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A Novel Fault Diagnosis Method for Multi-Stage
Conversion Circuits Based on Data Fusion
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Abstract—This paper addresses the research gap on fault diag-
nosis of multi-stage conversion circuits within analog circuit fault
diagnosis. A diagnostic system is introduced, in which multi-point
data fusion is combined with deep feature analysis, leading to the
Integrated Dual-Axis Vision Transformer system. Initially, signals
from multiple monitoring points are fused through the Integrated
Wavelet Transform algorithm. Following this, deeper secondary
data fusion is achieved by the Dual-Axis Vision Transformer
algorithm, which utilizes a dual-axis observation encoder and
an axial data decoder to interact between time-domain and
frequency-domain features. This approach effectively analyzes
signal characteristics, improving the accuracy of fault diagnosis.
In experiments with the LLC Series Resonant Converter, both
soft and hard faults were reliably diagnosed by the system,
showing excellent accuracy, recall, and F1 score metrics.

Index Terms—Fault diagnosis, Multi-stage conversion circuit,
Integrated wavelet transform, Dual-axis vision transformer, Data
fusion.

I. INTRODUCTION

ELECTRICITY equipment in modern society continues
to expand and diversify. Conventional single-stage con-

version circuits no longer meet the varied requirements for
high efficiency, stability, and low electromagnetic interference.
By contrast, multi-stage conversion circuits have become the
preferred option for electronic systems due to their superior
ability to manage complex power conversion tasks, and this
becomes evident in areas like computer power supplies, server
power supplies, and electric vehicles, where they excel under
frequent power fluctuations [7], [45]. However, these systems
must operate continuously over long periods. The electronic
components of multi-stage conversion circuits, as the system’s
power core, degrade over time due to prolonged electrothermal
erosion. Once a soft fault transitions into a hard fault, it will
lead to a complete system failure or even complete damage.
Therefore, fault diagnosis for multi-stage conversion circuits is
essential for guiding redundant power switching and ensuring
system stability.

Previous circuit fault diagnosis methods include fault dic-
tionary methods, parameter identification methods, fault veri-
fication methods, and approximation methods [40], [2], [32].
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However, these approaches typically rely on pre-constructed
fault feature libraries or mathematical models for fault pa-
rameter estimation and verification. As a result, they often
face certain limitations when applied to fault diagnosis in
multi-stage converter circuits. These methods are generally
challenged by insufficient diagnostic accuracy and limited
applicability.

In recent years, numerous deep learning algorithms have
emerged in data processing, leading many researchers to apply
these intelligent methods to analog circuit fault diagnosis.
Current diagnostic approaches typically involve three key
components: fault signal collection, signal feature extraction,
and the construction of classification models [30], [20], [8].

Fault signal collection involves setting feature points to
gather target parameters such as voltage, current, and temper-
ature, which provide foundational data for fault analysis. The
pulse excitations have been inserted into the circuit in [3] so as
to collect response signals from the output to represent circuit
characteristics. In contrast, it has been argued in [25] that a
single excitation signal is insufficient to convey the circuit
state effectively, hence the use of multiple excitation responses
has been proposed as circuit characteristics. However, these
extraction methods are limited to specific feature points, and
the selection of these points significantly affects the reliability
of the data.

Signal feature extraction involves applying signal processing
techniques to extract representative features from raw data that
reflect the circuit’s operational state [18]. In [21], the Wavelet
Packet Transform (WPT) has been utilized to extract fault
characteristic information from both the time and frequency
domains. In [17], an improved Empirical Wavelet Trans-
form (EWT) has been employed to capture the Amplitude
Modulation-Frequency Modulation (AM-FM) components of
the signal, effectively extracting various statistical features. To
address the issue of small sample sizes, the Cross Wavelet
Transform (XWT) has been used in [11] to capture features
related to amplitude, phase, and coherence. These studies
demonstrate that signal transformation theories excel in pro-
cessing subtle signals.

Classification model construction involves building models
using deep learning and optimization algorithms, where the
extracted features are input into the model for training, creating
an intelligent system for circuit fault diagnosis. Commonly
used algorithms include early diagnostic algorithms, such as
Support Vector Machines (SVM), Artificial Neural Network
(ANN) and Autoencoders, as well as modern deep learning
algorithms, such as Convolutional Neural Networks (CNN)
and Long Short-Term Memory networks (LSTM) [33], [9],
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TABLE I: COMPARISON OF CIRCUIT FAULT DIAGNOSIS STUDIES

Experimental circuit Conversion stage Failed component Fault setting Signal Monitoring point Feature extraction Diagnostic model
Sallen-Key None Resistor/Capacitor Simulation Output voltage 1 WPT SVMs [21]
Sallen-Key None Resistor Simulation Output voltage 1 EWT ResNet [17]
Sallen-Key None Capacitor Experiment Output voltage 1 XWT GANs [11]
Sallen-key None Capacitor Simulation Output voltage 1 ELM Autoencoder [33]
Sallen-Key None Resistor/Capacitor Simulation Output voltage 1 Math. statistic CNNs [9]

Boost Single-stage Capacitor Experiment Output voltage 1 None LSTM [13]
Boost Single-stage Capacitor Simulation Output voltage 1 None SVMs [12]

Buck Boost Single-stage MOSFET Simulation Output voltage 1 SFMD SVMs [10]
Three-Phase Inverter Multi-stage IGBT Simulation Output current 1 Math. statistic ANN [16]

LLC Multi-stage MOSFET Experiment Node voltage 3 IWT DVIT
• GANs, SVMs, CNNs: Represent the derived approaches of the corresponding basic methods.
• The bolded terms refer to the methods designed in this study.

[13]. These algorithms are capable of effectively identifying
and classifying different types of signal features from data,
enabling accurate fault diagnosis [23].

Based on the current state of research, as shown in Table
I, the majority of studies have focused on fault diagnosis
in filter circuits and single-stage converter circuits. However,
there remains a significant gap in the field of fault diagnosis for
multi-stage converter circuits. In multi-stage converter circuits,
the fault features of front-end components are easily obscured
by complex signals during the multi-stage signal transmission
process, making previous methods and existing technologies
ineffective for diagnosing such faults. Therefore, there is an
urgent need for a novel diagnostic approach to address this
issue.

This study is the first to approach fault diagnosis from
the perspective of data fusion, employing a multi-point data
acquisition strategy and proposing a fault diagnosis method
for multi-stage converter circuits—Integrated Wavelet Trans-
form with Dual-Axis Vision Transformer (IWT-DVIT). In
this method, initial feature extraction and primary fusion of
the electrical signal are performed using Integrated Wavelet
Transform (IWT) in the signal feature section; in the model
diagnosis section, the Dual-Axis Vision Transformer (DVIT)
diagnostic model enables secondary fusion and accurate diag-
nosis of the input signal. The significant contributions of this
paper are outlined as follows:

1) IWT Method Design: Building on the high-performance
capabilities of Continuous Wavelet Transform (CWT)
in fine signal analysis, this study proposes a data fusion
scheme. The scheme achieves an initial dimensionality
increase and feature extraction of the electrical signal
by synchronously normalizing, time-frequency decom-
posing, and recombining multiple input signals.

2) Innovative DVIT model: To deeply fuse the time-
frequency features provided by multiple electrical sig-
nals, this study designs a novel diagnostic model. The
method includes a Dual-Axis Observation Encoder and
an Axial Data Decoder. Through interactive time-domain
and frequency-domain analysis, it achieves secondary
fusion of deep data features and fault diagnosis.

3) Physical Experiment Diagnosis: This study selects an
LLC series resonant converter as the target circuit for
analysis and verification. Starting from the MOSFET
fault mechanism, real fault states of the circuit are
simulated at the physical level. Diagnostic performance
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Fig. 1: LLC series resonant converter.

comparison experiments and variable load experiments
are conducted to effectively validate the general appli-
cability of the proposed approach.

The remainder of this paper is organized as follows: Section
II examines the multi-stage conversion principles and fault
mechanisms of the LLC Series Resonant Converter. Section
III discusses the IWT-DVIT algorithm developed in this study
in detail, focusing on data fusion and fault diagnosis. Section
IV presents the experiments conducted on the target circuit,
validating the method’s accuracy. Finally, Section V concludes
with a summary of the research findings.

II. CIRCUIT BACKGROUND

In this section, the operating principles and common causes
of faults in the LLC Series Resonant Converter (a typical
multi-stage conversion circuit) are analyzed.

A. Circuit Principle Analysis

The structural topology of the LLC Series Resonant Con-
verter is shown in Fig. 1, which consists of seven components:
the input source, a Controlled Switch Network (CSN), a
resonant circuit, an ideal transformer, an uncontrolled rectifier,
a low-pass filter, and a load [31]. This circuit represents a typ-
ical multi-stage conversion system, and its specific operating
process is described as follows:

• First Stage Conversion: The input voltage source Vin is a
DC voltage source. The switches Q1 and Q2 in the CSN
are set with a 50% duty cycle, alternating to generate
a square wave voltage ua, completing the first stage of
conversion.

• Second Stage Conversion: The resonant circuit, consisting
of the resonant capacitor Cr, resonant inductor Ls, and
leakage inductance Lm, processes the high-frequency
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Fig. 2: MOSFET equivalent model.

square wave voltage. The voltage ua passes through the
resonant inductor Ls to generate a sinusoidal voltage ub,
completing the second stage of conversion.

• Third Stage Conversion: The ideal transformer performs
a voltage transformation on the sinusoidal voltage ub,
and the output is rectified into a DC voltage using an
uncontrolled rectifier. The DC voltage is then filtered
through a low-pass filter with a capacitor Co to remove
high-frequency ripple, resulting in the DC output voltage
uc, completing the third stage of conversion.

In summary, the LLC Series Resonant Converter is a typical
multi-stage conversion circuit. Additionally, multi-stage con-
version circuits include the Flyback Converter, Phase-Shifted
Full Bridge (PSFB) Converter, Dual Active Bridge (DAB)
Converter, and other circuits formed by continuous combina-
tions of basic converters. For ease of analysis, the following
content focuses on the LLC Series Resonant Converter as a
representative multi-stage conversion circuit for this study.

B. Circuit Fault Analysis

Compared to other passive components, a significant num-
ber of faults in LLC Series Resonant Converter are con-
centrated in the power MOSFETs. Their equivalent model
is shown in Fig. 2, which includes the gate resistance Rg ,
conduction resistance Ron, gate-drain capacitance Cgd, gate-
source capacitance Cgs and drain-source capacitance Cds.

When the circuit operates continuously at high frequencies,
the frame, chip, and die attach of the MOSFET experience
cyclical thermal stress, causing a gradual increase in con-
duction resistance, which results in soft failures. In [15],
the functional relationship between conduction resistance and
temperature has been provided as follows:

Ron (Tj) = (Vgs − Vth)
Ron (T0)

vgs − Vth

(
Tj
T0

)r

(1)

where Tj is the MOSFET junction temperature, Vgs is the
nominal conduction voltage, Vth is the threshold voltage and
r is a constant (typically 2.65). As the operating time increases,
the plastic deformation caused by thermal stress accumulates,
eventually leading to the following frequently occurred hard
failure (Q1 as an example):

• Gate-drain short circuit: The input voltage is directly
applied to the gate of Q1, raising the minimum value
of the square wave voltage ua, decreasing the rate of
change in current through Lp, reducing the amplitude of
the sinusoidal voltage ub, and diminishing the DC output
voltage uc.

• Gate-source short circuit: The drive signal is directly
applied to the source of Q1. The square wave voltage ua
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Fig. 3: IWT method based on L1-norm.

continues to output a periodic DC waveform, but with
reduced amplitude and increased harmonics. This also
results in a reduced amplitude of the sinusoidal voltage
ub and increased harmonics, leading to a minimal DC
output voltage uc.

• Drain-source open circuit: There is no voltage between
the drain and source of Q1, the ua node receives only
a minimal current from the drive signal, resulting in
extremely low voltage amplitude. This also leads to a very
small amplitude of the sinusoidal voltage ub, increased
harmonics, and a minimal DC output voltage uc.

• Drain-source short circuit: Q1 behaves as if it is continu-
ously on. When Q2 conducts, the input source triggers a
short circuit protection, and the circuit ceases operation.

III. DIAGNOSTIC SYSTEM

Building on the analysis from the previous section, this
section introduces the IWT-DVIT diagnostic system, which
utilizes multi-point data fusion for fault analysis. This method
comprises three stages: primary data fusion, secondary data
fusion, and data diagnosis.

A. Primary Data Fusion

In the early stages of data fusion, fault features are often
concealed within the raw signals from the three monitoring
points. Therefore, the fusion process should avoid losing
any potential fault characteristics. Considering that the L1
norm is less sensitive to outliers in anomaly detection and
is effective in extracting high-frequency features from sparse
data, this study proposes an IWT method based on the L1-
norm for feature re-calibration, enabling effective data fusion.
The specific process is illustrated in Fig. 3.

First, voltage waveforms of ua, ub, and uc under normal
conditions and various fault types are collected and recorded
as the digital encoded dataset U :

U =


Ua1 Ub1 Uc1 1
Ua2 Ub2 Uc2 2
Ua3 Ub3 Uc3 3
Ua4 Ub4 Uc4 4
Ua5 Ub5 Uc5 5

 (2)
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In the formula, Uij (where i = a, b, c and j = 0, 1, 2, ...9)
represents the time-aligned voltage data collected from the
circuit under the j type of condition. Subsequently, the data
Uij are normalized:

U norm
ij =

Uij − µ

σ
(3)

Here, µ and σ represent the mean and standard deviation of
the signal, respectively. As shown in Fig. 3, based on the L1-
norm, the distribution weights for the three signals can be
calculated as follows:

wa =
exp(∥U norm

aj ∥
1
)

exp(∥U norm
aj ∥

1
)+exp

(
∥U norm

bj ∥
1

)
+exp(∥U norm

cj ∥
1
)

(4)

Similarly, the distribution weights wb and wc are calculated,
and the original signals are recalibrated to obtain the processed
data U∗

ij :

U∗
aj = U norm

aj · wa

U∗
bj = U norm

bj · wb

U∗
cj = U norm

cj · wc

(5)

Finally, CWT is applied synchronously to the three datasets
to obtain and integrate time-frequency images [5]:

IWT =
1√
|s|

∫ ∞

−∞
U∗(t) · ψ

(
t− τ

s

)
dt (6)

where U∗ represents the digitally encoded data set composed
of U∗

ij , ψ denotes the wavelet basis function, s is the scale
parameter and τ is the translation parameter.

In selecting the wavelet basis function, considering the
specific characteristics of the three different types of signals,
the IWT algorithm requires a wavelet basis function that can
simultaneously apply to all these signals. This study compares
commonly used wavelet basis functions in fault diagnosis:

• Daubechies Wavelet (db): While it has good localization
properties in the time domain, its frequency domain
resolution is poor, making it challenging to effectively
handle multi-frequency components [27].

• Symlet Wavelet (sym): Symmetric in nature, it is suitable
for stationary signals but lacks flexibility when han-
dling non-stationary signals, leading to the loss of high-
frequency information [24].

• Complex Morlet Wavelet (cmor): It has strong adaptability
and can handle signals with different characteristics. It
provides a unified time-frequency analysis framework,
capturing both amplitude variations and phase changes,
including phase misalignment [41].

Based on the above analysis, this study chooses the cmor
as the wavelet basis function for IWT. Additionally, the cmor
can adjust the center frequency and bandwidth parameters
according to the monitoring points to meet the requirements
for initial data fusion. Therefore, using the IWT method, this
study successfully fuses the three signals into a unified time-
frequency representation, providing a comprehensive view for
synchronously analyzing the fault features of all signals.

B. Secondary Data Fusion

After the input signals undergo initial data fusion, surface-
level features are combined. However, this fusion only reveals
the surface characteristics of the signals and cannot effectively
capture the relationships of deeper features within the signals.
Fault characteristics remain embedded in the time-frequency
images of the electrical signals, manifesting as distinct ampli-
tude fluctuations in the time domain and synchronized multiple
harmonics in the frequency domain. To further enhance the
degree of signal fusion and extract deeper fault features from
both the time and frequency domains, this study proposes a
DVIT method. This method consists of two main modules: the
Dual-Axis Observation Encoder and the Axial Data Decoder.

Dual-Axis Observation Encoder: The dual-axis observa-
tion encoder extracts features by encoding data bidirectionally
from both vertical and horizontal axes. Specifically, the process
starts with axial convolutions applied to the input feature map
X ∈ RB×C×H×W:

V i
out = ReLU

(
BN

(
W i

v ∗X + biv
))

Hi
out = ReLU

(
BN

(
W i

h ∗X + bih
)) (7)

where Wv and Wh represent the weights of the vertical and
horizontal kernels at the i scale, respectively, while bv and
bh denote the biases for the vertical and horizontal kernels,
respectively. The symbol ∗ denotes the convolution operation.
The scales of the convolution kernels are (nH × 1) and (1×
nW ) strip convolutions, where n represents the number of
layers, with values of 1

3 , 2
3 and 3

3 , determined by the number
of fusion data points.

Next, the encoded data at the three scales are fused sepa-
rately along the vertical and horizontal axes:

Vmerged = Concat
(
V 1

out, V
2

out, V
3

out

)
Hmerged = Concat

(
H1

out, H
2
out, H

3
out

) (8)

where Concat represents the concatenation operation along
the channel dimension, combining feature maps from different
scales to create the fused axial feature matrix. This matrix
comprehensively reflects the fault features extracted under
dual-view multi-scale conditions, capturing both synchronized
encoded observations in the time and frequency domains,
and providing comprehensive information for subsequent fault
analysis.

Axial Data Decoder: When a fault occurs in the converter,
highly correlated synchronous disturbances are generated in
both the time and frequency domains of the electrical signals.
Analyzing only one perspective (time domain or frequency
domain) is insufficient to fully extract the fault features. It
is only through the interactive analysis of both perspectives
that deep fault characteristics can be thoroughly mined and
extracted [38]. The axial data decoder solves the axial feature
matrix by deeply integrating information from both the time
and frequency domains. It consists of two modules: the Axis-
Cross Attention module and the H-W Attention module.

Axis-Cross Attention module: This module, as illustrated in
Fig. 4(a), performs attention operations on the vertical X and
horizontal Y information, generating a fused feature matrix Z
after aggregating these two types of data flows. This module
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Fig. 4: Schematic illustration of the DVIT model.

Algorithm 1 Axial Cross Attention Mechanism

1: Input: Feature tensors X,Y ∈ RB×C×H×W

2: Setting: Learnable parameters γx, γy
3: Define: Dimension D = C/8
4: Step 1: Generate Q, K and V
5: QX ,KX , VX = Conv1x1(X)
6: QY ,KY , VY = Conv1x1(Y )
7: Step 2: Reshape Q, K and V
8: Feature tensors X:
9: Qhx, Qwx = Reshape(QX , [B ×W,D,H])

10: Khx,Kwx = Reshape(KX , [B ×W,D,H])
11: Vhx, Vwx = Reshape(VX , [B ×W,C,H])
12: Feature tensors Y :
13: Qhy, Qwy = Reshape(QY , [B ×H,D,W ])
14: Khy,Kwy = Reshape(KY , [B ×H,D,W ])
15: Vhy, Vhy = Reshape(VY , [B ×H,C,W ])
16: Step 3: Calculate Activation Energy Scores
17: Ehx = Qhx ×KT

hx/
√
D , Ewx = Qwx ×KT

wx/
√
D

18: Step 4: Compute Attention Weights
19: Atthx = Softmax(Ehx), Attwx = Softmax(Ewx)
20: Step 5: Compute Attention Output
21: Attx = Atthx × Vhx +Attwx × Vwx

22: Step 6: Perform similar operations on Y to obtain Atty
23: Step 7: Compute Final Output
24: Z = Conv1x1(γx ×Attx+ γy ×Atty)
25: Output: Feature tensors Z ∈ RB×C×H×W

interacts with the two input matrices, each utilising the other’s
Query(Q) and Key(K) to adjust its own Value(V ), with the
detailed process described in Algorithm. 1.

H-W Attention module: For the aggregated feature matrix

Z, this study has developed a convolutional attention module.
As shown in Fig. 4(b), this module independently learns
the high-frequency features in the vertical and horizontal
directions, further enhancing the network’s local perceptual
abilities in these two dimensions.

First, the input matrix Z undergoes both average pooling
and global pooling. The results of these pooling operations
are then weighted and fused together:

Zp = w0 ·AvgPool(Z) + w1 ·MaxPool(Z) (9)

where w0 and w1 are learnable weights. Following this, a
gated processing unit is defined, which uses one-dimensional
convolution to encode data along the vertical and horizontal
directions separately, generating attention maps:

AH(Z), AW (Z) = Sigmoid
(
Conv 1Dk

1 (Zp)
)

(10)

The convolution is a 1× k strip convolution with the stride
fixed at 1. This setup allows for the recalibration of the original
input Z:

ZH = AH(Z)⊙ Z

ZW = AW (Z)⊙ Z
(11)

where ⊙ denotes element-wise multiplication. Finally, this
paper introduces a residual connection and conduct an average
fusion of the feature matrices from both directions to obtain
the adjusted feature output:

Zout =
1

3

(
ZH + ZW + Z

)
(12)

C. Data Diagnosis

Synthesizing the aforementioned modules, this study has
developed a data diagnostic architecture, illustrated in Fig. 4.
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TABLE II: CIRCUIT COMPONENT PARAMETERS

Component Model number / Parameter value
Vin 12v
Cr 2µF
Ls 4.7µH
Lm 16µH
Co 470µF

Q1/Q2 IRF540N
D1/D2 SS54C

Turns radio 1.2 : 1 : 1
• Operating frequency: fs = 52 kHz.
• Duty cycle: D = 50%.

This architecture is based on the generic Vision Transformer
(VIT) visual architecture and is divided into four primary
stages. The first three stages involve continuous scale upsam-
pling of data to accomplish information fusion and feature
extraction. In the final stage, data features are mapped to
classification results using an adaptive fully connected clas-
sification head.

The structure of the classification head includes:
• Adaptive Pooling Layer: This layer pools the feature

maps to produce a fixed-size feature vector.
• Flatten Layer: This layer flattens the pooled feature vector

into a one-dimensional vector.
• Dropout Layer: This layer is used to reduce the risk of

overfitting.
• ReLU Fully Connected Layer: This layer applies a non-

linear transformation to the flattened feature vector and
outputs the classification results.

Through the processing of the above four stages, the data
diagnostic architecture is able to effectively extract and in-
tegrate deep features, allowing for accurate classification of
various types of faults.

IV. EXPERIMENTAL VERIFICATION

This section presents the experimental setup of this study
and provides a detailed analysis of the experimental results.

A. Experimental Environment

The hardware platform for the experiment is shown in
Fig. 5, with the parameters of the LLC target circuit com-
ponents provided in Table II. The data acquisition setup
includes a peripheral acquisition circuit designed to extract
voltage signals using the operational amplifier chip RS8754
and the RMS detection chip AD637. The ADC module is
implemented with the NI USB-6001 data acquisition card,
offering a sampling rate of 1 MHz, and synchronized data
acquisition is managed by an upper computer system.

The testing algorithms for this experiment are implemented
in Pytorch-2.1 and executed on an Ubuntu-based experimental
platform. The hardware configuration includes an Intel Core
i9-13900K CPU and an NVIDIA GeForce RTX 3090 GPU.

B. Fault Setting

In contrast to software simulation experiments, as shown
in Fig. 6, this study simulates hardware faults on a physical
model by adding new devices in series or parallel. For the sim-
ulation of soft faults, fault points are set where the conduction

Fig. 5: Hardware experimental platform.
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Fig. 6: Fault simulation programmes. For soft faults in Figure (a), the
conduction resistance Ron of the IRF540N is set to 130% and 160% of
its nominal 44 mΩ. For open-circuit faults in Figures (b) and (c), an ultra-
small capacitor Cf is used at 2e-10 µF, with an ultra-large resistor Rf1 at
10 MΩ. For short-circuit faults in Figures (d) and (e), an ultra-small resistor
Rf2 is set to 1e-6 Ω.

resistance is 30% and 60% higher than the nominal values,
with a resistance tolerance of ±2% . In the simulation of hard
faults, the most frequent power MOSFET faults (such as drain-
source open circuit, gate-source short circuit, and gate-drain
short circuit) are selected as fault points.

The final identified fault categories are shown in Table III.
For each category, 800,000 data points are collected from the
three monitoring points to form the total experimental sample
set. This data set is then split into a training set and a test set
at a ratio of 4:1.

C. Primary Data Fusion Effect

To achieve efficient optimization of the two key parameters
(bandwidth parameter and center frequency) of the cmor
wavelet basis function in the IWT algorithm, this study pro-
poses a distinctiveness D as an evaluation metric, based on the
theory of Gray Level Co-occurrence Matrix (GLCM) [28]. The
process is as follows:

Initially, for each time-frequency image P , we compute the
statistical measures from its GLCM, including contrast (CO),
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TABLE III: CONVERTERS FAILURE RATINGS DATA

Fault category Classes Q1 Q2

Soft fault

a0 44mΩ 44mΩ
a1 58.08–56.32mΩ 44mΩ
a2 71.28–69.52mΩ 44mΩ
a3 44mΩ 58.08–56.32mΩ
a4 44mΩ 71.28–69.52mΩ
a5 58.08–56.32mΩ 58.08–56.32mΩ
a6 58.08–56.32mΩ 71.28–69.52mΩ
a7 71.28–69.52mΩ 58.08–56.32mΩ
a8 71.28–69.52mΩ 71.28–69.52mΩ

Hard fault

b0 Normal Normal
b1 DO Normal
b2 SO Normal
b3 GS Normal
b4 GD Normal
b5 Normal DO
b6 Normal SO
b7 Normal GS
b8 Normal GD

• DO: Drain Open Circuit. SO: Source Open Circuit.
• GS: Gate-Source Short Circuit. GD: Gate-Drain Short Circuit.

TABLE IV: IWT PARAMETER OPTIMISATION

Distinctiveness (D) Bandwidth Parameter

Center Frequency

0 1 2 3 4
1 0.9112 1.1035 1.3596 1.2879
2 0.9275 1.2209 1.4052 1.2934
3 0.9693 1.3557 1.5162 1.3843
4 0.9518 1.2324 1.4951 1.3650

• Centre Frequency: in the Wavelet Tool Library, the unitless normalised
frequency.

dissimilarity (DI), homogeneity (HO), and energy (EN ), to
form a feature vector F.

F = [CO (P ) , DI (P ) , HO (P ) , EN (P )] (13)

Next, calculate the intra-class and inter-class distances respec-
tively:

Intra =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

∥Fi − Fj∥ (14)

Inter =
2

C(C − 1)

C∑
a=1

C∑
b=a+1

1

N2

N∑
i=1

N∑
j=1

∥∥∥Fi
a − Fj

b

∥∥∥ (15)

In the formula, N represents the number of samples within a
class, C denotes the total number of classes, and the term
represents the Euclidean distance between feature vectors.
From this, the distinctiveness D can be calculated.

D =
Inter

1
C

∑
Intra

(16)

A larger value of D indicates a better transformation effect,
meaning the time-frequency images are more effective for
model classification and diagnosis. The parameter optimization
results are shown in Table IV. The data indicates that for LLC
converter faults in this study, the optimal parameter selection
is (3-3), with a maximum distinction degree of 1.5162.

Remark 1: Fig. 7 (a) presents the time-frequency trans-
formation images for typical soft faults (a0, a5) under fault
conditions, and Fig. 7 (b) shows the voltage time-sequence

Soft fault - a0 Soft fault - a5

Hard fault - b4

Hard fault - b5

(a)

(b)

��

�

�!

��

�

�!

Fig. 7: Converters fault time-frequency image.

waveforms and time-frequency transformation images for typ-
ical hard faults (b4, b5). Each mixed time-frequency image is
divided into three sections, displaying the data transformation
results for monitoring points a, b, and c, respectively.

By comparing the time-frequency images for soft faults a0
and a5, when the conduction resistance of Q1 increases by
30%, the data at points b and c show no significant changes.
However, a periodic jitter appears in the second frequency
band of the data at point a. By comparing the voltage wave-
form images for hard faults b4 and b5, when the LLC circuit
system is subjected to gate-source short-circuit and drain
open-circuit faults, the voltage time-sequence waveforms at
monitoring points a, b, and c all exhibit significant jumps. Sig-
nal observations show that these waveforms exhibit periodic
irregular jumps, and the time-frequency transformation images
reveal that the output signal contains substantial periodic high-
frequency noise.

In summary, the time-frequency images produced by pri-
mary data fusion effectively integrate the characteristics of
the three monitoring points, revealing features that might be
overlooked in single time-series signals. The concept of multi-
point data fusion is critical for fault identification in analog
circuits.

D. Diagnostic Performance Analysis

To effectively analyze the role of data fusion and model
algorithms in the fault diagnosis of multi-stage converter
circuits, this section designs experiments on data fusion, model
comparison, and varying load conditions for comprehensive
validation.

Data Fusion Experiment: This study establishes five data
scenarios based on the degree of input data fusion and selects
each type from the test set for 10 random trials with 100,000
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Fig. 8: Comparison of soft fault experimental results.
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Fig. 9: Comparison of hard fault experimental results.

points each. The results of these experiments are presented in
Fig. 8 and Fig. 9.

The data scenarios include:
• ua-1DCNN: 1D Convolutional Neural Network (1DCNN)

[34] with signal a input alone.
• ub-1DCNN: 1DCNN with signal b input alone.
• uc-1DCNN: 1DCNN with signal c input alone.
• uaubuc-1DCNN: Three-channel 1DCNN with simultane-

ous input of signals a, b, and c.
• IWT-CNN: CNN incorporating IWT preprocessing.
• IWT-DVIT: The algorithm model of this study.
Fig. 8 presents the results of the soft fault experiments.

Among the three single-input 1DCNN models, the model
using only the a signal shows significantly higher accuracy
than those using signals b and c. This aligns with the prin-
ciples of the LLC converter, where the a point signal, not
being transformed by the resonant capacitor, retains more
comprehensive feature information. However, when the signals
from monitoring points a, b, and c are simultaneously input
into the three-channel 1DCNN model, the accuracy does not
improve, which is mainly because the b and c signals do not
provide useful classification information and instead reduce
the efficiency of the model’s parameter tuning.

Remark 2: After introducing the IWT preprocessing, the
CNN model achieved an average test accuracy of 92.8%.
Compared to time-series signals, time-frequency images fur-
ther uncovered the potential fault features. The IWT algorithm
enhanced the data features of the time-frequency images,
effectively improving the model’s recognition accuracy for soft
faults.

TABLE V: HYPERPARAMETER PERFORMANCE

Block Dropout Acc Loss PS(MB)
2 0.2 0.8454 0.1675 6.97
2 0.3 0.8753 0.1330 6.97
2 0.4 0.8136 0.2077 6.97
3 0.2 0.9813 0.0099 17.34
3 0.3 0.9901 0.0063 17.34
3 0.4 0.9652 0.0293 17.34
4 0.2 0.9237 0.0795 27.82
4 0.3 0.9544 0.0359 27.82
4 0.4 0.9138 0.0905 27.82

• PS: Parameter Size, used to measure the complexity of a model.
• The optimal hyperparameter settings are highlighted in bold to empha-

size the results of the optimization.

Fig. 9 presents the results of the hard fault experiments.
Comparing the three single-input 1DCNN models, the models
using signals a and b are more effective at identifying open-
circuit faults, while the model using signal c performs better
at detecting short-circuit faults. This is because, in the LLC
converter, open-circuit faults involving Q1 and Q2 tend to
cause mode confusion at point c, whereas short-circuit faults
lead to mode confusion at points a and b. When integrating
data from all three signals, the average accuracy of the three-
channel 1DCNN increases to 81.5%.

Remark 3: Consistent with the soft fault experimental re-
sults, the IWT-CNN model with IWT preprocessing achieved
an average accuracy of 92.7%, further demonstrating that the
time-frequency images derived from the IWT algorithm have a
significant advantage in diagnostic performance and accuracy
compared to directly inputting time-series signals.

Furthermore, the IWT-DVIT algorithm proposed in this
study is introduced. Experimental results show that when the
fault point is close to the monitoring point, the diagnostic
accuracy of the IWT-DVIT algorithm does not significantly
improve compared to single-point data diagnosis algorithms.
However, when the theoretical distance between the fault point
and the monitoring point is relatively large, the advantages of
the IWT-DVIT algorithm become more apparent. Therefore,
the algorithm developed in this study is particularly suitable
for fault diagnosis of multi-stage converter circuits, while it
may have certain limitations for circuits with simpler signal
conversion, such as Buck and Boost circuits.

Model Comparison Experiment: Before the formal com-
parison experiments, this study determined the optimal hy-
perparameters for the model’s number of blocks and dropout
value through preliminary experiments. The pre-experiments
used soft fault data and hard fault fusion datasets, each con-
taining 500 time-frequency images per class. The experimental
results are shown in Table V.

The pre-experiment results indicate that, when testing the
time-frequency image features of soft and hard faults in the
circuit, the model achieves the highest diagnostic accuracy
and the smallest average test loss when the number of fusion
blocks is set to 3. Furthermore, as the number of blocks
increases, the number of channels adds up, leading to a
significant increase in the model’s PS. Therefore, from the
perspective of model efficiency, the number of blocks should
not be too large. The dropout layer is closely related to
the model’s generalization ability. Although the average loss
differences are not significant, when the dropout rate is set
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TABLE VI: MODEL COMPARISON EXPERIMENTAL RESULTS

Model Performance indicators Efficiency indicators
ACC R F1 PS(MB) IT(s/100)

1DCNN [34] 0.8643 0.86 0.87 4.55 1.031
SVM [12] 0.7753 0.76 0.78 2.71 1.322
LSTM [13] 0.8226 0.82 0.82 6.21 4.465
CNN [9] 0.9288 0.92 0.93 14.55 7.908
EffNetV2 [26] 0.9462 0.95 0.94 23.12 8.224
VIT [39] 0.9022 0.83 0.83 25.10 8.813
SwinT [14] 0.9554 0.94 0.95 16.13 8.238
KTPP [43] 0.9697 0.96 0.95 29.9 10.683
G-Mamba [29] 0.9708 0.98 0.97 23.17 8.530
CAS-ViT [44] 0.9815 0.97 0.95 25.63 8.727
DVIT 0.9901 0.98 0.99 17.34 9.337
• One-dimensional data processing model: 1DCNN, SVM, LSTM.
• Two-dimensional data processing model: CNN, EfficientNetV2

(EffNetV2), Vision Transformer (VIT), Swin Transformer (SwinT),
KAN Transformer with Pyramid Prompts (KTPP), GroupMamba (G-
Mamba), Convolutional Additive Self-attention Vision Transformers
(CAS-ViT).

• IT: Inference Time, used to gauge the model’s real-time performance
and efficiency.

• The experimental results of the algorithm proposed in this study are
shown in bold to highlight its performance advantages.

to 0.3, the model achieves the highest average diagnostic
accuracy, and its generalization ability on the fault dataset is
also superior.

In the formal experiments, this study selected existing cir-
cuit fault diagnosis models for comparison, covering both one-
dimensional and two-dimensional data diagnosis algorithms.
The experimental design includes ablation experiments and
comparative experiments, as shown in Table VI. By measuring
the accuracy, recall, and F1 score of each model, this study
evaluates the performance of the various diagnostic models.
The specific calculation formulas are as follows:

Acc =
TP + TN

TP + TN + FN + FP

R =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

(17)

where TP represents true positives, TN represents true neg-
atives, FP represents false positives, and FN represents false
negatives. In addition, the experiment also records the model’s
PS and IT as efficiency indicators to further assess the practi-
cality of the diagnostic models.

The traditional one-dimensional data diagnosis algorithms
perform poorly overall due to their inability to effectively fuse
feature information from multiple monitoring points. Specif-
ically, 1DCNN, with its strong feature extraction capability,
achieved an average accuracy of 86%, outperforming SVM
and LSTM.

In the new two-dimensional data diagnosis algorithms, the
average accuracy of the diagnostic model was significantly
improved by introducing IWT for image fusion. Compared to
CNN, EffNetV2 demonstrated certain advantages in structural
design, with the average accuracy increasing by 2%.

Although the VIT model effectively enhanced feature pro-
cessing capability through its self-attention mechanism, its
performance did not meet expectations due to the large com-
putational load, with a final accuracy of 90.2%. In contrast, the

TABLE VII: VARIABLE LOAD DIAGNOSTIC TASKS

Datasets Loads STSE DTSE
Train Test Train Test

A 5Ω A BC AB C
B 10Ω B AC AC B
C 15Ω C AB BC A

• STSE: Single-training-set experiment.
• DTSE: Dual-training-set experiment.

91.97%

96.82%

93.25%
94.01%

97.79% 98.53%
97.23% 97.85%
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Fig. 10: Variable load experiment.

SwinT, based on an improved architecture, achieved a higher
accuracy of 94.6%, demonstrating a significant performance
improvement.

Remark 4:The latest high-performance model based on the
VIT architecture, CAS-ViT, also shows excellent performance,
achieving 98.15% accuracy after preliminary pre-training. In
addition, the latest research under other architectures, such
as KTPP and G-Mamba, has made breakthroughs in overall
accuracy with the support of the latest schemes. However,
these models experienced fluctuations in category accuracy
and overfitting issues during the later stages of training,
ultimately reaching accuracies of only 96.97% and 97.08%.
In contrast, the DVIT model designed in this study, combined
with multi-point data fusion techniques, successfully achieved
a high diagnostic accuracy of 99.01%.

Moreover, the efficiency metrics indicate that two-
dimensional data processing models are generally more com-
plex than one-dimensional models, with the PS of the DVIT
model being slightly higher than other CNN-based two-
dimensional models. In terms of execution speed, although the
IT of the DVIT model is on average 1 s slower than other two-
dimensional models, the time difference per image is only 0.01
s, which has almost no impact on real-time diagnostic tasks.
The experimental results show that the DVIT model signifi-
cantly outperforms existing methods in the overall diagnostic
performance of multi-stage converter circuits, demonstrating
higher accuracy.

Variable Load Experiment: This experiment conducted
a generalization test of the proposed method under varying
load conditions. By simulating a ±50% change in the con-
verter’s standard output load, fluctuations in the converter’s
operating state were simulated. As shown in Table VII, the
experiment set up fault diagnosis tasks with biased samples
and comprehensively compared the diagnostic performance
of four algorithms: CNN, EffNetV2, SwinT, and DVIT. The
experimental results are shown in Fig. 10.
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In the single dataset experiment, the traditional CNN
method exhibited a low average accuracy of only 63.28%,
due to the large difference in local features between the
training samples and test samples. This issue became more
pronounced when the dataset and test set had a wide load
variation. However, when the models were replaced with
EffNetV2 and SwinT, the diagnostic performance improved
significantly, with SwinT outperforming EffNetV2 slightly.
The SwinT model effectively focused on global features
through its shifting window mechanism, capturing the cor-
relation between multi-point fault features. In contrast, the
proposed DVIT method fully explored the correlation of multi-
point information in the time-frequency images, ultimately
achieving an average accuracy of 94.01%.

In the dual dataset experiment, the overall trend was similar
to that of the single dataset experiment. With the increase in
the number and types of datasets, more local similar features
were provided, resulting in a 5% increase in the accuracy of
both the traditional CNN and EffNetV2. SwinT was the most
sensitive to the number of datasets, achieving an accuracy of
94.12%. In contrast, the DVIT method proposed in this study
performed exceptionally well in the dual dataset experiment,
ultimately achieving an average accuracy of 97.85%.

In summary, the results of the variable load experiment show
that the method proposed in this study exhibits the highest
average accuracy under changing circuit operating conditions.
It is better able to adapt to fault states that occur in actual
circuit operations, demonstrating exceptional generalization
ability and robustness.

V. CONCLUSION

This study has introduced the IWT-DVIT diagnostic system
specifically designed for multi-stage conversion circuits. The
system has employed an innovative IWT data fusion scheme
to synchronize, decompose, and recombine multiple time
series signals for surface-level data integration. Additionally,
the study has incorporated the DVIT algorithm, which is
equipped with dual-axis observation encoders and axial data
decoders. This has allowed for the analysis of deep features
through the interaction of time-domain and frequency-domain
information, thereby effectively diagnosing faults. Experimen-
tal results within the LLC Series Resonant Converter have
demonstrated that, compared to traditional diagnostic methods,
this diagnostic system has significantly enhanced the reliability
and accuracy of fault detection. Future work will explore the
performance of this method on other converter components,
as well as its potential in unsupervised diagnostic research
[4], [35], [37], [19] fault-tolerant control [42], [6], [22] and
real-time fault detection [1], [36].
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