a multi-camera system. 
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On the other hand, the diverse skin tones, as well as the varied colors and material 

attributes of clothing, make the precise extraction of texture information from the human 

body considerably challenging. In well-established industries such as film, gaming, and 

other mature areas of human digitization, complex capture systems and a trade-off 

between time and precision are typically employed to address the intricate problem of 

human reconstruction. Traditional methods, as illustrated in Figure 1.1, demand high-

quality data processing. Precision-designed multi-camera optical systems require 

meticulous camera calibration and synchronization. Additionally, captured individuals 

often need to wear specially designed motion capture suits or carry key point markers for 

localization. Post-data collection involves time-consuming and complex offline 

processing to obtain highly accurate digital representations of the target individuals, 

meeting industrial application requirements. The stringent requirements for high-end 

equipment and controlled environments make traditional methods challenging to apply 

to low-end devices and everyday scenarios, hindering the widespread adoption of this 

technology among the general consumer population. 

 

In recent years, with the continuous development of Internet technology and the gradual 

popularization of 5G communication technology, the number of Internet users has been 

steadily increasing. The demand for high-quality digital technology is growing, 

particularly with the rise of new work and lifestyle trends such as "remote work" and 

"online communication" sparked by the outbreak of the COVID-19 pandemic in 2020. 

This has accelerated the development of human digitization technology, gradually 

revolutionizing the daily lives of ordinary consumers. For example, virtual anchor 

technology has begun to be applied in news and live broadcasting industries, major 

companies are gradually introducing their own digital spokespersons, and the gradual 

application of virtual reality and augmented reality technologies is poised to transform 

human communication methods through holographic communication. Against this 

backdrop, the use of mid to low-end devices for high-quality human digitization, 

especially in the areas of geometric reconstruction and texture estimation, has become 
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an increasingly important research direction in the fields of computer graphics and 

computer vision. 

 

With the rise of consumer-grade scanning devices such as Kinect [2], Primesense [3], and 

iPhone-15 [4], the acquisition of RGB-D data has become more accessible. A wave of 

methods for capturing the human body based on RGB-D data has emerged. These 

methods, based on fusion principles, progressively reconstruct the complete shape of a 

person in real-time during the scanning process by integrating depth information from 

each frame into a reference space. However, tracking accuracy is a pain point for such 

methods. Introducing prior knowledge of human body information to achieve faster and 

more stable tracking is the continued goal of improving such methods. 

 

Although the acquisition of depth information has become easier with the advent of 

consumer-grade devices, most mobile devices on the market do not widely use depth 

cameras. This makes single RGB images the truly accessible data form today. How to 

achieve accurate human body reconstruction from monocular data is an urgent problem 

to solve. Compared to RGB-D data, information obtained from images is further reduced 

due to the lack of depth information. For monocular data, the depth ambiguity problem 

caused by perspective projection theoretically prevents the accurate estimation of the 

scale information of the human body, leading to potential errors in human body pose 

estimation. To address this problem, three main approaches are generally employed to 

reconstruct the human body accurately from monocular data: parameterizing human 

body shape to regularize spatial resolution, leveraging the powerful fitting capabilities of 

neural networks to learn reasonable mappings from a large number of images and 

geometric data, and using video data to impose additional constraints [5]. 

 

Parameterized human body models decompose the deformation of the human body into 

several low-dimensional parameterized representations (such as identity and posture) by 

learning their statistical distribution from a large amount of human body data. By 
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embedding the low-dimensional manifold of human body deformation space, the 

reasonable solution space is significantly reduced to counteract the ambiguity of 

monocular data. Such methods often establish a mapping between the image and the 

low-dimensional parameter space of the human body through optimization and 

regression, enabling human body reconstruction. However, these methods face 

challenges when applied to clothed human bodies due to the inherently high-

dimensional nature of clothing shapes, making parameterized human body approaches 

difficult to generalize. 

 

Deep neural networks are a model generated by stacking multiple layers of a simple 

network structure, possessing strong fitting capabilities. They have been widely applied 

with excellent results in various computer vision tasks [6]. The core of these networks is 

to train the network by using a large amount of paired data, allowing the network to learn 

the latent distribution in the data. Neural networks can not only regress the parameters 

of parameterized models from images but can also directly regress non-parametric 

representations of the human body, including voxels and signed distance fields. This 

enables the reconstruction of more complex geometry. However, a major limitation of 

such methods is that the trained model depends on the dataset, leading to issues of 

limited generalization and overfitting. Moreover, obtaining high-precision geometric 

data for clothed human bodies is already challenging, making scarce data a significant 

obstacle for the practical application of these methods. 

 

Compared to a single image, video data contains more information. Human motion has 

a certain continuity and semantic meaning over time, and this prior knowledge can help 

reconstruction algorithms counteract the ambiguity of monocular data. Additionally, 

regularization based on correspondence between multiple frames can be designed to 

assist optimization and network fitting. Recently, the rise of implicit neural representations 

and neural rendering techniques has demonstrated the possibility of self-supervised 

reconstruction of high-precision geometry and photo-realistic rendering from multiple 
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image inputs. This presents a novel approach to reduce dependency on data and recover 

the human body from video data. 

 

In summary, this chapter highlights the challenges and advancements in the digitization 

of the human body, particularly focusing on the complexities of geometric and textural 

aspects. It discusses the traditional methods used in mature industries, the emerging 

trends driven by internet technology, and the research directions in computer graphics 

and computer vision for achieving high-quality human digitization, especially with the 

use of mid to low-end devices. In the following chapters, we will cover the various 

approaches, challenges, and limitations in the field, emphasizing the importance of 

advancements in capturing devices, data processing, and the application of neural 

networks for achieving accurate and realistic human body digitization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

1.2 Problem Statement 

The realm of image-based 3D pose and shape reconstruction of humans is a rich area of 

investigation, encompassing various approaches and perspectives. Diverse researchers 

pursue different aspects of this complex task. Some emphasize the 3D skeleton and 

approximate body proportions [5, 7, 8, 9, 10], while others focus on reconstructing the 

naked body shape without clothing [11, 12, 13]. There are also those who center their 

attention on the garments worn by subjects [14, 15], and some concentrate on specific 

body parts such as the face [16, 17, 18, 19, 20], hands [21, 22, 23, 24], or hair [25, 26]. 

 

In contrast to these varied approaches, the primary objective of this thesis is to 

comprehensively track and model the entire human body, encompassing aspects like hair 

and clothing. The aim is to achieve detailed reconstructions of the observed subject, not 

only in terms of body and clothing geometry but also capturing essential information 

related to coloring and surface structure. In pursuit of this goal, the focus extends beyond 

3D shape capture to the reconstruction of surface colors using texture maps. Moreover, 

the reconstructions are intended to be reusable, emphasizing the importance of a 

common format that facilitates easy integration, animation, and manipulation by other 

applications. 

 

Having delineated the desired characteristics of the reconstructions, the second pivotal 

aspect of this work pertains to the capturing process and equipment. Researchers in 

Computer Vision have utilized a diverse array of sensors and systems for world capture 

and analysis, including multi-camera setups, marker-aided capturing, depth sensors, and 

active scanners [1]. While these systems provide high-resolution 3D data, their limited 

accessibility—typically confined to laboratories or professional video studios—exposes a 

constraint. 

 

On the contrary, standard cameras are omnipresent in our daily lives. Many of the devices 

we interact with regularly, such as smartphones, tablets, or laptops, come equipped with 
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one or multiple cameras that are easily accessible. Noteworthy advantages of standard 

cameras include their unobtrusiveness and the simplicity of the capturing process. Unlike 

complex systems requiring meticulous calibration and setup, cameras enable 

straightforward recording with minimal setup time. Additionally, they are lightweight, 

compact, and can be flexibly employed in diverse settings. 

 

In this work, we exclusively rely on monocular image material captured by a standard 

webcam as the input to our algorithms. This deliberate choice aligns with the unobtrusive 

and easily accessible nature of standard cameras. Not only does it ensure compatibility 

with modern devices like phones, tablets, or smart displays, but it also allows seamless 

integration with a vast repository of existing photo and video material. This approach 

emphasizes the adaptability and practicality of our work, making it conducive to 

integration with contemporary technology and leveraging existing visual data resources. 
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1.3 Motivation 

The utilization of 3D virtual human avatars has been a prevalent practice in various 

applications in the past, and their potential central role in future applications is highly 

anticipated. In the film industry, virtual actors have become a common tool for digital 

editing and enhancing real-world video footage, and in some cases, they are employed 

to create entirely computer-generated movies. Producers and designers invest 

substantial efforts to generate highly realistic and physically plausible virtual counterparts 

of real-world actors. Similarly, the gaming industry places increasing emphasis on 

developing realistic characters to enhance the immersive gaming experience. The 

prospect of fully automatic and widely accessible reconstruction of highly realistic virtual 

humans holds immense promises for both the entertainment and gaming industries. 

 

Beyond the realms of entertainment, 3D virtual humans have the potential to play crucial 

roles in various applications. Examples include human understanding for human-

computer interfaces, medical diagnostics, virtual assistance, fitness and health tracking, 

virtual try-on experiences in online shopping, interpretation and understanding of body 

language, and more. All these applications stand to benefit from more accurate 

reconstructions and easier acquisition of 3D virtual humans. An emerging and promising 

area is the application of 3D virtual humans in communications, particularly in Virtual 

Reality (VR) or Augmented Reality (AR) telepresence. The active research in this field is 

focused on enabling applications that can significantly impact travel behavior, 

communication methods, and overall lifestyle [27, 28, 29, 30]. 

 

The significance of highly realistic 3D human avatars and accessible reconstruction 

pipelines extends to numerous scientific subjects and industries. Human communication 

is inherently visual, and our visual appearance conveys rich information. Through visual 

inspection of other human beings, we can comprehend their mood, state of health, 

personal preferences, engagement, and more [31]. This thesis lays the foundation for 

computers to model and understand the subtle visual cues that facilitate human 
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understanding of the human body and its language. On the flip side, the scientific findings 

presented in this work have immediate applicability across various domains, including 

entertainment, fitness and health, and online shopping. Figure 1.2 shows one application 

of 3D human avatars use in fitness and health. 

 

 

Figure 1.2: 3D human body for fitness and health [32]. 

 

In essence, the advancements in 3D virtual human avatars and reconstruction pipelines 

hold transformative potential for a wide array of applications and industries. The 

integration of these technologies has the capacity to reshape the way we create content, 

engage in entertainment, communicate, and understand human behavior. However, 

existing 3D virtual human technologies fail to achieve a perfect balance between precision 

and cost, which hinders the expansion of new technologies' impact on daily life and 

various fields from medicine to online retail. This thesis contributes to the groundwork by 

leveraging advanced deep learning techniques to eliminate the need for expensive input 

devices, making extensive, online, and convenient digital human reconstruction a reality 

for realizing these transformative possibilities. 
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1.4 Challenges 

Humans exhibit an extraordinary ability to decipher and predict the intricacies of the 

human body and its expressions, extracting a wealth of information even from a static 2D 

photograph. From such images, humans effortlessly discern the 3D body pose, 

approximate height, body shape, facial expressions, actions performed and even make 

informed predictions about unseen aspects of the scene. This remarkable proficiency is 

rooted in our extensive experiential knowledge of how humans look, move, and behave. 

 

In stark contrast, computers and algorithms encounter substantial challenges when 

tasked with processing monocular videos and photos. The inherent complexity arises 

from encoded, noisy, or ambiguous information, often requiring intricate computational 

methods to navigate. A primary challenge emerges from the absence of direct depth 

information in images. Depth, a crucial dimension in understanding 3D scenes, is instead 

encoded indirectly through perspective, shading, and semantic cues. Deciphering this 

indirect information proves significantly more challenging than dealing with explicit depth 

values. 

 

Compounding the complexity, factors such as the distance to the camera, the actual size 

of objects, and the focal length of the camera influence the projected size of objects in 

an image. This gives rise to a situation where multiple 3D skeletons may project onto the 

same 2D skeleton, introducing ambiguity in recovering the true 3D pose. Lens distortion, 

uncertainties in recording parameters, perspective distortion, foreshortening effects, 

occlusion, and self-occlusion further contribute to the intricacies of image interpretation. 

 

Beyond these challenges, images often contain extraneous information that is not directly 

relevant to the task at hand. Background details, shadows, reflections, sensor noise, 

compression artifacts, or the introduction of new objects can inadvertently mislead or 

impede the algorithms. Furthermore, the appearance and shape of the object of interest, 

particularly when dealing with humans, may undergo significant changes over time. 
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Factors such as alterations in pose, changes in illumination conditions, variations in 

camera settings, clothing adjustments, hairstyle modifications, and more, introduce 

additional layers of complexity. 

 

Reconstructing humans introduces yet another hurdle known as the Uncanny Valley [33], 

a concept describing the emotional response to the degree of realism in an artificial 

human. As artificial entities approach human likeness, there is a dip in the curve of 

familiarity, potentially causing feelings of uncanniness or revulsion. While the Uncanny 

Valley is a theoretical construct, empirical evidence from studies lends credence to its 

existence [34]. 

 

Acknowledging the multifaceted challenges, this work provides tailored algorithms 

designed for more or less constrained settings. Striking a careful balance, the setups are 

crafted to avoid excessive constraints, ensuring reproducibility and facilitating 

straightforward data acquisition. The specific focus on detailed 3D shape acquisition 

guides the setup to images capturing individuals in standard A-poses or common 

standing poses, a practical choice for a variety of applications. 

 

The subsequent sections delve into the nuanced contributions of this work, elucidating 

the intricate approaches and partial solutions devised to address the myriad challenges 

outlined. Detailed explanations of the methods, tools, and conceptual frameworks 

employed shed light on the journey towards overcoming the complexities inherent in the 

reconstruction of the human form from 2D images. 
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1.5 Contribution to Knowledge  

This thesis explores the latest advancements in the reconstruction of digital human 

models from monocular images and videos. The methods described in this work can be 

summarized in terms of their input and output modalities: the input consists of monocular 

videos or photographs, and the output is an animatable 3D mesh that accurately captures 

the shape, pose, or motion of the individual depicted in the input data.  

 

By addressing the complex task of digital human reconstructions from monocular images, 

this thesis makes a significant contribution to the field: our work simplifies the digitization 

of humans by relying solely on regular videos or even photographs. With advanced 

performance in reconstruction speed and accuracy, it eliminates the need for specialized 

equipment, enabling the automatic reconstruction of detailed human shapes and the 

widespread application of virtual humans in emerging technologies.  

 

Our research examines various approaches to 3D human pose and shape reconstruction. 

We present the advantages of both explicit model-based and learning-based methods, 

investigate different forms of data representation and supervision losses, and discuss the 

robustness and limitations of our approach. In the following sections, we briefly 

summarize the key contributions of each experimental chapter. 

 

Chapter 2 offers a thorough overview of 3D human modeling and reconstruction, 

covering techniques based on images, depth sensors, and 3D data. Chapter 3 examines 

the key concepts utilized in the methodologies developed for this dissertation. 

 

In Section 4.1, we propose a novel body part-driven attention framework that leverages 

pixel-aligned local features for regressing body pose and shape. This method has 

demonstrated superior performance in benchmark tests across various datasets.  

 

In Section 4.2, while 3D poses and motion estimation gained increasing popularity during 
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the course of this research, monocular 3D human shape estimation with parametric 

models remained largely constrained to estimating fully body model. In this chapter, we 

discuss an advanced method capable of reconstructing the fully digital human model 

with cloth from video or multi-images. Drawing inspiration from the concept of visual 

hull, our approach aggregates silhouette information from multiple frames of a video in 

which the subject is visible from all sides, aligning an initialize model with each frame. 

Extensive experiments validate our method, demonstrating a reconstruction accuracy of 

3.8mm in an opensource dataset and robustness against noisy 3D pose estimates. 

 

Our contribution to knowledge can simply be summarized as:  

1. We creatively use deep learning tools to extract information from image to regress 

parameterized human body model with state of the art results.  

2. Our advanced state of the art method can reconstruct the fully digital human model 

with clothes by optimizing the regressed parameterized models from video or multi-

images.  

3. Our work simplifies the digitization of humans by relying solely on regular videos or 

even photographs which are available for widespread online application. 
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1.6 Thesis Structure  

This thesis is structured as follows: Chapter 2 provides a comprehensive review of the 

field of 3D human modeling and reconstruction from images, depth sensors, and 3D data. 

This chapter traces the evolution of the field from the use of geometric primitives to more 

sophisticated data-driven models, with a particular focus on recent advancements in 

Deep Learning techniques. Additionally, it delves into the topic of human pose 

reconstruction and introduces the foundational concepts of convolutional neural 

networks. Chapter 3 explores the various concepts employed in the methodologies 

developed for this dissertation, offering an overview of the essential methods and a 

detailed explanation of the key tools and algorithms utilized. Chapter 4 discusses a novel 

body part-driven attention framework that exploits pixel-aligned local features for the 

regression of body pose and shape. Chapter 4 also presents an advanced method 

capable of reconstructing fully digital human models, including clothing, from video or 

multi-image inputs. Chapter 4 constitutes the core contributions of this dissertation. 

Finally, Chapter 5 concludes the thesis by discussing the results obtained and providing 

an in-depth analysis of potential future research directions. 
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2. Literature Review  

2.1 Body Models based on Geometric Primitives 

From the early stages of research, scholars recognized the profound advantages of 

incorporating a model of the human body into their methodologies. The initial endeavors 

involved representing the human body using geometric primitives, exemplified by 

Hanavan Jr's pioneering mathematical model in 1964 [35]. This groundbreaking work 

constructed a personalized body model through the utilization of 15 simple 3D polygonal 

shapes. In parallel, simpler 2D models emerged and found successful applications in 

human gait analysis [36, 37, 38]. 

 

The evolution of research in 3D human pose estimation and tracking became a catalyst 

for the development of increasingly sophisticated models of the human body and its 

kinematic chain [39, 40, 41, 42]. This progression reflected a continuous effort to enhance 

the fidelity and accuracy of representations capturing the intricate movements and 

postures of the human form. 

 

The exploration of the human shape itself became a pivotal consideration, marking the 

introduction of the first comprehensive parametric yet entirely synthetic body models [43, 

44, 45, 46]. This shift in focus allowed researchers to delve into the nuanced aspects of 

human anatomy, enabling the creation of synthetic bodies that encompassed a broad 

spectrum of shapes and configurations. These parametric models laid the groundwork 

for more advanced approaches in understanding, simulating, and analyzing human body 

dynamics. 

 

In summary, the trajectory of research in modeling the human body has traversed various 

stages, from early geometric primitives to intricate 3D representations. The impetus 

behind this progression has been the pursuit of more accurate and comprehensive 
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models that capture the complexity of human anatomy, motion, and shape. The 

incorporation of parametric synthetic models further exemplifies the commitment to 

pushing the boundaries of understanding and simulating the human form in diverse 

applications. 

2.2 Artist-Driven and Anatomical Models 

Concurrently, the realm of Computer Graphics witnessed the inception of digital actors, 

marking a transformative phase in the movie industry [47]. Analogous to the models 

emerging in the Computer Vision community, these digital characters were initially 

crafted from geometric shapes, with an embedded skeleton facilitating animation. In 

pursuit of heightened realism, researchers embarked on the development of layered 

models encompassing bones, muscles, and skin, driven either by artistic intuition [48] or 

inspired by anatomical principles [49, 50]. However, the construction of these intricate 

models posed significant challenges, and their simulation demanded computationally 

expensive calculations. 

 

In response to these challenges, researchers turned to the adoption of skinning 

techniques [51, 52, 53] as a pragmatic solution. Skinning techniques entail the definition 

of how the surface of a model deforms and moves in tandem with the motion of an 

embedded skeleton. This approach proved to be instrumental in achieving realistic 

animations while mitigating the complexity associated with detailed anatomical models. 

Notably, the use of skinning techniques gained popularity due to their ability to 

streamline the animation process and enhance computational efficiency. 

 

In the pursuit of more advanced solutions, contemporary parametric models have 

emerged, representing a paradigm shift in character construction. These models leverage 

state-of-the-art techniques to derive realistic animations directly from data, ushering in 

a new era in character modeling and animation. The subsequent sections delve into the 

intricacies of these data-driven parametric models, shedding light on their 
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methodologies and contributions to the evolving landscape of Computer Graphics and 

animation in the academic domain. 

2.3 Parametric Body Models and Applications 

Constructing digital human representations based on meshes fundamentally relies on the 

human body mesh model. This section focuses on the parameterized model of the human 

body. A parameterized model of the human body is a mesh model that supports dynamic 

adjustments of its attributes through parameters. The most classical algorithm for 

generating parameterized human body models is SCAPE (Shape Completion and 

Animation of People) [54], which employs PCA (Principal Component Analysis) to extract 

two independent low-dimensional parameters, body shape and pose, for synthesizing 

the parameterized human model. Mesh deformation in this context is dependent on the 

rotational deformation of triangles. Contemporary animation production frequently 

utilizes mesh vertex deformation, corresponding to the classical skinning technique, 

which will be elaborated upon subsequently. 

 

A virtual human representation can be conceptualized as consisting of two primary 

components: the skeleton and the skin. The skeleton is composed of a hierarchy of joints, 

while the skin comprises surfaces formed by multiple points in three-dimensional space. 

To construct a human body mesh model, one must first generate a skeleton and then 

bind the mesh vertices to the joints with specific weights, a process referred to as 

"skinning" [55]. Human motion can be interpreted as articulated motion within the body, 

characterized by rotations and translations at the joints. The simulation of human motion 

is manifested in the computation of the effects on relevant joints due to movement, 

leading to the determination of joint positions post-motion. The linear blending skinning 

(LBS) algorithm [56] achieves mesh deformation by performing a weighted summation 

linear operation based on the specific motion's impact on each bound joint. Traditional 

LBS algorithms perform linear operations solely on rotations, which results in the "candy-

wrapper" effect of limb twisting and potential disjunctions at the joints. 
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Building upon the LBS algorithm, the SMPL (Skinned Multi-Person Linear Model) [57] has 

developed a parameterized three-dimensional model of the human body, which ensures 

smooth transitions at joint connections through parameters learned from data during the 

blending deformation process. The SMPL model supports the input of pose parameters 

and body shape parameters from external sources, effectively simulating muscle 

deformation during limb movement, thereby controlling changes in the human body 

shape. 

 

In recent years, the SMPL model has evolved into SMPL-X [58], which facilitates the 

construction of three-dimensional models incorporating body, hand gestures, and facial 

expressions from single-frame RGB images, thereby enhancing its modeling capabilities 

to include hands and faces. The SMPL-X model introduces additional details such as facial 

expressions and hand gestures. Moreover, structured human meshes are utilized for 

feature extraction [59], providing comprehensive prior knowledge of the human body [60] 

that supports the synthesis of dynamic virtual humans. This knowledge includes essential 

posture and body shape data, serving as an initialization tool for constructing 4D virtual 

human models. Jiang et al. [60] employed point cloud sequences captured frame-by-

frame to encode shape, posture, and motion, thereby constructing an initial 

parameterized human mesh model. An auxiliary encoder is then designed to handle fine 

details of clothing and hair, facilitating geometric integration to produce a complete 

human mesh. 

 

Furthermore, Osman et al. [61] proposed STAR (Sparse Trained Articulated Human Body 

Regressor) as an alternative to SMPL, decomposing pose-related deformations into a set 

of spatially localized pose-corrective blend shapes, with pose deformations adjusted 

according to individual body shapes. The SMPL-generated models are vertex-based 

linear models and are currently the most widely applied parameterized human models. 

In contrast, models that adopt nonlinear strategies are exemplified by GHUM/GHUML 

(Generative 3D Human Shape and Articulated Pose Models) [62]. Based on the latent 
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space representation of Variational Autoencoders (VAE) [63], GHUM/GHUML relies on 

standard normalizing flows [64] for distribution approximation and inference calculations, 

generating a nonlinear parameter model that represents skeletal motion. 

 

While mesh-based methods are capable of generating realistic human models with 

adequate simulation capabilities for articulated motion, they require the modeled object 

to possess a fixed topology. This requirement results in limited efficacy in modeling 

detailed structures such as clothing and hair. Current methodologies [65-70] enhance the 

SMPL model's mesh vertices with displacements to represent the geometry of clothing 

(SMPL+displacement, SMPL+D), but these enhancements are only suitable for simulating 

the surfaces of tight-fitting garments and struggle to accurately render clothing 

boundary details. Loose garments, in particular, present challenges due to identical 

skinning weights applied post-binding, leading to noticeable artifacts during movement. 

To address these limitations, Jiang et al. [71] utilized neural networks to establish 

independent skinning weights for specific types of clothing, allowing the garment mesh 

to remain independent of the SMPL model while overlaying it. This approach uses a 

displacement network to represent clothing deformation during motion, mitigating 

artifacts associated with binding certain clothing types to body mesh vertices, thus 

refining the mesh-based method for garment transfer solutions. Additionally, recent 

advancements in mesh-based methods have leveraged these human models as 

foundational elements for further modeling endeavors [72], exploring alternative, more 

precise solutions for modeling clothing and hair, or assisting in tasks such as motion 

inference. 

 

Traditional parametric human body reconstruction methods typically use special devices 

to obtain dense three-dimensional point cloud data or depth data of the human body. 

Subsequently, they fit SCAPE parameters through point cloud registration and template 

deformation, to reconstruct the three-dimensional human body shape. In recent years, 

many researchers have used depth data captured by Kinect [2] depth cameras and the 
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SCAPE model to reconstruct three-dimensional human body shapes. Zhang et al. [73] 

captured multi-view local point cloud data of a rotating human body using a single Kinect 

camera, performed registration, and then fitted the point cloud using a method similar 

to SCAPE. Weiss et al. [74], using a single Kinect camera, captured multiple monocular 

depth images of a person moving in front of Kinect. They optimized the SCAPE body 

model by minimizing the registration error between the contour reprojection of the 

SCAPE model and the depth image contours. However, this method's solving process is 

highly time-consuming (requiring over 1 hour to reconstruct a human body) compared 

with other methods. 

 

Zhao et al. [75] also proposed a parametric human body reconstruction method using a 

single Kinect. They first captured two depth images of the front and back of a person 

using Kinect, then reconstructed the upper body meshes from these two depths images 

and finally stitched them together. The reconstruction results of this method depend on 

the quality of the depth images captured by Kinect. However, due to Kinect's hardware 

limitations, the captured depth images often contain significant noise, severely impacting 

the reconstruction quality. In addition, some works do not rely on capturing dense three-

dimensional point clouds or depth data using special devices for reconstruction input. 

Instead, they use other forms of data such as human body two-dimensional joint 

coordinates [77,79], human body contours [76,80,81], and human body descriptor 

parameters [72–86] to constrain parametric human body geometric shape reconstruction. 

Guan et al. [77] utilized manually annotated two-dimensional joint positions and the 

automatically segmented human body contour by GrabCut [87]. They optimized SCAPE 

parameters by minimizing the registration error between the rendered image and the 

human body contour using Shape from Shading (SFS). 

 

SMPLify [79] introduced a convolutional neural network (CNN)-based human body two-

dimensional pose estimation model. They optimized SMPL parameters (including body 

shape and pose parameters) by minimizing the reprojection registration error between 
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the synthesized three-dimensional body pose and the detected two-dimensional joint 

keypoints. Additionally, they introduced a constraint to reduce the ambiguity in lifting 

from two dimensions to three dimensions. However, this method does not effectively 

constrain body shape and is prone to local optima, leading to reconstruction failures. 

Lassner et al. [88], building on SMPLify, added more constraints from human body 

landmark points (91 points), obtaining more accurate pose reconstruction results. They 

also proposed using a Random Forest model to learn the mapping relationship between 

human body contours and SMPL body shape parameters. However, the predicted quality 

of human body contours was poor, significantly impacting shape prediction results. In 

recent years, parametric human body shape reconstruction methods based on deep 

learning have become popular [89]. Dibra et al. [76] were among the first to use a 

Convolutional Neural Network (CNN) to estimate human body shape parameters. They 

directly used a specific view mask of a standing human body as input to the CNN and 

regressed the SCAPE shape parameters. Compared to manually designed features, CNNs 

can automatically extract shape features, resulting in more accurate shape predictions. 

 

Subsequently, Dibra et al. [90] further improved the accuracy of shape predictions. They 

first learned a feature latent space describing the same shape under different views in a 

fixed pose, then learned a regression model from this latent space to shape parameters. 

This method can reliably predict shape parameters from human body mask images in 

other views. Single-view human body mask images often lack some shape information, 

such as the beer belly of a male, which cannot be displayed on the frontal mask image. 

To address this issue, Ji et al. [81] designed a novel dual-stream network structure, 

simultaneously using frontal and side human body masks as input to predict SCAPE shape 

parameters. Besides predicting human body shape, many researchers use deep learning 

methods to directly estimate human body shape and pose from images [78,10,92–93], 

videos [94,95]. HMR [10] added the reprojection registration error of human body 

keypoints to the loss function, supervising the pose parameters and body shape 

parameters of SMPL. HMR borrowed ideas from Generative Adversarial Networks (GAN) 
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[96] and introduced a discriminator into the loss function to supervise the legality of 

predicting human body parameters. However, this method did not effectively supervise 

human body shape, resulting in predicted bodies closer to average body shapes, with 

significant differences in body pose compared to the input images. Pavlakos et al. [93] 

proposed decoupling pose parameters and shape parameters into two sub-problems for 

prediction. They used the predicted two-dimensional keypoint heatmaps and human 

body contours to separately regress pose parameters and shape parameters. Recently, 

Xu et al. [78] innovatively introduced dense reprojection errors of human body mesh 

vertices into the loss function. They used the IUV map predicted by DensePose [97] 

(representing the correspondence between dense mesh vertices and image pixels) as 

input, regressed the human body mesh, then calculated registration errors between the 

predicted IUV map and the input IUV map through a Differential Renderer. This method 

achieved more accurate reconstruction results in both pose and shape. 

2.4 Image-based Digital Human Reconstruction Method 

Image-based methods focus on reconstructing the three-dimensional structure of a 

scene from multiple two-dimensional images, enabling the development of networks that 

facilitate image-to-image translation. This approach is particularly prevalent in facial 

reconstruction. Facial reconstruction pertains to the development of 3D Morphable 

Models (3DMM) [99], which necessitate extensive datasets encompassing variations in 

illumination, poses, and expressions. These models are categorized into linear and 

nonlinear types. Linear 3DMMs are characterized by their low-dimensionality, employing 

Principal Component Analysis (PCA) to capture texture and facial shape features in a low-

dimensional space. Alternatively, learning networks can infer linear facial models, 

generating realistic data for physical rendering, such as reflectance and normals. However, 

linear 3DMMs constructed using PCA often fail to reproduce high-frequency details of 

human texture and geometry, demonstrating limited generalization capabilities for image 

sets in natural scenes [100]. 
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Nonlinear deformable facial models, generated through unsupervised or weakly 

supervised learning [101], can process large quantities of images from natural scenes. 

However, these models are not well-suited for re-illuminating portraits and animations, 

as environmental lighting conditions and expression data are embedded within the 

output texture images. A prevalent approach involves using deep learning-based image 

post-processing to infer linear facial models for re-illumination rendering components 

[102]. 

 

Generative Adversarial Networks (GANs) have significantly improved modeling 

capabilities through the dynamic interplay between generator and discriminator networks. 

GANs are now widely utilized for texture extraction in facial reconstruction, often in 

conjunction with 3DMM to complete the facial reconstruction task. The strength of GANs 

lies in their ability to handle high-resolution images and facilitate image-to-image 

translation. In the domain of image processing, the GAN generator actively learns facial 

features, utilizing Gaussian noise to control variations in facial details, thereby generating 

synthetic images designed to "deceive" the discriminator. The discriminator, in turn, 

continuously enhances its ability to distinguish between real and synthetic images. This 

adversarial training process improves the overall performance and realism of the 

generated models. 

 

GANFIT (Generative Adversarial Network Fitting) [103] enables the reconstruction of 

high-quality texture and shape data from a single image taken in a natural scene. This is 

achieved by training a GAN to produce large-scale, high-resolution texture data while 

preserving identity features. However, similar to previous methods, the texture data 

generated by GANFIT incorporates lighting conditions, preventing the reconstruction of 

high-frequency normal maps and specular reflection data necessary for direct rendering.  

 

Building on the texture and shape data obtained from GANFIT, AvatarMe (Realistically 

Renderable 3D Facial Reconstruction) [100] processes the input image through a 
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nonlinear 3DMM. It employs a texture illumination network to extract diffuse reflection 

data by removing the lighting effects. The generated reliable diffuse reflection data is 

then used by multiple image translation networks to estimate specular reflection, specular 

normals, and diffuse normal which are key components for photorealistic rendering. The 

resulting facial model supports re-illumination, allowing for the simulation of facial 

appearance under different lighting conditions, making it directly suitable for rendering. 

Despite the large training dataset used by AvatarMe, it lacks sufficient data for darker skin 

tones, leading to suboptimal performance in reconstructing faces of individuals with dark 

skin. Additionally, the method is dependent on the resolution and lighting conditions of 

the input image. 

 

StyleGAN [104] introduces a style-based GAN algorithm that facilitates the unsupervised 

and self-learning separation of high-level attributes from input images and generated 

images, enabling intuitive control over synthesis. In StyleGAN, the style represents the 

main attributes of the face, such as expression, orientation, and hairstyle. Similar to 

traditional generator networks, StyleGAN's generator network progressively increases the 

image resolution at each layer, exhibiting a growth pattern. A notable improvement of 

StyleGAN over traditional GANs is the decoupling of input feature z, producing an 

intermediate vector w that is less influenced by the distribution of the training data. This 

reduces the correlation of specific features with elements in the vector and minimizes the 

impact of input noise on other features at each layer of the generator network.  

 

StyleRig (Rigging StyleGAN for 3D Control) [105] integrates StyleGAN with 3DMM to 

achieve facial binding, allowing for the control of semantic parameters such as facial 

expressions to facilitate facial transformations. However, the transformation capability is 

highly dependent on the 3DMM and does not allow explicit control over scene attributes 

not interpreted by the 3DMM. 

 

StyleGAN2 [106] is an improved version of StyleGAN, addressing issues such as water 
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droplet artifacts and incorporating residual networks to directly map low-resolution 

features to the final generated results. Luo et al [107] utilized the StyleGAN2 architecture 

to train a 3DMM that includes 3D geometry and reflectance textures. This model applies 

perceptual refinement to rendered faces, overcoming challenges posed by extreme 

lighting conditions, and generating high-resolution, standardized faces with neutral 

expressions. However, incomplete training data can hinder the model's ability to fully 

disentangle lighting information from skin tone, resulting in an imperfect separation of 

lighting and expression information from the face. Beyond facial reconstruction, GANs 

have also been applied in the domain of virtual clothing [108-109], where they simulate 

garments with different topologies and use designed mapping networks to position the 

clothing on various human models. 

 

Image-based human avatars can achieve high resolution, offering visual quality sufficient 

to "deceive" viewers. However, purely image-based avatars rely on trained image data 

and are typically suited for frontal face images. Additionally, due to the lack of 3D spatial 

information, these models struggle to maintain consistency across multiple viewpoints. 

2.5 Voxel-based Digital Human Reconstruction Method 

Voxel-based methods for constructing virtual humans can generate models consistent 

from multiple viewpoints, requiring operations such as three-dimensional spatial 

voxelization and two-dimensional projection of three-dimensional objects. The resulting 

reconstructed images maintain texture and resolution consistent with the original images. 

Ideally, voxel reconstruction algorithms should possess four key attributes: range 

uncertainty representation, independent incremental and sequential updates, 

spatiotemporal efficiency, and unrestricted topology types [110]. Early voxel-based 

reconstruction methods relied on 3D scan data [110-112], necessitating specific 

experimental equipment. In recent years, voxel-based reconstruction efforts have been 

aimed to integrate voxelization concepts into the reconstruction process. 
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Deep Voxels [113] first extract 2D features from source images and introduce a voxel 

representation as a fixed viewpoint 3D feature grid. This method elevates 2D features to 

a 3D space for observation and integration into the feature grid, performing 3D spatial 

reasoning and 2D feature synthesis sequentially, notably without requiring 3D supervised 

learning. Ma et al. [114] collects contextual key feature information from all voxels to 

update the current voxel joint features, constraining limb lengths to estimate 3D poses 

from a single image. Deep Human [115] voxelizes a human parametric model and 

proposes an image-guided volume-to-volume transformation network, utilizing multi-

scale volume transformations to combine knowledge from 3D volumes and 2D images. 

 

Storing 3D spatial point information incurs high memory costs, and increasing precision 

significantly raises computational time. Therefore, a feasible voxel-based construction 

method must address how to scale images to higher resolutions to handle finer details, 

such as wrinkles. To circumvent the low-resolution issue due to memory constraints, 

Deep Voxels employs a local resolution exchange strategy, which, however, sacrifices data 

utilization efficiency and may result in detail loss. Neural Volumes [116] proposes warping 

fields, allocating storage space preferentially to regions contributing more significantly to 

the synthesized image. Nonetheless, achieving the fidelity realized by traditional texture 

mesh surfaces requires further advancements. 

2.6 Implicit Representations-based Digital Human Reconstruction 

Method 

Implicit representations intuitively define a continuous scalar function in three-

dimensional space to represent surfaces, and recent advancements have integrated 

neural networks for implicit scene representation. In the field of virtual character synthesis, 

implicit functions use local feature information provided by context to infer overall shape 

information [117-119], with NeRF (Neural Radiance Fields) often employed for multi-view 

synthesis. Compared to voxel-based methods, implicit representations are more 

memory-efficient; and unlike image-based methods, implicit representations can also 
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infer colors in unobservable areas. 

 

TextureFields [98] proposed a continuous 3D function parameterized by a regression-

based neural network to represent texture fields. This approach is independent of the 

shape representation of 3D objects, learning to transfer the texture of example images 

onto source meshes to synthesize new views. Sitzamann et al. [120] introduced a 

continuous, 3D structure-aware scene representation that defines surfaces through a 

learned directed distance field, allowing for the geometric and appearance modeling of 

3D scenes without 3D supervision, while maintaining multi-view consistency. BANMo 

(Builder of Animatable 3D Neural Models) [121] utilizes implicit functions to implicitly 

represent objects, combining the concept of NeRF with MLP (Multi-Layer Perceptron) 

networks to provide the color and volume density of 3D spatial points, alongside training-

derived canonical embeddings. These canonical embeddings encode semantic 

information of 3D spatial points, registering pixel observations across different temporal 

instances. In this approach, an MLP calculates the Signed Distance Function (SDF) from 

points to the surface, yielding 3D shapes, and continuous surface embeddings (CSE) [122] 

initialize pixel embeddings to generate corresponding pixel features. Compared to the 

parametric models established by SMPL, BANMo requires less data; and compared to 

NeRF, BANMo is more suited for representing objects with larger movements. 

 

The core concept behind SDF and directed distance fields is to represent an object's 

surface through a volumetric field, calculating the shortest distance from points within 

the field to the object's surface. This distance is zero on the surface, negative inside the 

object, and positive outside. To enhance representation efficiency, DeepSDF [123] 

combines MLP to achieve a continuous SDF representation of shapes, making it a 

commonly used implicit representation today. SDFs are widely applied in non-rigid 

reconstruction [116], with MLP optimization improving the performance of non-rigid 

reconstruction and deformation tracking tasks [124]. Variants of SDF also provide robust 

prior knowledge for multimodal 3D reconstruction tasks [125]. Continuous Surface 
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Embeddings (CSE) predict embedding vectors for corresponding vertices in an object 

mesh for each pixel in a 2D image, establishing a dense correspondence with the 3D 

object's geometry. 

 

PIFu (Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization) 

[126] and PIFuHD [127] introduce a locally aligned pixel-aligned implicit function for 2D 

images. Unlike other implicit representation methods, PIFu focuses on pixel-level features, 

maintaining alignment in the output image. In essence, this implicit function projects any 

given 3D vertex according to camera parameters, obtaining corresponding 2D positional 

and depth information while learning the feature vector of that point to preserve local 

details and infer information for occluded regions. Representing the surface as a level set 

(an implicit representation of curve), PIFu can be extended to multi-image and multi-

view inputs, providing a complete, high-resolution 3D model's surface and texture, 

effectively performing complex clothed human modeling tasks [128]. 

 

Implicit representation methods, exemplified by PIFu, offer continuity and support for 

generating geometries with arbitrary topologies at high memory efficiency, extending 

even to color synthesis. This memory-efficient nature of implicit representations is used 

to enhance model construction methods constrained by memory limitations, and their 

excellent inference capabilities address the shortcomings of human parametric models in 

clothing modeling. 

 

These implicit representation methods provide specific solutions to occlusion problems 

in real-life scenarios, requiring advanced inferential capabilities from implicit functions. 

However, the implicit representation of shapes is limited by the absence of mesh topology, 

skeleton, and skinning weight structure information, making it incapable of exhibiting 

new poses and only controlling the shape of dressed avatars from fixed viewpoints. To 

address this, MVP-Human [129] uses 3D scanning technology to acquire three-

dimensional information. BANMo combines neural skinning models and utilizes explicit 



32 

 

3D Gaussian ellipsoids that move with the skeleton to adjust weights, allowing for 

extensive articulated transformations and incorporating NeRF for multi-view synthesis to 

present new perspectives. Additionally, NASA (Neural Articulated Shape Approximation) 

[130] proposes a pose-conditioned implicit occupancy function to replace polygonal 

human meshes, representing articulated deformable human objects. For single-view 

facial reconstruction, JIFF (Jointly-aligned Implicit Face Function) [131] leverages shape 

priors provided by 3DMM, combining spatially aligned 3D features and pixel-aligned 2D 

features to jointly predict implicit facial functions, thereby improving the quality of implicit 

functions in facial reconstruction applications. 

2.7 Mixed-based Digital Human Reconstruction Method 

In recent years, significant advancements have been made in the improvement of the 

aforementioned synthesis technologies, largely due to the widespread application of 

deep learning, which has enhanced training efficiency. Researchers have also attempted 

to combine the strengths of various methods to complement each other, aiming to 

improve the quality of virtual humans. The improvement approaches across different 

construction methods share similarities, which can be summarized as follows. 

 

In mesh-based training, the parametric naked human models based on the SMPL model 

remain one of the mainstream methods. Research has focused on improving texture 

generation techniques to address the limitations in modeling clothing and hair. Image-

based methods aim to incorporate 3D spatial information into models and enhance data 

utilization efficiency. Voxel-based methods primarily focus on reducing memory costs. 

The performance of implicit representation methods can be improved through 

unconstrained observation environments and higher resolution training data. By 

hybridizing these methods, it is possible to complement the shortcomings of each 

technical approach, effectively improving model quality. Based on these approaches, this 

section proposes hybrid synthesis methods as an independent category and introduces 

some existing hybrid construction techniques to provide optimization insights. 
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Implicit 3D representations possess strong expressiveness and can better capture and 

reconstruct the shape and appearance of clothed humans when combined with learnable 

parametric models like SMPL. For instance, a study [132] proposes jointly learning two 

implicit functions to estimate dressed humans and body part labels, linking implicit 

functions with parametric models. The inner surface of the body covered by clothing is 

simulated by SMPL, constrained by the predicted body part information. The inner surface 

is registered to the outer surface using SMPL+D, optimizing each vertex's displacement 

D to fit the external implicit representation. The designed implicit functions extend point 

positions to three categories: inside the body, between the body and clothing, and 

outside the body. 

 

SCANimate [133] scans dressed humans in 3D and converts them into parameter-driven 

virtual avatars. It utilizes SMPL to obtain a parametric 3D human model and combines a 

weakly supervised model for pose correction, designing a local pose-aware implicit 

function to represent the human model and simulate clothing deformation during 

movement, thus generating new poses. Experiments demonstrate that the structural 

information provided by SMPL enhances the performance of implicit representations, 

improving the generalization capability of human poses. However, SCANimate's model 

representation is suited for tight-fitting clothing with similar topology to the body and is 

not applicable to looser garments. Additionally, the constructed model is deterministic, 

meaning the same pose results in the same degree of clothing wrinkles, limiting its ability 

to predict all possible variations in clothing deformation. 

 

ICON (Implicit Clothed-humans Obtained from Normals) [134] integrates the SMPL-X 

model with a custom-designed normal prediction network for iterative optimization. The 

inferred dressed human normal maps are used to regress the implicit 3D surface of 

dressed humans, utilizing local features unaffected by global pose transformations for 

the implicit 3D reconstruction task. ICON can recover 3D dressed human figures from a 

single image and is applicable to virtual character construction in natural scenes. It can 
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also be combined with SCANimate to generate dynamic avatars. However, since ICON is 

trained using orthogonal views, which describe 3D properties from 2D projection images, 

the perspective effect may not be ideal, leading to potential inconsistencies in limb 

representation. 

 

Combining various approaches demonstrates that the SMPL parametric model supports 

controllable deformations of human movements, while NeRF, as an advanced scene 

representation method, can effectively predict the color and volumetric density of spatial 

points, facilitating multi-view synthesis. Therefore, combining SMPL with NeRF can 

provide control over the shape of human models and clothing [134-135]. Xu et al [136] 

proposes a surface-guided neural radiance field to synthesize controllable human 

characters, capable of reconstructing a 3D human model based on a small amount of 

multi-view video and prior knowledge from the SMPL model. 

 

Parametric human models can effectively represent joint movements and integrating 

them with advanced texture synthesis methods can address the modeling limitations for 

clothing and hair. The application of GANs can generate high-resolution results, including 

high-quality textures [137-138]. StylePeople [138] introduces a neural dressing model 

that utilizes styleGAN2 to learn the neural textures of input images, overlaying them onto 

the naked human model generated by SMPL-X to create high-quality dressed virtual 

characters. StylePeople uses a fully convolutional network to generate body part 

coordinates and stacks assigned to body parts, sampling and mapping body textures to 

generate RGB images with the weights specified by the stacks. StylePeople extends 

styleGAN2 from facial reconstruction to full-body character construction, effectively 

simulating hair and clothing textures, thus addressing the limitations of the SMPL model. 

However, like image-based methods, the modeling quality depends on a large amount 

of training data and requires high data utilization efficiency. 

 

Voxel-based methods can effectively present visual effects from multiple angles, while 
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implicit representation methods are memory efficient and can significantly enhance the 

resolution of voxel-based outputs. Pixel-Aligned Volumetric Avatars (PVA) [139] combine 

volume rendering and neural radiance fields for image rendering, leveraging pixel-

aligned features introduced by PIFu to retain high-frequency details. This approach is 

used to adjust parameters of multi-identity neural radiance fields, employing an MLP to 

transform spatial positions and pixel-aligned features into colors and occupancy. This 

method mitigates the memory limitations inherent in voxelization. PVA can generate 

high-fidelity virtual avatars from a small amount of sample data, but it lacks the capability 

to capture lighting conditions and background variations, limiting its application to 

natural scene images. 

 

Gafni et al [140] uses implicit functions to represent the geometric appearance of the face 

and hair with neural radiance fields, combining volume rendering to restore the 

volumetric feel of the hair and achieve dynamic head changes. Compared to traditional 

voxel-based volume rendering methods, the integration of neural scene representation 

networks results in more compact volume rendering, further improving the resolution of 

the rendered images. However, this experiment is limited to dynamic head image 

generation and does not extend to full-body dynamic representation, which would 

involve more complex volumetric models and lighting calculations. This approach collects 

both 2D and 3D features of the input data, effectively improving data utilization. Such 

hybrid solutions leverage the structural regularity of human meshes, the expressive power, 

and memory efficiency of implicit functions, while also achieving multi-view effects.  

 

Zheng et al. [141] employs a non-parametric deep implicit field to represent surfaces, 

with the SMPL model providing parametric human body regularization. It collects pixel-

level and voxel-level features, binding each 3D point to the corresponding value of the 

implicit function. DeepMultiCap [142] integrates implicit functions with poses and 

voxelized grids to recover local details from image pixels, enhancing robustness to pose 

variations. S3 [143] voxelizes input point cloud data into a voxel grid to represent 
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volumetric features. It combines 2D image feature extraction to represent the shape, pose, 

and skinning weights of pedestrians as neural implicit functions learned directly from the 

data, constructing dynamic human models. 

 

These advancements highlight a trend towards combining multiple synthesis techniques, 

each compensating for the others' limitations, thereby improving the overall quality and 

versatility of virtual human models. This hybrid approach, drawing from mesh, voxel, and 

implicit function methods, provides a robust framework for future developments in high-

fidelity virtual character construction. 

2.8 Human Body Pose Reconstruction 

 

Figure 2.1: Optical motion capture system Vicon [144] 

 

Three-dimensional human pose reconstruction typically involves utilizing external devices 

to recreate the three-dimensional posture of a person. In comparison to dense geometric 

body shapes, the human skeleton serves as a compact representation of body posture. 

The industry currently has relatively mature solutions for three-dimensional pose 

reconstruction, such as contact-based motion capture systems, exemplified by the 

renowned optical motion capture system Vicon (Figure 2.1). In this system, specially 
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designed optical markers are attached to key points on the human body, such as joints. 

Multiple specialized motion capture cameras can detect these markers in real-time from 

different angles. Subsequently, the spatial coordinates of the markers are precisely 

calculated using the principles of triangulation. The Inverse Kinematics (IK) algorithm is 

then applied to compute the joint angles of the human skeleton. Due to scene and 

equipment limitations, as well as high costs, contact-based motion capture is challenging 

for ordinary consumers to use. Consequently, researchers have turned their attention to 

low-cost, non-contact, and markerless motion reconstruction technologies. 

 

Based on RGB-D, three-dimensional pose reconstruction methods can be divided into 

two categories: discriminative methods and generative methods. Discriminative methods 

typically attempt to directly infer the three-dimensional human pose from depth images. 

Some work in this category tries to extract features corresponding to joint positions from 

depth images. For example, Plagemann et al. [145] use geodesic extrema to identify 

salient points in the human body and then detect three-dimensional joint positions using 

local shape descriptors. Other discriminative methods rely on classifiers or regressors 

trained offline. Shotton et al. [146] first trained a RF (random forest) classifier with a large 

number of samples to segment different body parts from depth images, and then they 

used mean-shift algorithm to estimate joint positions. This method requires minimal 

computational effort for real-time predictions and has been integrated into the Kinect 

SDK for real-time three-dimensional pose reconstruction. Taylor et al. [147] used a RF 

method to predict depth pixel regions belonging to human joints and then utilized it for 

pose optimization. Discriminative methods do not rely on tracking, which can reduce 

cumulative errors and naturally handle fast movements. 

 

In contrast to discriminative methods, generative methods match observed data using 

deformed parameterized or non-parameterized templates. Ganapathi et al. [148] used a 

Dynamic Bayesian Network (DBN) to model motion states and inferred three-dimensional 

poses within a Maximum a Posterior (MAP) framework. This method requires prior 
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knowledge of the body shape and cannot effectively handle rapid body movements. 

Subsequently, Ganapathi et al. [149] improved this method by incorporating an extended 

ICP measurement model and free space constraints. The new method dynamically adjusts 

the size of the parameterized body template to fit the captured depth data. Due to 

hardware limitations, RGB-D-based pose reconstruction methods are susceptible to 

depth map noise and are applicable only in relatively close-range scenarios. 

 

Thanks to the emergence of large-scale video datasets annotated with three-dimensional 

human pose (such as Human3.6M [150], Human-Eva [151]), deep learning-based three-

dimensional pose reconstruction methods have rapidly developed. They directly utilize 

deep learning models to extract three-dimensional human joint positions from images 

or videos [152–158]. Li et al. [152] were the first to introduce deep learning into three-

dimensional pose estimation. They designed a multi-task convolutional neural network 

(CNN) that includes detection and regression, directly learning features from images to 

regress three-dimensional joint positions, surpassing previous methods relying on 

manually designed features. Pavlakos et al. [154] proposed a voxel heatmap to describe 

the likelihood of human joint positions in three-dimensional voxel space and used a 

coarse-to-fine cascaded strategy to progressively refine the prediction of voxel heatmaps, 

achieving excellent pose reconstruction accuracy. However, this voxel representation 

often faces significant storage and computational overhead. Recently, [159] effectively 

addressed this issue using an encoder-decoder approach. 

 

In addition to directly predicting joint three-dimensional positions, some work predicts 

bone orientations [162,163], joint angles [164], bone vectors [165,166], and more. The 

mentioned works all employ strong supervision for training, and since the training data 

are collected in controlled environments, models trained in this manner usually struggle 

to generalize to natural scenes. To enhance the model's generalization ability, some work 

attempts to use weakly supervised methods to supervise images in natural scenes, such 

as using domain discriminators [167], skeleton length priors [168], and more. 
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Another category of three-dimensional pose estimation methods treats two-dimensional 

human pose as an intermediate representation. Initially, two-dimensional human joint 

positions are obtained in images using manual annotations or automatic detection [169–

172]. Subsequently, they are elevated to three-dimensional space through regression 

methods [155,160,173] or model fitting [174]. Martinez et al. [160] designed a simple but 

effective fully connected network structure, taking two-dimensional joint positions as 

input and outputting three-dimensional joint positions. Later, Zhao et al. [173] proposed 

using semantic graph convolutional layer modules to capture topological correlations 

between human joints (such as human symmetry), further improving the accuracy of 

three-dimensional pose reconstruction. However, mapping from two-dimensional pose 

to three-dimensional pose itself is an ambiguous problem because multiple three-

dimensional poses can project to the same two-dimensional pose [175]. Recent works 

attempt to incorporate more prior knowledge (depth information) to alleviate ambiguity 

[176–178]. 

 

The aforementioned works belong to discriminative models, and the predicted three-

dimensional joint positions may not adhere to anatomical constraints (such as symmetry, 

unreasonable bone length proportions) or kinematic constraints (joint angles exceeding 

limits). Mehta et al. [161] fitted a template of the human skeleton to the predicted two-

dimensional joint positions and three-dimensional joint positions and proposed the first 

real-time three-dimensional pose reconstruction system VNect based on an RGB camera, 

achieving accurate pose reconstruction results. 

2.9 Convolution Neural Network 

2.9.1 Basic theory of CNN 

Research into the visual mechanisms of mammals, particularly through the field of visual 

neuroscience, has revealed that the human visual system operates in a layered and 

hierarchical manner when processing and recognizing images [179]. This process begins 
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when a visual scene is captured by the human eye, where light signals from the scene are 

converted into electrical signals by the retina. These electrical signals are then transmitted 

to the visual cortex, the primary visual processing center of the human brain. 

 

A landmark study by David Hubel and Torsten Wiesel in 1959 [180] provided significant 

insights into how the visual cortex processes these signals. By inserting electrodes into 

the primary visual cortex (V1) of a cat and presenting the cat with light bars of varying 

shapes, positions, and orientations, they were able to measure the neuronal responses to 

these stimuli. Their experiments demonstrated that neurons in the V1 cortex respond 

most strongly when the light bars are positioned at specific locations and angles, 

indicating that different neurons have distinct preferences for certain spatial locations and 

orientations. 

 

Further research has established that the visual cortex is organized into a multi-layered 

structure. The electrical signals from the retina first reach the primary visual cortex, or V1, 

where neurons are highly sensitive to particular details of the visual stimuli, such as edges 

and orientations. From V1, the processed signals are transmitted to the secondary visual 

cortex (V2), where more complex features such as edges and contours are integrated into 

simple shapes. The processing then continues to the V4 cortex, which is particularly 

attuned to color information. Ultimately, the representation of complex objects is formed 

in the inferior temporal cortex, where higher-level visual processing occurs, allowing for 

the recognition of complex shapes and objects. 

 

This hierarchical processing model underscores the complexity and efficiency of the 

mammalian visual system, demonstrating how the brain decomposes and reconstructs 

visual information at various levels to achieve detailed and accurate perception of the 

surrounding environment. 
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Figure 2.2: Yamins at al. 2016. Visual cortex mechanism and CNN 

 

As illustrated in Figure 2.2, convolutional neural networks (CNNs) can be viewed as a 

computational model that emulates the hierarchical processing mechanisms of the visual 

cortex in biological systems [181]. A CNN is composed of multiple convolutional layers, 

each consisting of several convolutional kernels. These kernels systematically scan all the 

pixels of an input image, producing a set of matrices known as feature maps, which 

represent various features detected in the image. 

 

In the early layers of the network, the convolutional layers capture local and detailed 

information from the image. These layers are characterized by a small receptive field, 

meaning that each pixel in the output feature map corresponds to a small region of the 

input image. As the signal progresses through the network, the receptive field of the 

convolutional layers gradually increases, enabling the network to capture more complex 

and abstract features. This hierarchical process allows the network to build progressively 

more sophisticated representations of the input image at multiple scales.  

 

To effectively understand the function of convolution in the context of neural networks, 

it is essential to have a foundational understanding of signal processing concepts. One 
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key concept is the representation of a sine wave, which is fundamentally defined by two 

parameters: amplitude and frequency. 

 

A sine wave is commonly depicted in a time-magnitude coordinate system, where time 

is represented on the horizontal axis and the magnitude (or amplitude) on the vertical 

axis. However, this representation is not the only way to describe a sine wave. It can also 

be transformed into a frequency-magnitude coordinate system, where the horizontal axis 

represents frequency, and the vertical axis represents the amplitude's intensity. This 

transformation between time and frequency domains is accomplished through the 

Fourier Transform, a mathematical tool that maps a signal from the time domain to the 

frequency domain, as illustrated in Figure 2.3.  

 

 

Figure 2.3: Fourier transformation 

 

The convolution between two functions is defined as:  

𝑥(𝑡) ∗ 𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
                                 (2.1) 

Considering Fourier Transform, it can be shown that the convolution has a property which 

is:  

𝑥(𝑡) ∗ 𝑦(𝑡) ↔ 𝑋(𝑤)𝑌(𝑤)                                       (2.2) 

The relationship between time-domain signals and their spectral representations, as 

described by the Convolution Theorem, is a fundamental concept in signal processing. It 

states that the convolution of two time-domain signals corresponds to the pointwise 
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multiplication of their spectral (frequency-domain) representations. This principle implies 

that when a convolution is performed between a filter and a complex signal, the resulting 

signal's spectral content will reflect the product of their respective frequency components.  

 

For example, if a filter that includes certain frequency components is convolved with a 

complex signal that contains additional frequency components that do not present in the 

filter, the resulting signal will no longer include these excluded frequencies. This is the 

basis for the function of various types of filters. A low-pass filter, which allows only low-

frequency components to pass through while attenuating higher frequencies, effectively 

removes high-frequency content from the signal. Conversely, a high-pass filter retains 

only high-frequency components, filtering out the lower frequencies. 

 

The Fourier Transform, a powerful tool in signal processing, can also be applied to two-

dimensional functions, such as images. Similar to its one-dimensional counterpart, the 

2D Fourier Transform decomposes an image into its frequency components. In this 

context, a grayscale image can be represented as a discrete two-dimensional function 

𝑓(𝑥, 𝑦) , where 𝑥 and 𝑦 correspond to the spatial coordinates of the image's pixels, and 

𝑓(𝑥, 𝑦) represents the luminance value (intensity) of each pixel. 

 

In analogy to 1D signals, the high-frequency components of an image correspond to 

regions where the pixel values change rapidly (e.g., edges or fine details), while low-

frequency components correspond to areas with slowly varying pixel values (e.g., smooth 

gradients or uniform regions). As illustrated in Figure 2.4, when a high-pass filter is 

convolved with an image, the result highlights areas where the luminance changes rapidly, 

effectively preserving edges and fine details. In contrast, a low-pass filter applied to an 

image will smooth out these rapid changes, removing fine details and retaining only the 

slowly varying components of the image. 
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Figure 2.4: Applying different filters. 

 

Thus, when an image is convolved with different filters, the outcome is a set of images 

that emphasize different frequency components, corresponding to various levels of detail 

and abstraction. This process lies at the core of convolution operations in image 

processing and is integral to the functionality of convolutional neural networks. By 

selectively filtering different frequency components, convolution enables the extraction 

of relevant features, allowing for a nuanced analysis and interpretation of visual data. This 

filtering mechanism is essential for tasks such as edge detection, texture analysis, and 

feature extraction in computer vision and image processing applications. 

 

2.9.2 Basic Composition of CNN 

In a Convolutional Neural Network (CNN), convolutional layers consist of sets of 

convolution kernels that interact with the input image to extract various features. The 

process of convolution, as illustrated in Figure 2.5, involves each convolution kernel 

sliding over the image matrix from top to bottom and from left to right. During this sliding 

operation, the elements of the convolution kernel matrix are multiplied by the 

corresponding elements of the image matrix covered by the kernel, and the results are 

summed to produce a single value. This operation is repeated across the entire image, 

resulting in an output matrix that represents the convolution result. 

 

Typically, after convolution, the size of the resulting image is reduced compared to the 
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original input image. To maintain the same size between the input and output images, 

padding is often applied. Padding involves adding zero-valued pixels to the periphery of 

the original image before the convolution operation. A simple example of padding with 

a padding value of 1 is also shown in Figure 2.5. Additionally, as the convolution kernel 

slides across the image, the stride (the step size in both horizontal and vertical directions) 

is usually set to 1, although other stride values can be used depending on the desired 

level of down sampling. 

 

 

Figure 2.5: Convolution kernel sliding and padding 

 

When dealing with multi-channel inputs, such as RGB images, a single convolution kernel 

will convolve with all the input channels. The resulting matrices from each channel are 

then summed up to produce a single output matrix. Consequently, each convolution 

kernel generates a corresponding feature map, and the number of resulting feature maps 

is equal to the number of convolution kernels used in the layer. This process enables CNN 

to capture and represent different aspects of the input image, such as edges, textures, 

and patterns, across multiple layers of abstraction. 

 

Convolution operations within a neural network represent a linear transformation of the 

input image based on the filter responses. Specifically, the convolution process calculates 

a weighted sum of the input pixel values, where the weights are determined by the 

convolutional kernel. This linear nature of convolutional layers limits their ability to 



46 

 

capture and model complex patterns in the data, as they can only effectively simulate 

linear relationships between input and output. 

 

To address this limitation and enhance the network's capacity to model more intricate 

and non-linear relationships, convolutional layers are typically followed by non-linear 

activation functions. These activation functions introduce non-linearity into the network, 

allowing it to approximate a broader range of functions beyond simple linear mappings. 

Consequently, the neural network's ability to model complex features and patterns is 

significantly improved. 

 

Incorporating non-linear activation functions is crucial for the effective performance of a 

neural network. Without these non-linear layers, a network composed solely of 

convolutional layers would essentially perform linear transformations, making it 

insufficient for tasks that require capturing intricate relationships within the data. 

Therefore, the depth of a neural network becomes meaningful primarily because each 

additional non-linear layer enhances the network's ability to approximate increasingly 

complex functions.  

 

In contrast, a purely linear neural network—regardless of its depth—would not achieve 

significant performance improvements because adding more linear layers would not 

increase the network's representational power. The depth in such a network would merely 

aggregate linear transformations, resulting in no additional benefit. 

 

Figure 2.6 illustrates several different activation functions, such as ReLU (Rectified Linear 

Unit), sigmoid, and tanh. Each of these functions contributes differently to the non-linear 

modeling capabilities of the network, influencing how well the network can fit complex 

patterns in the input data. By combining convolutional layers with appropriate non-linear 

activation functions, neural networks can leverage both linear and non-linear 

transformations to achieve superior performance across a variety of tasks.  
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Figure 2.6: Different activation functions. 

 

Through the convolution operation, both dimensionality reduction and feature extraction 

of the input image are achieved. However, despite these processes, the dimensionality of 

the resulting feature maps can still be quite high. High-dimensional feature maps pose 

significant challenges, including increased computational cost and a higher risk of 

overfitting. To address these issues, down-sampling techniques, commonly referred to 

as pooling, are employed. 

 

Pooling layers are introduced to further reduce the dimensionality of feature maps while 

retaining essential information. Compared to convolutional layers, pooling layers are 

computationally less intensive. Typically, the input to a pooling layer consists of the 

feature maps that have been processed through activation functions. 

 

The pooling operation involves compressing the sub-matrices within the input feature 

map matrix. This compression is achieved by applying a pooling function, such as max 

pooling or average pooling, which reduces the spatial dimensions of the input while 

preserving the most salient features. By reducing the dimensionality, pooling not only 
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decreases the computational burden but also helps mitigate the risk of overfitting by 

simplifying the feature representation and focusing on the most significant patterns in 

the data. 

 

For example, for 2x2 pooling, every 2*2 sub-matrix which contains 4 parameters will turn 

to only one element. Considering 3x3 pooling process, then every nine parameters of 3x3 

size sub-matrix will turn to one element. Hence, the dimension of an input matrix will be 

reduced to a much smaller size. In addition to reducing the image size, another benefit 

of down-sampling is translational, rotational invariance, because the output value is 

calculated from a region of the image and is not sensitive to translation and rotation. 

With the increasing of the pooling size, more detailed information could be lost, hence, 

usually a CNN network selects a small pooling size but with many combinations of 

convolution layers and pooling layers. In order to implement the pooling process, usually 

there are two types of pooling, one is max pooling, the other one is average pooling. Max 

pooling is to select the maximum value of the pooling area as the pooling result. Average 

pooling is to compute the average value of whole pooling area and take the result as the 

pooling result. Figure 2.7 shows an example uses a pooling method that takes the 

maximum value. At the same time, the pooling of 2x2 is processed in other areas of 

feature map which the pooling stride is 2. The pooling stride indicates the distance 

between two pooling processes. 
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Figure 2.7: Maximum pooling process 

 

First, the red 2x2 area is pooled. Since the maximum value of the 2x2 area is 6. The pooling 

result is 6 at the corresponding position of the output matrix. Since the stride is 2, the 

position is moved to the green position for pooling and output. The maximum value is 8. 

In the same way, the output values of the yellow and blue regions can be obtained. 

Eventually, our input 4x4 matrix is compressed and becomes a 2x2 matrix after pooling. 

 

In the architecture of Convolutional Neural Networks (CNNs), fully connected (FC) layers 

play a pivotal role in the final stages of the network. After feature extraction and 

dimensionality reduction have been accomplished through convolutional and pooling 

layers, the FC layers serve as the crucial component for classification and decision-making 

tasks. This transition from convolutional to fully connected layers mark a shift from spatial 

feature representation to a high-level abstraction of the data. 

 

Fully connected layers, also known as dense layers, are characterized by their architecture 

in which every neuron is connected to every neuron in the preceding layer. This dense 

connectivity ensures that the output from the convolutional and pooling layers is 

comprehensively integrated, enabling the network to make final predictions based on the 
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entire feature set extracted from the input image. Each neuron in a fully connected layer 

performs a weighted sum of the inputs followed by a non-linear activation function, 

allowing the network to model complex, non-linear relationships within the data. 

 

The primary function of fully connected layers is to take the high-dimensional feature 

maps, flattened into vectors, and transform them into a suitable format for the final 

output, such as class probabilities in classification tasks. This transformation involves 

learning a set of weights that maps the input features to the output space, effectively 

combining and interpreting the features extracted earlier in the network. 

 

Despite their effectiveness, fully connected layers come with their own set of challenges. 

The high number of parameters in FC layers can lead to increased computational 

demands and a higher risk of overfitting, especially in networks with many layers and 

neurons. Regularization techniques such as dropout and weight decay are often 

employed to address these issues, helping to generalize the model and improve its 

performance on unseen data. 

 

In summary, fully connected layers are integral to the functionality of CNNs, bridging the 

gap between feature extraction and final classification. Their ability to integrate and 

process features from convolutional and pooling layers allows for sophisticated decision-

making and accurate predictions, making them a fundamental component in deep 

learning architectures for a variety of complex tasks. 
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3.  Methodology  

In the following sections, we will detail the foundational tools, techniques, and principles 

employed throughout this thesis. In recent years, the emergence of Deep Learning has 

profoundly transformed the methodologies in Computer Vision research. This shift is 

evident in the various approaches to 3D human shape and pose reconstruction presented 

in this work. Despite the diversity of these approaches, they share a commonality: the 

utilization of a parametric body model to address the inherent complexity of the problem. 

 

Parametric body models are statistical representations that capture the variations in 

human body shapes and poses. These models play a crucial role in constraining the 

search space and reducing the dimensionality of tasks related to human body analysis. 

Essentially, they serve as a foundational template, offering an approximate solution that 

can be further refined. This refinement is achieved either through the parametrization of 

the model itself or by using it as a regularization prior. The subsequent sections will 

introduce the body model in detail, along with the various methods and concepts applied 

in this dissertation. 

3.1 Body Model 

In this study, we employ the SMPL body model, introduced by Loper et al. in 2015 [57]. 

The SMPL model is designed as a function 𝑀(∙) ∈ 𝑅𝑁×3, which maps pose parameters 

𝜃 ∈ 𝑅3𝐾and shape parameters 𝛽 ∈ 𝑅10to a mesh consisting of 𝑁 = 6890 vertices. To 

generate a watertight mesh, these vertices are connected to 𝐹 = 13776 faces. The pose 

of the model is determined by 𝐾 = 23  skeleton joints, with their orientations 

parametrized using the axis-angle representation 𝜃. 
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Figure 3.1: Configuring the SMPL model's pose and shape [57]. 

Starting with a template (a), a new shape is generated (b). Pose-dependent offsets are 

then applied (c), followed by setting the final pose using blend skinning (d). 

 

The SMPL model has been trained on scans of real human subjects, enabling it to 

generate highly realistic body shapes and pose-dependent shape deformations. The 

model is available in three variants: male, female, and neutral, corresponding to male-

only, female-only, or mixed-gender subjects, respectively. 

 

The SMPL model generates a posed mesh through a series of transformations. Initially, 

to create realistic body shapes, a template mesh 𝑇 ∈ 𝑅𝑁×3 is deformed using shape 

deformation offsets 𝐵𝑆(𝛽) ∈ 𝑅𝑁×3 . These offsets are derived from a low-dimensional 

basis of the principal components of body shape variations observed in the SMPL training 

data. The shape parameters 𝛽 represent a vector of linear coefficients within this shape 

space. In addition, a linear regressor is used to determine the positions of the skeleton 

joints 𝐽(𝛽) ∈ 𝑅𝐾×3 based on the shape parameters. 

 

Following this, pose-dependent deformations 𝐵𝑝(𝜃) ∈ 𝑅𝑁×3 are applied to the reshaped 

template (as illustrated in Figure 3.1(c)). The function 𝐵𝑝(⋅) is a learned linear function 

parametrized by the desired pose 𝜃 , which accounts for muscle and soft-tissue 

deformations, as well as potential skinning artifacts introduced in subsequent steps. 

Finally, the mesh is posed using standard linear blend skinning 𝑊(⋅) ∈ 𝑅𝑁×3, with blend 

weights 𝑊 ∈ 𝑅𝑁×𝐾 (as shown in Figure 3.1(d)). The complete formulation of the SMPL 
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model is given by: 

  𝑀(𝛽, 𝜃) = 𝑊(𝑇(𝛽, 𝜃), 𝐽(𝛽), 𝜃, 𝑊)                              （3.1）                    

𝑇(𝛽, 𝜃) = 𝑇 + 𝐵𝑠(𝛽) + 𝐵𝑝(𝜃).                                （3.2） 

 

As previously mentioned, the body model can serve as a template, prior knowledge, or a 

representation for methods that work on 3D human body shapes and poses. In Section 

4.1, we employ a neural network with an attention mechanism to extract features from 

the input image and ultimately reconstruct them into a SMPL model. 

 

It is important to note that SMPL only models unclothed subjects, and its shape 

parametrization does not permit fine-grained personalization. To address this limitation, 

we extend the standard SMPL formulation by incorporating additional details in many 

parts of our work. Specifically, we introduce per-vertex offsets 𝐷 ∈ 𝑅3×𝑁 to enhance the 

function, following approaches similar to those described in [182, 13, 14]. SMPL+D, an 

extension of SMPL with added offsets D, is constructed as follows:  

𝑀 (𝛽, 𝜃, 𝐷)  =  𝑊 (𝑇(𝛽, 𝜃, 𝐷), 𝐽(𝛽), 𝜃, 𝑊)                                (3.3) 

𝑇(𝛽, 𝜃, 𝐷)  =  𝑇 +  𝐵𝑠(𝛽)  +  𝐵𝑝(𝜃)  +  𝐷.                               (3.4) 

 

Additionally, we have extended the SMPL model using UV mapping. In this work, we 

apply textures to the mesh and enhance its surface details using normal maps. The 

concept of texture encompasses the visible surface details of an object, such as color, 

roughness, and bumps. In the field of image processing, image texture is used to quantify 

the perceived characteristics of an image, providing information about the spatial 

arrangement of color or intensity in the image or a selected region of it. 

 

Textures are represented by arrays of texels, which are the basic units of texture mapping 

that define the texture space. Texture mapping is the process of associating texture data 

with a model. A classic method of texture mapping involves using a two-dimensional 

array to store the texture information of a three-dimensional object. The vertices in 3D 
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space include not only spatial coordinates but also 𝑢  and 𝑣 coordinates, which map to 

the texture space to generate a UV texture map, thereby linking the texture space 

information with the 3D model [183-184]. Bump mapping, based on texture mapping, 

uses height difference information to display detailed bump textures. Similarly, a UV 

bump texture map needs to be mapped into three-dimensional space to generate a 

complete mesh model.  

 

UV mapping [185] unfolds the body surface onto a two-dimensional image, such that a 

given pixel corresponds to a three-dimensional point on the body surface. This mapping 

is defined over the mesh’s faces, where each face, consisting of three 3D vertices, has a 

corresponding set of three 2D UV coordinates. Here, 𝑢  and 𝑣 represent the two axes of 

the image. The mapping of points within a face is determined through the barycentric 

interpolation of neighboring coordinates. The 2D image can then be used to enhance the 

3D surface. A texture defines the color for each surface point. Similarly, a normal map 

stores the surface normals, which can add or enhance visual details through shading. A 

3D displacement map shifts the surface point in the given direction, allowing for the 

creation of highly detailed surfaces without altering the resolution of the underlying mesh. 

 

However, some tasks require a higher mesh resolution, which can be achieved by 

subdividing the SMPL base mesh. This is done by placing a new vertex at the center of 

each edge of a triangular face. The old face is removed, and four new faces are created 

by connecting subsets of the six vertices. This process can be repeated. Due to limited 

computational resources and application constraints, we no longer use this technique to 

enhance the model's resolution. 

 

In Section 4.2, we use SMPL model with offset to represent detailed shape of human 

model and further textured model with UV mapping. In next section, we will elaborate on 

how we utilize the SMPL body model in our work. More importantly, we will introduce 

the general methods and principles we have consulted to provide effective solutions for 
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3D human pose and shape reconstruction from monocular images. 

3.2 Analysis-by-Synthesis 

To estimate the 3D body shape of a human, we compare rendered silhouettes with 

observed silhouettes, employing a method rooted in analysis-by-synthesis. In analysis-

by-synthesis, the process involves defining one or more objective functions that are 

optimized in relation to a scene model. In our context, this scene model is primarily the 

SMPL model, which may be supplemented with additional components, such as an image 

formation function. The objective functions are designed to quantify the similarity 

between the synthesized images generated by the model and the observed images. 

 

Rather than attempting to recreate the images in their entirety, we typically focus on 

reconstructing abstractions or features of the images, such as segmentation maps or key 

points. These abstractions exhibit significantly less variation in appearance compared to 

raw images, making them more straightforward to synthesize and optimize. By focusing 

on these abstractions, we can achieve a more robust and efficient estimation process, as 

the reduced variability leads to more stable and reliable optimization. 

 

In the subsequent sections, we will introduce various analysis-by-synthesis techniques 

that have been employed across different studies within this dissertation. These 

techniques have been selected and adapted to effectively address the challenges posed 

by 3D human body shape and pose estimation from monocular images, demonstrating 

the versatility and power of analysis-by-synthesis in this domain. 

3.2.1 Image Keypoints 

Among the abstractions discussed, the most straightforward are image keypoints. Image 

keypoints refer to specific 2D coordinates in an image that often carry semantic 

significance. For instance, in our context, keypoints may represent facial landmarks or 

skeletal joint positions. The process begins by identifying a corresponding point 𝑙𝑖 ∈ 𝑅3 
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in the 3D scene model for each image keypoint 𝑘𝑖 ∈ 𝑅2. The subsequent task during 

optimization is to determine a scene description such that each 𝑙𝑖  projects onto 𝑘𝑖 

according to a given projection function 𝜋(∙): 

∑ ‖𝜋(𝑅𝑙𝑖 + 𝑡) − 𝑘𝑖‖𝑖 = 0                                          (3.5) 

Here, 𝑅 and 𝑡 represent the rotation and translation parameters of the scene model. As 

previously mentioned, in the problem scenarios addressed in this work, the scene is 

described using the SMPL model. This model typically includes global rotation and 

translation parameters to accurately position the body in the scene. 

 

The 3D points corresponding to the 2D image keypoints are not directly extracted from 

the image but are instead regressed from the surface of the SMPL body model. This 

regression is typically achieved through a linear combination of vertices from the model's 

mesh. One common method for performing this regression is barycentric interpolation, 

where the 3D point is computed as a weighted sum of the surrounding vertices' positions. 

This approach allows for an accurate mapping of 2D keypoints to their corresponding 3D 

locations on the body model, ensuring that the reconstructed 3D scene aligns closely 

with the observed 2D image data. 

 

This formulation is central to many computer vision tasks, particularly in the domains of 

human pose estimation and shape reconstruction. By leveraging the SMPL model and 

the optimization framework outlined above, it is possible to achieve a detailed and 

accurate 3D representation of the human body from 2D observations, which is crucial for 

applications in areas such as motion capture, virtual reality, and biometric analysis. 

 

In Section 4.3.2, we use the differences between various key points to numerically 

compute the reconstruction loss of the model, thereby assessing its quality. In Section 4.2, 

image keypoints are also involved in body reconstruction optimized process, we will 

discuss it later. 
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3.2.2 Image Segmentation 

Image segmentation is a well-established technique for scene abstraction and is 

extensively utilized in analysis-by-synthesis frameworks. In image segmentation, each 

pixel is assigned a specific label, which allows distinguishing different regions within the 

image. Segmentation can be categorized into binary and multi-part types. Binary 

segmentation typically separates the foreground from the background, where the 

definitions of foreground and background are task-specific. For instance, moving objects 

might be classified as the foreground, while static objects are considered the background. 

In Section 4.2, we only focus on person, hence the person we define is foreground and 

the rest of image is background. When optimizing analysis-by-synthesis problems using 

image segmentation, the goal is to minimize the discrepancy between the predicted 

silhouette and the observed silhouette. For binary segmentation, this optimization can be 

expressed as: 

min
𝑅,𝑡

|𝐺(𝑅, 𝑡)  −  𝑆|                                                 (3.6) 

𝐺(𝑅, 𝑡)  =  𝑅𝑐(𝐹(𝑅, 𝑡))                                            (3.7) 

Here, 𝑆  represents the observed segmentation image, 𝐹(∙) denotes an example of a 

scene function, and 𝑅(∙) is a binary image formation function under camera 𝑐. 

 

Although this formulation leads to the expected minimum, it can be challenging and slow 

to optimize due to potential entrapment in local minima and the fact that gradients only 

provide information about a one-pixel-wide neighborhood. To address these issues, 

more sophisticated approaches are often employed. One effective strategy is to perform 

the optimization simultaneously at different image resolutions. This approach allows the 

optimization to take larger steps, helping it to avoid local minima.  
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(A)                                                                (B) 

Figure 3.2: Reconstruct pose using Chamfer matching. 

 

A specific method we use in Section 4.2.2.3 to improve optimization is Chamfer matching, 

where the difference between each point in one silhouette and the closest point in the 

other silhouette is minimized (see Figure 3.2). In Figure 3.2, the predicted silhouette 

should closely align with the observed silhouette, ensuring it does not extend beyond it 

(B) while covering it as fully as possible (A). The error is visualized with color coding: red 

indicates a large error, and blue indicates a small error when compared to the 

corresponding observed silhouette (grey). The goal is for the predicted silhouette to fully 

cover the observed silhouette without exceeding it. The distances between all points in 

silhouette 𝑀 and the nearest points in silhouette  𝑁 can be calculated by multiplying 

silhouette 𝑀 by the distance transform 𝐶(∙) of silhouette 𝑁. The distance transform of a 

binary image provides the distance of each pixel to the nearest non-zero pixel. The 

Chamfer matching objective aggregates the errors across all image pixels 𝑝 as follows: 

min
𝑅,𝑡

∑ 𝐺𝑝(𝑅, 𝑡)  ·  𝐶𝑝(𝑆)  + 𝑆𝑝  ·  𝐶𝑝(𝐺(𝑅, 𝑡))𝑝                            (3.8) 

 

However, 𝐶(∙)  is not differentiable, which complicates the optimization process. To 

overcome this, a modified objective function is used: 

min
𝑅,𝑡

∑ 𝐺𝑝(𝑅, 𝑡)  ·  𝐶𝑝(𝑆)  + (1 − 𝐺𝑝(𝑅, 𝑡)) ·  𝐶𝑝(1 − 𝑆)𝑝                   (3.9) 



59 

 

This modification retains the objective’s minimum but eliminates the need to compute 

the distance transform of the predicted silhouette, thereby simplifying the optimization 

process. 

3.2.3 Shape-from-shading 

Shape from Shading (SFS) [186] is a computer vision technique designed to infer the 3D 

shape of an object from the shading information in an image. The fundamental principle 

of this technique is that the variations in shading on the surface of an object are 

determined by the light source's position, the direction of the surface normals, and the 

reflective properties of the material. By analyzing these shading cues, the 3D shape of the 

object can be deduced. 

 

Shape from Shading is based on a key assumption that the brightness value of each pixel 

in an image is determined by the reflective characteristics of the object's surface and the 

lighting conditions. Specifically, for a pixel in an image, the brightness 𝐵(𝑥, 𝑦) can be 

represented as a function of the surface normal 𝑛(𝑥, 𝑦) and the scene's reflectance map 

𝑃 : 

𝐵(𝑥, 𝑦)  =  𝑃(𝑛(𝑥, 𝑦))                                           (3.10) 

 

In classical SFS models, it is typically assumed that the surface follows a Lambertian 

reflectance model, meaning that the surface brightness is proportional to the cosine of 

the angle between the light direction and the surface normal. This relationship can be 

expressed as: 

𝐵(𝑥, 𝑦)  =  𝑐𝑜𝑠(𝑙, 𝑛(𝑥, 𝑦))  =
𝑙 ∙ 𝑛(𝑥,𝑦)

|𝑙||𝑛(𝑥,𝑦)|
                              (3.11) 

where 𝑙 is the light direction vector, and 𝑛(𝑥, 𝑦) is the surface normal vector. 

 

The process of Shape from Shading generally involves several key steps: 

1. Illumination Model Assumption: Depending on the physical properties of the object's 

surface, surface reflection can be classified as diffuse (Lambert Reflection), specular 
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reflection, hybrid reflection, or more complex forms of reflection. In order to simplify the 

problem, the traditional SFS algorithm assumes that the reflection model is a Lambert 

body reflection model, where it is assumed that the object's surface is diffusely reflecting 

light, and the brightness is proportional to the cosine of the angle between the light 

direction and the surface normal. 

 

2. Normal Direction Estimation: Based on the assumed lighting model, the next step 

involves analyzing the brightness distribution in the image to calculate the surface normal 

direction for each pixel. This step typically involves solving partial differential equations, 

as the normal direction is a three-dimensional vector, while the image brightness value 

provides only a scalar. Thus, the problem is inherently underdetermined. 

 

3. Depth Map Reconstruction: Once the surface normal direction for each pixel is 

obtained, the next step is to compute the depth map of the object. This step usually 

involves integrating the normal direction information to derive the position of the object's 

surface in 3D space. 

 

4. Shape Optimization: Finally, further optimization of the shape may be necessary to 

ensure that the reconstructed 3D shape is consistent with the shading information in the 

original image. This is typically achieved through iterative optimization methods. 

 

In Section 4.2.3, we present our fine-detailed human reconstruction model results 

optimized using the SFS technique. 

 

Shape from Shading is a valuable technique in computer vision, offering a way to recover 

3D shape information from 2D images based on shading. Despite its challenges, such as 

reliance on accurate lighting models and the complexity of solving for surface normal, it 

has significant applications in fields like medical imaging, reverse engineering, robotic 

vision, and object modeling in computer graphics.  
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3.3 Deep Learning 

Learning-based methods represent a fundamentally different approach compared to 

traditional optimization-based methods, particularly those rooted in the analysis-by-

synthesis paradigm. Whereas optimization-based techniques iteratively refine 

parameters to align a model’s output with observed data, learning-based methods 

involve discovering a parameterization for a complex function, typically implemented as 

a neural network. This neural network is designed to produce the desired output by 

adjusting its parameters through exposure to a vast dataset of input-output pairs. This 

adjustment process is known as training the network. 

 

In recent years, convolutional neural networks (CNNs) have brought about a significant 

transformation in the field of computer vision. These networks often surpass the 

performance of classical methods by a wide margin and have enabled solutions to 

problems that were previously out of reach for traditional techniques. Although analysis-

by-synthesis methods can contribute during the training phase of neural networks, the 

operational principles of neural networks differ substantially. Neural networks, particularly 

deep learning architectures, excel at extracting high-dimensional features from input 

data such as images and mapping these features to specific task-oriented outputs. 

 

A neural network is fundamentally a collection of interconnected layers, each composed 

of numerous small computational units known as neurons. Each neuron processes an 

input vector 𝑥 by computing a weighted sum using learnable weights 𝑤 and adding a 

learnable bias term 𝑏: 

𝑦 =  𝑤⊤ 𝑥 +  𝑏                                              (3.12) 

The output 𝑦 is then passed through a non-linear activation function ℎ(∙) to introduce 

non-linearity into the model: 

𝑎 = ℎ(𝑦)                                                  (3.13) 

 

Common activation functions include the Rectified Linear Unit (ReLU) and the Sigmoid 
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function. To construct an entire layer 𝑙, multiple neurons are organized together, each 

processing the input and producing an output as follows: 

𝑦 𝑖
[𝑙]

=  𝑤 𝑖
[𝑙]⊤

𝑎[𝑙−1]  +  𝑏 𝑖
[𝑙]

                                       (3.14) 

𝑎 𝑖
[𝑙]

=  ℎ[𝑙] (𝑦 𝑖
[𝑙]

)                                              (3.15) 

 

These neurons can be vectorized for the entire layer: 

𝑦 𝑖
[𝑙]

=  𝑊[𝑙]𝑎[𝑙−1]  +  𝑏 𝑖
[𝑙]

                                       (3.16) 

𝑎[𝑙] = ℎ𝑙(𝑦[𝑙])                                               (3.17) 

 

When multiple layers are stacked together, they form a neural network. A network with 

many layers is termed a deep neural network, and the specific configuration of layers, 

neurons, and activation functions known as the network architecture determines the 

model’s complexity and computational power. 

To train the neural network to produce accurate outputs, one must optimize a loss 

function relative to the network’s parameters, namely the weights 𝑊 and biases 𝑏. The 

loss function quantifies the difference between the network's predictions and the actual 

desired outcomes. By calculating the partial derivatives of the loss function with respect 

to the network's parameters, one can iteratively adjust these parameters to minimize the 

loss, thereby improving the network’s performance. 

 

In computer vision, CNNs, a specialized type of neural network, have gained prominence. 

Unlike traditional neural networks, which compute a weighted sum over the entire input 

vector 𝑥, CNNs apply a convolution operation over local neighborhoods within the input. 

This means that each element in the output vector 𝑦 depends only on a local subset of 

the input vector 𝑥. The convolution operation is defined as: 

(𝑓 ∗  𝑔)[𝑛]  =  ∑ 𝑓[𝑚]𝑔[𝑛 − 𝑚]𝐾
𝑚=−𝐾                              (3.18) 

In this context, 𝑓 is referred to as the kernel, which in CNNs is composed of learnable 

weights shared across different parts of the input. CNNs offer several advantages: they 
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require fewer parameters even for large inputs, they can handle inputs of varying 

dimensionalities, and they exhibit a degree of translational invariance in their processing. 

 

In this research, deep learning methods are utilized in two principal ways. First, pre-

trained models are employed to compute various abstractions, such as foreground 

segmentation, semantic segmentation, reflectance and shading separation, and keypoint 

localization. In Section 4.1, a Resnet-50 pre-trained network to extract features from 

images serves as the backbone for reconstructing human pose and shape. Second, we 

develop algorithms that incorporate deep learning at their core, leveraging its power to 

tackle complex vision tasks. We further introduce it in Section 4.2. These applications of 

deep learning demonstrate its versatility and effectiveness in modern computer vision 

challenges. 

3.4 Performance Evaluations 

This section begins by introducing the datasets required for the synthesis of virtual 

humans and the commonly used quantitative metrics for performance evaluation. The 

performance evaluation results of various synthesis techniques are then presented. We 

will provide an overview of the common types of datasets, including their primary content 

and application directions, with a detailed introduction of specific datasets to lay the 

groundwork for quantitative performance comparisons. Both perceptual and non-

perceptual metrics will be discussed. In the results and analysis section, we will compare 

the performance of our algorithm with several other algorithms. 

3.4.1 Dataset 

In existing research, qualitative comparison methods are typically intuitive and 

straightforward, often involving user surveys to gather information. However, quantitative 

comparisons involve more complex calculations and scenarios. 

 

The application of virtual human synthesis technologies spans multiple fields, including 
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facial modeling, behavior prediction, and virtual clothing, with each type of synthesis 

experiment requiring datasets with distinct characteristics. Commonly used training 

datasets consist of images and videos, captured using either single or multi-view camera 

systems. To enhance model performance, recent efforts have focused on preprocessing 

raw data to obtain 2D and 3D human data as model inputs, systematically generating 

datasets tailored for applications such as virtual human facial modeling and behavior 

prediction. The following sections will summarize and review the forms and characteristics 

of existing datasets based on specific literature. 

 

Two-dimensional image datasets are typically used to provide 2D information and can 

also be combined with depth maps to present 3D information from multiple angles. 

Beyond depth maps, 3D data types include polygonal meshes and point cloud data, with 

point clouds being particularly suitable for representing sparse structures, which can be 

converted into standard 3D polygon meshes. For instance, Neural Body [187] created a 

multi-view video dataset called ZJU-Mocap to evaluate the performance of models in 

synthesizing novel views from sparse data. This dataset contains nine dynamic human 

videos captured from 21 synchronized cameras, featuring complex movements such as 

Tai Chi, warm-up exercises, and boxing, and is widely used for assessing multi-view 

synthesis quality. The S3 dataset [143] employs 2D image sets and radar-scanned 3D 

point cloud data, with input formats including single images and voxelized radar scan 

data. 

 

For virtual human synthesis technologies focusing on posture, the Market-1501 [188] 

dataset is commonly used for pedestrian re-identification. It contains 32,643 annotated 

images of 1,501 pedestrians, with each identity captured by up to six cameras. 

Human3.6M [150] is a larger-scale 3D human posture dataset featuring multi-view videos 

shot by four cameras, using a marker-based motion capture system. It includes complex 

actions performed by five female and six male subjects. 
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In addition to conventional data inputs, 3D human models can also serve as inputs for 

virtual human synthesis models. The STATE dataset [189] synthesized Human image 

datasets according to experimental needs, with data sourced from real scanned 3D 

human models provided by Twindom. Each model was rendered from 496 multi-view 

images. Recent virtual human datasets include CAPE [69] and AGORA [190]. CAPE is the 

first dataset to extend dressed 3D human meshes to multiple poses, generating pose- 

and clothing-conditioned human models from 3D scans. AGORA extends the SMPL-X 

body model to 3D scans, creating 3D postures and body shapes with various poses and 

clothing. 

 

The volume of publicly available annotated datasets is vast. In the performance evaluation 

of virtual human synthesis technologies, only subsets of these datasets are typically 

analyzed, with input formats still predominantly images and videos. Table 3.1 presents 

information on datasets used in several studies, covering both 2D and 3D data. 

 

 

 



66 

 

Table 3.1: Brief information of datasets. 

 

 

 

Dataset Date release The size of the 

experimental 

data 

Category Information 

dimension 

People 

Snapshot 

[191] 

2018 24 video 

sequences, 11 

humans. 

video 2D 

NeRFace 

[140] 

2021 2 minutes 6000 

frames, 

512x512 

resolution. 

video 2D 

ZJU-MoCap 

[187] 

2021 9 dynamic 

human videos. 

video 3D 

Market-1501 

[188] 

2015 32668 images, 

1501 people. 

image 2D 

Human [150] 2021 3D models. video 3D 
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3.4.2 Evaluation Indicators 

This section introduces common accuracy metrics used for quantifying the performance 

of virtual human models, with the selection of metrics depending on the model training 

methods employed. 

 

L1-Loss (Mean Absolute Error, MAE): This metric represents the average of the absolute 

differences between the predicted values and the actual values, providing a 

straightforward measure of prediction accuracy. 

 

LPIPS (Learned Perceptual Image Patch Similarity): Often referred to as "perceptual loss," 

LPIPS systematically evaluates deep features across different structures and tasks. It is 

applicable to a wide range of architectures and supervision levels. Given a real image 𝑥 

and a reconstructed image 𝑥0, perceptual similarity [192] is defined as: 

𝑑(𝑥, 𝑥𝑜) = ∑
1

𝐻𝑙𝑊𝑙
𝑙 ∑ ‖𝑤𝑙 ⊙ (𝑦̂ℎ𝑤

𝑙 − 𝑦̂0ℎ𝑤
𝑙 )‖

2

2
ℎ,𝑤                           (3.19) 

Which is calculated by extracting feature stacks from 𝐿 layers, normalizing them across 

channels, and computing the 𝐿2 distance, scaled by a weight vector 𝑊𝑙). A lower LPIPS 

value indicates better modeling performance and greater similarity between the two 

images. 

 

Inception Score (IS): This score is used to evaluate the performance of GAN models by 

measuring the divergence between the distribution of generated images and real images 

when passed through a classification model trained on real images. A smaller distance 

corresponds to a higher IS, indicating better model performance. 

 

Fréchet Inception Distance (FID): FID calculates the distance between real and generated 

samples in feature space, commonly used to assess the quality of images produced by 

GAN models. FID is computed by comparing the mean and covariance of feature vectors 

from real and generated images [193], which defines as: 
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𝐹𝐼𝐷(𝑥, 𝑔) = ‖𝜇𝑥 − 𝜇𝑔‖ + 𝑇𝑟(𝑋 + 𝐺 − 2√𝑋𝐺)                          (3.20) 

Real and generated images are passed through the Inception Net-V3 model, which 

outputs 2,048-dimensional feature vectors. The covariance matrices of these feature 

vector sets are denoted by 𝑋 and 𝐺, while 𝜇𝑥 and 𝜇𝑔 represent the means of these sets. 

A lower FID score indicates a smaller distance between the distributions of the real and 

generated images, signifying better model performance. 

 

SSIM (Structural Similarity Index): SSIM [194] measures the structural similarity between 

two images, defining image information from the perspectives of luminance, contrast, 

and structure. SSIM values range from -1 to 1, with higher values indicating greater 

similarity, and a value of 1 denoting identical images. Given two images 𝑥 and 𝑦, their 

luminance is denoted by 𝑙, contrast by 𝑐, and structural similarity by 𝑠: 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝑐1

𝜇𝑥
2+𝜇𝑦

2+𝑐1
                                             (3.21) 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝑦+𝑐2

𝜎𝑥
2+𝜎𝑦

2+𝑐2
                                             (3.22) 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦+𝑐3

𝜎𝑥𝜎𝑦+𝑐3
                                               (3.23) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦) ∙ 𝑐(𝑥, 𝑦) ∙ 𝑠(𝑥, 𝑦)                          (3.24) 

𝜇 represents the mean intensity of the image. 𝜎𝑥and 𝜎𝑦 denote the standard deviations 

of images 𝑥 and 𝑦, respectively. 𝜎𝑥𝑦 represents the covariance between images 𝑥 and 𝑦. 

𝑐1, 𝑐2 , and 𝑐3 are constants introduced to stabilize the division, particularly when the 

denominators are close to zero. 

 

When 𝑐3 =
𝑐2

2
, the SSIM index can be expressed as: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                                    (3.25) 

This equation combines the luminance, contrast, and structure components into a single 

measure, with higher SSIM values indicating greater similarity between the two images. 

 

The Mean Square Error (MSE): also known as L2-Loss, is a metric used to quantify the 
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difference between a reference image 𝑓  and a test image 𝑔 . For grayscale images, 

assuming that both the reference image 𝑓 and the test image 𝑔 have dimensions 𝑀 × 𝑁, 

the MSE [194] is defined as follows: 

𝑀𝑆𝐸 =
1

𝑀×𝑁
∑ ∑ (𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗))

2𝑁
𝑗=1

𝑀
𝑖=1                             (3.26) 

In this equation,  𝑓(𝑖, 𝑗)and 𝑔(𝑖, 𝑗) represent the pixel values at position (𝑖, 𝑗)  in the 

reference and test images, respectively. The MSE calculates the average squared 

difference across all pixels, with lower MSE values indicating better similarity between the 

two images. 

 

PSNR (Peak Signal-to-Noise Ratio): PSNR is commonly used in image and signal 

processing to measure the fidelity of an image. It is derived from the logarithm of the 

MSE [194], with higher PSNR values indicating better image quality. For grayscale images, 

assuming that both the reference image 𝑓 and the test image 𝑔 have dimensions 𝑀 × 𝑁, 

the PSNR is defined as follows: 

𝑃𝑆𝑁𝑅(𝑓, 𝑔) =
10𝑙𝑜𝑔10𝑀𝐴𝑋𝑓

2

𝑀𝑆𝐸(𝑓,𝑔)
                                          (3.27) 

For color images, PSNR can be computed for each channel individually, averaged across 

channels, or by converting the image to a different color space such as YUV and 

calculating PSNR for the luminance component. 

 

PSNR is generally related to the fidelity of a signal, while SSIM is more aligned with the 

human visual system, better reflecting the fidelity of reconstruction results. LPIPS, which 

extracts features using deep learning networks, is considered the most closely aligned 

with human perception, effectively capturing perceptual similarity between images. 

 

In Chapter 4, these aforementioned datasets and indicators will be utilized in experiments 

and validation. In the next chapter, we will elaborate on how to extend the various 

methods discussed in this chapter, innovatively integrating attention mechanisms to 

construct the model architecture, thereby achieving state-of-the-art performance in 

human pose and shape reconstruction and detailed human model optimization.   
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4. Experiment and Results  

4.1 Human Shape and Pose Reconstruction  

4.1.1 Introduction 

Directly regressing 3D human pose and shape (HPS) from RGB images holds significant 

potential in various advanced fields such as robotics, computer graphics, and 

augmented/virtual reality (AR/VR). The primary objective of this task is to take a single 

image or a sequence of video frames as input and predict the parameters of a human 

body model, such as SMPL [57]. The advent of deep convolutional neural networks (CNNs) 

has driven rapid advancements in this domain [9, 94, 195, 196].  

 

Building on the success of attention mechanisms in other tasks [197, 198, 199, 200], we 

have incorporated body part segmentation to supervise the attention masks initially. 

Subsequently, we transition to end-to-end training using only pose supervision, allowing 

the attention mechanism to autonomously extract relevant information from both the 

body and surrounding pixels. This approach enables the network to focus on regions that 

it identifies as informative in an unsupervised manner, enhancing its ability to handle 

complex visual inputs where occlusions and other challenges may arise. 

4.1.2 Method 

4.1.2.1 Insights and Body Model 

Building on the aforementioned observations, our work is informed by several key 

insights. First, while state-of-the-art (SOTA) networks [9, 94, 195] are capable of implicitly 

learning to focus on meaningful regions, they do so with limited spatial information after 

global average pooling. To more accurately discern whether body parts are visible or 

occluded, our approach leverages a pixel-aligned structure where each pixel corresponds 
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to a specific region in the image, storing a pixel-level representation in the form of a 

feature volume.  

 

Second, recognizing that estimating attention weights and learning end-to-end trainable 

features for 3D pose estimation are distinct tasks, our method employs two separate 

feature volumes: one derived from the 2D part branch, which is responsible for estimating 

attention weights, and another from the 3D body branch, which handles SMPL parameter 

regression.  

 

Finally, to effectively model the dependencies between body parts, our approach utilizes 

part segmentations as soft attention masks. These masks modulate the contribution of 

each feature in the 3D body branch, allowing for joint-specific adjustments that enhance 

the accuracy of the overall pose estimation. 

 

SMPL [57] represents the body pose and shape by 𝜃, which consists of the pose 𝜃 ∈ 𝑅72 

and shape 𝛽 ∈ 𝑅10  parameters. Here we use the gender-neutral shape model as in 

previous work [9, 195]. Given these parameters, the SMPL model is a differentiable 

function that outputs a posed 3D mesh 𝑀(𝜃, 𝛽)  ∈ 𝑅6890×3. The 3D joint locations 𝐽3𝐷 =

𝑊𝑀 ∈ 𝑅𝐽×3, 𝐽 =  24, are computed with a pretrained linear regressor 𝑊. 
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4.1.2.2 Architecture and Losses 

 

Figure 4.1: Model architecture. 

For a given input image, our model first extracts two distinct pixel-level features (P and 

F). These features are subsequently fused using a part-attention module, resulting in a 

consolidated feature  𝐹′. This final feature is used to simultaneously regress the camera 

parameters and the SMPL body mesh. 

 

Our architecture showing in Figure 4.1 operates as follows: Given an input image 𝐼 

(224*224), we first utilize a CNN backbone to extract volumetric features. ResNet-50 [201] 

is a deep convolutional neural network consisting of approximately 50 layers. The network 

begins with standard convolutional and pooling layers, followed by four main stages that 

progressively extract features. Each stage is composed of multiple stacked "bottleneck 

residual blocks." Finally, the network outputs classification results through global average 

pooling and a fully connected layer. Our extracted volumetric features (A dimension of 

7 × 7 × 2048 ) are from a layer preceding the global average pooling layer. This is 

followed by two distinct feature extraction branches, each performing three rounds of 

2 × upsampling to obtain feature maps with a size of 56 × 56. 

 

The first branch, which we refer to as the 2D part branch, 𝑃 ∈ 𝑅𝐻×𝑊×(𝐽+1), models 𝐽 part 

attention masks and one background mask, where 𝐻 and 𝑊 represent the height and 

width of the feature volume, respectively. Each pixel at location (ℎ, 𝑤) within this volume 
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stores the likelihood of belonging to a specific body part 𝑗. In the 2D Part Branch, a 1×1 

convolution is also applied for dimensionality reduction, resulting in a final channel count 

of J + 1 = 25 (corresponding to the 24 joints in the SMPL model plus one background 

channel). 

 

The second branch, denoted as 𝐹 ∈ 𝑅𝐻×𝑊×𝐶 , is responsible for 3D body parameter 

estimation. It shares the same spatial dimensions 𝐻 × 𝑊 as 𝑃, but differs in the number 

of channels which is 𝐶. For the 3D Body Branch, the output feature map is a tensor with 

dimensions 56 × 56 × 256. 

 

Let 𝑃𝑗 ∈ 𝑅𝐻×𝑊  and  𝐹𝑐 ∈ 𝑅𝐻×𝑊  represent the 𝑗_𝑡ℎ  and 𝑐_𝑡ℎ  channels of 𝑃  and 𝐹 , 

respectively. The final feature tensor  𝐹′ ∈ 𝑅𝐽×𝐶 is constructed such that each element in 

𝐹𝑐  contributes proportionally to  𝐹′  according to the corresponding elements in 𝑃𝑗 , 

following spatial softmax normalization 𝜎. Formally, the element at location (𝑗, 𝑐) in  𝐹′ is 

computed as: 

𝐹𝑗,𝑐
′ = ∑ 𝜎(𝑃𝑗) ⊙ 𝐹𝑐ℎ,𝑤                                               (4.1) 

where ⊙ is the Hadamard product. 

 

In other terms, we utilize the attention map 𝜎(𝑃𝑗) as a soft attention mechanism to 

aggregate features within the feature map 𝐹𝑐 . This process can be efficiently executed 

through a dot product operation, akin to existing attention mechanisms: 𝐹′ = 𝜎(𝑃̃)⊤𝐹̃, 

where 𝑃̃ ∈ 𝑅𝐻𝑊×𝐽  and 𝐹̃ ∈ 𝑅𝐻𝑊×𝐶  represent the reshaped attention map 𝑃 (excluding 

the background mask) and the feature map 𝐹 , respectively. This attention operation 

indicates that if a specific pixel has a higher attention weight, its corresponding feature 

will have a more significant contribution to the final representation 𝐹′.  

 

To guide the attention maps toward the appropriate regions, we supervise the 2D part 

branch 𝑃 using ground-truth segmentation labels, enabling the attention maps of visible 

parts to converge to the corresponding regions. However, for occluded parts, this 
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supervision method tends to assign zero attention weights to all pixels in 𝑃𝑗 since these 

parts are absent in the ground-truth segmentation labels. An attention map comprising 

solely of zero weights is both undesirable and impractical, as the spatial softmax 

operation necessitates that all elements sum to 1. Consequently, we implement a hybrid 

approach: initially, we supervise the 2D part branch during the early stages of training, 

followed by unsupervised training. This strategy enables the network to focus on other 

relevant regions to accurately estimate the poses of occluded joints. 

 

We utilize the complete feature tensor 𝐹′ to regress the body shape 𝛽 and to estimate a 

weak-perspective camera model characterized by scale and translation parameters 

[𝑠, 𝑡], 𝑡 ∈ 𝑅2 . Additionally, each row 𝐹𝑗
′  of the tensor is independently processed by 

distinct multilayer perceptrons (MLPs) to predict the rotation of each body part. The 

rotation 𝜃𝑗 is parameterized as a 6D vector, as described in prior works [88, 188]. 

In summary, we define total loss: 

𝐿 = 𝜆2𝐷𝐿2𝐷 + 𝜆3𝐷𝐿3𝐷 + 𝜆𝑆𝑀𝑃𝐿𝐿𝑆𝑀𝑃𝐿 + 𝜆𝑃𝐿𝑃                          (4.2) 

Where： 

𝐿2𝐷 = ‖𝐽2𝐷 − 𝐽2𝐷‖
𝐹

2
                                                (4.3) 

𝐿3𝐷 = ‖𝐽3𝐷 − 𝐽3𝐷‖
𝐹

2
                                                (4.4) 

𝐿𝑆𝑀𝑃𝐿 = ‖Θ − Θ̂‖
2

2
                                                 (4.5) 

𝐿𝑃 =
1

𝐻𝑊
∑ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝜎(𝑃ℎ,𝑤), 𝑃̂ℎ,𝑤)ℎ,𝑤                         (4.6) 

Here, 𝑥 denotes the ground truth for the corresponding variable 𝑥. To calculate the 2D 

keypoint loss, the SMPL 3D joint locations 𝐽3𝐷(𝜃, 𝛽) = 𝑊𝑀(𝜃, 𝛽) are first derived, where 

they are computed from the body vertices using a pretrained linear regressor 𝑊. Utilizing 

the inferred weak-perspective camera model, the 2D projection of the 3D joints 𝐽3𝐷 is 

then determined as  𝐽2𝐷 ∈ 𝑅𝐽×2 = 𝑠 ∏(𝑅 𝐽3𝐷) + 𝑡 , 𝑅 ∈ 𝑆𝑂(3)  is the camera rotation 

matrix which conditions satisfy: its inverse is equal to its transpose, and the determinant 

of the rotation matrix is equal to 1. The projection ∏ is orthographic. 
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The scalar coefficient 𝜆  is employed to balance the various loss terms. Let 𝑃ℎ,𝑤 ∈

𝑅1×1×(𝐽+1) represent the fiber of 𝑃 at the location(ℎ, 𝑤)) and let 𝑃̂ℎ,𝑤 ∈ {0,1}𝐽+1 denote 

the ground-truth part label at the same location, expressed as a one-hot vector. The part 

segmentation loss 𝐿𝑃 is defined as the cross-entropy loss between 𝑃ℎ,𝑤 after applying 

softmax and 𝑃̂ℎ,𝑤 , averaged over all 𝐻 × 𝑊 elements. It is important to note that this 

softmax operation normalizes along the fiber 𝑃ℎ,𝑤, whereas the softmax in Equation 4.1 

normalizes across the slice 𝑃𝑗. 

4.1.3 Experiments and Results 

For all experiments, we utilized a fixed image size of 224 x 224 pixels. The model was 

optimized using the Adam optimizer with a learning rate of 5 × 10−5 and a batch size of 

64. Our model was trained on several datasets, including COCO [202], MPII [203], LSPET 

[204], MPI-INF-3DHP [205], and Human3.6M [150]. Pseudo-ground-truth SMPL 

annotations for in-the-wild datasets were provided by EFT [92]. Part segmentation labels 

were generated by rendering segmented SMPL meshes, corresponding to 24 parts 

associated with the 24 SMPL joints. We employed the PyTorch reimplementation [206] of 

Neural Mesh Renderer [207] to render the parts.  

 

To accelerate convergence, the backbone used is first pre-trained on MPII [203] for 2D 

pose estimation. We assign different weight coefficients to each term in the loss function: 

𝜆2𝐷 = 200, 𝜆3𝐷 = 200, 𝜆𝑆𝑀𝑃𝐿 = 40, 𝜆𝑃 = 40 . For samples lacking part segmentation 

labels, the 2D branch was not supervised.  

4.1.3.1 Training 

Here we briefly introduce details of training datasets: 

MPI-INF-3DHP [205] is a multi-view indoor dataset for 3D human pose estimation. The 

3D annotations in this dataset are obtained using a commercial markerless motion 

capture software, which results in less accuracy compared to some other 3D datasets, 

such as Human3.6M [150]. We utilize all training subjects from S1 to S8, totaling 90,000 
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images. 

 

Human3.6M [150] is an indoor, multi-view dataset for 3D human pose estimation. 

Consistent with previous approaches, we use images from 5 subjects (S1, S5, S6, S7, S8) 

for training, amounting to 292,000 images. 

 

The in-the-wild 2D keypoint datasets COCO [202], MPII [203], and LSPET [204] each 

contain 2D keypoint annotations. Specifically, MPII has 14,000 instances, COCO has 

75,000 instances, and LSPET has 7,000 instances. Additionally, we make use of pseudo-

SMPL annotations provided by the EFT [92] method, in conjunction with these 2D 

keypoint annotations. 

 

To achieve the final optimal model, we adopt the data sampling strategies outlined in EFT 

[92] and SPIN [195], which employ fixed data sampling ratios for each batch. Initially, we 

train with 100% COCO-EFT for 175,000 steps. Subsequently, we integrate 50% Human3.6M, 

30% In-the-Wild (i.e., [COCO, MPII, LSPET]-EFT), and 20% MPI-INF-3DHP datasets into 

the training process. We also find that alternative combinations, such as [50% Human3.6M, 

30% COCO-EFT, 20% MPI-INF-3DHP] or [20% Human3.6M, 30% COCO-EFT, 50% MPI-INF-

3DHP], yield comparable performance on the 3DPW dataset. 

 

In table 4.2, during the ablation experiments, we trained our model and our baseline 

models on COCO for 175,000 steps and evaluated them on the 3DPW and 3DPW-OCC 

datasets. Subsequently, we incorporated all training data to compare our work with 

previous state-of-the-art methods. This pretraining strategy facilitated faster 

convergence and reduced the overall training time. Training our model to convergence 

required approximately 120 hours on an Nvidia RTX 3070 GPU. 

4.1.3.2 Evaluation 

The 3DPW [208] test split, 3DPW-OCC [208, 209], and 3DOH [209] datasets are utilized 
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for evaluation. We report the Procrustes-aligned mean per joint position error (PA-MPJPE) 

and the mean per joint position error (MPJPE), both measured in millimeters. Additionally, 

for the 3DPW dataset, we also report the per vertex error (PVE) in millimeters. 

 

Comparison to the State-of-the-Art. Table 4.1 presents a comparison of our method with 

previous single-RGB-image human pose and shape (HPS) estimation methods. Our 

method achieves a significant improvement in PA-MPJPE performance compared to 

HMR-EFT [92], one of the best-performing methods in recent years. 

 

Method 𝑀𝑃𝐽𝑃𝐸 ↓ 𝑃𝐴 − 𝑀𝑃𝐽𝑃𝐸 ↓ 𝑃𝑉𝐸 ↓ 

TE
M

P
O

R
A

L 

HMMR [9] 116.5 72.6 - 

Doersch et al. [210] - 74.7 - 

Sun et al. [211] - 69.5 - 

VIBE [94] 93.5 56.5 113.4 

MEVA [212] 86.9 54.7 - 

M
U

LT
IS

TA
G

E 

Pose2Mesh [213] 89.2 58.9 - 

Zanfir et al. [214] 90.0 57.1 - 

I2L-MeshNet [215] 93.2 58.6 - 

LearnedGD [216] - 56.4 - 

SI
N

G
LE

 S
TA

G
E 

HMR [9] 130.0 76.7 - 

CMR [217] - 70.2 - 

SPIN [195] 96.9 59.2 135.1 

HMR-EFT [92] - 54.2 - 

Ours 84.1 53.2 102.6 

Table 4.1: Evaluation on the 3DPW dataset. 

Ablation Experiments: Table 4.2 provides a detailed summary of our ablation experiments 

aimed at investigating the role of part attention in our model. Initially, we compared our 

approach with Neural Body Fitting (NBF) [218], trained under the same conditions. NBF 
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represents a straightforward combination of part segmentation and human body 

regression. As demonstrated in Table 4.2, NBF’s two-stage approach is outperformed 

even by the HMR-EFT baseline. 

 

Method 3DPW 3DPW-OCC 

𝑀𝑃𝐽𝑃𝐸 ↓ 𝑃𝐴 − 𝑀𝑃𝐽𝑃𝐸 ↓ 𝑀𝑃𝐽𝑃𝐸

↓ 

𝑃𝐴 − 𝑀𝑃𝐽𝑃𝐸 ↓ 

 NBF 100.4 63.2 103.5 70.4 

HMR-EFT 99.0 59.9 97.9 64.7 

P Supervision F Sampling  

(a) Joints Pooling 95.4 59.2 95.8 63.2 

(b) Joints Attention 95.6 59.0 99.0 63.9 

(c) Uns Attention 95.0 58.2 97.0 63.0 

(d) Parts Attention 94.8 57.6 94.8 61.3 

(e) Parts/Uns Attention 93.7 57.4 94.1 61.9 

(f) Parts Pooling 98.4 59.5 100.1 65.3 

Table 4.2: Part attention ablation experiments. 

 

We then explored various supervision strategies for the 2D part branch 𝑃 and different 

methods for sampling the final features 𝐹′ from 𝐹 . In the "Uns" condition, 𝑃 was not 

supervised. Inspired by HoloPose [219], we first supervised the 2D branch using keypoints 

and applied bilinear sampling to pool the 3D features (Table 4.2-a). While this approach 

resulted in lower errors compared to HMR, the improvement was marginal. This is likely 

because sparse keypoints do not sufficiently cover the spatial area needed to effectively 

model body parts. 

 

Given that the 2D branch predicts Gaussian heatmaps, which encompass a broader spatial 
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area than discrete keypoints, we next investigated the use of soft attention instead of 

pooling, to achieve a larger effective receptive field (Table 4.2-b). However, this approach 

did not fully exploit the capabilities of soft attention, which ideally should learn to focus 

on relevant regions directly from the data. Therefore, we removed supervision from the 

2D branch to assess whether soft attention alone could perform as effectively as explicit 

supervision (Table 4.2-c). Visualization of the resulting attention maps revealed that they 

did not adequately focus on the body parts. 

 

To introduce greater structure, we then supervised the 2D branch using part 

segmentation labels (Table 4.2-d). This method yielded significantly better results than 

the previous attempts. Nonetheless, a limitation remains: supervising with a segmentation 

loss constrains the attention map to focus solely on predefined parts, whereas purely soft 

attention has the potential to attend to any region deemed informative by the model. To 

address this, we employed a mixed supervision strategy, applying the part segmentation 

loss for approximately 125,000 steps, followed by continued training without supervision 

(Table 4.2-e). This final approach produced the best results. We also conducted 

experiments with part segmentation and pooling to investigate the impact of soft 

attention (Table 4.2-f).  

 

In figure 4.2, we provide People Snapshot [191] test results. Our results are composed of 

the input images and the corresponding output SMPL human models. The experimental 

results demonstrate that our algorithm successfully reconstructs human bodies from 

monocular images while achieving reasonably accurate proportions for different body 

parts. 
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(a)                                          (b)                                             (c)                         

   

                    (d)                                          (e)                                             (f) 

   

(g)                                          (h)                                             (i) 

Figure 4.2: People Snapshot [191] test results. 

 

In the first row, we present reconstruction results from portrait images with green-screen 

backgrounds. The second row showcases results from indoor daily scenes, while the third 

row displays reconstructions from outdoor environments. These successful 

reconstructions highlight the robustness of our algorithm across varying environmental 

backgrounds. 
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Our algorithm was also evaluated on reconstructing human models from images with 

varying clothing styles: figure 4.2-c and figure 4.2-h wearing a short-sleeved T-shirt, 

figure 4.2-c and figure 4.2-i wearing shorts, and figure 4.2-b and figure 4.2-f dressed in 

a loose long-sleeved top. The successful reconstructions in these cases further 

demonstrate the robustness of our method of handling different clothing conditions. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4.3: Complex poses test results.  

Examples come from different datasets, including COCO (a, c), 3DPW (e), and 

Human3.6M (g). 

 

We further tested the performance of our algorithm under complex conditions. Figure 

4.3-a shows a skateboarder bending down to sprint, Figure 4.3-c depicts a skateboarder 

raising both hands to perform a technical move, Figure 4.3-e presents a fencer executing 

a fencing action, and Figure 4.3-g illustrates a person lifting a leg under dim lighting. In 

Figures 4.3-b, d, f and h, our algorithm successfully reconstructed various poses and 

shapes in these challenging scenarios. The successful reconstructions in these cases 

further demonstrate the robustness of our method of handling complex poses conditions. 
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4.1.4 Summary 

In this chapter, we discussed a novel body part-driven attention framework that leverages 

pixel-aligned local features for regressing body pose and shape. This method has 

demonstrated superior performance in benchmark tests across various datasets. The 

approach developed in this chapter will be further applied in the subsequent chapter, 

focusing on human body reconstruction tasks, where the effectiveness of this framework 

will be further validated and expanded upon. 

4.2 Digital Human Model Obtainment  

4.2.1 Introduction 

Digital humans, which are computer-generated 3D representations of real people, are 

crucial in creating immersive experiences in a number of recent technological 

developments, e.g., virtual and augmented reality, and Metaverse which has been gaining 

a lot of attentions in recent years. They provide a sense of realism and interactivity that is 

difficult to achieve with traditional computer-generated graphics. As a result, there has 

been a significant increase in the development of new applications of digital humans in 

various industries, including manufacturing, gaming, entertainment, education, and 

healthcare. However, the existing measurement methods of obtaining digital human 

models are either too expensive or lack accuracy, which presents a challenge for 

developers looking to create quality and realistic digital humans. The cost of creating a 

digital human model by using active scanners can be prohibitively expensive, especially 

for smaller companies and indie developers. This is because the process involves a lot of 

time and resources, including specialized equipment, software, and skilled personnel, and 

has special requirements for target people such as standing still for a long time [220, 221]. 

Additionally, the accuracy of the model can be compromised if the data used to create it 

is incomplete or of poor quality. 
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To address these challenges, researchers and developers are exploring new ways to 

create high-quality and affordable digital human models. A promising approach is to use 

deep learning algorithms to generate realistic human models from a small amount of 

data. Recently, there are a lot of learning-based work produced. Considering object or 

scene representation in 3D learning, those works can be simply categorized as explicit 

representation-based and implicit representation-based.  

 

Explicit representation-based models. Polygon mesh statistical human body models [222, 

223, 224, 57, 62] have been widely used in 3D human reconstruction as an explicit 

representation model. A polygon mesh is a data structure that represents a polyhedron 

by defining its surface as a collection of vertices and faces. This representation is useful 

for conveying topological information about the object's surface and provides a high-

quality description of 3D geometric structures. Additionally, polygon meshes are 

memory-efficient and can be easily textured, making them a versatile tool for various 

applications in computer graphics and visualization. In [91, 94, 195, 225, 226, 227], those 

single image-based work estimates a naked human body model from a monocular 

camera picture. Although those works produced some fine results, they still need further 

process to dress clothes up. To solve this problem, some other work [14, 66, 68, 70, 191, 

228, 229, 230] directly learns a mesh human body model with clothes offset from images. 

The resulting clothed 3D human models inherit the skeleton and surface covering weights 

of the based body model, facilitating their animation. However, a significant challenge 

lies in modelling clothing articles such as skirts and dresses, which exhibit substantial 

deviations from the body surface. The conventional approach of using body-to-cloth 

offsets is inadequate in such cases. 

 

Implicit representation-based models. In contrast to meshes, deep implicit functions 

[118-119] could represent highly detailed 3D shapes with arbitrary topology and are not 

subject to resolution limitations. Recent research by Saito et al. [126,127] has employed 

deep implicit functions to reconstruct 3D human shapes from RGB images, achieving high 
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levels of geometric detail and accurate alignment with image pixels. However, this 

approach suffers from a lack of regularization, resulting in various artifacts such as broken 

or missing limbs, incomplete details, and geometric noises. To address this issue, some 

researchers [231-233] have incorporated additional features, such as coarse-occupancy 

prediction and depth information from RGB-D cameras, to enhance the accuracy and 

robustness of the shape estimation. In addition, some [234,235] have proposed efficient 

volumetric sampling schemes to speed up the inference process. Nevertheless, a major 

limitation of all these methods is that the resulting 3D human shapes cannot be reposed, 

as implicit shapes do not possess a consistent mesh topology, a skeleton, or skinning 

weights that are typically found in statistical models. 

 

In summary of these related work, the learning-based human body reconstruction 

method provided a significant result with only a few inputs. Although training neural 

networks may require large, labelled 3D digital human datasets and cost large 

computation resources and time, it is very convenient and efficient for end users. 

Consumers may only need to upload a small amount of data and wait for the returned 

result from the cloud service. But most learning-based works focus on recovering full 

human body from one image with the powerful prediction ability of neural network. This 

data-driven prediction method may achieve a great result in pose estimation tasks [236-

238], but also lead to an ambiguity problem caused by a lack of unseen body information 

from only one image. It is hard to guess detailed back information from front body image, 

despite a strong pre-trained network. Hence, we address our problem of finding a 

balance and a connection between typical measurement method and the popular 

learning-based method to generate a digital human from inputs.  

 

In this chapter, we present our prediction-measurement pipeline to reconstruct a detailed 

human body model from a set of self-rotated target human images captured by a single 

monocular camera. We estimate an initial human body model from image sequences by 

a trained neural network and further vertex alignment to optimize it from image to image. 
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Our research focuses on creating a human body model that is easily modifiable. To 

achieve this, we have chosen to utilize a parametric representation of an explicit body 

model known as SMPL (Skinned Multi-Person Linear) [57]. All these related work has 

shown that the SMPL model possesses excellent expansibility with high-quality open-

source resources, which can assist in achieving good results for 3D reconstruction projects. 

This model allows us to generate body shapes that can be easily modified and adapted 

to different needs. We begin by collecting data on the SMPL pose and shape parameters, 

as well as the intrinsic camera parameters from input images. This information is then 

used to prepare for further optimization.  

 

To create the initial body model, we will use the average pose and shape parameters 

from the SMPL model. This initial model will serve as a baseline for further modifications 

and adjustments. This involves projecting the initial SMPL model with the shape and pose 

of the target image and then minimizing the distance between the projected points and 

the silhouette of the target image. By doing so, we are able to obtain shape and pose 

information for every image. This method enables us to create a human body model that 

is easily adaptable to different needs and requirements. We can modify and adjust the 

model based on new input data, allowing us to create more accurate and realistic 

representations of the human body. Overall, our research aims to create a model that can 

be used in a wide range of applications, from computer graphics to medical simulations. 

4.2.2 Method 

In order to make sure our predicted initial human body model is allowed to modify, we 

used a parametric representation of the explicit body model SMPL [57], which will be 

introduced in Section 4.2.2.1. Applying the method we introduced in Section 4.1, we 

collect the estimate results of SMPL pose and shape parameters and intrinsic camera 

parameters from input images for the preparation of further vertex aligned optimization.  

And we will build the initial body model with an average pose and shape parameters in 

the SMPL model, which will be discussed in Section 4.2.2.2. Section 4.2.2.3 will detail our 
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optimization method. Since we obtain shape and pose information of every image, we 

project the initial SMPL model with shape and pose of target image and minimize the 

distance between projected points to silhouette of target image [244]. 

4.2.2.1 SMPL Parameterized Human Body Model 

The SMPL model [57] is a powerful method for characterizing the human body in terms 

of both body shape and motion posture. It achieves this through the use of two sets of 

statistical parameters: body shape parameters and pose parameters. 

The body shape parameters, denoted as 𝛽, are used to describe an individual's physique. 

This 10-dimensional vector allows for the quantification of a person's body shape along 

various dimensions such as height, weight, and overall body proportions. Each dimension 

of 𝛽 can be thought of as a specific indicator of a person's physical characteristics, which 

collectively describe their overall body shape. 

 

On the other hand, the pose parameters, denoted as 𝜃, are used to describe the motion 

posture of the human body. This set of parameters comprises 24 × 3 dimensions, with 24 

representing the number of joints and 3 representing the axis-angle representation used 

to describe rotations. This allows for a detailed and comprehensive description of the 

human body's motion posture. 

 

To characterize the human body using these parameters, the SMPL model utilizes a base 

template or mean template 𝑇𝑚, which serves as a reference shape. The shape parameters 

are then linearly superimposed on this base template to produce the final 3D mesh, with 

the bias for each shape parameter being calculated using the 𝐵𝑠(𝛽) function learned 

from data. This allows for the generation of meshes that accurately reflect the desired 

body shape. 

                            𝐵𝑠(𝛽) = ∑ 𝛽𝑛
|𝛽|
𝑛=1 𝑆𝑛                                                  (4.7) 

where 𝑆 is learned through data and has dimensions of (6890, 3, 10). 
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Similarly, the effect of different pose parameters is determined using the 𝐵𝑝(𝜃) function, 

which is calculated relative to the T-pose state to account for changes in posture. This 

enables the creation of meshes that accurately reflect the desired motion posture. 

               𝐵𝑝(𝜃) = ∑ (𝑅𝑛(𝜃) − 𝑅𝑛𝜃∗)𝑃𝑛
9𝐾
𝑛=1                                       (4.8) 

Each pose parameter is represented by a rotation matrix 𝑅, so there are 9𝐾 dimensions. 

P (i.e., the weight matrix) is learned through data and has dimensions of (6890, 3, 207), 

where 207 is obtained from 23 × 9. 

 

Finally, the SMPL model accounts for skin deformation caused by joint motion through a 

skinning process. This involves a weighted linear combination of skin nodes that change 

with the joint, with the weights determined based on the distance of the endpoint from 

the joint. Closer endpoints are more strongly influenced by joint rotation or translation, 

resulting in a more realistic and accurate representation of the human body's motion. 

Here the template is defined as: 

                𝑇(𝛽, 𝜃) = 𝑇𝑚 + 𝐵𝑠(𝛽) + 𝐵𝑝(𝜃)                                        (4.9) 

 

Since SMPL body template is a representation of a naked human body, we add an offset 

S as a detailed cloth supplement: 

          𝑇(𝛽, 𝜃, 𝑆) = 𝑇𝑚 + 𝐵𝑠(𝛽) + 𝐵𝑝(𝜃) + 𝑆                                 (4.10) 

 

A pose and shape driven detailed SMPL model is further defined as: 

          𝑀(𝛽, 𝜃, 𝑆) = 𝑊(𝑇(𝛽, 𝜃, 𝑆) + 𝐽(𝛽), 𝜃, 𝒲)                              (4.11) 

where 𝑊 is the Linear Blend Skinning (LBS) function, 𝐽(𝛽) is the locations of 24 skeleton 

joints; 𝒲 is the learned blend weights. 

4.2.2.2 Images Information Extraction 

In this section, we extract information from input images with several deep learning 

technologies. We collect SMPL model shape and pose parameters with a network which 

introduced in chapter 4 whose main method is to propose a novel deep learning-based 
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approach for estimating 3D human body shape and pose from a single 2D image. The 

method is centred around a part attention regressor, which divides the human body into 

various parts and focuses on each one independently to generate accurate 3D body 

estimations. 

 

The key components of our work’s methodology include: 

1. Part Attention: The network utilizes an attention mechanism to focus on specific body 

parts, enabling it to handle occlusions and varying poses. This mechanism helps the 

network learn and emphasize individual part features, leading to more precise 3D shape 

and pose estimations. 

 

2. Multi-stage Estimation: the model employs a multi-stage estimation process, using an 

initial coarse estimation followed by multiple refinement stages. This hierarchical 

approach allows the network to progressively refine its predictions, leading to higher 

accuracy. 

 

3. Joint 2D-3D Representation Learning: our work learns a joint embedding space of 2D 

and 3D features, enabling it to leverage both 2D and 3D information during the 

estimation process. This joint learning process allows the model to handle a wide range 

of poses and improve overall accuracy. 

 

4. Part-based Loss Function: The model uses a part-based loss function, which 

encourages the network to focus on each body part individually. This loss function helps 

the network to handle complex poses and occlusions, as well as achieve better 

generalization across various body shapes. 

 

In summary, our method leverages a part attention mechanism, multi-stage estimation, 

joint 2D-3D representation learning, and a part-based loss function to achieve the 

accurate 3D human body shape and pose estimations from a single 2D image. 
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We simply initialize an SMPL body model with average estimated shape and pose 

parameters of input images, and further detailed offset optimization will be discussed in 

the next section. 

4.2.2.3 Full Detailed Body Model Optimization 

Given that we have acquired the human body pose and camera position data for all input 

images, we can obtain the projection results of the initialized model concerning angles 

and poses. By comparing the derived contour images with those of the input images, we 

can optimize the vertex parameters of the SMPL model. For the 𝑖𝑡ℎ input image, the 

associated contour of the human body model is denoted as 𝑆𝑖, while the contour of the 

human body in the input image is represented as 𝑆𝑖
′. In accordance with a differentiable 

renderer approach [239], we employ an Intersection-over-Union error metric for the 

optimization process. 

            𝐿𝑠𝑖𝑙 =
1

𝑓
∑ (1 −

‖𝑆𝑖 ⊗ 𝑆𝑖
′‖

1

‖𝑆𝑖 ⊕ 𝑆𝑖
′−𝑆𝑖 ⊗ 𝑆𝑖

′‖
1

)
𝑓
1                                      (4.12) 

 

Where ⨂ is an element wise product and ⨁ is a sum operator. 

 

We also add a Laplacian mesh regularizer [240] to ensure the deformation process 

smoothly. The regularizer is defined as: 

             𝐿𝑙𝑝 = ∑ ‖𝐿(𝑣𝑖) − 𝐿(𝑣𝑖(𝛽, 0))‖
2𝑁

1                                     (4.13) 

where L is a Laplace operator, v is the vertices set. 

 

Similar to [191], we penalize the difference between the optimized detailed body model 

vertices and the standard SMPL template body model vertices to avoid large differential 

error. 

                𝐿𝑑𝑖𝑓 = ∑ ‖𝑣𝑖(𝛽, 𝑆) − 𝑣𝑖(𝛽, 0)‖2𝑁
𝑖=1                                   (4.14) 

 

Our joint optimized formula is defined as: 
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                     𝐿 = 𝐿𝑐ℎ𝑎𝑚 + 𝐿𝑠𝑖𝑙 + 𝑤𝑙𝑝𝐿𝑙𝑝 + 𝑤𝑑𝑖𝑓𝐿𝑑𝑖𝑓                                (4.15) 

Where 𝑤𝑙𝑝 and 𝑤𝑑𝑖𝑓are the balance weights. 𝐿𝑐ℎ𝑎𝑚 is Chamfer matching loss introduced 

in Section  3.2.2. The loss function is optimized by The Dog Leg Method which is a 

numerical optimization algorithm used for solving nonlinear least squares problems. It 

falls under the category of trust region methods and enhances computational efficiency 

by combining the characteristics of the steepest descent method and the Gauss-Newton 

method. 

 

By minimizing the loss function L, we modify the vertices of SMPL model and finally collect 

a detailed body model with cloth information offset. Since SMPL is a pose and shape 

parametric driven model, the result model can be further animated, which is suitable for 

more applications. 

4.2.3 Results and Evaluation 

 

                        (a)                                           (b)                                          (c) 

Figure 4.4: Overview of our method. 

From left to right, input images, predicted SMPL model, optimized SMPL-offset model. 

  

We test our method in People-snapshot dataset [191], Figure 4.4 shows the results of 

every step. The input images (Figure 4.4-a) are captured by a stable camera, and 

photographed person is self-rotated with a fixed pose. We do not need photographed 

person keep this pose strictly, a slight change is acceptable. In our method, we extract 

some frames from the video of dataset, our test used f=100 frames to reconstruct body 

model. 
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The mid image (Figure 4.4-b) shows the initial SMPL model reconstructed from 

information extracted from input images in step one. We take an estimated average pose 

and shape parameter of images applying to the SMPL template. The main computing 

cost here is information extraction with deep neural network, also the accuracy is 

determined by the efficiency of the state-of-the-art network.  

 

Our approach takes about 100 seconds for optimizing every frame. We remove the pose 

parameter in the result, and a standard T-pose SMPL model is showing in the Figure 4.4-

c. And we provide multi-view reconstructed human models in Figure 4.5 to demonstrate 

that our algorithm effectively operates across the entire 3D orientation of the human 

body, with both frontal and dorsal anatomical features being accurately characterized. 

Our result can be further modified and rendered. Compared with the initial model, we 

successfully recovered some hair, face and cloth details in the SMPL model with offset. 

 

 

(a)                                              (b)                                           (c) 

Figure 4.5: Detailed optimized SMPL-offset model. 

 

In Figure 4.6, we provide People Snapshot [191] test results. Our results are composed of 

the input images and the corresponding output detailed human models. The 

experimental results demonstrate that our algorithm successfully reconstructs human 

bodies from monocular images while achieving reasonably accurate proportions for 

different body parts and details like hair and clothes. 
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(a)                                                (b) 

  
(c)                                                (d) 

  
(e)                                                (f) 

  
(g)                                                (h) 

Figure 4.6: More detailed optimized SMPL-offset model results. 
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We present a set of mixed-result images comprising input photos with varying genders, 

clothing, and backgrounds, alongside their corresponding reconstructed human models. 

In the comparative pairs (Figure 4.6- a vs. b, c vs. d, e vs. f), we employed the same subject 

wearing different outfits under distinct settings—indoor, outdoor, and green-screen 

environments—to evaluate our algorithm's performance. The results demonstrate that 

our method robustly handles human model reconstruction across diverse backgrounds 

while accurately preserving fine clothing details. 

 

We also compared our work with other current state-of-art method in Table 4.3, we have 

better performance. 

 

Method 𝐼𝑆 ↓ 𝐹𝐼𝐷 ↓ 𝐿𝑃𝐼𝑃𝑆 ↓ 𝑆𝑆𝐼𝑀 ↑ 

StylePeople [138] 1.7469 272.1 0.0836 0.9012 

LWGAN [137] 1.7159 1771.9 0.2727 0.2876 

360Degree [97] 1.8643 1383.1 0.2123 0.8079 

Ours 1.7002 254.2 0.0644 0.9342 

Table 4.3: Comparation of different methods in People Snapshot dataset. 

IS (Inception Score), FID (Fréchet Inception Distance), LPIPS (Learned Perceptual Image 

Patch Similarity) and SSIM (Structural Similarity Index) have been briefly introduced in 

3.4.2. ↓ means smaller indicators refer to better performance, ↑ means larger indicators 

refer to better performance. 

 

We build upon prior research [241] by utilizing the Pablo sequence from their dataset to 

perform a quantitative analysis. The dataset provides ground truth in the form of surface 

meshes and 3D joints, which were captured using a multi-view performance capture 

method [242]. Our method is compared with a state-of-the-art template-based 

performance capture technique [241] and several single-image human reconstruction 

approaches [66, 115, 126, 127, 230]. Since body pose estimation is not performed in [66], 

we apply our estimated body pose to their T-pose results for a fair comparison. 
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To evaluate our method, we use a surface reconstruction metric. Due to the inherent 

depth-scale ambiguity in single-view reconstructions, we first compute a global scaling 

factor to adjust our results in relation to the ground truth. We then align our results to 

the ground truth through translation to correct for any global depth offsets. The 

evaluation metric is the average point-to-surface distance between all ground truth 

vertices within the clothing region and our output mesh. The clothing region, which 

includes the T-shirt and shorts, is manually segmented from the ground truth surface 

mesh. This procedure is uniformly applied across all methods under evaluation.  

 

We report the mean surface error averaged across all frames in the middle column of 

Table 4.4. Our method demonstrates a significantly lower surface error compared to all 

previous single-image surface reconstruction methods. Moreover, our performance is 

comparable to the template-based tracking method [241], which relies on a pre-scanned 

personalized template to provide detailed prior information about the subject's body and 

clothing shape. In contrast, our method operates without a pre-processed template, 

making it applicable to a broader range of videos. 

 

Methods Surface Error Joint Error 

MonoPerfCap [242] 14.6 118.7 

HMD [230] 31.9  

Tex2Shape [66] 27.7  

DeepHuman [115] 24.2  

PIFu [126] 30.5  

PIFuHD [127] 26.4  

Ours 17.8 77.1 

Table 4.4: Quantitative comparison. 

Quantitative comparison with prior research on the Pablo sequence is performed using 

the mean point-to-surface error and the mean joint error across frames. All 
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measurements are reported in mm. Some methods do not provide a SMPL-like model to 

compute joint error. 

 

We evaluate our method against the state-of-the-art RGB-D based approach [243] using 

their dataset, referred to as KinectCap in the main chapter. To ensure a fair comparison, 

we align the scale of their results with the ground truth. The original study evaluated 

performance based on the distance between the scan and the reconstructed mesh. Due 

to noise in the scan data, the authors filtered out points exceeding a certain threshold. 

To facilitate a fair comparison, we report their result obtained using this method, which 

was 2.54 mm. 

 

Since the appropriate threshold for noise filtering in the scan data was unknown and 

different sampling densities can lead to varying results, we adopted the strategy outlined 

in the main chapter and also used in [13]. This involves first performing non-rigid 

registration, regularized by the body model, to achieve a ground truth registration free 

from scan noise. We then compute a bidirectional surface-to-surface distance between 

the ground truth registration and the reconstructed shape. Using this approach, their 

method achieved an accuracy of 3.3 mm, while our method achieved 3.8 mm. 

 

Although our monocular approach does not match the accuracy of depth camera-based 

methods [243], it provides competitive results despite relying solely on a single RGB 

camera. 

 

To generate the texture, we first warp our estimated canonical model back to each frame, 

then back-project the image color onto all visible vertices. Finally, a texture image is 

created by calculating the median of the most orthogonal texels from all viewpoints. In 

Figure 4.7, we present one example of texture map and textured model. 
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(a)                                                       (b) 

Figure 4.7: Texture map and textured human model. 

 

As the results generated by our method still have shortcomings in terms of detail 

representation. We tried a normal map aligned method to refine more details in our result. 

Traditionally, more refined details have been captured using Shape from Shading (SFS) 

[191]. However, for monocular clothing capture in unconstrained environments, we have 

empirically found it challenging to reliably extract such refined details using SFS due to 

the complexity of garment albedo, wide variations in lighting conditions, and self-

shadowing effects. Recently, the success of learning-based approaches [126,127] in 

estimating accurate surface normals for human appearance using neural networks has 

been observed. These estimated surface normals provide robust and direct indications 

for incorporating wrinkles into our clothing capture results to achieve better alignment 

with the original images.  To merge the estimated normals, we use SMPL's inverse pose 

function to transform them into a canonical T-pose. We then optimize the surface 

geometry to fit these merged normals. The Shape-from-Shading loss is defined as:  

             𝐿𝑆𝐹𝑆 = ∑ ∑ ‖𝑛𝑖 − 𝑛̃𝑖
𝑓

‖
2

𝑖∈ν
𝑓=𝑘+1
𝑓=𝑘−1                                      (4.16) 

where ν denotes the subset of visible vertices, where 𝑘 is the current key-frame. 𝑛̃𝑖
𝑓 

denotes the auxiliary normal of vertex 𝑖 calculated from frame 𝑓. All normals are in T-

pose space. 
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Our results shown in Figure 4.8 and a more generalized test of a daily indoor work 

environment images shown in Figure 4.9. 

 

 

 

 
 

(a) Input image                                      (b) Refined model 

Figure 4.8: Detail-refined with normal maps result. 
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(a) Input image                   (b) Front of model                   (c) Back of model 

Figure 4.9: Daily scene test result. 

 

In Figure 4.8, compared with Figure 4.4 and Figure 4.5, our reconstructed details such as 

hair, face and clothes have been significantly improved by normal map refinement. 

 

In Figure 4.9, we show our reconstructed result from a target person standing in front of 

a green screen. We also test our method in a simple and daily environment. And the 

result reveals our method is adaptable. 

 

In Figure 4.10, we compared the textured model optimized using normal maps (a and c) 

with the unoptimized results (b and d). The comparison clearly demonstrates 

improvements in the model's facial and clothing details. Figure 4.10-a and c not only 

exhibit more intricate clothing wrinkles but also show enhanced accuracy and refinement 

in facial structure modeling. 
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(a) (b) 

  

(c) (d) 

Figure 4.10: Comparation of textured models. 

4.2.4 Summary 

In this section, we discussed a vertices-pixels aligned method jointly using deep learning 

method and the key idea of traditional computer 3D graphics to achieve a fine level of 

digital human geometry reconstruction from images. Our method relies on several deep 
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learning-based methods such as pose, and shape estimate from single images. 

Compared with related deep learning-based methods, our method eliminates the 

inherent ambiguity of predicting the complete body model from a single image. With the 

assistance of deep learning techniques such as pose estimation and human parameter 

model prediction, we have improved computational speed and reduced experimental 

conditions compared to traditional optical measurement techniques for obtaining human 

models. Despite some shortcomings in our work, we have successfully demonstrated the 

possibility and potential of combining deep learning with traditional techniques. 

 

Although significant progress has been made in deep learning-based methods for 3D 

human body reconstruction from 2D images, several challenges and limitations still need 

to be addressed. We will discuss these achievements, challenges, limitations and future 

work in next chapter. 
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5. Discussion and future work 

5.1 Discussion 

In this thesis, we first introduce a novel body part-driven attention framework that 

leverages pixel-aligned local features for regressing body pose and shape based on the 

SMPL body model. Subsequently, we shift our focus to the detailed reconstruction of 

human shape. Drawing inspiration from a traditional 3D reconstruction method, visual 

hull, we present an advanced approach for digital human model reconstruction from 

monocular images of a moving person, extending beyond the parameter space of a 

parametric model. Our method enables the estimation of animatable 3D human avatars, 

including detailed elements such as hair, clothing, and surface texture. We achieve state-

of-the-art performance with this approach compared to other similar works. This thesis 

makes a significant contribution to the field: our work simplifies the digitization of humans 

by relying solely on regular videos or even photographs. With advanced performance, 

our method eliminates the need for specialized equipment, enabling the automatic 

reconstruction of detailed human models and the widespread application of virtual 

humans in emerging technologies. 

 

Nevertheless, three critical observations emerged from our work: First, although 

leveraging silhouettes and semantic segmentation makes the problem more manageable 

and applicable to real-world data, it simultaneously abstracts away valuable information. 

Second, regressing 3D vertex locations from 2D images presents an alignment challenge, 

as 2D images and 3D meshes can only be accurately compared by projecting and 

rasterizing the meshes through rendering. Consequently, 3D pose plays a pivotal role in 

supervision, with incorrect poses leading to diminished result quality. Furthermore, by 

relying on the SMPL body model, our methods are limited in representing shapes with 

topologies different from the human body, such as skirts, dresses, long hair, braids, open 

jackets, ties, and scarves. In the subsequent chapter, we explore potential approaches to 
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address this limitation and discuss additional extensions to our current methods. Finally, 

we provide an outlook on potential research directions that extend beyond our current 

methodology. 

5.2 Limitation and Future Work 

The research presented in this thesis adheres to the methodology of model-based 

reconstruction. As previously outlined, this approach relies on a robust prior—a 

parametric statistical body model. This model is meticulously tracked and extensively 

personalized to generate virtual avatars that closely resemble the individuals depicted in 

the input images. Despite the significant advancements contributed to the field through 

this work, several challenges and limitations still need to be addressed: 

1. Handling of Complex Clothing and Occlusions 

Most current methods rely on the SMPL model, which primarily represents the human 

body with minimal clothing. Incorporating complex clothing, accessories, and occlusions 

remains a significant challenge. Future research could explore the integration of 

garment-specific models, leveraging semantic information, or employing unsupervised 

learning techniques to improve the reconstruction of clothed human bodies. 

 

2. Robustness to Lighting and Shadows  

Deep learning models may struggle to generalize varying lighting conditions and 

shadows, which can significantly impact on the accuracy of 3D reconstruction. Developing 

methods that are more robust to these factors, such as incorporating illumination-

invariant features, is an essential direction for future work. 

 

3. Evaluation Metrics and Benchmarks  

Evaluating the performance of 3D human body reconstruction methods is non-trivial due 

to the lack of ground truth data and the subjectivity of visual quality. Developing 

standardized evaluation metrics and benchmarks, including datasets with accurate 

ground truth 3D annotations, is crucial for enabling a fair comparison of methods and 
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guiding future research. 

 

4. Real-Time Performance and Computational Efficiency  

Many deep learning-based methods for 3D human body reconstruction require 

significant computational resources, limiting their applicability in real-time scenarios or 

on resource-constrained devices. Future research should focus on developing efficient 

algorithms and network architectures that can deliver high-quality reconstructions with 

minimal computational overhead. 

 

In summary, while deep learning has shown tremendous potential in the domain of 3D 

human body reconstruction from images, there is still ample room for improvement and 

exploration. Addressing the challenges and limitations discussed in this section will pave 

the way for more accurate, robust, and efficient 3D human body reconstruction 

techniques, ultimately benefiting a wide range of applications, from entertainment and 

virtual reality to healthcare and sports analytics.  

 

Our method is limited by the accuracy and precision of some of the deep learning 

techniques used. Although we have employed multi-angle image optimization to 

minimize the inherent ambiguity of the prior prediction model method as much as 

possible, we still need to spend a considerable amount of computational power and time 

to optimize our loss function. Therefore, in order to achieve faster and higher-precision 

human body model reconstruction, more work needs to be done to optimize the method. 

One approach is to train a deep learning network with multi-angle view priors, allowing 

the network to learn more 3D human body knowledge. Another approach is to improve 

the speed of the multi-view optimization process. 

 

Creating a realistic avatar that can be controlled through low-cost sensors represents just 

one intriguing aspect of virtual human development. Certain applications, such as virtual 

assistants, may need to function autonomously, without a real human directly controlling 
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the avatar. For instance, virtual assistants like Siri, or Cortana could be embodied by 

avatars that resemble real humans. Even in scenarios where a real person controls the 

virtual avatar, sensors may fail to capture the subtle micro-expressions and social cues 

essential for human communication. Yet, we expect these avatars to replicate such 

nuances, particularly in collaborative, multi-user applications. Therefore, virtual humans 

must transcend being mere 3D templates of their real counterparts. Our ultimate goal is 

to achieve full immersion in virtual environments, where avatars not only act, move, and 

speak like their real-world counterparts but may also eventually simulate cognitive 

processes. Achieving this requires a deeper understanding of human behavior, including 

the identification and modeling of social cues and unique motion patterns. 

 

Constructing a virtual avatar does not signify the completion of this endeavor. To produce 

convincing performances, the avatar must adapt to the real human it represents. On a 

broad scale, this adaptation includes mirroring the same clothing, hairstyle, and makeup. 

On a finer scale, the avatar should reflect the real person's current state—whether they 

are tired or refreshed, healthy or ill, happy or depressed. These subtle changes are crucial 

for accurately portraying the real human. Additionally, the virtual human must age 

alongside its real-world counterpart. 

 

As realistic virtual humans have the potential to revolutionize how we live and 

communicate, several considerations extend beyond 3D reconstruction and modeling. 

These include issues related to security, ethics, social sciences, and advancements in 

display and sensor technologies. In this chapter, we have outlined potential research 

directions for the development of 3D virtual humans and 3D reconstruction more broadly. 

We have discussed the critical aspects that will gain importance as we approach the ability 

to convincingly and indistinguishably digitize ourselves and highlight the research 

avenues that warrant further exploration. 
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