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Abstract—This paper addresses the issue of multiple influences seed users who can maximize the number of ordinary users
maximization under the condition of dynamic link strength influenced, typically under a specific diffusion model. The IM
(MIMDLS) in multi-agent systems (MASs). Initially, a novel mod- - . 51y1em can be considered an algorithmic problem or tackled

el for dynamic link strength within MASs is suggested to facilitate di t timizati bl d it has b i
the simulation of multiple influences diffusion. Subsequently, the as a discrete optimization probiem, and It has been proven 1o

MIMDLS problem is formulated with both the competitive and b€ NP-hard under traditional diffusion models [25].

cooperative scenarios being examined. In response, two diffusion IM-related research has predominantly focused on three
models, specifically the competitive multiple influences indepen- principal strategies: approximation algorithms, heuristic meth-
dent cascade (Cp-MIIC) model and the cooperative multiple ods, and community-based approaches. Approximation algo-

influences linear threshold (Cr-MILT) model, are designed for . . . . L
MASs. Furthermore, a distributed deep reinforcement leaning 1tnms, which tackle IM as a combinatorial optimization [52],

(DRL) framework is established based on MASs by incorporating [55], [59], [63] challenge, have offered provable guarantees,
asynchronous training and updating processes for seed selectiondemonstrating 41 — 1/¢) ratio based on the greedy princi-

in the context of multiple influences. Moreover, the developed ple within the Independent Cascade (IC) model and Linear
distributed DRL algorithm encompasses the estimation of Q- Threshold (LT) model. Consistent with these findings, an

value as well as the management of constraints within the Cp- tensi d di f studies h lored
MIIC and Cr-MILT models. Finally, comprehensive experiments exiensive and expanding corpus ot studies has explored op-

are conducted to 1) validate the effectiveness and efficiency of thetimal greedy techniques to achieve the best possible solutions.
proposed models and algorithms in terms of multiple influence Heuristic methods, on the other hand, have been favored for

diffusion; and 2) benchmark their performance against state-of- their scalability and faster execution time, as they do not
the-art methods. necessitate the computation of approximation bounds. Notably,
Index Terms—Multiple information maximization, influence metaheuristic algorithms have simplified the complexity to
diffusion, multi-a_tgent systems, dynamic link strength, deep rein- O(kd(m + n)) in the context of the IC model [21], where
forcement learning. k is the size of seed set} is the length of deep searching,
m is the total number of edges amdis the population of
|. INTRODUCTION network. The community-based approach has been introduced
as a means of discovering superior solutions in comparison to

!;'nErogrocbelsmnO{lgﬂuﬁggeemg;ﬂ?éz?sog (;g/lc)é“mgarl\lty .some advanced heuristic methods [10]. Moreover, integrated
! h Hceo II k, " link 9 dicti 18 68 ! %trategies of greedy heuristic and Hop-based approaches have
research on viral marketing, fink:prediction [18], [60], ANeen proposed, yielding satisfactory outcomes across various
community detection within social networks (SNs). At its . . . e
. . ... scenarios of information diffusion [47].
core, IM seeks to harness the potential of influencers within'a : . . :
Over time, to better align with real-world scenarios, a

static network to propagate the influence of a specific topic Qherse array of IM variants has been introduced in the

product, therepy expanding its accgptqnce among an increa?f{égature [5], [37], [39], and some of them are within dynamic
number of ordinary users. The objective of IM is to find th%nvironments [1], [9]. It is important to note that, most of
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aware IM examples, such as the label-aware model [4], targ&t-based method has an absolute advantage in handling the

aware model [29], and topic-aware model [49], underscore themplexity of dynamic factors in link properties.

pivotal influence of user behaviors on the spread of influence.The literature on MIM had been focused on fixed topologies

By extracting and examining user behavior characteristics, &3], multi-round influence diffusion [34] and multiple net-

IM problem can be approached more effectively. A practicalorks [44], while ignoring dynamic factors such as changing

method involves the creation of a multi-agent system (MASink weights. This oversight can largely be attributed to the

model, which simulates user activities and manages behavidealt that traditional IM and MIM investigations have tended
attributes to enhance the process of influence diffusion.  to prioritize network topologies over the nuances of link
Extensive research has been conducted on IM and jioperties and user effects on links. For instance, to maximize
various applications, then the concept of multiple influencéise total influence in multiple isomorphic networks, parallel
maximization (MIM) [45] has been explored by a growingreedy framework had been provided [53]. Considering com-
number of researchers. An example in Fig.1 is illustrated fpetitive commodities in real-world, a model for competitive

a common MIM problem in a directed graph. Three influencésfluence diffusion had been suggested: strategies involving

are ready for diffusion and marked as three colors. Thr&aown and unknown competitors have been utilized, lead-

diffusion probabilities are set on every edge for the corr@g to the formulation of am-player diffusion game that

sponding influence and marked ps1, pws, pws. Typically, aims for a Nash equilibrium [32], [62]. Nonetheless, MIM

the constraint on the number of times a node can be activatedlistinctively challenged by the prevalent competitive and

is not required in a general MIM. Thus, in a general MIMcooperative/coordinate relationships among influences under a

problem, a node can be successfully activated by more thdynamic circumstance, presenting a complex problem that has

one influence. With the constraints that the intersection of thegun to draw significant scholarly attention.

seed sets of different influences should be an empty set andhis paper explores the problem of multiple influences

the total seed selection should be limitedkinthe objective maximization under the condition of dynamic link strength

of a general MIM is to seledk seed nodes to maximize the(MIMDLS) in MASs with applications to SNs. The key
final diffusion spread. In Fig. 1, the optimal seed set had beeantributions are outlined as follows.

selected K=3): three nodes are selected as seed nodes for the) A novel dynamic model is proposed for link strength,

first influence (que), the second influence (Orange), and the grounded in MAS, encompassing the generation of link

third influence (green) respectively. By diffusing 3 influences  strength, interaction protocols among agents, and the
from 3 seed nodes with corresponding probabilities, the final  evolving rules for dynamic link strength.

influence spread is 14 (5 orange, 5 green, and 4 blue nodesp) The concept of the MIMDLS problem is formulated to
model and encapsulate the process of maximizing multi-
ple influences within a social network, which is further
diversified into the cases of Competitive MIMDLS (Cp-
MIMDLS) and Cooperative MIMDLS (Cr-MIMDLS).

3) Based on MASSs, a distributed deep reinforcement learn-
ing (DRL) approach is developed for MIM with aim to
estimate and ensure the optimization of the seed set, while
addressing the complexities associated with MIMDLS

Multiple Influence scenarios.

diffusion The structure of this paper is organized in the following
manner. Section Il delves into the current state-of-the-art
technologies pertinent to the IM problem within the context
of SNs. Section Il lays out the basic definitions related to the
MIM problem and its derivative cases as they apply to SNs,
along with relevant preliminary concepts. In Section IV, the
communication protocols, a dynamic model for link strength
within MAS, and the diffusion models are thoroughly p-
resented. Section V is dedicated to showcasing a variety
of experimental outcomes, analyses of parameters, and the
juxtaposition of the proposed methodologies against a range of
. . _ standard benchmarks. The paper is concluded in Section VI,

I_\/I_achme learning tgch_nologgg have strong advantagesv\ﬂ?ere summative remarks are made and prospective avenues

efficiency and generalization ability to solve the MIM proble ; - : .
: . ) r future investigation are identified.

especially Reinforcement Learning (RL) methods [33]. Ml
can be solved by formulating multiple decision-making se-
guences in discrete space using RL approaches. Furthermore,
the solution of MIM can be extended to the large-scale andA multitude of past studies has established that the static
complicated networks via Deep RL because of its characté problem is an NP-hard problem under various diffusion
istic offline training and online decision-making. Thus, thenodels, including the IC model, LT model, Triggering (TR)

Fig. 1. An example of the general MIM problem (k=3).

II. RELATED WORK
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model, and Continuous-Time (CT) model. Within these indeployed in [54] to assess weak influence among potential
vestigations, a greedy algorithm has often been employednodes within SNs. Furthermore, a competitive version of the
select seed nodes up to a speciflegparameter limit. This LT model has been developed for MIM, which assigns a di-
greedy approach is underpinned by the theoretical assuran@nsional vector to each user to track the influence probability
provided by a non-negative monotone sub-modular functioof. various types [6]. In an effort to consider the intricate
The methodologies that utilize this greedy framework canterplay among influences (including both competitive and
be broadly categorized into three groups: simulation-basedmplementary dynamics), a deep recursive hybrid model has
[61], proxy-based [20], and sketch-based [11] approaches (theen introduced for assessing the probabilities of influence
estimations of influence diffusion is computed by generatirfmetween node pairs concerning products [23]. While these
several sketches under a specific diffusion model). Despitodels offer potential solutions for the MIM challenge, there
their theoretical underpinnings, these greedy methodologless been scant exploration into MIM within the context of
have been criticized for their extensive computational time algnamic link strength, which is an area that warrants urgent
diminished efficiency in influence spread, particularly withimnd thorough investigation.
large network structures. The trade-off between influenceThe utility and impact of learning-based methodologies
diffusion and computational efficiency has been somewhettend across a wide array of IM challenges, with RL frame-
mitigated by the adoption of meta-heuristic algorithms [51yorks [12], [46] standing out as particularly effective and
For instance, a genetic algorithm has been introduced dfficient solutions [17], [33], [48]. RL approaches [27], [57]
refine seed selection through various strategies of populateme especially well-suited to IM issues especially when these
initialization [13]. Nevertheless, the heuristic approaches laeke conceptualized as combinatorial optimization problems.
a theoretical foundation and necessitate algorithmic desiflhe adaptation of IM into a Markov Decision Process (MDP)
tailored to the specific diffusion model in use. framework [22], [24], [56], followed by the application of
Contrary to the static IM, dynamic influence maximizatiofRL [15], [58] to assimilate behaviors from historical network
(DIM) faces the significant challenge of constantly evolvingppologies, has been employed to tackle the contingency-aware
user topologies. Recent studies have predominantly focusbtproblem [7]. In a distinct approach, an orthogonal paradig-
on evolutionary computation methods to address the com-has been developed to predict expected influence diffusion
plexities inherent in DIM. One such approach is an adaptivsing an RL algorithm, which notably obviates the need for
evolutionary method that enhances the candidate solutionilding the model from the ground up [28]. Furthermore,
by pinpointing users with significant influencing capabilitie&Sraph Neural Networks (GNNs) have been brought into the
[31]. This method emphasizes the identification of potenti&dld to aid in addressing IM and its related applications.
influencers as a core component of the algorithm, serving Asposition-aware inductive GNN model has been designed
an alternative to the sketch-based approach in accommodatmdocus on the encoding of local neighborhood structures,
dynamic network changes. Additionally, from the standpointhich leverages a set of anchor nodes to capture the positions
of link structures, the notion of an “effective link” has been inef all nodes within the network, thereby optimizing global
troduced to lay the groundwork for a two-stage IM algorithnreachability [38]. A wide array of models specifically designed
which delves into the exchange of information between uskr various IM variants have been developed to suit particular
pairs, aiming to refine the selection process for seed users aitdations via graph computation [8], [43]. The Celfie method,
thereby enhance the overall quality of the influence netwoftr example, has been explored to bypass the constraints
[19]. On the other hand, inspired by clustering concepts, tieherent in conventional diffusion models by extracting influ-
original network has been transformed into one of coarsence representations through the analysis of diffusion cascade
granularity, and the DIM problem has been approached byformation [40]. An adversarial graph embedding technique
identifying seed users through the lens of community structunas been implemented to address the fairness in nodes’ influ-
information [41]. Despite this innovative approach, the dynanenceability by sensitive attributes, which involves the creation
ic weight of links, a crucial determinant of influence diffusionpf a discriminator for sensitive attribute recognition while
has often been overlooked. The current methodologies tisahultaneously training a graph embedding auto-encoder [26].
focus on dynamic links fall short in networks characterize@herefore, integrating RL and GNN advantages constitutes an
by dynamic link strength/weight, which is due mainly to theffective and practical solution for addressing the complexities
fact that the dynamics in such networks are deeply influencefidynamic link strength within MIM challenges.
by user behaviors, interactions, and preferences, which cannot
be adequately addressed using standard evolutionary methods I1l. PROBLEM FORMULATION

or clustering strategies. In this section, the foundational concepts related to IM are

In the rea_lm of prior research, some efforts hay_e been,mG}ﬂﬁoduced, and the MIMDLS problem is defined along with
for addressing the MIM problem within competitive settmgﬁ% associated two cases

with aim to resolve real-world challenges. One such approac
is a maximization algorithm designed to circumvent com- o

petitive nodes by taking into account community dispersidhy Preliminaries

and dynamic attributes aligned with user interests [50]. An Multiple Influences Maximization (MIM) problem : Giv-

IM method that focuses on the examination of homogeneoeis an SN withm (m > 1) types of influences, the objective
communities and the impact of inactive nodes has beento identify £ seed nodes that maximize the total number
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of activated nodes influenced by all types of influences. The | Directed graph:
SN is denoted a&/ = {V, E, P}, whereV and F represent |
the sets of nodes and edges, respectively, Arid the set of :
probabilities indicating the diffusion likelihood of influences L Is(w)
between nodes. For each influence tyie < i < m) and any L;jgigf_)ifi-(flf-);!fiff_)-}:_-_-g
two nodesu andv in G, p;(u,v) € P signifies the diffusion | Undirected graph:
probability of thei'” influence from node: to nodewv. The
goal is to construct a seed set= S;USoU- - -US,, (S| = k), S 2
ensuring thatS; N S. N---N.S,, = &, with eachsS; being the
seed set for thé'” influence, and the total number of seeds
across all sets equal fa

Basic IC model: The basic IC model considers the diffusion
of a single type of influence within a given SN= {V, E, P}.
Initially, all nodes within the seed set are activated at the
first time step. Subsequently, at the second time step, each | _Zlaodn@n ) |
activated node has the potential to influence its neighboring
nodes based on the diffusion probability associated with thig
respective link. The process permits only the nodes activated
in the current time step to influence others in the subsequent . o ) )
step. This diffusion continues until no additional nodes can oreover, a link strength of O signifies the dissolution of
activated, signifying the end of the process. the relationship between users, whereas a link strength of 1

Basic LT model: The basic LT model addresses théepresents a scenario of “blind following action”.
spread of a single type of influence among users in an SNMIM under Dynamic Link Strength (MIMDLS): In the
G = {V,E, P}. Each node within this network is assigne@gontext of an SN wheren (m > 1) types of influences
a thresholdd € (0,1). The diffusion process initiates fromare present, the challenge is to identifyseed nodes that
seed nodes in an activated state, diffusing the influence Wl maximize the total number of activated nodes under
neighboring nodes according to the specified probabilities ¥ condition that the link strength sétS is dynamic and
the corresponding edges. A node becomes activated wisépject to updates by users at each time step. The SN
the cumulative influence it receives reaches or exceeds Wi#h LS is represented a&’ = {V,E, LS}, with LS =
thresholdd. The diffusion process concludes when there afés(u,v)} (u,v € V') encompassing all link strengths in the

no further nodes that can be activated. network, wherels(u,v) = {lsi(u,v)} (1 <i < m) for each
link from node v to nodew. These link strengthds(u,v)

are dynamically updated by the initiating userthroughout
) ) ) ) the diffusion process. The composition of the seed set must

Link S_tren_gth (LS): In th|_s_ paper, link strength is SYNONY-gatisfy S = S; U Sy U--- U S (|S| = k), ensuring that
mous with diffusion probability. S1NSyN---NS,, =@, with S1,5,...,5,, designated as

1) For a directed graph, the link strength of the edge frofAe seed sets corresponding to g 27¢, ..., m'" influences,

node v to nodew, denoted as(u,v), is updated by respectively.

useru and represented ai(u,v), wherels(u,v) =  The dynamic nature of link strength updates in the MIMDL-
{lsi(u,v)} (1 < i < m). Here,ls;(u,v) signifies the g framework is influenced by user communications and inter-
strength of the"” influence as it diffuses from nodeto  actions, reflecting the variable acceptability of influences by
nodev, with its value ranging withir{0, 1]. users. It should be mentioned that every user is a potential

2) In the case of an undirected graph, the linkv) is treat-  node for every influence, and when a user’s link strength is 0,

ed as two directed links(u, v) and (v, ). Accordingly, jt does not mean this user is a repelling user; it only indicates
the link strengths for the linku, v) are given byis(u,v),  that the user’s acceptability is O at the current time step and
which is updated by user, andls(v, u), which is under the acceptability could be updated by the user in the future.
the control of usew, as illustrated in Fig. 2. Within the MIMDLS context, the key elements driving diffu-

It should be noted thals;(u,v) € [0, 1], representing the sion maximization include the dynamic modification of link
strength of thei'” influence from node: to nodew, can be weights and the interplay among thetypes of influences. In
understood in three distinct scenarios at the current time stéght of the complex dynamics among multiple influences, two

1) If the link strength is 0, it indicates the absence of a lindlistinct cases of MIMDLS are identified, namely, competitive

from nodew to nodew. and cooperative cases, which are detailed as follows.

2) In the event that usar became an activated node in the Competitive MIMDLS (Cp-MIMDLS): In Cp-MIMDLS,

last time step, node will be successfully activated whenthem types of influences present in the MIMDLS scenario are
Isi(u,v) = 1. considered to be in competition with each other, meaning a
3) Should user have been activated in the last time step, theode once activated by one influence cannot be influenced by
it" influence will be diffused to user with a probability another. The challenge in Cp-MIMDLS is to identify a seed
equal tols;(u,v) that is in (0,1). setS =S, US2U---US,, (|S] = k), where each node is

1

1

1

1

1

|

Is(v,u) :
= {Is; (v, W), s, (v, ), oo, ISy (W, W} 1
1

1

1

1

1

1

1

1

1

1

1
I
1
1
1
1
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1
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1
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:
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I

. 2. An illustration for link strength.

B. Problem statement

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNNLS.2025.3588236, IEEE Transactions on Neural Networks and Learning Systems

ACCEPTED 5
activated by only one type of influence, aiming to maximize MIMDLS
the total number of nodes activated across all influences. (M anger Dymic Link

Cooperative MIMDLS (Cr-MIMDLS): In Cr-MIMDLS, The relationship among
the m types of influence within MIMDLS interact coopera- multiple influences.

tively, allowing a node to be activated by multiple influences, CoATIVIDLS CoATIVIDLS
: H ’ H H p- r-
contrasting with Cp-MIMDLS’s competitive nature. In this -'[ (Competitive MIMDLS) ] [ (Cooperative MIMDLS) ]'—
cooperative setting, successful activation by one influence [ biffusion model [ biffusion model
enhances the activation probability for others. Cr-MIMDLS CpMIIC CoMILT
. . . . . [ - - [
aims to maximize the total successful activations under two % (the competitive multiple (the cooperative multiple %
it . — .. — @ influences independent influences linear threshold @
conditions: 1) the seed sgt= S, USyU---US,, (|S]| = k) e el el
is composed of subsets for each influence, and 2) each i . T
: _ : S —
subsetS; contains an equal fraction of the total seeds, with | Dynarmic LS & nfuences diffusion
o o o _ o Simulation on MAS models Simulation on MAS models
|S1tl_ |‘tslj]2| - b ' _t |‘fmlh_ k/m(k%m - (‘):) Thedretﬁson for t of [ (through agent interactions) ] [ (through agent interactions) ]
setting the subsets to the same size is to avoi e impact o T _ T
L. . . Interactions
initial diffusion advantage on the MIM result and to ensure [ Di}tributedDRLa.gorithm ]
diffusion fairness among inﬂuences_ (Distributed deep reinforcement learning based on MAS)

User/Agent: In an MAS model for MIMDLS, each user is Fig. 3. The relationships among proposed problems and models
modeled as an agemt; = {LS7, F7, ST7}, with j serving g% P 9 prop P
as the agent’s identifier. Every agenj possesses a link
strength matrixL.57 = {lsi(a;, aq)} (1 < i <m,q € Na;), A Multiple influences diffusion models based on MAS
where N,; represents the set of neighbor identifiers #qr

The feature matrix form influences is denoted by? — Building upon the conventional diffusion models IC and

T = . o LT, two novel diffusion models are tailored to accommodate
{f{,f3,--- . fm}, where f{ is a row vector that capturesqynamic link strength and multiple influences within both

the behavioral features of the'* influence ona;, and the competitive and cooperative settings: 1) the competitive mul-
dimensionality off{, represented by, is determined by the tiple influences independent cascade (Cp-MIIC) model, and 2)
database. The state s6f7 = {st],st},---,stl } (st! = the cooperative multiple influences linear threshold (Cr-MILT)

0 or 1,|ST7| = m) indicates the activation status of with model. It should be noted that, the design of the influence
respect to each influencet] = 1 signifies that; is activated diffusion rules determines the environment to which the model
by the i*" influence, whilest{ = 0 indicates unsuccessfulcan adapt. In other words, a competitive/cooperative model

activation. can be designed based on the LT/IC models. The reason for
The initial state set for agent; is set asST7 = designing the Cp-MIIC and Cr-MILT models is that it is
{0,---,0}(]ST?| = m) before influence diffusion. It should much easier to understand the real-world physical meaning (of

be mentioned that in a competitive scenario, the value @poperation and competition) reflected by these two models.
S st (of the state seSTV) is either 1 or 0, indicating 1) Cp-MIIC model: Upon the initial activation of nodes
that an agent can be activated by at most one type |afthe seed seb with m types of influence, these activated

influence or not activated at all. Conversely, in a cooperati®@des proceed to activate their neighboring nodes according to
scenario,y i = lmst{ can be 0, indicating no activation, orprobabilities matching the respective link strengths. Activation

Si=1"st! > 1, allowing for the possibility of an agent in subsequent time steps is limited to nodes that were activated
being activated by one or more types of influence. in the immediate preceding step. The Cp-MIIC model diverges
from the standard IC model by adhering to the following
specific rules:
IV. MAIN MODEL AND APPROACH i. Once activated, nodes are immune to further external
influences.
This section introduces diffusion models for multiple in- ii. An activated node can propagate only the type of influence
fluences in both competitive and cooperative environments that led to its activation.
and establishes the principal MAS model for dynamic linkii. While inactive nodes may receive multiple influences
strength, including interaction rules for MAS diffusion. It ~ from various neighbors, they can ultimately be activated
concludes with the design of a distributed RL framework by only a single type of influence.
tailored for the MIM solution. The relationships among the The distinctive aspect of the Cp-MIIC model is encapsu-
proposed problems and main models are depicted in Fig.l&ed in rule iii, which mandates that if an inactive node is
The multiple influences diffusions of competitive and cooperaubjected to multiple influences, these influencing neighbors
tive MIMDLS problems are simulated through MAS based oare arranged in a sequence based on the strength of their
diffusion models (Cp-MIIC and Cr-MILT), and the dynamiclinks. The influencing process then follows this sequence, with
link strength is implemented trough agent communications @ach neighbor attempting to activate the inactive node using
MAS simultaneously. Eventually, MIMDLS is solved by aits influence until the node is either activated or all potential
distributed RL framework based on MAS through interactioriafluencers have been considered. Overall, the same constraint
with the simulation environment. is reflected by the three rules: a node can be successfully
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activated by only one influence, indicating a strict competitivalready activated by thg'" influence, the link strengths for
relationship among influences. all other types of influence (excluding tHg") will receive
an enhancement indexed lay at the subsequent time step.
(The method for calculating the enhancement indexwill

be elaborated later). The diffusion mechanism in Cr-MILT is

O lnactivenode characterized by two situations: 1) the activation of an inactive
8?2332:2322223 Jamuenee node, and 2) the re-activation of an already activated node by
O Activated node by i'" influence additional influences. These processes are visually represented
in Fig. 5.
Situation 1 Here, a; is initially inactive, with its type
@ Sort{ Isy (az, ay), Is; (as, a,), Is;(ag, a; )} threshold of influences denoted &5 At each time stepg;
Ordered{ @) @ @} aggregates the influence values from each type of influence
\ exerted by its neighbors, comparing the aggregate with its
respective activation thresholds. For instance, the total influ-
Fig. 4. An example of Cp-MIIC model. ence for them!” type ona; at a given time step might
be calculated asicf), = lsy(as,a1) + lsm(aj,a1). The

To demonstrate the Cp-MIIC model, considarin Fig. 4 comparison betweeff, andach?, is then conducted according
as an example of an inactive node receiving multiple types gf

influence at a single time step. The, 274, . Lith influences cva(0)  acOl ) = (achl — 01)/0) @
are simultaneously disseminated by's activated neighbors
as,az, - a4, all of which are adjacent ta;. These neigh- The extent to which the accumulated threshold exceeds orig-
bors are ranked according to their link strengths with inal threshold is reflected byva(.,.). The node cannot be
arranged in descending order@sas, - - - ,a,, as depicted at activated successfully whetva(.,.) < 0. The evaluation is
the bottom of Fig. 4. Following this sequence, the neighbofépeated for each type of influence, resulting in a set of evalu-
attempt to activate;; with the probabilities corresponding toationseva (6}, acd}) for 1 < i < m, which are then arranged
their link strengths. Ifz; is successfully activated by thé" in descending order. The tafj values from this ordered list
influence from one of its neighbors, it will set!, (where are compiled into aZV’ A queue fora;. Subsequently;, is
stl, € ST") to 1, indicating activation, and will then proceechctivated by the types of influence corresponding to all positive
to influence its own inactive neighbors in the next time stegntries in theEV A queue.
If, however, none ofi;’s neighbors manage to activate dt, Situation 2 In this situation,a, is already activated by the
will remain inactivate state§7"!| = 0) until the beginning 1° influence, meaning it can no longer be influenced by the
of the next time step, and it may be activated again by othk¥ influence fromas, but it remains susceptible to activation
agents in the next step. by up to #3 — 1 other types of influence. At the current
2) Cr-MILT model: In the Cr-MILT model, similar to the time step,a, receives the2"? and m'" influences through
conventional LT model, each ageaj is assigned a unique three connections, each with its own link strength. Given
threshold vectorf?, expressed a®’ = {95’9{, Y the cooperative nature of the influences and the enhancement
The values#!,--- 6, fall within the interval (0,1) and indexc: for the 1** influence, the link strengthsst(as, as),
represent the activation thresholds for each corresponding type (3, a4), andls,(a;, a4)) are adjusted as per the equation
of influence impacting:;. Distinctively, 8} € [1,m] specifies below:
the type threshold for influences an, indicating thatz; can N g 1
be activated by up té? different types of influence. ad(lsiaj, a;1)) = Lsi(aj, a5 )1+ = > ) @)
Here, ¢, denotes the enhancement index for & influ-
ence, withp belonging to the setVA,, that comprises
the identifiers of influences that have successfully activated
ajr. The setN A, ,, with cardinalityn, represents the influ-
ences that have activated . For example, the adjusted link
strength fromas to a4 for the 2" influence is calculated as
ad(lsa(as, as)) = lsa(as,as)(1 + ¢1). Similarly, the adjust-
ment fromay to a3 for the 1¢ influence is determined by
ad(ls1(aq,as3)) = ls1(ag,as)* (1+1/2(ca+c¢)), employing
an average of the enhancement indices for the calculation.
After these link strength adjustments, the diffusion process
Fig. 5. An example of Cr-MILT model. proceeds analogously to Situation 1f) should be note that
Eq.(2) is used for adjusting diffusion probability at the current
Unlike the traditional LT model, the Cr-MILT model in- time step under Cr-MILT model but not real change the value
corporates a cooperation vector for influences, denoted afsLS of the nodes. In other words, a temporary value is
cv = {c1,¢9, -+ ,cm }, Where eachy; signifies the enhance- calculated by Eq.(2) and is used for threshold accumulation
ment index for thei'” influence. For instance, if agent is during the diffusion process under the Cr-MILT model.

O TInactive node © Activated node by 2™ influence
© Activated node by 15¢ influence () Activated node by m** influence
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B. MAS model for dynamic link strength agents themselves, reflecting observations of their neighbors’

In the MAS model for MIM, agents representing users alJ_%ehavi_ors. '!'he process for dynamical_ly updating link s_trength
interconnected within an SN denoted @s Dynamically up- 'S outlined in Algo_rlthm 2. At each time step, all actlvat.ed
dating link strength will be executed by agents before influen@g€nts update their link strengths prior to the influence diffu-
diffusion at each time step, and prior to that, the initializatiopio" interactions, as specified in line 4. The statesgt of
of link strengths should be designed. The initialization of linRgenta; (as defined inUser/Ageny holds the information
strengths is a critical step to facilitate dynamic link strengtR? Whether and by which type of influeneg; has been
implementation, acknowledging that each user exhibits distirf@§tivated, with the influence type’s identification number
behavioral features under each type of influence, which fing retrievable froni V;. To be specific, if agent; has been
turn inform the initial link strengths derived from featurectivated by at least one influence, the identification numbers
vectors. The initialization depends on agent communicatiof§influences that have successfully activatedare collected
and observations before the process of influence diffusion. THe!/V; through ST Then, the link strengths fos; under
process starts by calculating the attention indéx of every the influence type”"(i" € IN;) are then updated based on
usera; towards each neighbar, (g € N,,) under thei @& comparison of the corresponding features. g neighbors,
influence, as shown in Eq. (3): as detailed in Eq. (5):

o = (L1 Al T 3)  lsv(aj,a4) = {p,(p ~ UL Byl). i EDU, f) < 05
_ : p' (' ~Ul[Bj,,1]), otherwise
Here,a, represents the attention index of uagrtowards its Lo (5)
neighbora, under thei*" influence, with[1,1,---,1] being where ED(f7, f) represents the Euclidean distance between
a (2 x dy)-dimensional vector where all elements are 1, anfle two behavioral feature vectors and is regarded a behavioral
| denotes the concatenation operator. The vefdtdr,--- , 1]  similarity (underi’th influence) between; anda,(q € N,,).

can be regarded as a Wegght vector for every element in thiehe behavioral similarity is less than 0.5, the updated value

connected feature vectgf! || f;&T, and it also can be setfollows a uniform distribution in the range 46, 5,]. If the
with various elements according to the specific situation. TIfEMilarity is not lower than 0.5, the value follows a uniform
attention index is calculated by Eq. (3) with batkis feature distribution within the intervals;,, 1].
and its neighbors. Following this, the attention indexesafor _ _ _
are normalized to derive the initial link strengthj, for each Algorithm 2 Dynamic link strength in MAS
neighbora, under thei'" influence, as detailed in Eq. (4):  Input: A social networkG = {V, E}, agent setd in MAS
. with initialized link strength matrix of every agent.
; exp(LeakyReLU (a%,)) _ B B th v
= - 4) 1: for t = 110t = 4, do [/t time step
Zq'eNa]. exp(LeakyReLU (o, )) 2. for every agent;; € A do
if sum(ST7)> 1 then //if it is an activated node

Update(;,/ N; < ST7); //dynamically updat-

ing the corresponding link strength according to Eq.(5)

This equation serves as a normalization mechanism for aﬁf
attention indexes under each type of influence, setting th&
initial link strength froma; to a, for the i*" influence as

Isi(aj,aq) = B,. The comprehensive procedure is elaborated” end if
in Algorithm 1. 6:  end for
7: end for

Algorithm 1 Initialization of link strength for MAS model

Input: A social networkG = {V, E}, every agent’s behav-
ioral matrix F7.

C. Agent interaction and MAS influence diffusion

1: for i=1 to i=m do // it" influence n Fhe MAS model, _the process of influence diffusion.
2: for j=1 to j=|V| do // agenta; is fac_|I|tated by interactions between_aggnts, as er|cted in
3: for everyq (¢ € N,,) do //neighbors ofa; Algorithm 3. On the one hand, the (jn‘fusmr_] activity for an

_ , p . agenta;, which was successfully activated in the preceding
4 agent.Attentionindexf;. /) through Eq.(3); time step, is detailed from lines 3 to 9 of the algorithm. On
> end for the other hand, agent; is susceptible to activation through
& for everyq (¢ € Na,) do its activated neighbor agents, adhering to the predefined rules
" i EmSt(edgefaj’aq)) then . of the chosen diffusion model, as indicated from lines 10
& Lsi(aj, ag)=agent.Normalization;,); to 18. The state ofi; is then adjusted in accordance with
o end if the outcomes of this diffusion process, as outlined in line 19.
ii ende;(])c: for In the context of the fixed diffusion model, during the

diffusion phase for agent;, the setD N is defined to comprise
the neighbors to whom; can extend its influence, as specified
in line 4. a; then proceeds to activate each neighboring agent
_’L|Dk Strengths, |n|t|a”y set based on the behavioral fmurin DN using the relevant inﬂuenceS, gu|ded by the updated
i, f5,---, fi of agenta;, are dynamically updated by thelink strengths storing in.S7. After the diffusion attempta;

12: end for
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Algorithm 3 Agent interaction algorithm

Algorithm 4 Multiple influences diffusion in MAS

: for everya; € A do

2 for t=1 tot = t,,4, dO

3 if IsNewlyActivated;) then

4 DN <« DiffusionNeighbor;);
/Ineighbors could be activated fy

v

5: LS’ + UpdatedLinkStrengthag);
/lget the updated value of link strength

6: for everya; € DN do

7 Diffusing(a;,a;);
/ldiffusing influence fromu; to a;/

8: end for

o end if

10: if ActivatedNeighbor;) then

11: AN <« ActivatedNeighborg;);
/ladd to activated neighbor set of

12: for everya, € AN do

13: if (DiffusionCapacityg,)) then
Ilif a4 can activated;

14: BDN < ag;
/ladd to BeDiffusedNodeSet af;

15: LS9 + UpdatedLinkStrengthg);

16: end if

17: end for

18: BeDiffusedg;,BDN ,ModelType);
Ila; accepts diffusion from neighbors

19: UpdateStateq;);

20: end if

21: end for

22: end for

Input 2: the seed sef = s1,82, -, Sm.
. Initialization: algorithm 1();
: for i=1 to i=m do
r; = 0;
end for
. ActivatingSeedSet(S);
: while NewlyActivated()do
Dynamic link strength: algorithm 2();
Agent interaction: algorithm 3();
for i=1 to i=mdo
Records(;);
end for
: end while

=

©ooNaR®Dd
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is proposed for identifying optimal seed sets in MIMDLS
problems, as depicted in Fig. 6. This framework features
a mini MAS with m executor agents, where each agent
(agenty, agents, - - - ,agent,,) is tasked with selecting seed
nodes to maximize the spread of thé&, 2" ... mt" in-
fluence, respectively. These agents function as distributed,
though interconnected, threads within the DRL system, each
exploring seed nodes within the social netwofK) (

To ensure that the seed sets for different influences remain
mutually exclusive §; N Se N --- NS, = @), the agents
communicate with each other in each iteration, as indicated
by the horizontal arrows in Fig. 6. Each agent operates its
own Actor-Critic (AC) network, which is used to evaluate Q-
values for potential diffusion outcomes initiated by selected
seed nodes. The AC network also aids in aggregating gradient
updates for the loss function following each agent’s interaction

may itself become activated by any of its activated neighbossth the environment. Periodically, the agents update the
that possess the capability to diffuse influence, chosen frggarameters of a global AC network with their accumulated
the set of already activated neighba#sV, as detailed in gradients and synchronize their local AC networks with this
lines 13-14. Specially, the function in line 13 is a booleaglobal network to align for subsequent iterations.

function to determine whether the agent has diffusion capacity.

This function works by checking activated agents: if the agen
was successfully activated by the influence(s) in the last tim
step but not in the step before that, it possesses diffusio
capability; otherwise, it does not. Then, all activated neighbor
having diffusion capability are collected in the sBtODN

and a; will accept the corresponding influences diffused by
these neighbors under the fixed diffusion model, line 18. Thi
state ofa; is updated to reflect the results of these diffusion

attempts, as noted in line 19.

The setup for MAS in MIMDLS is outlined in Algorithms 1-
3, covering initialization and dynamic updates of link strengths

SN G={V,E}

VNGBS Dynamic link strength SINTTEITY
LCOUC Cp-MIIC/Cr-MILT Qi e
Executor Executor Executor

agenty(sy) agent; (s3) agent,, (Sp)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 Q-value estimatinnI ]

| ]
H [ AC network 1 ] [ AC network 2 ] [ } [AC network m] 3

v —— e —— !

[ I ISynchronize

]

Feedbac

uo1I[AS PAIS

Update

Global AC
network

and agent interactions. The primary algorithm for multiple

influences diffusion in MAS is detailed in Algorithm 4. A keyFi9- 6. A distributed DRL framework for MIMDLS

feature is the tracking of non-seed activated nodes by each o )

influence type, recorded in;, which also serves as a reward !N the distributed DRL framework for solving MIMDLS

metric in Algorithm 5.

D. Distributed deep reinforcement learning for MIMDLS

problems, the essential components, namatyion reward,
state andpolicy, are defined as follows:
1) State: The global state of the social netwd#kat time
stept, denoted a$'tate;, encapsulates the comprehensive

Drawing inspiration from the asynchronous advantage actor-
critic (A3C) algorithm [36], a distributed DRL framework

set of current seed nodes. For each ageint, dedi-
cated to maximizing the” influence, its thread state,
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represented astate;*, includes the specific seed nodefvolves synchronizing the agent-specific parameters with the

identified for that influence at time
2) Action: The action taken bygent, involves appending a

global AC network, see line 30.

new node to its designated seed set fortffeinfluence. Algorithm 5 Distributed DRL algorithm for MIMDLS

This selection is informed by a policy, which dictates
the choice of node.

Input 1: A social networkd = {V, E'}, seed numbek, every
agent’s behavioral matrig?.

3) Reward:_ The rewardjfz resulting from an action by_ Input 2: the parameters of the global AC netwod;, w,,
agent, i.e., the addition of a node to a seed set, ige global time steT, period time of every executor agent

quantified by the number of nodes newly activated ..

a consequence of this action.
4) Policy: The policyr employed in this context adheres to ’
a greedy approach, wherein nodes are chosen based gn
their potential to yield the highest Q-value, indicative of
their expected contribution to influence diffusion. 4
These components collectively drive the decision-making pr05:
cess in the DRL algorithm, facilitating the dynamic and 6;
strategic selection of seed nodes to optimize influence sprea7c:i
within the network. 8:
The distributed DRL algorithm for addressing the MIMDLS o
challenge is outlined in Algorithm 5. Here, the executor 1 :
agents represent individual threads interacting with the somﬁ(i:
networkG at each time step. In line 6 of the algorithm, agent 5
are tasked with performing actions (specifically, adding a node.
to their respective seed sets) while ensuring that the seed Sﬁfs
remain mutually exclusive, as indicated BynS.N---N.S,, = :
@. This mutual exclusivity prevents any executor agent from_’
selecting a node already chosen by another, necessitating in&gt-
agent communication to resolve any selection conflicts over gj
nodea, . During such communications, agents assess the Q-
value ofa; under their respective influences. The agent who%:
influence yields the highest Q-value fey gains the privilege _
to incorporate this node into its seed set. The other agents,zgj
turn, must then opt for the node with the next highest Q-valuz%:
as determined by their AC networks. Following the executiop
of their actions, the agents transition to their subsequent sta %S
and are rewarded based on the number of nodes activatedggis
a result of the diffusion process withid. 27:
The iterative cycle within the distributed DRL algorithm for™
the MIMDLS problem, spanning from line 6 to line 23, con-
tinues unlessgent, reaches a terminal state or the designated
time steppn. is met. An agent enters a terminal state undet®
specific circumstances: if there are no more viable candidat®
nodes left in the networky for selection CN() = 0), if 3¢
the global seed set is fully populated with seeds in the 3

1: for z=1 to z=mdo

dd + 0, dw <+ 0; //Reset gradient of AC network z.
0" < 94, W' < wy; [ISynchronizing, local parameters

ared’,w’

t = 1; //IReset iteration number of executegent..
s, = &, state® = s, [lInitialize seed set
if 1SelectionConflict()then

action®s <— actiony*;
else

actiony* < Compare(action;*);
end if
state® < statey],, r
t=t+1T=T+1,;
if Cp-MIIC?|S| == k:|s.| == k/m||CN()==0then

state® < statéierminal
end if
if t == pn.||state®* == stateierminal then

if t == pn, then

Q(state®,t) = V(state® (s,),w’)
else
Q(state®=,t) =0

end if
else

go to line 6;
end if
for b=t-1 to b=1do

Q(statey”,b) = 1,7 +yQ(statey; |, b+ 1);

dd + do + <75 logms: (statey* , actiony*)

Q(statey”, actiony*,b)
+ v H(m(statey;d"));

dw < dw + B(Q(stategz,bg;\//(Stateb,w’))z;
end for
Update(,, do), Updateg,, dw); //Global updating
if T'< Tyhae then

o 88 ()

Competitive MIMDLS (Cp-MIIC) scenario, or if the agent's 3% go to line 2;

individual seed set in the Cooperative MIMDLS (Cr-MILT)33  €lse

scenario reaches its limit @f/m seeds, as outlined in lines 13 3% Final parametersi; andw,.
to 15. Upon reaching the terminal state or atjthe time step, 3> ende;:)dr if

the agent ceases state transitions. The Q-value for the termifl

state or the state at time stgp, is either calculated or set to

zero, detailed from lines 16 to 21. The process of computingA key feature distinguishing the DRL approach for the
Q-values and accumulating gradients for optimization occux4lMDLS problem is the interconnected nature of the
at each time step within the interv@dl, ¢ — 1], wheret denotes threads, representing the agents. Unlike completely inde-

the current time step, as described in lines 25-29. During tliendent threads, these agents engage in communication to
processy,~ indicates the the reward of selecting a node (byrevent overlap in their seed node selections, ensuring that
agenta.) in the b** time step and its value equals to theheir actions are coordinated and conflict-free. Moreover, the
number of nodes that are newly activated as a result of thienultaneous action-taking by the: agents on the social
selected node’s diffusion. The concluding action of an episodetworkG introduces a layer of complexity where the reward
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for an action taken by one agent is not isolated but can Hégorithm 6 Data preprocessing
affected by the concurrent actions of the other agents. This for every user (regard as ageant) in databaselo
interdependency means that the outcome of any single acticn  for x=1 to x=400do

is a result of not just the individual agent’s strategy but also the: if x%5==0then
collective dynamics of all agents’ decisions within the network4: behavior < recordsDay(x);
at that time. 5: else if x%5==1then
6: behaviory + recordsDay(z);
V. EXPERIMENTS AND ANALYSIS 7 else if x%5==2then

behaviors < recordsDay(x);
else if x%5==3then
behaviory < recordsDay(x);

This section delves into the experimental setup, includindgf
the environment, database, methods for comparison, and tﬁe
results obtained from these tests. The specifics regardiﬁ%

the database and parameter configurations for the MIMDLjéf else , _
experiments, along with the comparison methods, are detailéﬂ db‘?fh““w% ¢ recordsDay();
in Section V-A. Following this, Section V-B evaluates the efd¥ endefr(l)r :

fectiveness and efficiency of the proposed methods within tH&
context of the Cp-MIIC model and the Cr-MILT model, across®

a variety of experimental scenarios. The comparative perfo]r@
mance analysis, juxtaposing the proposed methods against?3 /
both baseline and cutting-edge techniques, is provided 1’ for = {p1.p2,p3,pa}
Section V-C. The implementation of the proposed algorithrn]s& end for

was carried out using C++ and Python programming Ianguag%eé end for

and executed on a CPU-based computing infrastructure.

for 2’ =1to2’ =5do
p1 = |b1]/|behaviory|, pa = |ba|/|behavior,|,
= |b3|/|behaviory:|, ps = |ba|/|behaviory|;

link strength generated via Algorithm 1. The valueéffor

) - a; is calculated by following equations:
1) Database:The experimental database utilizes real-world

A. Database, parameters settings and compared methods

network data from SinaWeibo, gathered using Python crawlegs, _ Auvg( nisi(ajv aq) (i=1,2,---,m. q€Ny)
encompassing interactions among 5000 users. This dataset not szl Isp(aj, aq) ’
only includes user connections but also tracks four behavioral (6)

activities (commenting, liking, posting, and mentioning) folt can be seen that the value @f is the average link strength
each user across a span of 400 days. The four behaviors rthe i-th influence across all out-degrees«gf

indicated ash; (commenting)p. (liking), b3 (posting) andh, | N, |

(mentioning) in the following experiments. These interactions 99 — count Isila a:) > 05)71:0 7
form the basis for constructing the social network, with user 0 (( ; iag,a;) 2 0.5)71:0) 0
links defining relationships and behavior logs contributing to ) .

feature vector creation, each with a dimensionality of 4, refindfere¢ = 1,2,---,m, ¢ € N,;, and count() is a count
through data preprocessing. function, when the summation of link strength of tl¢h

For the purpose of these experiments, the dataset is striigluence across all in-degrees of exceeds 0.5, the function
tured to facilitate the study of diffusion dynamics across fiveill count 1; otherwise it will count 0. - _ o
distinct types of influences. Consequently, the preprocessing?) Parameter settingsfor the experiments involving dif-
phase involves segmenting each user’s behavioral data into fifgion of multiple influences, in line with the database setup
subsets, corresponding to the different influences, as detaifépcribed earlier, five distinct types of influence are consid-
in Algorithm 6. The main steps are as followStep I As ered, with each user’s behavior represented by a 4-dimensional
outlined from lines 2 to 14, the behavioral data collected ovE§ature vector. The parameters for the MIMDLS experiments
400 days is divided into five distinct sets labelediavior,,, @€ configured as follows. 1) The number of influence types
wherez’ ranges from 1 to 5, each set representing behavidfsiS set to 5, aligning with the number of distinct influences
under a specific type of influence. (The behaviors that occurf@@ing studied. 2) The seed sgtis structured as a collection
on thez" day are stored imecordsDay(z).) Step 2 The of su.bsets{Sl,SQ,k_S‘g,S4,S5}, each correspondmg_to one of
probability of each behavior type occurring is computed b€ five types of influence. 3) The feature matrix for each
dividing the count of a specific behavior by the aggregaggent FJ comprises five f_eature vectorﬁf,_fg,fg,fj,fg,
count of all behaviors, thereby normalizing the data. Seeflecting the user’s behaviors under each influence type; the
lines 15-16, wherdb, | indicates the occurrence number ob feature vectors are generated through data preprocessing in
b1 behavior. Step 3 Vyithﬂthese Qrobabilities computed, theALgorithm 6. ﬁl) The dimensionality, of the 5 feature vectors

feature vectorf?, fJ, f1, f1 and fI for each influence type (f/, fJ,---, f) of one user is set to 4, consistent with the
are readily established, as indicated in line 17. number of behavioral metrics considered.

It should be mentioned that there is no data for thresholdIn the distributed DRL framework tailored for the MIMDLS
vectord? (67 = {6},61,--- ,64,}) of each agent; under Cr- scenario, there are five executor agents within the miniature
MILT model, but thresholds can be initialised through origindlAS, each responsible for optimizing the selection of seed
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nodes for one of the influence types. The discount fagtorproblem, SN can be divided as multiple layers according to
utilized in the DRL algorithm is set to 0.95, indicating theéhe number of influences.

degree to which future rewards are considered in the currenMAS-based DRL methadh MAS-based DRL method has a
value estimation. The dimension of the state for each ageirtgle AC network compared to the proposed methods. In this
agent, in the DRL model varies based on the diffusion modehethod, only one agent is set for deep reinforcement learning,
being applied: it isk for the Cp-MIIC model, indicating the which exchanges information with the MAS environment
total number of seed nodes across all influences,aidfor  (simulated by the proposed models). Thus, this agent set in
the Cr-MILT model, reflecting an equitable distribution of see®RL will select seed nodes for all influence.

nodes among the five types of influence.

~Algorithm 4, embodying the core logic of influence diffu-B. Experiments on various settings for proposed models
sion within this framework, has undergone training using the The evaluation of the proposed models and algorithms is

SinaWeibo dataset, with experiments conducted across Vari%ﬁducted with user populations of 500, 1000, 2000, 3000
;%%ISS of dthSeO(;\gtwork, |r_1r<;1lgd|ng SUbS_etS of 500, ﬁOOO, bzlooa%d 5000 from the SinaWeibo dataset, employing snowball
» an users. This progressive approach ena ess&\‘ﬂpling for network extraction. Seed set sizes are varied

evaluation of the algorithm’s performance and scalability iHmong 10, 25, 50, 75, and 100 to test the models Cp-MIIC and

relation to nerork siz€. _ . Cr-MILT. Results are averaged over 100 runs and presented in
3) Comparison methodstn the comparison experimentsg;, 7 ¢o; Cp-MIIC and Fig. 8 for Cr-MILT, showcasing the

for the MIMDLS problem, several approaches are evaluata usion effectiveness under different settings.
alongside the proposed method.

GE-based methofB0]: This approach utilizes Graph Em-
bedding (GE) to represent each node’s features, incorporating
neighborhood topology into a new vector. The potential for
a node to spread influence is estimated using the GE-basec

method, with subsequent aggregation of feature information —_ °¢
and estimation to refine the embedding vector and guide seec & °°
selection for IM. Since the GE-based method is not directly . °¢ I |

applicable to MIM, MIM is decomposed into separate IM <02
problems, with the ultimate seed selection drawn from the 0
. . k=10 k=25 k=50 k=75 k=100 k=150

aggregated solutions of these IM instances. The size of k

Max-k coveragg3]: Employing a concept akin to reverse
influence sampling, this method begins by generating several . o _
reverse reachable sets. It then addresses the maximurfi¥ 7. The percentages of activated nodes in differentnggttunder Cp-
coverage problem across these sets by dynamically updating”
the incremental value to identify the most influential nodes.

Basic Greedy[25]: Serving as a foundational approach,
this method selects nodes based on their maximum influence
spread. For MIM challenges, it chooses one node per influence )
type in each iteration, ensuring an even distribution of seed
nodes across all influence types. '

Community-base?2]: This method assesses the influence '
potential of community-centric nodes to identify key influ- '
encers. Seed candidate sets are determined heuristically at th '
community level, with the final seed set compiled from these O e e eso kers k100 kelso
preliminary selections. The size of k

Play-strategy method32]: Incorporating game-theoretic
principles, this strategy treats each influence type as a pla¥_ler 8
in a competitive setting. Seed node selection is informed Ryj1
anticipating and countering the strategies of other influences,
aiming for an optimal response in a competitive influence In Fig. 7, the average diffusion percentages under Cp-MIIC
diffusion scenario. with various settings are provided. Notably, the poorest perfor-

CoreQ [2]: Relying on K-core hierarchies to divide themance occurs whek=10, which is attributed to the relatively
network topologies and guide the identification of seed noddsyw percentage of the seed set. For an agent population of
this approach optimizes the selection of seed nodes through®0, achieving a diffusion percentage of 43% corresponds
Q-learning algorithm. to a seed set size df%=0.02%k=100). Conversely, in a

MIM-Reasoner[14]: Combining RL with a probabilistic network of 500 agents, the diffusion percentage exceeds 85%
graphical model, the MIM-Reasoner analyzes the comple¥hen k>50, and nearly all nodes are activated wher150
diffusion within a layered network and optimizes the seedue to k%=0.3%. The proposed methods yield satisfactory
set for each layer through RL methods. To address the Miperformance whek%>1.5%.

W 500 users  ® 1000 users 2000 users 3000 users  ® 5000 users

12

W 500 users  ® 1000 users 2000 users 3000 users  ® 5000 users

o
o

Activated percentage
o o
B o

=}
N

The percentages of activated nodes in differentnggttunder Cr-
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. : TABLE |
The results under the Cr-MILT model are displayed in PROPERTIES OF5 NETWORKS.
Fig. 8. A distinct (_j|fference from Fig. 7 is the higher diffusion—ygmomn d; Behaviors Size
percentages. This phenomenon is caused by the fact theicebook 8 - 4039

activated nodes are counted based on the number of success‘ﬁ@lEPUSFOfums . 5 hcommemingy”ki_ngvPOStingyngUPing 87213500
L . . . ickr sharing,commenting,grouping

activations. Notably, when the population size is 500 ancgiyions 3 reviewingtrusting,distrusting 22166

k>100, the average diffusion percentage surpasses 1, implyirgnaweibo 4 commenting,liking,posting,mentioning 5000

that numerous nodes have been activated multiple times.

minfluence 1 ®influence2 m Influence 3 Influence 4 Influence 5 4 networks (except for Epinions), it can be seen that the
03 percentage remains at a high level, ranging from 75% to 89%
0.25 under Cp-MIIC model, and from 85% to 95% under Cr-MILT

o
N

model. Especially, wherk reaches 200 under the Epinions
network, the percentage of activated nodes almost reaches 70%
under Cp-MIIC model. Whek>150 under Cr-MILT model,
I I|I III I I the percentage ranges from 70% to 82%. The reason may be
n that the large scale of the network requires more seed nodes
to obtain a percentage more than 80%.
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Fig. 9. The performance of five influences under Cp-MIIC.
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Activated percentage of 5

Several advanced methods are compared with the proposed
Fig. 10. The performance of five influences under Cr-MILT. method, the distributed DRL algorithm, using a population
size of 5000 users and diffusing five influences under the two
The performance of the five types of influence under thiffusion models. After conducting each approach 100 times,
two models is depicted in Fig. 9 and Fig. 10, with théhe average performance is presented in Fig. 12 and Fig. 13.
population setting at 5000. In Fig. 9, it is easy to find that

the percentages of diffusion for the five influences fluctuat SeGbwed | —emMack oGy
Slgnlflcantly Compared tO Flg. 10. A Competltlve reSUlt IS ND.Q «=@==\{IM-Reasoner =@ MAS-based DRI «=@==Distributed DRL
reflected by Fig. 9 because one node only can be activat £°° —

once in the spread of Cp-MIIC. ggg / 2
o =

The other four networks (Facebook, Campus Forums, Flicl =
and Epinions) are taken into consideration to verify the effec .-~ e
tiveness of the proposed method under 5 influences diffusic The size of
The related properties of these networks are displayed in
Table I. All links among the nodes of the four networks alfig. 12. Comparison of various methods under Cp-MIIC model.
collected in the database, along with their behaviors described
in Table |, except for the Facebook network. Especially, Comparing the results of the Cp-MIIC model, the worst
Facebook database has 4,039 nodes, each with its links petformance is observed from the play-strategy and greedy
a 40-dimensional feature. The feature, is_divided, into fivepproaches in Fig. 12. In the Cp-MIIC model, the competitive
8-dimensional vectors (indicating, f3, f1, f1 and fJ) for relationship among influences can be managed through the
multiple influence diffusionrf=5). Thus, the feature matrix of play-strategy method, but the dynamics of MIMDSL cannot be
each node for fivenf=5) influences is included in the Facebookesolved. With the increasingly growing seed set, a decreasing
database and does not need to be calculated. diffusion range is displayed by the play-strategy method when
The performance of five networks under two diffusiort>150. Furthermore, anticipating and countering in the play
models are provided in Fig. 11. Wheki>150 under the simulation become complicated due to dynamic LS, thus the
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precision of the calculation for play profits has been affecte@ihe improvement of cooperative MIM is gently hindered by
In the greedy approach optimal seed node computed in the accompetitive play strategies. However, higher percentages are
rent step may perform worse in the next step after influencgsnerated by the CoreQ method, which benefits from Q-
diffusion, especially after significant changes have occurrézhrning optimization. The greedy method is more effective
among the LS. A waving line is presented by the greedynder the Cr-MILT model than under the Cp-MIIC model,
approach because the topology structure is concentratedbegause the fairness of cooperative influences is ensured by the
greedy idea but the competition among users and influencgeedy idea. Although relatively higher results are provided
are ignored. However, the calculation precision of topolody the MIM-Reasoner approach, it still cannot exceed 80%
structure is compromised by dynamic link strength, whichecause the layered calculation cannot handle the dynamic
leads to an unstable result. LS. The GE-based method is more efficient than the MIM-
Although GE-based algorithm focuses on topology stru®easoner, which reflects that the representation of the graph
ture, the information embedding and aggregation help $tructure is more appropriate than the layered algorithm under
improve diffusion to around’6%. The result of GE-based the Cr-MILT model. Benefiting from the loose constraints of
algorithm reflects the point that the effect of dynamic LEr-MILT, a middle position is occupied by the max-k idea
can be partially tackled through the method of informatiowith an orange line. But the dynamics lead to a decrease
embedding and aggregation, although the effect is not safigndency wherk>150. With the increasing number kfmore
fied. Better results are provided by the MIM-Reasoner thaubsets of the seed set will be calculated along with their
by the GE-based algorithm because layers correspondingctwresponding incremental values via the max-k algorithm.
the respective influence are tackled simultaneously by thi®wever, every calculation suffers from dynamic LS, which
MIM-Reasoner. Worse performance is obtained by the Corel@creases the positive effect of incremental value. MAS-based
approach, but it is still higher than that of the max-k an®RL excesses GE-based and community-based approaches
community-based methods. The reason is the optimizationwelfienk <200, because the dynamic LS can be tackled well by
seed selection through Q-learning algorithm in CoreQ. Tisingle AC network. Besides, this situation has not be remained
MIMDLS is divided into several sub-graphs by max-k andntil £>200, because large iterations cannot ensure parameter
community-based approaches, and the diffusion percentageasvergence to an optimal value, leading to a worse quality
betweerir0% and80% whenk>150. It can be seen that withinof seed set. In contrast, the proposed distributed DRL method
asynchronous training in the AC networks, dynamic LS can Ipeaintains a stable performance, achieving an activation range
handled by Distributed DRL framework skillfully. The Q valueof 85% to 95% of nodes.
of optimal seed nodes is estimated precisely by the trained\ext, the performance of various technologies is analyzed
global AC network in every step, adapting the correspondifgsed on the diffusion speed. The diffusion speed is reflected
influence diffusion simulated by agent interactions. The bdsy the iteration length, which refers to the number of diffusion
results are shown by the distributed DRL framework with aiterations from the activation of seed nodes until no further
increased tendency of a green line and the maximum diffusiondes can be activated. It should be noted that the iteration
is about86%. Both competitive relationship and dynamicdength is recorded by simulating the diffusion of multiple
are taken into consideration and a stable diffusion solutidnfluences in MAS, based on the seed set generated by each
is generated whatevér. Compared with the distributed DRL approach, respectively. The longer the iteration length, the
framework, lower diffusion percentages are obtained by MASlower the diffusion speed. Each method is run to generate
based DRL. A single AC network has the disadvantage that tthe optimal seed set and then multiple influence diffusion is
training model sometimes is hard to ensure convergence. Téiigulated according to the seed set to obtain the iteration
is the reason why MAS-based DRLs performance is wordength. These steps are repeated 100 times, and the results

than distributed DRL. are shown in Table II. For instance, based on the 100 results
of the GE-based algorithm under Cp-MIIC model, after 100-
it ek o time simulation of diffusion, the average iteration length is 52,
O MM Ressoner e MAS b D o= Ditrbuted DRI the maximum is 84, and 23 is the minimum value.

205 — . Under Cp-MIIC model, max-k, CoreQ and basic greedy

techniques have shorter average iteration lengths (33, 33 and
34) than others, meaning that diffusion is highly likely to

e ks ko e kw0 ke kso k7s kw00 koo kom ke complete at a fast speed according to their optimal seed sets.
fheseett However, max-k and greedy methods also have the lower
diffusion percentages than others in Fig. 12 and Fig. 13.

Fig. 13. Comparison of various methods under Cr-MILT model. The GE-based and Play-strategy methods have Ionger average

iteration lengths (52 and 44), while the remaining approaches

The corresponding results for Cr-MILT are depicted imave medium average iteration lengths (distributed DRL ranks

Fig. 13. All performance outcomes are relatively stable dwixth). The slowest speed is caused by the community-based
to the cooperative relationships among influences and tapproach with an iteration length 91, while the fastest is
condition that each node can be activated multiple times. Théth max-k at 16. Besides, the shortest performance of the
results of play-strategy algorithm are due to the excessipeoposed method is 21. The GE-based, MIM-Reasoner and
calculations focused on agent benefits in play simulatioMAS-based DRL methods are the closest to the proposed
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TABLE II L . . .
THE ITERATION LENGTH OF INFLUENCE DIFFUSION OF SOLUTIONS FROM Running time of varies methods under dlﬁerent population
VARIOUS METHODS. sizes are displayed in Table. Ill. Here, the size of seed set
k=150 under Cp-MIIC is 150 and each result is the average time after running the
/(*slgogthmd AVEfagezltefatlon MaSX'mum Mg)mum corresponding algorithm 30 times. The Max-k approach has
oae o > 6 a low running time in all situations, but a worse seed set is
Basic Greedy 34 72 19 generated by this approach compared to other methods. The
Community-based 39 91 24 reason Max-k uses less time is that subsets of the current seed
Play-strategy 44 75 26 : h h hich | tes th h
CoreQ 33 54 %5 set constitute the search space, which accelerates the searc
MIM-Reasoner 43 67 23 speed and its speed has little help for influence diffusion. The
MASanSzd DRL 327 85 24 CoreQ method has a slightly longer running time than Max-
Distributed DRL 4k=150 e 7Cr-M||_T ! k because of the optimization steps. Similar performance is
GE-based 57 124 39 displayed by the MIM-Reasoner. The reason is that it can
Max-k 72 121 42 tackle network layers in parallel and conduct batch inference.
Basic Greedy 49 102 20 The structural feature is extracted by th i
; y the GE-based algorithm,
Community-based 68 113 41 . . . . . .
Play-strategy 52 95 37 which achieves a low running time when the population is no
CoreQ 65 89 46 more than 3,000, but the running time increases significantly
aarReasoner 6525 19074 o when the SN has 5,000 users. The worst performance is
Distributed DRL 51 107 43 observed when applying the Basic Greedy method, where

the time reachesl0® due to heavy calculations in each
iteration of the complex influence diffusion. Running times of
ommunity-based and Play-strategy approaches are slightly

method in terms of diffusion percentage under the Cp-MIl nger. Complicated community division due to dynamic LS

mod_el, and they _exh|b|t_ S|m_|lar performance in terms o nd greedy calculation takes time in the Community-based
maximum and minimum iteration length. Under the Cr-MIL

o algorithm. The convergence process becomes lengthy due to
model, CoreQ’s performance is similar to MIM-Reasoner’ 9 g b gthy

Besides, MAS-based DRL and play-strategy methods ha%]amm LS when the play-strategy method simulates play

the t perf o th d method in t fits among influences. The reason that Distributed DRL
1€ closest performance fo the proposed method In eTmMS qg ass time than MAS-based DRL is that several AC
diffusion percentage, but they have longer average iterati

Btworks for infl ted i llel in Distributed
lengths compared to distributed DRL (which ranks secon WOrks Tor Infiuences are executed In parafiel In DIStribute

. L, whereas only serial computation is performed on a
The longest performance is 124, generated by the GE-bag le deep neural network in MAS-based DRL. By the way;
method, and the shortest is 20, generated by the basic gre '

. X L . training time is significantly reduced by Distributed DRL,
method. The shortest iteration length of distributed DRL is 43," | "\ 0 than one-third of that of MAS-based DRL.

TABLE Il
RUNNING TIME (MIN) FROM VARIOUS METHODS UNDERS INFLUENCES
(k = 150).
User population VI. CONCLUSION
Approach 1000 2000 3000 5000
GE-based 15 21 32 128 . L
Max-k 11 14 17 58 This paper has presented a distributed DRL framework
Basic Greedy 145 257 >10°  >107  within an MAS to address the MIMDLS problem in social
Community-based 151 181 846 >10 networks by utilizing Cp-MIIC and Cr-MILT models. The
Play-strategy 33 166 370 764 . .
CoreQ 13 25 39 67 approach has leveraged user behavior vectors to dynamically
MIM-Reasoner 16 25 41 63 model link strengths and devise an MAS-based diffusion
MAS-based DRL 55 114 189 301 Hla i ; ; TR
Distribeted DRL 18 pet 0 o strategy for multiple influences, incorporating specific inter

action rules. The distributed nature of MAS has inspired
the development of a DRL model for MIMDLS, which has
The time complexity analysis of the distributed DRL albeen shown to be both effective and efficient. The model
gorithm (Algorithm 4) can be estimated under two diffusioffacilitates asynchronous updates by agents, who communicate
models. In the Cr-MIMDLS model, the worst-case scenario te meet the requirements of different diffusion models. When
that the Q-value of each non-seed node will be recomputed dympared to five advanced methods, our proposed algorithm
the executor agent during every selection and no node reachas consistently outperformed others across a range of settings.
its threshold of influence number during the selection. ThuSxperimental outcomes have affirmed the proposed models
the upper bound of the complexity 3(k(2n — k+m)/2m). and algorithms’ capability to effectively tackle the MIMDLS
Besides, in Cr-MIMDLS model, the worst circumstances igroblem. While the proposed approach has shown promise
that one executor agent selektseed nodes and the Q-value ofor MIM problems, its reliance on predefined node feature
each non-seed node is updated in agent’s every iteration. Meetors is a noted limitation. Future research could explore
resulting upper bound of the complexity 8{(n+k(1—k)/2). MIM challenges where node information is partially known
In order to further evaluated the proposed methods, the runnimgevolving, expanding the applicability of these models and
time is provided in this section. algorithms.
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