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Abstract—The removal of artifacts is essential for improving
the quality and reliability of electroencephalogram (EEG) data
in academic research. Traditional methods, such as blind source
separation and signal space projection, often involve subjec-
tive and time-consuming manual parameter selection, which
is ineffective for artifacts closely correlated with EEG signals.
Furthermore, existing artifact removal methods are difficult to
generalize across different datasets and experimental conditions.
Although artifact subspace reconstruction shows promise, it
remains computationally complex and sensitive to parameter
selection, limiting its real-time applicability and ability to handle
complex artifacts. This study proposes the Multimodal Artifact
Subspace Reconstruction (MASR) method, which reduces manual
intervention and improves automatic detection and removal of
complex artifacts. MASR proposes a new use of multimodal fea-
ture extraction techniques, innovatively providing an informative
reference for processing EEG signals to reduce artifacts across
channels. MASR enhances artifact removal by introducing a
novel channel significance metric for quantifying artifact contam-
ination and employing a dynamic adaptive threshold to reduce
parameter dependency. MASR integrates multimodal features
through principal component analysis (PCA) and ensures cross-
modal consistency with Pearson correlation coefficient (PCC)
for EEG artifact removal, solving the challenge of artifact
characteristics. The MASR method offers a robust, data-driven
solution that improves the quality and reliability of EEG data
across various applications.

Index Terms—Artifact removal, artifact subspace reconstruc-
tion, brain-computer interface, electroencephalogram, multi-
modality fusion, transfer spectral entropy.

I. INTRODUCTION

RAIN-COMPUTER interface (BCI) systems enable users
to communicate directly with a computer using brain
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signals [42], and can leverage various modalities as control sig-
nals, such as functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), and electroencephalo-
gram (EEG) [26], [27], [38]. Among these modalities, EEG
is the most commonly used in BCI due to its exceptional
temporal resolution, portability, and reliability [39]. EEG mea-
sures the joint electrical activity of a population of neurons,
typically with an amplitude of a few microvolts, which can
be extracted and decoded for specific tasks in the BCI system
[10]. The process of collecting EEG data involves recording
the electrical activity of brains through electrodes placed on
the scalp. However, the recording process often introduces
unwanted noise from various artifacts, which can distort the
original brain activity and complicate the analysis of EEG
signals [25].

The successful implementation of EEG in both clinical
and industrial environments relies on the effective removal of
artifacts. Artifacts are considered interference or noise com-
ponents in brain signals and arise from a variety of sources,
including but not limited to environmental factors [26], in-
strument limitations [16], and physiological activities (such as
eye blinks and muscle contractions) [21]. The development
of artifact removal methods is essential to address noise
interference and ensure precise interpretation of EEG data,
highlighting the need for innovation in artifact detection and
mitigation methods [26]. Recent literature reviews indicate a
growing focus on the development of artifact removal methods
aimed at eliminating non-brain components from recorded
EEG signals [7], [14].

In EEG analysis, a prominent method for artifact removal
refers to blind source separation (BSS) and particularly inde-
pendent component analysis (ICA). ICA can reconstruct EEG
signals by eliminating artifact sources when these sources
are statistically independent and non-Gaussian [12], [14],
[24], [47]. XDAWN is a spatial filtering method designed
to improve the signal-to-signal and noise ratio of the evoked
response [31]. However, such dependence on the character-
istics of artifacts often necessitates combination with other
decomposition methods [14]. SSP effectively mitigates noise
by projecting data into a subspace orthogonal to the noise di-
rection, provided that the noise direction in the signal space is
well-defined and stable [26], [37]. Nevertheless, the limitations
of SSP stem from its reliance on specific channel configura-
tions. Recent advancements in EEG analysis have introduced
artifact subspace reconstruction (ASR) as a contemporary
method designed to remove complex artifacts from EEG
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signals autonomously [3], [8]. ASR excels at autonomously
removing large-amplitude artifacts, particularly in contexts
with substantial EEG variability [40]. Dynamic modulation
of ASR parameters could improve artifact removal and signal
preservation [8], [13]. However, a limitation of ASR is its
parameter dependency, as it identifies artifact-contaminated
segments based on thresholds derived from baseline EEG data.
Variability in baseline EEG and unpredictable noise make sta-
ble reference extraction challenging, necessitating additional
EEG-derived information to ensure reliable artifact removal
[4]. Common spatial pattern (CSP) and convolutional neural
network (CNN)-based methods have shown promise in artifact
removal [26]. However, their performance often depends on
the availability of large, labeled datasets for training, which
may not always be feasible.

The limitations of artifact removal methods arise partly
due to the complexity and high dimensionality of signals,
which complicates the development of approaches capable of
adapting to a wide range of populations [2]. Nevertheless, the
extensive adoption of wearable devices and progress in data
acquisition and analysis has not only established a foundation
but also highlighted the demand for innovative multimodal
approaches capable of efficiently handling and integrating mul-
timodal information from multiple sources [23], [32]. These
multimodal approaches enhance EEG analysis by incorporat-
ing additional information for EEG analysis, thus providing
representative features that aid in improving artifact removal
[34], [44]. In the field of BCI, multimodal data refers to
inputs from various devices or feature representation (utilizing
distinct feature extraction techniques to derive different types
of features). In such a context, every input or feature rep-
resentation can be regarded as one modality [46]. Seamlessly
leveraging multimodal approaches for artifact analysis involves
two primary challenges: ensuring cross-modal consistency and
effectively integrating multimodal information.

Cross-modal consistency ensures that representations across
different modalities within a shared feature space convey the
same underlying meaning [43]. Methods based on fusion are
generally integrated with feature extraction methods and aim to
minimize redundant information. Typical methods for feature
extraction include principal component analysis (PCA) [35]
and max-relevance and min-redundancy (mRMR) [18]. Modal
information extracted from each feature representation of EEG
signals can also be leveraged by multimodal fusion methods
[5], [171, [28], [29]. EEG signals can extract various types of
modal information, such as time-frequency, frequency-domain,
and time-domain information. Multimodal approaches offer
solutions by combining various data sources and analytical
techniques to effectively distinguish genuine brain signals
from artifacts [41], [45], [46].

This study focuses on the improvement of existing methods
to accommodate automated detection and removal of complex
artifacts from EEG data by leveraging the integration of mul-
timodal information. Specifically, a multimodal artifact sub-
space reconstruction (MASR) method is proposed. To ensure
cross-modal consistency, the study employs a standardization
process that aligns information from different modalities, en-
suring that the data from different modalities represent equiv-

alent meanings within a shared feature space. This process
addresses the inherent gaps between modalities, facilitating the
integration of multimodal information for artifact detection.
The study includes a comparative evaluation of MASR with
ICA, SSP, and traditional ASR methods, demonstrating that
MASR outperforms these methods in artifact suppression and
overall performance. The main contributions of this paper can
be summarized as follows:

1) MASR introduces a metric called channel significance
to quantify artifact pollution in EEG data by evaluating
the impact of artifacts on individual channels, facilitating
a stratification mechanism that tackles shortcomings
channel configurations;

2) MASR employs a dynamic adaptive threshold to ascer-
tain the cutoff parameter in ASR methods, predicated on
a coefficient of variation, thereby effectively addressing
parameter dependency and improving the accuracy of
artifact removal while minimizing the loss of critical
EEG information;

3) MASR enhances EEG artifact removal by aligning mul-
timodal features into a shared space and fusing them
using PCA, thereby overcoming challenges in cross-
modal consistency and effective multimodal integration
imposed by characteristics of artifacts.

The remaining sections of this paper are as follows: Section
IT describes the proposed MASR method; Section III presents
the experimental setting and offers an in-depth analysis of the
results; finally, the conclusions and discussions on relevant
future work are presented in Section IV.

II. MULTIMODAL ARTIFACT SUBSPACE RECONSTRUCTION

The proposed MASR method consists of three main
modules: the multimodal feature extraction module, the
significance-based channel grouping module, and the module
of adaptive thresholding informed by coefficient of variation,
as shown in Figure 1. Following the segmentation of EEG data,
the multimodal feature extraction module initiates its operation
by simultaneously extracting and computing feature infor-
mation. This module integrates multimodal information from
transfer spectral entropy (TSE) [9], power spectral density
(PSD) [11], and wavelet packet decomposition (WPD) [19]
to capture diverse artifact characteristics, providing focused
data segments for subsequent analysis.

Upon completion of the segmentation, the channel grouping
module classifies the EEG channels based on their channel
significance using statistical metrics, thereby forming channel
groups for targeted artifact removal. These groups are then pro-
cessed in the subsequent module, which applies the coefficient
of variation to compute adaptive thresholds. This ensures that
these thresholds are dynamically adjusted based on the statis-
tical variability of the channel significance scores within each
channel group, optimizing artifact removal while preserving
the integrity of the EEG signal. In this framework, artifact
removal techniques tailored to the unique characteristics of
each group can complement each other, maximizing artifact
suppression while minimizing the loss of EEG information.
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Fig. 1. The flow diagram of MASR method

A. Multimodal Feature Extraction ture space. The subsequent sections detail the computational
methodologies employed for the three modal information and

In this phase, the impact of artifacts on EEG data is (he execution of cross-modal consistency mechanisms. The
quantified using a multimodal fusion strategy integrating three  at4 is processed in parallel operations in segments, and then
sources of modal information: TSE, WPD, and PSD, as matrices W, rp, and rw are horizontally stacked to form
illustrated in part (1) of Figure 1. To ensure cross-modal 5 combined feature matrix F, representing the interactions

consistency, MASR standardizes the feature representations petween EEG and artifact reference channels across multiple
from modal information, aligning them within a shared fea-
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modalities as follows (Table I shows the list of symbols with processed v(f) given both w®(f) and its past values. ¢
corresponding descriptions): is defined by the number of past time points considered,
and the index of the time points within the delay vector is

F=[U rp rw] 1) p y

TABLE I
LIST OF SYMBOLS

Symbol Description

« proportional constant of mapping function

B proportional constant of mapping function

6 coefficient of variation

A channel significance

“w mean value of the channel significance

o standard deviation value of the channel significance
© dimension of the delay vector

o) dimension of time points within the delay vector
Uy ,x TSE from Y to X

1(e) indicator function

dx (i) WPD of X at time index ¢

dx mean WPD value of X

dy (7) WPD of Y at time index %

dy mean WPD value of Y

multimodal feature matrix

frequency index derived from sampling frequency
channel group of category ¢

entropy

number of EEG channels

number of segments exceeded the threshold
number of segments created for each group

@

2zzmo-
[

rp Pearson correlation coefficient of PSD

W Pearson correlation coefficient of WPD

p cutoff parameter of ASR

R represents the real number of space

Sx () PSD of X at frequency index ¢

Sx mean PSD value of X

Sy (i) PSD of Y at frequency index ¢

Sy mean PSD value of Y

s segment of signal channels

T threshold of coefficient of variation

v(f) vector of elements from Y

v?(f) (p-dimensional delay vector for vector v(f)
w first principal component

w(f) vector of elements from X

w?(f) ¢-dimensional delay vector for vector w(f)
X EEG channels

Y reference artifact channels

Transfer Spectral Entropy (TSE) is an extension of trans-
fer entropy designed to investigate local frequency band
coupling in the frequency domain [9]. Firstly, the raw data
undergoes phase space reconstruction [6]. Subsequently,
a 2-dimensional fast Fourier transform (2D FFT) is
performed to obtain the frequency represents w(f) and
v(f) in the frequency domain. Finally, transfer entropy
values are computed for each pair of w(f) and v(f)
with the same frequency index to derive TSE value ¥
from reference artifact channels Y to EEG channels X
as follows:

Uy x(f) = H((f) | v*(f))
— H(u(f) | w?(f),v*(f))

where v?(f) and w®(f) represent the - and ¢-
dimensional delay frequency representations respectively,
H(v(f) | v?(f)) denotes the conditional entropy of
the processed v(f) given its past values, and H (v(f) |
w?(f),v?(f)) denotes the conditional entropy of the

2

represented by ¢. TSE serves as a quantitative measure to
evaluate the influence of artifacts on EEG signals across
different channels.

o Power Spectral Density (PSD) enables the analysis of
the spectrum of time domain signals and the capture
of energy distribution at different frequencies [11], [30].
Pearson correlation coefficient (PCC) helps to assess
the degree of relationship between the artifact reference
channels and the EEG channels, transforming the feature
information in the frequency domain of the signals into
correlations between the signals, thereby achieving cross-
modal consistency in the task of artifact removal. Then
PCC is computed across the PSD of channels X and Y,
denoted as rp below:

> ie1 (Sx (i) — Sx)(Sy (4) — Sy)

rp =
VI (Sx (1) 5x)2\ S (S (i) — By )?

3)

where Sx (i) and Sy (i) represent the estimated PSD

values of EEG channel X and reference artifact channel

Y at frequency index ¢, Sy and Sy represent the mean

values of these estimated PSD, and n denote the total

number of frequency indices considered.

o Wavelet Packet Decomposition (WPD) can be regarded
as a continuous-time wavelet decomposition sampled at
different frequencies at every level or scale [19], [33].
PCC measures the linear correlation between the two sets
of data, with values ranging from -1 (perfect negative
correlation) to 1 (perfect positive correlation). The PCC-
based process in the MASR represents an innovation,
enhancing the artifact removal accuracy through a more
refined cross-modal consistency evaluation, allowing for
optimized correlation analysis between EEG and refer-
ence artifact channels. Similar to the case with PSD,
WPD also does not directly capture the relationship
between artifact reference channels and EEG channels.
Therefore, calculating the PCC is also necessary for
WPD, with the PCC for the WPD of signals X and Y
denoted as ry below:

>z (dx (4) — dx)(dy (i) — dy)

’rW =
VI (dx () — dx)2 /S0 (dy () — dy )2

4)

where dx (i) and dy (i) represent the WPD values of

EEG channel X and reference artifact channel Y at time

index i, dx and dy represent the mean values of these

WPD, and n denotes the total number of time indices

considered.

Remark 1. The number of data segments can generally be
chosen based on the available number of CPU cores, with
a multiple of the core count being recommended for optimal
performance. In the experimental setup of this work, the data
was divided into twelve segments for parallel processing,
ensuring the best performance for data processing. In different
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environments, the number of data segments can be adjusted to
a higher or lower value as needed.

B. Significance-based Channel Grouping

The fusion of multimodal features and the proposal of
channel significance aim to address the lack of attention given
to the targeted, personalized treatment of channels in existing
approaches. The significance-based channel grouping module
corresponds to part (2) of Figure 1.

To extract the dominant variability across channels, MASR
applies PCA to the multimodal feature matrix F € RNV*M
where R represents the real number space. The first principal
component w is obtained as the eigenvector corresponding to
the largest eigenvalue. Then channel significance A; is then
defined as:

Flv]

N e [P’

i=1,2,...,N. (5)

max

1<j<N
where )\; represents the relative contribution of channel ¢ to
the primary mode of variation in F, effectively quantifying its
significance for artifact removal. This definition ensures that
\; is normalized across all channels, so the values lie within
the range [0, 1]. Channels are then grouped based on statistical
thresholds derived from the normalized );.

Based on the channel significance A = [A1, A2, ..., An],
where N represents the total number of EEG channels, the
channels are grouped into three categories based on their
significance to facilitate targeted artifact removal. The mean p
and standard deviation o of the significance scores are com-
puted as p = %ZZI\; Ai, and o = \/% Zfil()\z — )2,
where NN is the total number of EEG channels and \;
represents the channel significance score for channel i. The
grouping process begins with the calculation of statistical
thresholds. Two thresholds can be established: the low thresh-
old T; = p—o, and the high threshold 7}, = p+ 0. Each EEG
channel is then allocated to one of three groups (denoted as
Glows Gmedium, and Gpign) based on its significance score
\; relative to the thresholds:

G; :1(/\i > Th) . Ghigh + 1()\1' < Tl) - Glow
+ 1(,‘Tl S /\z S Th) : Gmedium

where 1(\; > T3), 1(A\; < Tp) and 1(T; < \; < Tj,) are
indicator functions that assign a value of 1 when the respective
conditions are satisfied, and O otherwise. Consequently, MASR
assigns each channel to one of three groups based on the
corresponding significance score \; and the thresholds 7; and
T},. The resulting G; stores the grouping information and is
passed to the next module.

(6)

C. Adaptive Thresholding Informed by Coefficient of Variation

MASR employs threshold-based adaptive grouping param-
eter assignment to prioritize artifact removal accuracy and
minimize loss of EEG information during ASR processing.
Part (3) of Figure 1 illustrates the flow of adaptive thresholding
informed by the coefficient of variation. With the EEG data
partitioned into n segments, the coefficient of variation §

was computed to assess the relative dispersion in the channel
significance A for each segment, thereby reflecting the degree
of variability within each segment. &, represents the coefficient
of variation of the significance scores within each segment
s (s € {1,2,...,n}), defined as the ratio of the standard
deviation o, to the mean p4: §5s = o5/ 5. A high coefficient of
variation indicates significant variability in the features, sug-
gesting the need for parameter adjustment in the segmentation
process, which is performed in parallel. To further quantify
the variability, N, represents the total count of segments for
which the coefficient of variation d, exceeds the threshold T'
were tracked as:

Ng =

S

1(6s > T) @)
=1
where 1(0, > T') is the indicator function. Based on the group
assignment Giow, Gmedium, and Gpig, from the preceding
module, the cutoff parameter p was adaptively adjusted. The
grouping G reflects the channel significance, and the param-

eter p; for each channel was set as follows:

pi =p - L(Gi = Ghign)
+ (p + a(Ns)) . 1(G7, = Gmedium) (8)
+ (p + a(Ns) + ﬁ(Ns)) : 1(G1 = Glow)

where G; denotes the group assignment for a given channel,
« and 3 are proportional constants, and N, quantifies the
variability of segments exceeding the threshold 7. The se-
lection of o and 3 can be defined to adaptively adjust to the
number of data segments, ensuring minimal differences in the
cutoff parameter across groups and maintaining values within
an appropriate range. This setup ensures that parameters are
adjusted to provide differentiated artifact removal strategies
tailored to the significance of each channel group. MASR’s
adaptive parameter selection eliminates the need for compro-
mise in settings across all channels, enabling users to focus
on artifact-affected channels for more precise removal.

By addressing the parameter problem of ASR for each
channel group, MASR applies an artifact removal process
to reconstruct the cleaned EEG data. The EEG channels
are grouped based on channel significance, with adaptive
thresholding set according to the coefficient of variation from
segmented statistics, ensuring that the final output retains the
significant features of the original EEG data while effectively
minimizing artifact interference. Algorithm 1 outlines the
algorithm flow of the MASR method.

III. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
A. Experimental Design

In the experiment, multi-modal feature extraction methods
(TSE, PSD, and WPD) were applied to extract features. Cor-
relation matrices for TSE, PSD, and WPD were generated to
evaluate interactions between different channels. The MASR
method processed the multimodal information to remove arti-
facts, operating at three channel groups: low-impact, medium-
impact, and high-impact. To assess the effectiveness of the
MASR method, comparisons were made with three other
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Algorithm 1: Multimodal Artifact Subspace Recon-
struction (MASR)
Input : EEG channels X, reference artifact channels Y
Output: Cleaned EEG signals
for each segment s of X and Y do
2 Compute TSE ¥y _, x from the conditional entropy
of frequency segments using (2);
3 Estimate Welch’s method PSD and compute rp as
the PCC between X and Y using (3);

—

4 Compute WPD coefficients and compute - as the
PCC between X and Y using (4);
5 Stack matrix of ¥, rp, and ry to matrix F by (1).

6 Obtain channel significance by applying PCA on F
using (5);

7 Average the channel significance from each segment n
to obtain the overall channel significance \;

8 Compute mean p and standard deviation o of the
channel significance \;;

9 Establish thresholds: T} = p — o, T, = p + o;

10 Establish groups Giow, Gmedium, and Ghrign;

11 Assign channels to the groups using (6);

12 Initialize N and p;

13 for each segment s in {1,2,... ,n} do

14 Compute ps and o of channel significance d;

15 L Compute s and increment N, by using (7).

16 Define cutoff parameter p; for each group G; using (8);

17 Apply artifact removal process to channel groups with
the cutoff parameter p; and then reconstruct;

18 return Cleaned EEG signals;

artifact removal methods: ICA, SSP, and ASR. To ensure
fairness in the comparison, all methods were set to use the
same eye movement channels as references. The effectiveness
of the ASR was demonstrated by comparing the processed data
with the original data through different waveforms. Finally,
the processed data were analyzed using four experimental
metrics to evaluate the effectiveness of the MASR method.
The ablation experiment systematically assessed the impact of
different modality combinations by evaluating the performance
of single, dual, and triple modality configurations on signal
accuracy and robustness across subjects.

1) Experimental Dataset: The performance of multimodal
artifact subspace reconstruction is assessed using the BCI
Competition IV 2a (BCIIV-2a) dataset, an openly accessible
and widely recognized motor imagery-based EEG (MI-EEG)
dataset [36]. Serving as a benchmark dataset for MI-EEG
classification tasks, the BCIIV-2a dataset contains signals
captured under uncontrolled conditions, making it particularly
challenging due to the presence of various artifacts. During
each experiment, nine participants were instructed to perform
one of four motor imagery tasks: 1) imagining movements
of the left hand; 2) right hand; 3) feet; and 4) tongue. Each
participant underwent two recording sessions on separate days,
with each session comprising 288 trials, resulting in a total
of 576 trials per participant. In total, the dataset includes

5184 trials, where each trial represents a single sample in MI-
EEG tasks. The recordings were conducted using 22 Ag/AgCl
EEG electrodes along with three monopolar electrooculogram
(EOQG) electrodes. To estimate the impact of EOG interference,
a 5-minute baseline recording was taken at the start of each
trial. Based on both the literature review and experimental
tests, we observed that applying artifact removal methods
to high-quality EEG data can inadvertently lead to the loss
of valuable neural information [26]. Consequently, the third
subject, which demonstrated exceptionally high quality and
negligible artifacts, was excluded from the artifact removal
task, while the remaining eight subjects with pronounced
artifacts were selected for the experiments.

2) Evaluation Metrics: In this study, four key metrics,
including root mean square error (RMSE), normalized mean
square error (NMSE), signal-to-artifact ratio (SAR), and mu-
tual information (MI) are used to evaluate the performance
of the proposed algorithm. These metrics assess the accuracy
and signal quality following artifact removal, which are also
used in other EEG artifact removal studies for performance
evaluation, as discussed in previous research [25]. A summary
of these metrics is provided in Table II, where X, represents
the signal before artifact removal, and Y; represents the
signal after artifact removal. Lower RMSE and NMSE values
indicate reduced reconstruction errors, whereas higher SAR
and MI values correspond to improved signal fidelity and more
effective artifact suppression.

3) Parameter and Channel Settings: In the MASR method,
EEG channels are classified into low, medium, and high-
impact categories based on transformed features, using statisti-
cal thresholds determined by the mean and standard deviation.
The initial cutoff parameter p is uniformly set to 20 for all
channel groups. Given that the number of segments is fixed
at 12, the values of o and § are both set to 0.5, ensuring a
balanced adjustment during the adaptive thresholding process.

To justify these settings, prior studies on ASR suggest that a
cutoff between 20 and 30 is effective for EEG signals, making
20 a reasonable choice [3]. The segmentation number of 12
was selected to match the 12 cores of our processing machine,
thereby enhancing parallel processing efficiency. With o and
B set to 0.5, the effective parameter range is maintained within
an appropriate window for artifact removal. These settings
provide a consistent basis for the experiments while allowing
adjustments based on computational resources.

Based on the channel significance evaluation in Fig. 2,

TABLE II
METRICS FOR EVALUATING METHOD PERFORMANCE
Metrics Formula
RMSE L (Xe—Ye)?
n
T (Xe—Yy)?
S Y
iy X7
SAR 10logqo (Zle(Xt*Yt)z
F(Xt,Yt)
ML | ff F(Xe, Yo log (55T ) dXeav
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Fig. 2. Channel significance across subject
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Fig. 3. Radar diagram of ablation modalities

EEG channels are adaptively assigned to high, medium, and
low-impact groups according to their sensitivity to artifacts,
as illustrated in Table III. The combined analysis of our
figures, tables, and the intrinsic characteristics of the BCIIV-2a
dataset demonstrates that the distinct features between artifacts
and EEG signals are effectively captured and quantified by
the proposed metrics. Furthermore, since the PCC inherently
provides a standardized measure, only channel significance
normalization was applied without any additional adjustments.

B. Ablation Experiment

Table IV summarizes the results of the modality ablation
experiments, with data averaged across eight subjects. In the
single-modality tests, the PSD modality achieved the lowest
RMSE of 2.95 x 107¢ and a commendable SAR of 15.63,
indicating that PSD alone effectively captures essential signal
features. In the dual-modality assessments, the integration of
TSE and PSD attained superior results, while the NMSE de-
creased to 0.0661. This suggests a synergistic effect, enhancing
overall performance through the integration of complementary
features. This integration also showed a notably high SAR,
indicating enhanced signal clarity and reduced deviation from
expected values. This further underscores the effectiveness of
the TSE + PSD integration. Although the TSE + WPD and
PSD + WPD integrations exhibited competitive performance,
they fell short of surpassing the TSE + PSD integration.

In particular, the triple-modality configuration, which com-
bines TSE, PSD, and WPD, achieved the most substantial
performance enhancements, with an RMSE of 2.91 x 1076,
alongside improvements in SAR (15.6788) and NMSE
(0.0649). Additionally, MI also reached 3.8388, suggesting
that the combined modalities offer richer signal representations
and information gain. Figure 3 presents radar charts comparing
the performance of single-modality, dual-modality, and triple-
modality configurations, corresponding to the data shown in
Table IV. The charts highlight the performance improvements
achieved by combining multiple modalities, with the triple-
modality configuration showing the most significant enhance-
ment across all metrics. These findings underscore the poten-
tial for exploring additional modality combinations in future
research, emphasizing the ability of integrated modalities to
capture a more comprehensive representation of underlying
signals, leading to improved accuracy and robustness in EEG
data processing.

C. Comparison Study

1) Waveform Analysis: Figure 4 illustrates the waveforms
and their differences after processing with MASR, along-
side the other five comparison methods (Picard-ICA, SSP,
OTP, XDAWN, ASR) to the original EEG signal. To ensure
methodological consistency, five comparison methods were
implemented using the MNE-Python framework, maintaining
a standardized processing pipeline [15]. The waveform plots
reveal the effects of each method on the signal. Cleaned
signals exhibit clear alterations, with notable changes in ar-
tifact removal. Each method demonstrates unique cleaning

TABLE III
ADAPTIVE GROUPING SETTING ACROSS SUBJECTS

Subject High-Impact Medium-Impact Low-Impact
S1 Fz, FC3, FC1, FC4 FCz, FC2, C5, C3, Cl, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4 Pl1, Pz, P2, POz
S2 Fz, FC3, FC1, FCz, FC4 FC2, C5, C3, Cl1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4 Pl1, Pz, P2, POz
S4 Fz, FCz, FC2, FC4 FC3, FC1, C5, C3, Cl1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4 P1, Pz, P2, POz
S5 Fz, FC3, FC4 FCz, FC2, FC1, C5, C3, Cl, Cz, C2, C4, C6, CP3, CPI, CPz, CP2, CP4 Pl1, Pz, P2, POz
S6 Fz, FCz, FC2, Cz FC3, FC1, FC4, C5, C3, C1, C2, C4, C6, CP1, CPz, CP2, CP4, Pz CP3, P1, P2, POz
S7 Fz, FC3, FC1, FCz, FC4 FC2, C5, C3, Cl1, Cz, C2, C4, C6, CP1, CPz, CP2, CP4, Pz CP3, P1, P2, POz
S8 Fz, FC3, FC2, FC4 FC1, FCz, C5, C3, Cl, Cz, C2, C4, C6, CP1, CPz, CP2, CP4, P2 CP3, P1, Pz, POz
S9 Fz, FC3, FC1, FCz, FC2 FC4, C5, C3, Cl, Cz, C2, C4, C6, CP1, CPz, CP2 CP3, CP4, P1, Pz, P2, POz
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Fig. 4. Comparison of waveforms prior to and following the application of artifact removal methods
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characteristics, especially in terms of artifact suppression.
Three methods of comparison with MASR are described as
follows:

o Picard-ICA is a mathematical technique used to separate
a multivariate signal into additive, independent compo-
nents, particularly useful in identifying and removing
artifacts from EEG data by isolating and eliminating noise
[1].

o SSP identifies and reduces specific noise components
within the signal space [37], suppressing artifacts like
those caused by eye blinks by projecting out components
recognized as noise.

o OTP is a denoising algorithm that uses a leave-one-out
procedure with parallel temporal projection to remove
individual sensor noise under the assumption that the
sensor array oversamples MEG and EEG fields [20].

o« XDAWN is a spatial filtering method designed to improve
the signal-to-noise ratio of event-related potential (ERP)
responses [31], enhancing target responses by emphasiz-
ing them over non-target responses.

o ASR is designed to reduce transient artifacts in EEG data
[3], by detecting deviations from a clean EEG signal and

reconstructing the signal by removing these disruptions,
thereby cleaning the data more effectively.

The difference plots in Figure 4 show the difference between
the cleaned signal and the original signal, reflecting the
extent and quality of artifact removal by each method. These
visualizations serve as a foundational visual understanding of
the performances of methods, laying the groundwork for sub-
sequent quantitative analysis. The topographic maps highlight
the changes in the spatial domain after removal of artifacts
by further showing the spatial distribution of brain activity
at peak time for each method. These maps emphasize how
artifact removal influences the representation of EEG signals
across scalps.

In the original signals, ocular artifacts appear as slow,
high-amplitude fluctuations, predominantly observed between
4 s to 6 s, significantly distorting the temporal features
of the waveforms. Following artifact removal, all methods
reduced these distortions to varying degrees, with their unique
characteristics. Picard-ICA, SSP, OTP, and XDAWN meth-
ods occasionally caused signal distortion while suppressing
artifacts, whereas ASR and MASR demonstrated superior
artifact suppression while preserving signal integrity. Notably,
MASR outperformed the methods by retaining continuity and
preservation of essential features within the affected time

TABLE IV . R . .
ACROSS-SUBJECT RESULTS OF ABLATION EXPERIMENTS FOR DIFFERENT fljame, Wthh is vital for the precise extraction of event-related
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Fig. 5. Comparison of method performance using EEG artifact removal metrics
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in less affected channels by targeting the channels that are
more affected by artifacts. This advantage is evident in both
waveforms and topographical maps, demonstrating the effec-
tiveness of MASR in achieving the primary goals of artifact
removal within experimental designs while providing robust
EEG processing for complex scenarios.

2) Comparison Based on Metrics: Figure 5 presents a
comparison of the six methods using four performance met-
rics. MASR consistently outperforms Picard-ICA, SSP, OTP,
XDAWN, and ASR in minimizing errors and preserving signal
fidelity. MASR’s multimodal framework integrates multiple
artifact sources, enabling effective noise reduction while main-
taining the integrity of the original EEG signal.

In contrast to ASR, which relies on single-modality artifact
removal, MASR utilizes adaptive thresholding across modali-
ties, ensuring precise differentiation between noise and signal.
This adaptive thresholding enhances accuracy and stability,
as evidenced by MASR’s superior performance in metrics
such as RMSE, SAR, and MI. MASR achieves a balance
between artifact suppression and signal preservation, making
it especially effective in high-noise contexts, unlike other
traditional methods, which employ rigid and less flexible
methodologies.

The multimodal design of MASR provides an additional
advantage by leveraging complementary information from
various EEG features, enabling better cross-validation of noise
components and retention of meaningful signal structures,
particularly evident in the MI results. The comparison study il-
lustrates MASR’s comprehensive advantages across all perfor-
mance metrics, including the enhancement of signal-to-artifact
ratio, minimization of reconstruction errors, and preservation
of critical signal features.

IV. CONCLUSION

This study evaluated the effectiveness of the Multimodal
Artifact Subspace Reconstruction (MASR) method for EEG
artifact removal using the BCI Competition IV-2a dataset.
In contrast to traditional methods like ICA, SSP, and ASR,
which use fixed thresholds, MASR employs a data-driven
approach that dynamically determines the threshold using
principal component analysis. This allows for more precise
artifact removal by grouping channels based on statistical cri-
teria without relying on user-defined thresholds. Comparative
evaluation using RMSE, SAR, NMSE, and MI showed that
MASR outperformed the other methods in error minimization
and signal preservation. Ablation experiments confirmed that
combining TSE and PSD provided strong performance, and
adding the third modality further improved accuracy. Future
work could involve tuning MASR for different EEG signal
types, testing various TSE, PSD, and WPD configurations,
and incorporating non-linear dependency measures to bet-
ter capture complex interactions between artifacts and EEG
signals. Additionally, optimizing the computational efficiency
of MASR could improve its applicability in real-time EEG
processing.
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