
ACCEPTED 1

Multiple Influences Maximization Under Dynamic
Link Strength in Multi-Agent Systems: The

Competitive and Cooperative Cases
Mincan Li, Zidong Wang,Fellow, IEEE, Simon J. E. Taylor, Kenli Li, Xiangke Liao, and Xiaohui Liu

Abstract—This paper addresses the issue of multiple influences
maximization under the condition of dynamic link strength
(MIMDLS) in multi-agent systems (MASs). Initially, a novel mod-
el for dynamic link strength within MASs is suggested to facilitate
the simulation of multiple influences diffusion. Subsequently, the
MIMDLS problem is formulated with both the competitive and
cooperative scenarios being examined. In response, two diffusion
models, specifically the competitive multiple influences indepen-
dent cascade (Cp-MIIC) model and the cooperative multiple
influences linear threshold (Cr-MILT) model, are designed for
MASs. Furthermore, a distributed deep reinforcement learning
(DRL) framework is established based on MASs by incorporating
asynchronous training and updating processes for seed selection
in the context of multiple influences. Moreover, the developed
distributed DRL algorithm encompasses the estimation of Q-
value as well as the management of constraints within the Cp-
MIIC and Cr-MILT models. Finally, comprehensive experiments
are conducted to 1) validate the effectiveness and efficiency of the
proposed models and algorithms in terms of multiple influence
diffusion; and 2) benchmark their performance against state-of-
the-art methods.

Index Terms—Multiple information maximization, influence
diffusion, multi-agent systems, dynamic link strength, deep rein-
forcement learning.

I. I NTRODUCTION

T HE problem of influence maximization (IM), initially
introduced in [16], has emerged as a focal point in

research on viral marketing, link prediction [18], [60], and
community detection within social networks (SNs). At its
core, IM seeks to harness the potential of influencers within a
static network to propagate the influence of a specific topic or
product, thereby expanding its acceptance among an increasing
number of ordinary users. The objective of IM is to find the
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seed users who can maximize the number of ordinary users
influenced, typically under a specific diffusion model. The IM
problem can be considered an algorithmic problem or tackled
as a discrete optimization problem, and it has been proven to
be NP-hard under traditional diffusion models [25].

IM-related research has predominantly focused on three
principal strategies: approximation algorithms, heuristic meth-
ods, and community-based approaches. Approximation algo-
rithms, which tackle IM as a combinatorial optimization [52],
[55], [59], [63] challenge, have offered provable guarantees,
demonstrating a(1 − 1/e) ratio based on the greedy princi-
ple within the Independent Cascade (IC) model and Linear
Threshold (LT) model. Consistent with these findings, an
extensive and expanding corpus of studies has explored op-
timal greedy techniques to achieve the best possible solutions.
Heuristic methods, on the other hand, have been favored for
their scalability and faster execution time, as they do not
necessitate the computation of approximation bounds. Notably,
metaheuristic algorithms have simplified the complexity to
O(kd(m + n)) in the context of the IC model [21], where
k is the size of seed set,d is the length of deep searching,
m is the total number of edges andn is the population of
network. The community-based approach has been introduced
as a means of discovering superior solutions in comparison to
some advanced heuristic methods [10]. Moreover, integrated
strategies of greedy heuristic and Hop-based approaches have
been proposed, yielding satisfactory outcomes across various
scenarios of information diffusion [47].

Over time, to better align with real-world scenarios, a
diverse array of IM variants has been introduced in the
literature [5], [37], [39], and some of them are within dynamic
environments [1], [9]. It is important to note that, most of
studies [9], [35], [39] have concentrated on the availability of
links, they have largely overlooked the dynamics associated
with link weights. In [39], a novel sketch-based method has
been introduced by employing an index that adjusts sketches
through expanding or shrinking them, thereby facilitating
the determination ofk-coverage within a dynamic network
[39]. Additionally, the seed set and pseudo-seed set have
been designed to support T×oneHop approach to deal with
changing links among SNs [35].

Recently, significant emphasis has been placed on devel-
oping behavior-aware IM strategies in SNs, recognizing that
effective IM solutions should account for more than just the
graph structures. In fact, it is crucial to incorporate user behav-
iors, activities, and their variations into the analysis. Behavior-
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aware IM examples, such as the label-aware model [4], target-
aware model [29], and topic-aware model [49], underscore the
pivotal influence of user behaviors on the spread of influence.
By extracting and examining user behavior characteristics, the
IM problem can be approached more effectively. A practical
method involves the creation of a multi-agent system (MAS)
model, which simulates user activities and manages behavioral
attributes to enhance the process of influence diffusion.

Extensive research has been conducted on IM and its
various applications, then the concept of multiple influences
maximization (MIM) [45] has been explored by a growing
number of researchers. An example in Fig.1 is illustrated for
a common MIM problem in a directed graph. Three influences
are ready for diffusion and marked as three colors. Three
diffusion probabilities are set on every edge for the corre-
sponding influence and marked aspω1, pω2, pω3. Typically,
the constraint on the number of times a node can be activated
is not required in a general MIM. Thus, in a general MIM
problem, a node can be successfully activated by more than
one influence. With the constraints that the intersection of the
seed sets of different influences should be an empty set and
the total seed selection should be limited ink, the objective
of a general MIM is to selectk seed nodes to maximize the
final diffusion spread. In Fig. 1, the optimal seed set had been
selected (k=3): three nodes are selected as seed nodes for the
first influence (blue), the second influence (orange), and the
third influence (green) respectively. By diffusing 3 influences
from 3 seed nodes with corresponding probabilities, the final
influence spread is 14 (5 orange, 5 green, and 4 blue nodes).

Fig. 1. An example of the general MIM problem (k=3).

Machine learning technologies have strong advantages of
efficiency and generalization ability to solve the MIM problem,
especially Reinforcement Learning (RL) methods [33]. MIM
can be solved by formulating multiple decision-making se-
quences in discrete space using RL approaches. Furthermore,
the solution of MIM can be extended to the large-scale and
complicated networks via Deep RL because of its character-
istic offline training and online decision-making. Thus, the

RL-based method has an absolute advantage in handling the
complexity of dynamic factors in link properties.

The literature on MIM had been focused on fixed topologies
[53], multi-round influence diffusion [34] and multiple net-
works [44], while ignoring dynamic factors such as changing
link weights. This oversight can largely be attributed to the
fact that traditional IM and MIM investigations have tended
to prioritize network topologies over the nuances of link
properties and user effects on links. For instance, to maximize
the total influence in multiple isomorphic networks, parallel
greedy framework had been provided [53]. Considering com-
petitive commodities in real-world, a model for competitive
influence diffusion had been suggested: strategies involving
known and unknown competitors have been utilized, lead-
ing to the formulation of ann-player diffusion game that
aims for a Nash equilibrium [32], [62]. Nonetheless, MIM
is distinctively challenged by the prevalent competitive and
cooperative/coordinate relationships among influences under a
dynamic circumstance, presenting a complex problem that has
begun to draw significant scholarly attention.

This paper explores the problem of multiple influences
maximization under the condition of dynamic link strength
(MIMDLS) in MASs with applications to SNs. The key
contributions are outlined as follows.

1) A novel dynamic model is proposed for link strength,
grounded in MAS, encompassing the generation of link
strength, interaction protocols among agents, and the
evolving rules for dynamic link strength.

2) The concept of the MIMDLS problem is formulated to
model and encapsulate the process of maximizing multi-
ple influences within a social network, which is further
diversified into the cases of Competitive MIMDLS (Cp-
MIMDLS) and Cooperative MIMDLS (Cr-MIMDLS).

3) Based on MASs, a distributed deep reinforcement learn-
ing (DRL) approach is developed for MIM with aim to
estimate and ensure the optimization of the seed set, while
addressing the complexities associated with MIMDLS
scenarios.

The structure of this paper is organized in the following
manner. Section II delves into the current state-of-the-art
technologies pertinent to the IM problem within the context
of SNs. Section III lays out the basic definitions related to the
MIM problem and its derivative cases as they apply to SNs,
along with relevant preliminary concepts. In Section IV, the
communication protocols, a dynamic model for link strength
within MAS, and the diffusion models are thoroughly p-
resented. Section V is dedicated to showcasing a variety
of experimental outcomes, analyses of parameters, and the
juxtaposition of the proposed methodologies against a range of
standard benchmarks. The paper is concluded in Section VI,
where summative remarks are made and prospective avenues
for future investigation are identified.

II. RELATED WORK

A multitude of past studies has established that the static
IM problem is an NP-hard problem under various diffusion
models, including the IC model, LT model, Triggering (TR)
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model, and Continuous-Time (CT) model. Within these in-
vestigations, a greedy algorithm has often been employed to
select seed nodes up to a specifiedk parameter limit. This
greedy approach is underpinned by the theoretical assurance
provided by a non-negative monotone sub-modular function.
The methodologies that utilize this greedy framework can
be broadly categorized into three groups: simulation-based
[61], proxy-based [20], and sketch-based [11] approaches (the
estimations of influence diffusion is computed by generating
several sketches under a specific diffusion model). Despite
their theoretical underpinnings, these greedy methodologies
have been criticized for their extensive computational time and
diminished efficiency in influence spread, particularly within
large network structures. The trade-off between influence
diffusion and computational efficiency has been somewhat
mitigated by the adoption of meta-heuristic algorithms [51].
For instance, a genetic algorithm has been introduced to
refine seed selection through various strategies of population
initialization [13]. Nevertheless, the heuristic approaches lack
a theoretical foundation and necessitate algorithmic design
tailored to the specific diffusion model in use.

Contrary to the static IM, dynamic influence maximization
(DIM) faces the significant challenge of constantly evolving
user topologies. Recent studies have predominantly focused
on evolutionary computation methods to address the com-
plexities inherent in DIM. One such approach is an adaptive
evolutionary method that enhances the candidate solution
by pinpointing users with significant influencing capabilities
[31]. This method emphasizes the identification of potential
influencers as a core component of the algorithm, serving as
an alternative to the sketch-based approach in accommodating
dynamic network changes. Additionally, from the standpoint
of link structures, the notion of an “effective link” has been in-
troduced to lay the groundwork for a two-stage IM algorithm,
which delves into the exchange of information between user
pairs, aiming to refine the selection process for seed users and
thereby enhance the overall quality of the influence network
[19]. On the other hand, inspired by clustering concepts, the
original network has been transformed into one of coarser
granularity, and the DIM problem has been approached by
identifying seed users through the lens of community structure
information [41]. Despite this innovative approach, the dynam-
ic weight of links, a crucial determinant of influence diffusion,
has often been overlooked. The current methodologies that
focus on dynamic links fall short in networks characterized
by dynamic link strength/weight, which is due mainly to the
fact that the dynamics in such networks are deeply influenced
by user behaviors, interactions, and preferences, which cannot
be adequately addressed using standard evolutionary methods
or clustering strategies.

In the realm of prior research, some efforts have been made
for addressing the MIM problem within competitive settings
with aim to resolve real-world challenges. One such approach
is a maximization algorithm designed to circumvent com-
petitive nodes by taking into account community dispersion
and dynamic attributes aligned with user interests [50]. An
IM method that focuses on the examination of homogeneous
communities and the impact of inactive nodes has been

deployed in [54] to assess weak influence among potential
nodes within SNs. Furthermore, a competitive version of the
LT model has been developed for MIM, which assigns a di-
mensional vector to each user to track the influence probability
of various types [6]. In an effort to consider the intricate
interplay among influences (including both competitive and
complementary dynamics), a deep recursive hybrid model has
been introduced for assessing the probabilities of influence
between node pairs concerning products [23]. While these
models offer potential solutions for the MIM challenge, there
has been scant exploration into MIM within the context of
dynamic link strength, which is an area that warrants urgent
and thorough investigation.

The utility and impact of learning-based methodologies
extend across a wide array of IM challenges, with RL frame-
works [12], [46] standing out as particularly effective and
efficient solutions [17], [33], [48]. RL approaches [27], [57]
are especially well-suited to IM issues especially when these
are conceptualized as combinatorial optimization problems.
The adaptation of IM into a Markov Decision Process (MDP)
framework [22], [24], [56], followed by the application of
RL [15], [58] to assimilate behaviors from historical network
topologies, has been employed to tackle the contingency-aware
IM problem [7]. In a distinct approach, an orthogonal paradig-
m has been developed to predict expected influence diffusion
using an RL algorithm, which notably obviates the need for
building the model from the ground up [28]. Furthermore,
Graph Neural Networks (GNNs) have been brought into the
fold to aid in addressing IM and its related applications.
A position-aware inductive GNN model has been designed
to focus on the encoding of local neighborhood structures,
which leverages a set of anchor nodes to capture the positions
of all nodes within the network, thereby optimizing global
reachability [38]. A wide array of models specifically designed
for various IM variants have been developed to suit particular
situations via graph computation [8], [43]. The Celfie method,
for example, has been explored to bypass the constraints
inherent in conventional diffusion models by extracting influ-
ence representations through the analysis of diffusion cascade
information [40]. An adversarial graph embedding technique
has been implemented to address the fairness in nodes’ influ-
enceability by sensitive attributes, which involves the creation
of a discriminator for sensitive attribute recognition while
simultaneously training a graph embedding auto-encoder [26].
Therefore, integrating RL and GNN advantages constitutes an
effective and practical solution for addressing the complexities
of dynamic link strength within MIM challenges.

III. PROBLEM FORMULATION

In this section, the foundational concepts related to IM are
introduced, and the MIMDLS problem is defined along with
its associated two cases.

A. Preliminaries

Multiple Influences Maximization (MIM) problem : Giv-
en an SN withm (m > 1) types of influences, the objective
is to identify k seed nodes that maximize the total number
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of activated nodes influenced by all types of influences. The
SN is denoted asG = {V,E, P}, whereV andE represent
the sets of nodes and edges, respectively, andP is the set of
probabilities indicating the diffusion likelihood of influences
between nodes. For each influence typei (1 ≤ i ≤ m) and any
two nodesu andv in G, pi(u, v) ∈ P signifies the diffusion
probability of theith influence from nodeu to nodev. The
goal is to construct a seed setS = S1∪S2∪· · ·∪Sm (|S| = k),
ensuring thatS1 ∩S2 ∩ · · · ∩Sm = ∅, with eachSi being the
seed set for theith influence, and the total number of seeds
across all sets equal tok.

Basic IC model:The basic IC model considers the diffusion
of a single type of influence within a given SNG = {V,E, P}.
Initially, all nodes within the seed set are activated at the
first time step. Subsequently, at the second time step, each
activated node has the potential to influence its neighboring
nodes based on the diffusion probability associated with the
respective link. The process permits only the nodes activated
in the current time step to influence others in the subsequent
step. This diffusion continues until no additional nodes can be
activated, signifying the end of the process.

Basic LT model: The basic LT model addresses the
spread of a single type of influence among users in an SN
G = {V,E, P}. Each node within this network is assigned
a thresholdθ ∈ (0, 1). The diffusion process initiates from
seed nodes in an activated state, diffusing the influence to
neighboring nodes according to the specified probabilities of
the corresponding edges. A node becomes activated when
the cumulative influence it receives reaches or exceeds its
thresholdθ. The diffusion process concludes when there are
no further nodes that can be activated.

B. Problem statement

Link Strength (LS): In this paper, link strength is synony-
mous with diffusion probability.

1) For a directed graph, the link strength of the edge from
node u to node v, denoted as(u, v), is updated by
user u and represented asls(u, v), where ls(u, v) =
{lsi(u, v)} (1 ≤ i ≤ m). Here, lsi(u, v) signifies the
strength of theith influence as it diffuses from nodeu to
nodev, with its value ranging within[0, 1].

2) In the case of an undirected graph, the link(u, v) is treat-
ed as two directed links:(u, v) and (v, u). Accordingly,
the link strengths for the link(u, v) are given byls(u, v),
which is updated by useru, andls(v, u), which is under
the control of userv, as illustrated in Fig. 2.

It should be noted thatlsi(u, v) ∈ [0, 1], representing the
strength of theith influence from nodeu to nodev, can be
understood in three distinct scenarios at the current time step:

1) If the link strength is 0, it indicates the absence of a link
from nodeu to nodev.

2) In the event that useru became an activated node in the
last time step, nodev will be successfully activated when
lsi(u, v) = 1.

3) Should useru have been activated in the last time step, the
ith influence will be diffused to userv with a probability
equal tolsi(u, v) that is in (0,1).

u v

u v

u v

Directed graph

Undirected graph

Fig. 2. An illustration for link strength.

Moreover, a link strength of 0 signifies the dissolution of
the relationship between users, whereas a link strength of 1
represents a scenario of “blind following action”.

MIM under Dynamic Link Strength (MIMDLS): In the
context of an SN wherem (m > 1) types of influences
are present, the challenge is to identifyk seed nodes that
will maximize the total number of activated nodes under
the condition that the link strength setLS is dynamic and
subject to updates by users at each time step. The SN
with LS is represented asG′ = {V,E, LS}, with LS =
{ls(u, v)} (u, v ∈ V ) encompassing all link strengths in the
network, wherels(u, v) = {lsi(u, v)} (1 ≤ i ≤ m) for each
link from node u to node v. These link strengthsls(u, v)
are dynamically updated by the initiating useru throughout
the diffusion process. The composition of the seed set must
satisfy S = S1 ∪ S2 ∪ · · · ∪ Sm (|S| = k), ensuring that
S1 ∩ S2 ∩ · · · ∩ Sm = ∅, with S1, S2, ..., Sm designated as
the seed sets corresponding to the1st, 2nd, ...,mth influences,
respectively.

The dynamic nature of link strength updates in the MIMDL-
S framework is influenced by user communications and inter-
actions, reflecting the variable acceptability of influences by
users. It should be mentioned that every user is a potential
node for every influence, and when a user’s link strength is 0,
it does not mean this user is a repelling user; it only indicates
that the user’s acceptability is 0 at the current time step and
the acceptability could be updated by the user in the future.
Within the MIMDLS context, the key elements driving diffu-
sion maximization include the dynamic modification of link
weights and the interplay among them types of influences. In
light of the complex dynamics among multiple influences, two
distinct cases of MIMDLS are identified, namely, competitive
and cooperative cases, which are detailed as follows.

Competitive MIMDLS (Cp-MIMDLS): In Cp-MIMDLS,
them types of influences present in the MIMDLS scenario are
considered to be in competition with each other, meaning a
node once activated by one influence cannot be influenced by
another. The challenge in Cp-MIMDLS is to identify a seed
set S = S1 ∪ S2 ∪ · · · ∪ Sm (|S| = k), where each node is
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activated by only one type of influence, aiming to maximize
the total number of nodes activated across all influences.

Cooperative MIMDLS (Cr-MIMDLS): In Cr-MIMDLS,
the m types of influence within MIMDLS interact coopera-
tively, allowing a node to be activated by multiple influences,
contrasting with Cp-MIMDLS’s competitive nature. In this
cooperative setting, successful activation by one influence
enhances the activation probability for others. Cr-MIMDLS
aims to maximize the total successful activations under two
conditions: 1) the seed setS = S1 ∪ S2 ∪ · · · ∪ Sm (|S| = k)
is composed of subsets for each influence, and 2) each
subsetSi contains an equal fraction of the total seeds, with
|S1| = |S2| = · · · = |Sm| = k/m(k%m = 0). The reason for
setting the subsets to the same size is to avoid the impact of
initial diffusion advantage on the MIM result and to ensure
diffusion fairness among influences.

User/Agent: In an MAS model for MIMDLS, each user is
modeled as an agentaj = {LSj, F j , ST j}, with j serving
as the agent’s identifier. Every agentaj possesses a link
strength matrixLSj = {lsi(aj , aq)} (1 ≤ i ≤ m, q ∈ Naj

),
whereNaj

represents the set of neighbor identifiers foraj.
The feature matrix form influences is denoted byF j =

{
~
f j
1 ,

~
f j
2 , · · · ,

~
f j
m}, where ~

f j
1 is a row vector that captures

the behavioral features of the1st influence onaj, and the

dimensionality of~f j
1 , represented bydf , is determined by the

database. The state setST j = {stj1, st
j
2, · · · , st

j
m} (stji =

0 or 1, |ST j| = m) indicates the activation status ofaj with
respect to each influence;stji = 1 signifies thataj is activated
by the ith influence, whilestji = 0 indicates unsuccessful
activation.

The initial state set for agentaj is set as ST j =
{0, · · · , 0}(|ST j| = m) before influence diffusion. It should
be mentioned that in a competitive scenario, the value of
∑m

i=1 st
j
i (of the state setST j) is either 1 or 0, indicating

that an agent can be activated by at most one type of
influence or not activated at all. Conversely, in a cooperative
scenario,

∑

i = 1mstji can be 0, indicating no activation, or
∑

i = 1mstji ≥ 1, allowing for the possibility of an agent
being activated by one or more types of influence.

IV. M AIN MODEL AND APPROACH

This section introduces diffusion models for multiple in-
fluences in both competitive and cooperative environments
and establishes the principal MAS model for dynamic link
strength, including interaction rules for MAS diffusion. It
concludes with the design of a distributed RL framework
tailored for the MIM solution. The relationships among the
proposed problems and main models are depicted in Fig. 3:
The multiple influences diffusions of competitive and coopera-
tive MIMDLS problems are simulated through MAS based on
diffusion models (Cp-MIIC and Cr-MILT), and the dynamic
link strength is implemented trough agent communications in
MAS simultaneously. Eventually, MIMDLS is solved by a
distributed RL framework based on MAS through interactions
with the simulation environment.

MIMDLS

(MIM under Dynamic Link 

Strength)

Cp-MIMDLS

(Competitive MIMDLS)

Cr-MIMDLS

(Cooperative MIMDLS)

Cp-MIIC

(the competitive multiple 

influences independent 

cascade model)

Cr-MILT

(the cooperative multiple 

influences linear threshold 

model)

Simulation on MAS models 

(through agent interactions)

Simulation on MAS models 

(through agent interactions)

Distributed DRL algorithm

(Distributed deep reinforcement learning based on MAS)

Fig. 3. The relationships among proposed problems and models.

A. Multiple influences diffusion models based on MAS

Building upon the conventional diffusion models IC and
LT, two novel diffusion models are tailored to accommodate
dynamic link strength and multiple influences within both
competitive and cooperative settings: 1) the competitive mul-
tiple influences independent cascade (Cp-MIIC) model, and 2)
the cooperative multiple influences linear threshold (Cr-MILT)
model. It should be noted that, the design of the influence
diffusion rules determines the environment to which the model
can adapt. In other words, a competitive/cooperative model
can be designed based on the LT/IC models. The reason for
designing the Cp-MIIC and Cr-MILT models is that it is
much easier to understand the real-world physical meaning (of
cooperation and competition) reflected by these two models.

1) Cp-MIIC model: Upon the initial activation of nodes
in the seed setS with m types of influence, these activated
nodes proceed to activate their neighboring nodes according to
probabilities matching the respective link strengths. Activation
in subsequent time steps is limited to nodes that were activated
in the immediate preceding step. The Cp-MIIC model diverges
from the standard IC model by adhering to the following
specific rules:

i. Once activated, nodes are immune to further external
influences.

ii. An activated node can propagate only the type of influence
that led to its activation.

iii. While inactive nodes may receive multiple influences
from various neighbors, they can ultimately be activated
by only a single type of influence.

The distinctive aspect of the Cp-MIIC model is encapsu-
lated in rule iii, which mandates that if an inactive node is
subjected to multiple influences, these influencing neighbors
are arranged in a sequence based on the strength of their
links. The influencing process then follows this sequence, with
each neighbor attempting to activate the inactive node using
its influence until the node is either activated or all potential
influencers have been considered. Overall, the same constraint
is reflected by the three rules: a node can be successfully
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activated by only one influence, indicating a strict competitive
relationship among influences.

Inactive node

Activated node by influence

Activated node by influence

Activated node by influence

Sort{ )}

Ordered{      }

Fig. 4. An example of Cp-MIIC model.

To demonstrate the Cp-MIIC model, considera1 in Fig. 4
as an example of an inactive node receiving multiple types of
influence at a single time step. The1st, 2nd, · · · , ith influences
are simultaneously disseminated bya1’s activated neighbors
a2, a3, · · · , aq, all of which are adjacent toa1. These neigh-
bors are ranked according to their link strengths witha1,
arranged in descending order asa2, a3, · · · , aq, as depicted at
the bottom of Fig. 4. Following this sequence, the neighbors
attempt to activatea1 with the probabilities corresponding to
their link strengths. Ifa1 is successfully activated by thei′th

influence from one of its neighbors, it will setst1i′ (where
st1i′ ∈ ST 1) to 1, indicating activation, and will then proceed
to influence its own inactive neighbors in the next time step.
If, however, none ofa1’s neighbors manage to activate it,a1
will remain inactivate state(|ST 1| = 0) until the beginning
of the next time step, and it may be activated again by other
agents in the next step.

2) Cr-MILT model: In the Cr-MILT model, similar to the
conventional LT model, each agentaj is assigned a unique
threshold vectorθj , expressed asθj = {θj0, θ

j
1, · · · , θ

j
m}.

The valuesθj1, · · · , θ
j
m fall within the interval (0, 1) and

represent the activation thresholds for each corresponding type
of influence impactingaj . Distinctively, θj0 ∈ [1,m] specifies
the type threshold for influences onaj , indicating thataj can
be activated by up toθj0 different types of influence.

Inactive node

Activated node by influence

Activated node by influence

Activated node by influence

Fig. 5. An example of Cr-MILT model.

Unlike the traditional LT model, the Cr-MILT model in-
corporates a cooperation vector for influences, denoted as
cv = {c1, c2, · · · , cm}, where eachci signifies the enhance-
ment index for theith influence. For instance, if agentaj is

already activated by the5th influence, the link strengths for
all other types of influence (excluding the5th) will receive
an enhancement indexed byc5 at the subsequent time step.
(The method for calculating the enhancement indexci will
be elaborated later). The diffusion mechanism in Cr-MILT is
characterized by two situations: 1) the activation of an inactive
node, and 2) the re-activation of an already activated node by
additional influences. These processes are visually represented
in Fig. 5.

Situation 1: Here, a1 is initially inactive, with its type
threshold of influences denoted asθ10 . At each time step,a1
aggregates the influence values from each type of influence
exerted by its neighbors, comparing the aggregate with its
respective activation thresholds. For instance, the total influ-
ence for themth type on a1 at a given time step might
be calculated asacθ1m = lsm(a3, a1) + lsm(aj , a1). The
comparison betweenθ1m andacθ1m is then conducted according
to

eva(θ1m, acθ1m) = (acθ1m − θ1m)/θ1m (1)

The extent to which the accumulated threshold exceeds orig-
inal threshold is reflected byeva(., .). The node cannot be
activated successfully wheneva(., .) < 0. The evaluation is
repeated for each type of influence, resulting in a set of evalu-
ationseva(θ1i , acθ

1
i ) for 1 ≤ i ≤ m, which are then arranged

in descending order. The topθ10 values from this ordered list
are compiled into anEV A queue fora1. Subsequently,a1 is
activated by the types of influence corresponding to all positive
entries in theEV A queue.

Situation 2: In this situation,a4 is already activated by the
1st influence, meaning it can no longer be influenced by the
1st influence froma2, but it remains susceptible to activation
by up to θ40 − 1 other types of influence. At the current
time step,a4 receives the2nd and mth influences through
three connections, each with its own link strength. Given
the cooperative nature of the influences and the enhancement
index c1 for the 1st influence, the link strengths (ls2(a3, a4),
lsm(a3, a4), andlsm(aj , a4)) are adjusted as per the equation
below:

ad(lsi(aj , aj′)) = lsi(aj , aj′)(1 +
1

n

∑

cp) (2)

Here, cp denotes the enhancement index for thepth influ-
ence, with p belonging to the setNAaj′

that comprises
the identifiers of influences that have successfully activated
aj′ . The setNAaj′

, with cardinalityn, represents the influ-
ences that have activatedaj′ . For example, the adjusted link
strength froma3 to a4 for the 2nd influence is calculated as
ad(ls2(a3, a4)) = ls2(a3, a4)(1 + c1). Similarly, the adjust-
ment from a4 to a3 for the 1st influence is determined by
ad(ls1(a4, a3)) = ls1(a4, a3)∗ (1+1/2(c2+cm)), employing
an average of the enhancement indices for the calculation.
After these link strength adjustments, the diffusion process
proceeds analogously to Situation 1). It should be note that
Eq.(2) is used for adjusting diffusion probability at the current
time step under Cr-MILT model but not real change the value
of LS of the nodes. In other words, a temporary value is
calculated by Eq.(2) and is used for threshold accumulation
during the diffusion process under the Cr-MILT model.
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B. MAS model for dynamic link strength

In the MAS model for MIM, agents representing users are
interconnected within an SN denoted asG. Dynamically up-
dating link strength will be executed by agents before influence
diffusion at each time step, and prior to that, the initialization
of link strengths should be designed. The initialization of link
strengths is a critical step to facilitate dynamic link strength
implementation, acknowledging that each user exhibits distinct
behavioral features under each type of influence, which in
turn inform the initial link strengths derived from feature
vectors. The initialization depends on agent communications
and observations before the process of influence diffusion. The
process starts by calculating the attention indexαi

jq of every
user aj towards each neighboraq (q ∈ Naj

) under theith

influence, as shown in Eq. (3):

αi
jq = [1, 1, · · · , 1]

~
f j
i

T

‖ ~f q
i

T

(3)

Here,αi
jq represents the attention index of useraj towards its

neighboraq under theith influence, with[1, 1, · · · , 1] being
a (2 × df )-dimensional vector where all elements are 1, and
‖ denotes the concatenation operator. The vector[1, 1, · · · , 1]
can be regarded as a weight vector for every element in the

connected feature vector~f j
i

T

‖ ~f q
i

T

, and it also can be set
with various elements according to the specific situation. The
attention index is calculated by Eq. (3) with bothaj ’s feature
and its neighbors. Following this, the attention indexes foraj
are normalized to derive the initial link strengthβi

jq for each
neighboraq under theith influence, as detailed in Eq. (4):

βi
jq =

exp(LeakyReLU(αi
jq))

∑

q′∈Naj
exp(LeakyReLU(αi

jq′))
(4)

This equation serves as a normalization mechanism for all
attention indexes under each type of influence, setting the
initial link strength fromaj to aq for the ith influence as
lsi(aj , aq) = βi

jq. The comprehensive procedure is elaborated
in Algorithm 1.

Algorithm 1 Initialization of link strength for MAS model

Input: A social networkG = {V,E}, every agent’s behav-
ioral matrixF j .

1: for i=1 to i=m do // ith influence
2: for j=1 to j=|V | do // agentaj
3: for everyq (q ∈ Naj

) do //neighbors ofaj

4: agent.AttentionIndex(~f j
1, ~f q

1 ) through Eq.(3);
5: end for
6: for everyq (q ∈ Naj

) do
7: if Exist(edge(aj, aq)) then
8: lsi(aj , aq)=agent.Normalization(αi

jq);
9: end if

10: end for
11: end for
12: end for

Link strengths, initially set based on the behavioral features
~
f j
1 ,

~
f j
2 , · · · ,

~
f j
m of agentaj , are dynamically updated by the

agents themselves, reflecting observations of their neighbors’
behaviors. The process for dynamically updating link strength
is outlined in Algorithm 2. At each time step, all activated
agents update their link strengths prior to the influence diffu-
sion interactions, as specified in line 4. The state setST j of
agentaj (as defined inUser/Agent) holds the information
on whether and by which type of influenceaj has been
activated, with the influence type’s identification numberi′

being retrievable fromINj . To be specific, if agentaj has been
activated by at least one influence, the identification numbers
of influences that have successfully activatedaj are collected
in INj throughST j. Then, the link strengths foraj under
the influence typei′th(i′ ∈ INj) are then updated based on
a comparison of the corresponding features ofaj ’s neighbors,
as detailed in Eq. (5):

lsi′(aj , aq) =

{

p (p ∼ U [0, βi′

jq]), if ED(
~
f j
i′ ,

~f q
i′) ≤ 0.5

p′ (p′ ∼ U [βi′

jq, 1]), otherwise
(5)

whereED(
~
f j
i′ ,

~f q
i′) represents the Euclidean distance between

the two behavioral feature vectors and is regarded a behavioral
similarity (underi′th influence) betweenaj andaq(q ∈ Naj

).
If the behavioral similarity is less than 0.5, the updated value
follows a uniform distribution in the range of[0, βi′

jq]. If the
similarity is not lower than 0.5, the value follows a uniform
distribution within the interval[βi′

jq , 1].

Algorithm 2 Dynamic link strength in MAS

Input: A social networkG = {V,E}, agent setA in MAS
with initialized link strength matrix of every agent.

1: for t = 1 to t = tmax do //tth time step
2: for every agentaj ∈ A do
3: if sum(ST j)≥ 1 then //if it is an activated node
4: Update(aj,INj ← ST j); //dynamically updat-

ing the corresponding link strength according to Eq.(5)
5: end if
6: end for
7: end for

C. Agent interaction and MAS influence diffusion

In the MAS model, the process of influence diffusion
is facilitated by interactions between agents, as depicted in
Algorithm 3. On the one hand, the diffusion activity for an
agentaj , which was successfully activated in the preceding
time step, is detailed from lines 3 to 9 of the algorithm. On
the other hand, agentaj is susceptible to activation through
its activated neighbor agents, adhering to the predefined rules
of the chosen diffusion model, as indicated from lines 10
to 18. The state ofaj is then adjusted in accordance with
the outcomes of this diffusion process, as outlined in line 19.

In the context of the fixed diffusion model, during the
diffusion phase for agentaj , the setDN is defined to comprise
the neighbors to whomaj can extend its influence, as specified
in line 4. aj then proceeds to activate each neighboring agent
in DN using the relevant influences, guided by the updated
link strengths storing inLSj. After the diffusion attempt,aj
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Algorithm 3 Agent interaction algorithm
1: for everyaj ∈ A do
2: for t=1 to t = tmax do
3: if IsNewlyActivated(aj) then
4: DN ← DiffusionNeighbor(aj);

//neighbors could be activated byaj
5: LSj ← UpdatedLinkStrength(aj);

//get the updated value of link strength
6: for everyaj′ ∈ DN do
7: Diffusing(aj,aj′ );

//diffusing influence fromaj to aj′

8: end for
9: end if

10: if ActivatedNeighbor(aj) then
11: AN ← ActivatedNeighbor(aj);

//add to activated neighbor set ofaj
12: for everyaq ∈ AN do
13: if (DiffusionCapacity(aq)) then

//if aq can activatedaj
14: BDN ← aq;

//add to BeDiffusedNodeSet ofaj
15: LSq ← UpdatedLinkStrength(aq);
16: end if
17: end for
18: BeDiffused(aj,BDN ,ModelType);

//aj accepts diffusion from neighbors
19: UpdateState(aj);
20: end if
21: end for
22: end for

may itself become activated by any of its activated neighbors
that possess the capability to diffuse influence, chosen from
the set of already activated neighborsAN , as detailed in
lines 13-14. Specially, the function in line 13 is a boolean
function to determine whether the agent has diffusion capacity.
This function works by checking activated agents: if the agent
was successfully activated by the influence(s) in the last time
step but not in the step before that, it possesses diffusion
capability; otherwise, it does not. Then, all activated neighbors
having diffusion capability are collected in the setBDN
and aj will accept the corresponding influences diffused by
these neighbors under the fixed diffusion model, line 18. The
state ofaj is updated to reflect the results of these diffusion
attempts, as noted in line 19.

The setup for MAS in MIMDLS is outlined in Algorithms 1-
3, covering initialization and dynamic updates of link strengths
and agent interactions. The primary algorithm for multiple
influences diffusion in MAS is detailed in Algorithm 4. A key
feature is the tracking of non-seed activated nodes by each
influence type, recorded inri, which also serves as a reward
metric in Algorithm 5.

D. Distributed deep reinforcement learning for MIMDLS

Drawing inspiration from the asynchronous advantage actor-
critic (A3C) algorithm [36], a distributed DRL framework

Algorithm 4 Multiple influences diffusion in MAS
Input 2: the seed setS = s1, s2, · · · , sm.

1: Initialization: algorithm 1();
2: for i=1 to i=m do
3: ri = 0;
4: end for
5: ActivatingSeedSet(S);
6: while NewlyActivated()do
7: Dynamic link strength: algorithm 2();
8: Agent interaction: algorithm 3();
9: for i=1 to i=m do

10: Records(ri);
11: end for
12: end while

is proposed for identifying optimal seed sets in MIMDLS
problems, as depicted in Fig. 6. This framework features
a mini MAS with m executor agents, where each agent
(agent1, agent2, · · · , agentm) is tasked with selecting seed
nodes to maximize the spread of the1st, 2nd, · · · ,mth in-
fluence, respectively. Thesem agents function as distributed,
though interconnected, threads within the DRL system, each
exploring seed nodes within the social network (G).

To ensure that the seed sets for different influences remain
mutually exclusive (S1 ∩ S2 ∩ · · · ∩ Sm = ∅), the agents
communicate with each other in each iteration, as indicated
by the horizontal arrows in Fig. 6. Each agent operates its
own Actor-Critic (AC) network, which is used to evaluate Q-
values for potential diffusion outcomes initiated by selected
seed nodes. The AC network also aids in aggregating gradient
updates for the loss function following each agent’s interaction
with the environmentG. Periodically, the agents update the
parameters of a global AC network with their accumulated
gradients and synchronize their local AC networks with this
global network to align for subsequent iterations.

Q-value estimation

AC network 1 AC network 2 … AC network m

Global AC 

network 

Executor

( )

Executor 

( ) 
…

Executor 

( ) 

SN G={V,E}

Dynamic link strength
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F
ee

d
b
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k

S
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electio

n

Synchronize

Update

Diffusing 

from seed set

Activated 

results

Fig. 6. A distributed DRL framework for MIMDLS

In the distributed DRL framework for solving MIMDLS
problems, the essential components, namely,action, reward,
state, andpolicy, are defined as follows:

1) State: The global state of the social networkG at time
stept, denoted asStatet, encapsulates the comprehensive
set of current seed nodes. For each agentagentz dedi-
cated to maximizing thezth influence, its thread state,
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represented asstateaz

t , includes the specific seed nodes
identified for that influence at timet.

2) Action: The action taken byagentz involves appending a
new node to its designated seed set for thezth influence.
This selection is informed by a policyπ, which dictates
the choice of node.

3) Reward: The rewardraz resulting from an action by
agentz, i.e., the addition of a node to a seed set, is
quantified by the number of nodes newly activated as
a consequence of this action.

4) Policy: The policyπ employed in this context adheres to
a greedy approach, wherein nodes are chosen based on
their potential to yield the highest Q-value, indicative of
their expected contribution to influence diffusion.

These components collectively drive the decision-making pro-
cess in the DRL algorithm, facilitating the dynamic and
strategic selection of seed nodes to optimize influence spread
within the network.

The distributed DRL algorithm for addressing the MIMDLS
challenge is outlined in Algorithm 5. Here, them executor
agents represent individual threads interacting with the social
networkG at each time step. In line 6 of the algorithm, agents
are tasked with performing actions (specifically, adding a node
to their respective seed sets) while ensuring that the seed sets
remain mutually exclusive, as indicated byS1∩S2∩· · ·∩Sm =
∅. This mutual exclusivity prevents any executor agent from
selecting a node already chosen by another, necessitating inter-
agent communication to resolve any selection conflicts over a
nodeaj′ . During such communications, agents assess the Q-
value ofaj′ under their respective influences. The agent whose
influence yields the highest Q-value foraj′ gains the privilege
to incorporate this node into its seed set. The other agents, in
turn, must then opt for the node with the next highest Q-value
as determined by their AC networks. Following the execution
of their actions, the agents transition to their subsequent states
and are rewarded based on the number of nodes activated as
a result of the diffusion process withinG.

The iterative cycle within the distributed DRL algorithm for
the MIMDLS problem, spanning from line 6 to line 23, con-
tinues unlessagentz reaches a terminal state or the designated
time steppnz is met. An agent enters a terminal state under
specific circumstances: if there are no more viable candidate
nodes left in the networkG for selection (CN() = 0), if
the global seed set is fully populated withk seeds in the
Competitive MIMDLS (Cp-MIIC) scenario, or if the agent’s
individual seed set in the Cooperative MIMDLS (Cr-MILT)
scenario reaches its limit ofk/m seeds, as outlined in lines 13
to 15. Upon reaching the terminal state or at thepnz time step,
the agent ceases state transitions. The Q-value for the terminal
state or the state at time steppnz is either calculated or set to
zero, detailed from lines 16 to 21. The process of computing
Q-values and accumulating gradients for optimization occurs
at each time step within the interval[1, t−1], wheret denotes
the current time step, as described in lines 25-29. During this
process,raz

b indicates the the reward of selecting a node (by
agentaz) in the bth time step and its value equals to the
number of nodes that are newly activated as a result of the
selected node’s diffusion. The concluding action of an episode

involves synchronizing the agent-specific parameters with the
global AC network, see line 30.

Algorithm 5 Distributed DRL algorithm for MIMDLS

Input 1: A social networkG = {V,E}, seed numberk, every
agent’s behavioral matrixF j .
Input 2: the parameters of the global AC network:δg, ωg,

the global time stepT, period time of every executor agent
pnz.

1: for z=1 to z=mdo
2: dδ ← 0, dω ← 0; //Reset gradient of AC network z.
3: δ′ ← δg, ω′ ← ωg; //Synchronizing, local parameters

areδ′, ω′

4: t = 1; //Reset iteration number of executoragentz.
5: sz = ∅; stateaz = sz //Initialize seed set
6: if !SelectionConflict()then
7: actionaz

π
←− actionaz

t ;
8: else
9: actionaz

t ← Compare(actionaz

t );
10: end if
11: stateaz ← stateaz

t+1, raz
alg4
←− raz

t ();
12: t = t+ 1,T = T + 1;
13: if Cp-MIIC?|S| == k:|sz| == k/m||CN()==0 then
14: stateaz ← stateterminal

15: end if
16: if t == pnz||state

az == stateterminal then
17: if t == pnz then
18: Q(stateaz , t) = V (stateaz(sz), ω

′)
19: else
20: Q(stateaz , t) = 0
21: end if
22: else
23: go to line 6;
24: end if
25: for b=t-1 to b=1do
26: Q(stateaz

b , b) = raz

b + γQ(stateaz

b+1, b+ 1);
27: dδ ← dδ +▽δ′ log πδ′(state

az

b , actionaz

b )
Q(stateaz

b , actionaz

b , b)
+▽δ′H(π(stateaz

b ; δ′));

28: dω ← dω +
∂(Q(stateaz

b
,b)−V (Stateb,ω

′))2

∂ω′
;

29: end for
30: Update(δg, dδ), Update(ωg, dω); //Global updating
31: if T < Tmax then
32: go to line 2;
33: else
34: Final parameters:δg andωg.
35: end if
36: end for

A key feature distinguishing the DRL approach for the
MIMDLS problem is the interconnected nature of them
threads, representing them agents. Unlike completely inde-
pendent threads, these agents engage in communication to
prevent overlap in their seed node selections, ensuring that
their actions are coordinated and conflict-free. Moreover, the
simultaneous action-taking by them agents on the social
networkG introduces a layer of complexity where the reward
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for an action taken by one agent is not isolated but can be
affected by the concurrent actions of the other agents. This
interdependency means that the outcome of any single action
is a result of not just the individual agent’s strategy but also the
collective dynamics of all agents’ decisions within the network
at that time.

V. EXPERIMENTS AND ANALYSIS

This section delves into the experimental setup, including
the environment, database, methods for comparison, and the
results obtained from these tests. The specifics regarding
the database and parameter configurations for the MIMDLS
experiments, along with the comparison methods, are detailed
in Section V-A. Following this, Section V-B evaluates the ef-
fectiveness and efficiency of the proposed methods within the
context of the Cp-MIIC model and the Cr-MILT model, across
a variety of experimental scenarios. The comparative perfor-
mance analysis, juxtaposing the proposed methods against
both baseline and cutting-edge techniques, is provided in
Section V-C. The implementation of the proposed algorithms
was carried out using C++ and Python programming languages
and executed on a CPU-based computing infrastructure.

A. Database, parameters settings and compared methods

1) Database:The experimental database utilizes real-world
network data from SinaWeibo, gathered using Python crawlers,
encompassing interactions among 5000 users. This dataset not
only includes user connections but also tracks four behavioral
activities (commenting, liking, posting, and mentioning) for
each user across a span of 400 days. The four behaviors are
indicated asb1 (commenting),b2 (liking), b3 (posting) andb4
(mentioning) in the following experiments. These interactions
form the basis for constructing the social network, with user
links defining relationships and behavior logs contributing to
feature vector creation, each with a dimensionality of 4, refined
through data preprocessing.

For the purpose of these experiments, the dataset is struc-
tured to facilitate the study of diffusion dynamics across five
distinct types of influences. Consequently, the preprocessing
phase involves segmenting each user’s behavioral data into five
subsets, corresponding to the different influences, as detailed
in Algorithm 6. The main steps are as follows.Step 1: As
outlined from lines 2 to 14, the behavioral data collected over
400 days is divided into five distinct sets labeledbehaviorx′,
wherex′ ranges from 1 to 5, each set representing behaviors
under a specific type of influence. (The behaviors that occurred
on thexth day are stored inrecordsDay(x).) Step 2: The
probability of each behavior type occurring is computed by
dividing the count of a specific behavior by the aggregate
count of all behaviors, thereby normalizing the data. See
lines 15-16, where|b1| indicates the occurrence number of
b1 behavior.Step 3: With these probabilities computed, the

feature vector~f j
1 ,

~
f j
2 ,

~
f j
3 ,

~
f j
4 and ~

f j
5 for each influence type

are readily established, as indicated in line 17.
It should be mentioned that there is no data for threshold

vectorθj (θj = {θj0, θ
j
1, · · · , θ

j
m}) of each agentaj under Cr-

MILT model, but thresholds can be initialised through original

Algorithm 6 Data preprocessing
1: for every user (regard as agent)aj in databasedo
2: for x=1 to x=400do
3: if x%5==0 then
4: behavior1 ← recordsDay(x);
5: else if x%5==1 then
6: behavior2 ← recordsDay(x);
7: else if x%5==2 then
8: behavior3 ← recordsDay(x);
9: else if x%5==3 then

10: behavior4 ← recordsDay(x);
11: else
12: behavior5 ← recordsDay(x);
13: end if
14: end for
15: for x′ = 1 to x′ = 5 do
16: p1 = |b1|/|behaviorx′ |, p2 = |b2|/|behaviorx′|,

p3 = |b3|/|behaviorx′|, p4 = |b4|/|behaviorx′|;
17: f j

x′ = {p1, p2, p3, p4}
18: end for
19: end for

link strength generated via Algorithm 1. The value ofθj for
aj is calculated by following equations:

θji = Avg(
lsi(aj , aq)

∑m
ρ=1 lsρ(aj , aq)

) (i = 1, 2, · · · ,m. q ∈ Naj
)

(6)
It can be seen that the value ofθji is the average link strength
of the i-th influence across all out-degrees ofaj .

θj0 = count((

|Naj
|

∑

q=1

lsi(aq, aj) ≥ 0.5)? 1 : 0) (7)

where i = 1, 2, · · · ,m, q ∈ Naj
, and count() is a count

function, when the summation of link strength of thei-th
influence across all in-degrees ofaj exceeds 0.5, the function
will count 1; otherwise it will count 0.

2) Parameter settings:For the experiments involving dif-
fusion of multiple influences, in line with the database setup
described earlier, five distinct types of influence are consid-
ered, with each user’s behavior represented by a 4-dimensional
feature vector. The parameters for the MIMDLS experiments
are configured as follows. 1) The number of influence types
m is set to 5, aligning with the number of distinct influences
being studied. 2) The seed setS is structured as a collection
of subsets{S1, S2, S3, S4, S5}, each corresponding to one of
the five types of influence. 3) The feature matrix for each

agent F j comprises five feature vectors~f j
1 ,

~
f j
2 ,

~
f j
3 ,

~
f j
4 ,

~
f j
5 ,

reflecting the user’s behaviors under each influence type; the
5 feature vectors are generated through data preprocessing in
Algorithm 6. 4) The dimensionalitydf of the 5 feature vectors

( ~f j
1 ,

~
f j
2 , · · · ,

~
f j
5 ) of one user is set to 4, consistent with the

number of behavioral metrics considered.
In the distributed DRL framework tailored for the MIMDLS

scenario, there are five executor agents within the miniature
MAS, each responsible for optimizing the selection of seed
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nodes for one of the influence types. The discount factorγ
utilized in the DRL algorithm is set to 0.95, indicating the
degree to which future rewards are considered in the current
value estimation. The dimension of the state for each agent
agentz in the DRL model varies based on the diffusion model
being applied: it isk for the Cp-MIIC model, indicating the
total number of seed nodes across all influences, andk/5 for
the Cr-MILT model, reflecting an equitable distribution of seed
nodes among the five types of influence.

Algorithm 4, embodying the core logic of influence diffu-
sion within this framework, has undergone training using the
SinaWeibo dataset, with experiments conducted across various
scales of the network, including subsets of 500, 1000, 2000,
3000, and 5000 users. This progressive approach enables an
evaluation of the algorithm’s performance and scalability in
relation to network size.

3) Comparison methods:In the comparison experiments
for the MIMDLS problem, several approaches are evaluated
alongside the proposed method.

GE-based method[30]: This approach utilizes Graph Em-
bedding (GE) to represent each node’s features, incorporating
neighborhood topology into a new vector. The potential for
a node to spread influence is estimated using the GE-based
method, with subsequent aggregation of feature information
and estimation to refine the embedding vector and guide seed
selection for IM. Since the GE-based method is not directly
applicable to MIM, MIM is decomposed into separate IM
problems, with the ultimate seed selection drawn from the
aggregated solutions of these IM instances.

Max-k coverage[3]: Employing a concept akin to reverse
influence sampling, this method begins by generating several
reverse reachable sets. It then addresses the maximum k
coverage problem across these sets by dynamically updating
the incremental value to identify the most influential nodes.

Basic Greedy[25]: Serving as a foundational approach,
this method selects nodes based on their maximum influence
spread. For MIM challenges, it chooses one node per influence
type in each iteration, ensuring an even distribution of seed
nodes across all influence types.

Community-based[42]: This method assesses the influence
potential of community-centric nodes to identify key influ-
encers. Seed candidate sets are determined heuristically at the
community level, with the final seed set compiled from these
preliminary selections.

Play-strategy method[32]: Incorporating game-theoretic
principles, this strategy treats each influence type as a player
in a competitive setting. Seed node selection is informed by
anticipating and countering the strategies of other influences,
aiming for an optimal response in a competitive influence
diffusion scenario.

CoreQ [2]: Relying on K-core hierarchies to divide the
network topologies and guide the identification of seed nodes,
this approach optimizes the selection of seed nodes through a
Q-learning algorithm.

MIM-Reasoner[14]: Combining RL with a probabilistic
graphical model, the MIM-Reasoner analyzes the complex
diffusion within a layered network and optimizes the seed
set for each layer through RL methods. To address the MIM

problem, SN can be divided as multiple layers according to
the number of influences.

MAS-based DRL method: a MAS-based DRL method has a
single AC network compared to the proposed methods. In this
method, only one agent is set for deep reinforcement learning,
which exchanges information with the MAS environment
(simulated by the proposed models). Thus, this agent set in
DRL will select seed nodes for all influence.

B. Experiments on various settings for proposed models

The evaluation of the proposed models and algorithms is
conducted with user populations of 500, 1000, 2000, 3000,
and 5000 from the SinaWeibo dataset, employing snowball
sampling for network extraction. Seed set sizes are varied
among 10, 25, 50, 75, and 100 to test the models Cp-MIIC and
Cr-MILT. Results are averaged over 100 runs and presented in
Fig. 7 for Cp-MIIC and Fig. 8 for Cr-MILT, showcasing the
diffusion effectiveness under different settings.
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Fig. 7. The percentages of activated nodes in different settings under Cp-
MIIC.
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Fig. 8. The percentages of activated nodes in different settings under Cr-
MILT.

In Fig. 7, the average diffusion percentages under Cp-MIIC
with various settings are provided. Notably, the poorest perfor-
mance occurs whenk=10, which is attributed to the relatively
low percentage of the seed set. For an agent population of
5000, achieving a diffusion percentage of 43% corresponds
to a seed set size ofk%=0.02%(k=100). Conversely, in a
network of 500 agents, the diffusion percentage exceeds 85%
when k>50, and nearly all nodes are activated whenk=150
due to k%=0.3%. The proposed methods yield satisfactory
performance whenk%>1.5%.
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The results under the Cr-MILT model are displayed in
Fig. 8. A distinct difference from Fig. 7 is the higher diffusion
percentages. This phenomenon is caused by the fact that
activated nodes are counted based on the number of successful
activations. Notably, when the population size is 500 and
k≥100, the average diffusion percentage surpasses 1, implying
that numerous nodes have been activated multiple times.
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Fig. 9. The performance of five influences under Cp-MIIC.
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Fig. 10. The performance of five influences under Cr-MILT.

The performance of the five types of influence under the
two models is depicted in Fig. 9 and Fig. 10, with the
population setting at 5000. In Fig. 9, it is easy to find that
the percentages of diffusion for the five influences fluctuate
significantly compared to Fig. 10. A competitive result is
reflected by Fig. 9 because one node only can be activated
once in the spread of Cp-MIIC.

The other four networks (Facebook, Campus Forums, Flickr
and Epinions) are taken into consideration to verify the effec-
tiveness of the proposed method under 5 influences diffusion.
The related properties of these networks are displayed in
Table I. All links among the nodes of the four networks are
collected in the database, along with their behaviors described
in Table I, except for the Facebook network. Especially,
Facebook database has 4,039 nodes, each with its links and
a 40-dimensional feature. The feature is divided into five
8-dimensional vectors (indicating~f j

1 ,
~
f j
2 ,

~
f j
3 ,

~
f j
4 and ~

f j
5 ) for

multiple influence diffusion (m=5). Thus, the feature matrix of
each node for five (m=5) influences is included in the Facebook
database and does not need to be calculated.

The performance of five networks under two diffusion
models are provided in Fig. 11. Whenk>150 under the

TABLE I
PROPERTIES OF5 NETWORKS.

Network df Behaviors Size
Facebook 8 - 4039
CampusForums 5 commenting,liking,posting,grouping 3500
Flickr 3 sharing,commenting,grouping 8721
Epinions 3 reviewing,trusting,distrusting 22166
SinaWeibo 4 commenting,liking,posting,mentioning 5000

4 networks (except for Epinions), it can be seen that the
percentage remains at a high level, ranging from 75% to 89%
under Cp-MIIC model, and from 85% to 95% under Cr-MILT
model. Especially, whenk reaches 200 under the Epinions
network, the percentage of activated nodes almost reaches 70%
under Cp-MIIC model. Whenk≥150 under Cr-MILT model,
the percentage ranges from 70% to 82%. The reason may be
that the large scale of the network requires more seed nodes
to obtain a percentage more than 80%.
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Fig. 11. The performance on various networks under the two models.

C. Comparison with advanced methods

Several advanced methods are compared with the proposed
method, the distributed DRL algorithm, using a population
size of 5000 users and diffusing five influences under the two
diffusion models. After conducting each approach 100 times,
the average performance is presented in Fig. 12 and Fig. 13.
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Fig. 12. Comparison of various methods under Cp-MIIC model.

Comparing the results of the Cp-MIIC model, the worst
performance is observed from the play-strategy and greedy
approaches in Fig. 12. In the Cp-MIIC model, the competitive
relationship among influences can be managed through the
play-strategy method, but the dynamics of MIMDSL cannot be
resolved. With the increasingly growing seed set, a decreasing
diffusion range is displayed by the play-strategy method when
k≥150. Furthermore, anticipating and countering in the play
simulation become complicated due to dynamic LS, thus the
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precision of the calculation for play profits has been affected.
In the greedy approach optimal seed node computed in the cur-
rent step may perform worse in the next step after influences
diffusion, especially after significant changes have occurred
among the LS. A waving line is presented by the greedy
approach because the topology structure is concentrated by
greedy idea but the competition among users and influences
are ignored. However, the calculation precision of topology
structure is compromised by dynamic link strength, which
leads to an unstable result.

Although GE-based algorithm focuses on topology struc-
ture, the information embedding and aggregation help to
improve diffusion to around76%. The result of GE-based
algorithm reflects the point that the effect of dynamic LS
can be partially tackled through the method of information
embedding and aggregation, although the effect is not satis-
fied. Better results are provided by the MIM-Reasoner than
by the GE-based algorithm because layers corresponding to
the respective influence are tackled simultaneously by the
MIM-Reasoner. Worse performance is obtained by the CoreQ
approach, but it is still higher than that of the max-k and
community-based methods. The reason is the optimization of
seed selection through Q-learning algorithm in CoreQ. The
MIMDLS is divided into several sub-graphs by max-k and
community-based approaches, and the diffusion percentage is
between70% and80% whenk≥150. It can be seen that within
asynchronous training in the AC networks, dynamic LS can be
handled by Distributed DRL framework skillfully. The Q value
of optimal seed nodes is estimated precisely by the trained
global AC network in every step, adapting the corresponding
influence diffusion simulated by agent interactions. The best
results are shown by the distributed DRL framework with an
increased tendency of a green line and the maximum diffusion
is about 86%. Both competitive relationship and dynamics
are taken into consideration and a stable diffusion solution
is generated whateverk. Compared with the distributed DRL
framework, lower diffusion percentages are obtained by MAS-
based DRL. A single AC network has the disadvantage that the
training model sometimes is hard to ensure convergence. This
is the reason why MAS-based DRL’s performance is worse
than distributed DRL.
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Fig. 13. Comparison of various methods under Cr-MILT model.

The corresponding results for Cr-MILT are depicted in
Fig. 13. All performance outcomes are relatively stable due
to the cooperative relationships among influences and the
condition that each node can be activated multiple times. The
results of play-strategy algorithm are due to the excessive
calculations focused on agent benefits in play simulation.

The improvement of cooperative MIM is gently hindered by
competitive play strategies. However, higher percentages are
generated by the CoreQ method, which benefits from Q-
learning optimization. The greedy method is more effective
under the Cr-MILT model than under the Cp-MIIC model,
because the fairness of cooperative influences is ensured by the
greedy idea. Although relatively higher results are provided
by the MIM-Reasoner approach, it still cannot exceed 80%
because the layered calculation cannot handle the dynamic
LS. The GE-based method is more efficient than the MIM-
Reasoner, which reflects that the representation of the graph
structure is more appropriate than the layered algorithm under
the Cr-MILT model. Benefiting from the loose constraints of
Cr-MILT, a middle position is occupied by the max-k idea
with an orange line. But the dynamics lead to a decrease
tendency whenk>150. With the increasing number ofk, more
subsets of the seed set will be calculated along with their
corresponding incremental values via the max-k algorithm.
However, every calculation suffers from dynamic LS, which
decreases the positive effect of incremental value. MAS-based
DRL excesses GE-based and community-based approaches
whenk<200, because the dynamic LS can be tackled well by
single AC network. Besides, this situation has not be remained
until k≥200, because large iterations cannot ensure parameter
convergence to an optimal value, leading to a worse quality
of seed set. In contrast, the proposed distributed DRL method
maintains a stable performance, achieving an activation range
of 85% to 95% of nodes.

Next, the performance of various technologies is analyzed
based on the diffusion speed. The diffusion speed is reflected
by the iteration length, which refers to the number of diffusion
iterations from the activation of seed nodes until no further
nodes can be activated. It should be noted that the iteration
length is recorded by simulating the diffusion of multiple
influences in MAS, based on the seed set generated by each
approach, respectively. The longer the iteration length, the
slower the diffusion speed. Each method is run to generate
the optimal seed set and then multiple influence diffusion is
simulated according to the seed set to obtain the iteration
length. These steps are repeated 100 times, and the results
are shown in Table II. For instance, based on the 100 results
of the GE-based algorithm under Cp-MIIC model, after 100-
time simulation of diffusion, the average iteration length is 52,
the maximum is 84, and 23 is the minimum value.

Under Cp-MIIC model, max-k, CoreQ and basic greedy
techniques have shorter average iteration lengths (33, 33 and
34) than others, meaning that diffusion is highly likely to
complete at a fast speed according to their optimal seed sets.
However, max-k and greedy methods also have the lower
diffusion percentages than others in Fig. 12 and Fig. 13.
The GE-based and Play-strategy methods have longer average
iteration lengths (52 and 44), while the remaining approaches
have medium average iteration lengths (distributed DRL ranks
sixth). The slowest speed is caused by the community-based
approach with an iteration length 91, while the fastest is
with max-k at 16. Besides, the shortest performance of the
proposed method is 21. The GE-based, MIM-Reasoner and
MAS-based DRL methods are the closest to the proposed
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TABLE II
THE ITERATION LENGTH OF INFLUENCE DIFFUSION OF SOLUTIONS FROM

VARIOUS METHODS.

k=150 under Cp-MIIC
Algorithm Average iteration Maximum Minimum
GE-based 52 84 23

Max-k 33 57 16
Basic Greedy 34 72 19

Community-based 39 91 24
Play-strategy 44 75 26

CoreQ 33 54 25
MIM-Reasoner 43 67 23

MAS-based DRL 37 82 24
Distributed DRL 42 79 21

k=150 under Cr-MILT
GE-based 67 124 39

Max-k 72 121 42
Basic Greedy 49 102 20

Community-based 68 113 41
Play-strategy 52 95 37

CoreQ 65 89 46
MIM-Reasoner 62 97 44

MAS-based DRL 55 104 40
Distributed DRL 51 107 43

method in terms of diffusion percentage under the Cp-MIIC
model, and they exhibit similar performance in terms of
maximum and minimum iteration length. Under the Cr-MILT
model, CoreQ’s performance is similar to MIM-Reasoner’s.
Besides, MAS-based DRL and play-strategy methods have
the closest performance to the proposed method in terms of
diffusion percentage, but they have longer average iteration
lengths compared to distributed DRL (which ranks second).
The longest performance is 124, generated by the GE-based
method, and the shortest is 20, generated by the basic greedy
method. The shortest iteration length of distributed DRL is 43.

TABLE III
RUNNING TIME (MIN ) FROM VARIOUS METHODS UNDER5 INFLUENCES

(k = 150).

Approach
User population

1000 2000 3000 5000

GE-based 15 21 32 128
Max-k 11 14 17 58

Basic Greedy 145 257 >10
3 >10

3

Community-based 151 181 846 >10
3

Play-strategy 33 166 370 764
CoreQ 13 25 39 67

MIM-Reasoner 16 25 41 63
MAS-based DRL 55 114 189 301
Distributed DRL 18 27 40 62

The time complexity analysis of the distributed DRL al-
gorithm (Algorithm 4) can be estimated under two diffusion
models. In the Cr-MIMDLS model, the worst-case scenario is
that the Q-value of each non-seed node will be recomputed by
the executor agent during every selection and no node reaches
its threshold of influence number during the selection. Thus,
the upper bound of the complexity isO(k(2n− k+m)/2m).
Besides, in Cr-MIMDLS model, the worst circumstances is
that one executor agent selectsk seed nodes and the Q-value of
each non-seed node is updated in agent’s every iteration. The
resulting upper bound of the complexity is:O(n+k(1−k)/2).
In order to further evaluated the proposed methods, the running
time is provided in this section.

Running time of varies methods under different population
sizes are displayed in Table. III. Here, the size of seed set
is 150 and each result is the average time after running the
corresponding algorithm 30 times. The Max-k approach has
a low running time in all situations, but a worse seed set is
generated by this approach compared to other methods. The
reason Max-k uses less time is that subsets of the current seed
set constitute the search space, which accelerates the search
speed and its speed has little help for influence diffusion. The
CoreQ method has a slightly longer running time than Max-
k because of the optimization steps. Similar performance is
displayed by the MIM-Reasoner. The reason is that it can
tackle network layers in parallel and conduct batch inference.
The structural feature is extracted by the GE-based algorithm,
which achieves a low running time when the population is no
more than 3,000, but the running time increases significantly
when the SN has 5,000 users. The worst performance is
observed when applying the Basic Greedy method, where
the time reaches103 due to heavy calculations in each
iteration of the complex influence diffusion. Running times of
Community-based and Play-strategy approaches are slightly
longer. Complicated community division due to dynamic LS
and greedy calculation takes time in the Community-based
algorithm. The convergence process becomes lengthy due to
dynamic LS when the play-strategy method simulates play
profits among influences. The reason that Distributed DRL
takes less time than MAS-based DRL is that several AC
networks for influences are executed in parallel in Distributed
DRL, whereas only serial computation is performed on a
single deep neural network in MAS-based DRL. By the way,
the training time is significantly reduced by Distributed DRL,
to no more than one-third of that of MAS-based DRL.

VI. CONCLUSION

This paper has presented a distributed DRL framework
within an MAS to address the MIMDLS problem in social
networks by utilizing Cp-MIIC and Cr-MILT models. The
approach has leveraged user behavior vectors to dynamically
model link strengths and devise an MAS-based diffusion
strategy for multiple influences, incorporating specific inter-
action rules. The distributed nature of MAS has inspired
the development of a DRL model for MIMDLS, which has
been shown to be both effective and efficient. The model
facilitates asynchronous updates by agents, who communicate
to meet the requirements of different diffusion models. When
compared to five advanced methods, our proposed algorithm
has consistently outperformed others across a range of settings.
Experimental outcomes have affirmed the proposed models
and algorithms’ capability to effectively tackle the MIMDLS
problem. While the proposed approach has shown promise
for MIM problems, its reliance on predefined node feature
vectors is a noted limitation. Future research could explore
MIM challenges where node information is partially known
or evolving, expanding the applicability of these models and
algorithms.
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