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Abstract—Pedestrian trajectory prediction is fundamental in
various applications, such as autonomous driving, intelligent
surveillance, and traffic management. Existing methods generally
fall into two categories: model-driven approaches and data-driven
approaches. However, both approaches have inherent limitations
when applied to real-world scenarios, particularly in capturing
the complex interactions between pedestrians and modeling the
stochastic nature of human motion. Notably, there is a lack of
research on integrating the strengths of model-driven and data-
driven paradigms, which can better address these challenges. This
paper aims to fill these limitations by proposing a novel model-
data dual-driven approach, called Social Entropy Informer (SEI),
for pedestrian trajectory prediction. SEI simultaneously models
local and global pedestrian interactions while incorporating
information entropy to capture human motion’s inherent ran-
domness and uncertainty quantitatively, which provides a robust
framework for predicting pedestrian trajectories. Furthermore,
we propose a new loss function derived from information theory,
which accounts for the stochasticity of pedestrian movement and
enhances the model’s ability to generalize across diverse scenar-
ios. The SEI framework integrates feature extraction, entropy-
based stochastic modeling, and the new loss function, improving
prediction accuracy and model interpretability. Experimental
results demonstrate that SEI outperforms other benchmark
methods in prediction accuracy.
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I. INTRODUCTION

With the advancement of deep learning techniques [2],
[6], [8] and neural networks [29], [68], [99], [100], pedes-
trian trajectory prediction has become a critical area of re-
search, demonstrating significant value in applications such
as autonomous driving [25], [76] and ensuring the safety
of intelligent transportation systems [22]. The core of this
technology lies in accurately predicting pedestrian movements
in complex environments, which is crucial for reducing the risk
of pedestrian-related traffic accidents. The rapid progress in
data science and deep learning has further propelled pedestrian
trajectory prediction into a significant research focus [12],
[35], [78], [85]. However, this task remains highly challenging
due to several key factors, including the complexity of scene
topology and dynamic interactions between pedestrians [37],
[64], [103]. Additionally, pedestrian trajectory prediction is
vital for understanding complex crowd dynamics and social
behaviors, providing new insights and tools for various fields
such as autonomous driving [14], [46], [52], video surveil-
lance [28], [30], [83], and logistics [23], [44], [47]. As a
result, pedestrian trajectory prediction has attracted increasing
attention from researchers across these domains.

Currently, pedestrian trajectory prediction relies on two
main approaches: model-driven and data-driven methods [36],
[60], [92]. Each approach offers unique strengths and is suited
to different application scenarios. Model-driven methods are
grounded in physical laws and behavioral principles, provid-
ing a solid theoretical understanding of pedestrian dynamics.
However, model-driven methods often struggle with the com-
plexities and non-deterministic nature of human behavior [55],
[63], [74]. On the other hand, data-driven methods excel
at capturing intricate, nonlinear patterns in the data but are
highly dependent on the quality and quantity of the available
data [20], [40], [70], [93]. The dichotomy between model-
driven and data-driven methods highlights a critical gap in
the current research landscape [87], [96], [101]. While model-
driven approaches are often unable to adequately account for
the unpredictable and complex nature of human behavior, data-
driven methods excel in deciphering intricate and nonlinear
patterns in pedestrian movements, albeit with a heavy reliance
on the volume and quality of data [32], [33], [102].
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Obviously, a significant gap in current research is the lack
of a practical dual-drive approach to combine the advantages
of model-driven and data-driven approaches, especially in
modeling the complex interactions of pedestrian behavior
and simulating the stochastic nature of pedestrians. Such a
hybrid methodology can enhance the accuracy and reliability
of trajectory predictions and bridge the gap between theoretical
understanding and practical application [9], [34], [69]. How-
ever, further exploration and implementation of dual-driven
approaches still need to be explored [10], [65], [98].

In the field of pedestrian trajectory prediction, researchers
face two significant challenges that impede research progress
and hinder practical applications [36], [92]. The first chal-
lenge is how to reasonably model the interactivity between
pedestrians [90]. A central challenge in research on modeling
pedestrian interactivity is accurately understanding and mod-
eling the indirect interactions between pedestrians. Traditional
models are usually based on a priori assumption that other
pedestrians primarily influence pedestrian behavior within
their direct perception range [1], [20], [40], [98]. However,
this approach overlooks the complexity and dynamics of
pedestrian behavior, especially considering the butterfly effect,
where pedestrians outside the perception range can indirectly
affect the walking trajectories of others through a series of
mediating effects. This phenomenon suggests that pedestrian
interactivity is not limited to physical contact or visual per-
ception within perception, but also includes the influence of
complex social and environmental factors. As a result, this
paper extends the original social interaction hypothesis to
propose a new approach for modeling pedestrian interactivity
that pedestrians’ social interactions extend beyond their im-
mediate perceptions. This approach is crucial for accurately
predicting pedestrian behavior, which can simulate both direct
and indirect interaction between pedestrians. By incorporating
this extended assumption into a dual-drive framework, the
model can combine theoretical and data-driven paradigms to
capture a complete understanding of pedestrian interactions.

The second challenge lies in effectively modeling the
stochasticity of pedestrian behavior. Human movements are
inherently uncertain, making it crucial for models to han-
dle stochasticity effectively [59], [63], [74]. This has been
a long-standing issue in predicting pedestrian trajectories.
Past researchers have invested significant effort into mod-
eling stochasticity [39], [48], [56], [59], but their studies
may be limited by low robustness and inadequate simulation
rationality [20], [36], [92]. Furthermore, it is challenging to
account for the stochasticity of pedestrians in different states
with varying pedestrian walking patterns. The simulations in
these studies are primarily qualitative and lack quantitative
analysis, posing difficulties in accurately modeling pedestrian
stochasticity [4], [36], [48], [92]. Therefore, a novel approach
is needed to effectively model the stochastic nature of pedes-
trian behavior. To address this challenge, this paper proposes
an information entropy-based modeling approach. As a tool
to measure uncertainty and randomness, information entropy
can provide a more quantitative framework for modeling
pedestrian behavior. Under the framework of the dual-driver
approach, information entropy can provide more accurate

guidance for the driving part of the model by measuring
the stochasticity of pedestrian trajectories, thus enhancing the
prediction ability of pedestrian behavior in complex dynamic
environments.

Based on the above analysis and motivations, this paper
proposes a novel model called the Social Entropy Informer
(SED within the informer framework [94]. This approach
introduces a new method for modeling pedestrian social in-
teractions, incorporating both direct and indirect pedestrian
interactions. Furthermore, the paper incorporates information
entropy into pedestrian trajectory prediction to capture the
randomness of pedestrian behavior. By utilizing information
entropy, the model is able to effectively measure the stochas-
ticity and uncertainty of pedestrian trajectories, resulting in an
accurate representation of pedestrian behavior. Ultimately, this
paper proposes a new model-data dual-driven approach that
combines model-driven social interaction modeling and data-
driven information entropy analysis to quantify and explain the
regularity and stochasticity of pedestrian movement through
information entropy, thus effectively integrating both advan-
tages. This approach can address the complexity of pedestrian
trajectory prediction on a theoretical basis while utilizing a
data-driven approach to enhance the accuracy and robustness
of the prediction further. Through this dual-driven framework,
the model in this paper can overcome the limitations of a single
method and achieve excellent pedestrian trajectory prediction
in practical applications. In summary, the main contributions
of this paper include:

1) This paper presents a novel approach for constructing a
stochastic model of pedestrian behavior by incorporating
information entropy, allowing for quantitative analysis of
uncertainty in pedestrian trajectory;

2) Building upon a new and expanded hypothesis, which
suggests that pedestrian social interactions are influenced
by others both within and beyond their perception range,
this study proposes a method to model both direct and
indirect interactions among pedestrians;

3) A new model-data dual-driven approach, Social Entropy
Informer, integrates the strengths of model-driven and
data-driven approaches, and superior performance is
demonstrated using public datasets.

The rest of the paper is presented as follows. The definition
of the pedestrian trajectory prediction task and the a priori
assumptions are described in Section II. Section III describes
related work and progress in pedestrian trajectory prediction.
The specific methodology of the proposed SEI model is
outlined in Section IV. Section V details the datasets, experi-
mental environment, and analysis of the experimental results.
Finally, Section VI presents the conclusions and discusses
relevant future work.

II. PROBLEM FORMULATION

According to previous studies [39], [45], [48], [98], this
paper considers pedestrian trajectory prediction as the gen-
eration of future sequences based on past sequences. The
sequence of pedestrian trajectories can be represented as
P = {p1,p2,...,pn}, where each position p; = (x;,y;)
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represents a two-dimensional spatial coordinate at time ¢;.
The goal of pedestrian trajectory prediction is to forecast
future paths using historical trajectories. The mathematical
expression of this task is shown in (1) below:

Pfulure =F (Ppast 7@a I) (1)

where Ppast {p17p27 s 7pm} and  Pruure =
{Pm+1;DPm—+2,---,Pn} represent the historical and predicted
future trajectories respectively, F' is a mapping function
depending both historical trajectory and other environmental
factors (e.g.: a machine learning model such as a deep
neural network), © represents the model parameters (e.g.:
behavioral characteristics, intentions, and other factors related
to pedestrians), and I denotes environmental variables (e.g.:
trajectories of other pedestrians, and layout of surrounding

environment).

2 Interaction between pedestrians and pedestrians

. . ﬁfumre: Future pedestrian trajectory
past: Past pedestrian trajectory

Fig. 1. Illustration of pedestrian trajectory prediction task.

Fig. 1 illustrates the pedestrian trajectory prediction task,
highlighting two main components: past trajectories and pre-
dicted future trajectories. The model combines these elements
to forecast future paths, accounting for interactions between
pedestrians and their environment. The depicted framework
captures the complexity of human interaction, accounting for
individual trajectory histories and the influence of obstacles.
Past methods for predicting pedestrian trajectories often as-
sumed that the interactions experienced by pedestrians would
only be limited to their perceptual range, as shown in (2)
below:

I'=g(Lin (), 1) 2

where I represents the impact of other external factors on
pedestrians, €); represents the perceived range of the pedes-
trian, I, (2;) represents all inputs within the perceived range,
and ¢ represents time. This paper extends the hypothesis by
considering the actual situation: the interactive influence on
pedestrians is not limited to their perceptual range and will
also be influenced by factors outside of this range, as shown
in (3) below:

I =g (Izn (QZ) 7Iout (EZ) ) t) (3)

where =; represents the range outside of pedestrian perception,
and I, (Z;) represents all inputs outside of the perception
range. Fig. 2 compares two different approaches for modeling

social interactions: (a) the original approach assumes that
pedestrians interact only within each other’s perceptual range,
thereby limiting the potential for interactions; (b) our approach
allows for interaction both within and beyond each other’s
perceptual range. This is reflective of real life, where a change
in direction or speed by one pedestrian can cause a chain
reaction that affects others even at a distance. Therefore,
approach (b) can capture a broad range and complexity of
interaction behaviors.

ITI. RELATED WORK
A. Current research status of model-driven methods

Model-driven methods occupy an essential place in pedes-
trian trajectory prediction, and these methods are primarily
based on theoretical knowledge and empirical judgments from
multidisciplinary fields. They apply sociology [38], [41], [49],
psychology [3], [15], [54], and physics theories [7], [26], [61],
[71] to understand and predict pedestrian behavior. From a so-
ciological and psychological perspective, pedestrian behavior
is viewed as a product of social interactions and individual
psychological states. Sociological theories [24], [57], [75],
help us understand behavior patterns when people walk in
groups. Moreover, psychological theories [18], [31], [80],
especially those on attention, perception, and decision-making,
provide insights into how individuals process information
about their environment and make walking decisions. Physics
and kinematics models provide an alternative perspective on
predicting pedestrian motion [72], [89], [97]. These models
are usually based on physical laws, such as Newton’s laws of
motion, to describe the trajectory of pedestrians, and social
force models [26], which treat pedestrians as particles subject
to forces, predict the trajectory of pedestrians by modeling
gravitational and repulsive forces. These methods provided
valuable insights to researchers, but when dealing with com-
plex environments, the limitations of these traditionally based
methods began to show.

As a result, researchers have increasingly turned to various
machine learning methods to address the challenges of pedes-
trian trajectory prediction. Techniques such as Kalman filter-
ing [21], Gaussian process dynamical models (GPDM) [51],
and XGBoost [107], among others [66], [91], [105], have been
widely explored. These methods aim to identify patterns in the
data by constructing models that, while not explicitly relying
on physical laws as traditional physical modeling does, are
still grounded in some form of modeling assumptions. For
instance, Kalman filtering is effective for linear systems with
Gaussian noise, while GPDM captures temporal dependencies
in trajectory data through probabilistic modeling. XGBoost,
on the other hand, leverages ensemble learning to handle
structured data with high accuracy. However, despite the
successes in certain scenarios, these methods often struggle
when applied to high-dimensional, complex trajectory data.
One major limitation is their reliance on manual feature engi-
neering, which requires domain expertise and may be time-
consuming. Additionally, these methods often make strong
assumptions about the data, such as linearity, Gaussian noise,
or specific functional forms, which may not hold in real-world
pedestrian dynamics.
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Iy, Social interaction within the perceptual
range of pedestrians

(a) Original Social Interaction Modeling

Fig. 2. Variations between different pedestrian interaction modeling.

B. Current research status of data-driven methods

In contrast to model-driven methods, data-driven approaches
have gained significant traction in recent years due to their
ability to learn complex patterns directly from data with-
out relying heavily on predefined theoretical frameworks.
These methods leverage large-scale datasets and advanced
computational techniques to flexibly and adaptively model
pedestrian behavior. Among the most prominent data-driven
techniques are deep learning models, which have demonstrated
remarkable success in capturing the intricate dynamics of
pedestrian trajectories. Recurrent neural networks (RNN) and
their variants [36], such as long short-term memory (LSTM)
networks [1], [84], [98] and gated recurrent units (GRU) [81],
have been widely adopted for sequence modeling tasks, in-
cluding trajectory prediction. These models excel at capturing
temporal dependencies in pedestrian motion by processing
sequential data over time. For instance, LSTM has been used to
model the influence of past trajectories on future movements,
enabling more accurate predictions in dynamic environments.
However, traditional RNN-based approaches often struggle to
account for interactions between multiple pedestrians, which
are crucial in crowded scenarios.

To address this limitation, researchers have turned to graph-
based models that explicitly model pedestrian relationships as
a graph, such as graph neural networks (GNN) [59], [65], [86].
GNN can effectively capture social and spatial dependencies,
such as collision avoidance and group behavior, by repre-
senting pedestrians as nodes and their interactions as edges.
For example, social BiGAT [39] and social STGCNN [48]
are notable frameworks that integrate graph structures with
deep learning to improve trajectory prediction accuracy in
crowded settings. Another significant advancement in data-
driven methods is the use of attention mechanisms [11], [42],
[104], which allow models to focus on the most relevant parts
of the input data. Transformers [67], initially developed for
natural language processing, have been adapted for trajectory
prediction tasks due to their ability to handle long-range
dependencies and parallelize computations. These models have
shown promise in capturing complex interactions and global
context, making them suitable for large-scale and heteroge-
neous environments.

Despite their strengths, data-driven methods also face sev-
eral challenges. One major issue is the reliance on large
amounts of labeled data, which can be difficult and expensive.

out - Social interaction beyond the
perceptual range of pedestrians

in . Social interaction within the perceptual
range of pedestrians

(b) Our Social Interaction Modeling

Additionally, the interpretability of these models remains a
concern, as their “black-box” nature makes it challenging to
understand the underlying decision-making process. Further-
more, while data-driven methods excel in capturing complex
patterns, they may lack the generalizability of model-driven
approaches when applied to unseen scenarios or environ-
ments with limited data. Hybrid approaches have emerged
as a promising direction to bridge the gap between model-
driven and data-driven methods. These methods combine
the interpretability and theoretical grounding of model-driven
techniques with the flexibility and scalability of data-driven
models. For example, some studies have integrated physical
constraints, such as social force models, into deep learning
frameworks to ensure that predictions adhere to fundamental
physical principles [64], [77], [98], [103].

IV. SociAL ENTROPY INFORMER

Based on the structure diagram shown in Fig. 3, this
section provides a comprehensive explanation of the proposed
SEI model, including three essential components: (1) social
interaction module; (2) information entropy-based pedestrian
stochasticity modeling; and (3) variety information entropy
loss function. In (a). data processing, to incorporate envi-
ronmental information into the pedestrian trajectory predic-
tion model, this paper designs an environmental information
encoding module responsible for extracting compelling fea-
tures from the input RGB scene images and mapping them
into a high-dimensional space for fusion with the pedestrian
trajectory data. The module gradually extracts low-level and
high-level features in the image through multiple convolutional
layers and further integrates these features through fully con-
nected layers.

A. Social interaction module

Based on the proposed extended social interaction hypothe-
sis, this paper presents a new approach for modeling pedestrian
social interaction, as shown in Fig. 4. The social interaction
method consists of two main components: the global social
interaction modeling module modelling pedestrian-perceived
in-range and out-range interactions, and the local social in-
teraction modeling module modelling pedestrian-perceived in-
range interactions.

The global social interaction modeling module utilizes
multi-head attention, add & norm, and feed forward techniques
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to comprehensively model pedestrian social interactions on
a global scale. The multi-attention mechanism is one of the
critical components of this module. By simultaneously focus-
ing on different attention subspaces, it effectively captures
pedestrian trajectory features at multiple levels and aspects.
Each head focuses on a specific feature subspace, which in the
pedestrian trajectory prediction task are expressed as velocity,
acceleration, and direction of motion. In addition, it considers
the social interactions between pedestrians based on their
location and movement. By considering interactions between

heads, the model captures correlations between pedestrian
trajectories and contextual information about individual pedes-
trian trajectories. In addition, it performs feature selection and
weighting to emphasize features that are relevant to the task
while reducing the impact of redundant features on the results.
This mechanism is shown in (4) below:

MultiHead(Q, K, V) = Concat(head, , . . ., head;) - W° (4)

where Q, K, and V denote the input matrices of the query,
key, and value, respectively, head; denotes the output of the ith
attention header, h denotes the number of headers, and W©
is the weight matrix of the output. The individual attention
mechanisms are computed as shown in (5) below:

T

Attention (Q, K, V) = softmax (QK

Vdi

where the matrices Q, K, and V represent the Query, Key, and

Value, respectively, and the term dy denotes the dimension of
the key matrices.

The local social interaction modeling module is designed to
capture the interactions within a pedestrian’s perceptual range
by employing multiple CNNs at varying scales. Building upon
the methodologies outlined in previous research [13], [17],
[43], this study introduces three distinct scales: 3x3, 9x9,
and 27x27. The 3x3 scale focuses on capturing fine-grained,
close-proximity interactions that are crucial for immediate
understanding. The 9x9 scale broadens this perspective to
include mid-range interactions, balancing detail and context.
Finally, the 27 x 27 scale is responsible for capturing long-
distance interactions, expanding the model’s perceptual range,
which facilitates the model’s understanding of social dynamics
of the pedestrian environment.

Each CNN employs convolutional operations in the local
social interaction modeling module to extract spatial features

) Vv (5)
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in the input trajectory data. Pooling layers are used to summa-
rize these features, and capture relevant information at each
scale (3x3, 9x9, and 27x27). The outputs of each CNN are
then connected to form a composite feature of the local social
interactions at different scales. With the composite feature,
the module can capture different levels of social interactions
ranging from individual behavior to broad group dynamics.

B. Information Entropy-based Pedestrian Stochasticity Mod-
eling

Pedestrian trajectories typically exhibit complexity and
stochasticity because individual purposes, environmental lay-
out, and social interactions often influence them. These tra-
jectories show many different dynamic patterns, reflecting the
uncertainty of pedestrian behavior. To understand and quantify
this complexity, a statistical measure of randomness and un-
certainty within a system is needed, and this paper addresses
the challenge by introducing information entropy. The level
of uncertainty and randomness in pedestrian behavior patterns
can be effectively assessed by computing the information
entropy of pedestrian trajectories, as shown in (6) below:

H==> p(Y)logyp(V;) 6)
=1

where p (x;) represents the current pedestrian trajectory prob-
ability. Therefore, it is evident that this paper aims to model
the probability of pedestrian trajectories. This paper takes a
statistical approach to probabilistic modeling of pedestrian
trajectories, focusing on three main directions: position, ve-
locity, and acceleration. The position of the pedestrian is first
modeled with information entropy, as detailed in the specific
modeling process below:

1) The distance traveled by the pedestrian trajectory in
each frame is computed and divided into intervals
A = {A1,As, ..., A;}, where each interval size is
[0, al, [a, 2al, [2a, 3al, ..., [ja, (j + 1)a].

2) When modeling the higher-order case, additional com-
putations must be performed before modeling, as shown
in (7) below:

o (k1) _ glk=1)
e Y @

where At represents the time interval, dﬁ“’ represents

the sequence representing the pedestrian’s location, k
represents the k-order derivative, and ¢ represents the
ith value in the sequence.

3) All the computed results are summarized, and the prob-
ability of each interval is computed through (8) below:

m;

p(Y;) = ®)

M
2 j=0 Mpja,(j+1)a)

where m represents the number counted in each interval,
M represents the total number of intervals, and ¢ repre-
sents the interval of the current trajectory. This process
is specifically shown in Algorithm 1.

Algorithm 1: Computation of Distribution Probability
of Pedestrian Trajectory

Input: Pedestrian trajectory dataset D = {d;,ds,...,dn},
where d; represents the trajectory of the i-th pedestrian.
Output: List of probabilities for each distance, velocity, and
acceleration interval P = [p(Ay),p(As2), ..., p(Anr)],
P =[p'(A1),p'(Az), ., (An)] and
P’ = [p”(A1),p"(A2), ...,p”(AM)].

1: Divide the distances, velocity, and acceleration between
adjacent frames into several intervals
A={A1,As, ..., Ay}, A ={A], AL, ..., AL} and
A" ={A], AY, . ALY

2: for d; in D do

for t =1 to T (Total frames) do
Compute the Euclidean distance, velocity, and
acceleration between adjacent frames ¢ and ¢ + 1.
end for
end for
for j =1to M do
Compute the probability p(A4;), p’(A;) and p”(A;) of
interval A;, A; and A;’ using (8).
9: end for
10: return the list of interval probabilities P, P’, and P”.

W

® 3w

C. Variety Information Entropy Loss Function

Traditional pedestrian trajectory prediction methods often
employ L2 loss to measure the discrepancy between the actual
and predicted trajectories, as demonstrated in (9) below:

tObSJ"tpre

> (v-n) ©)

i=tlobs

Ly =

where Y; represents the actual trajectory, and Y; represents the
predicted trajectory. However, this prediction usually takes into
account the average of all possible trajectories and cannot ef-
fectively model the stochastic nature of pedestrian movement.
To address this issue, the variety loss approach is introduced,
as shown in (10) below, incorporating the stochasticity of
pedestrian movement by utilizing a Gaussian distribution for
multiple sampling:

Y - Y

Lvariely = mkln‘ ‘2 (10)
where k is a hyperparameter representing the number of
samples in this study. The variety loss models pedestrian
stochasticity by generating multiple trajectories. However,
this approach also presents a new issue as it assumes that
pedestrians adhere to a predetermined probability distribution
throughout their walk. Moreover, the variety loss promotes the
generation of multiple trajectories without a defined limit.
To address the inherent stochasticity of pedestrian tra-
jectories, this paper introduces an innovative approach by
incorporating information entropy into the modeling process.
This approach is based on one premise: the information
entropy of pedestrian trajectories remains relatively stable.
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This paper aims to accurately capture the uncertainty in pedes-
trian movement patterns by integrating information entropy.
The theoretical rationale for this approach is that pedestrian
movement trajectories, although seemingly random, have un-
derlying patterns and constraints, which can be quantified
using information entropy. This quantification can significantly
provide further insight into pedestrian behavior when various
environmental factors influence complex pedestrian patterns.

This paper introduces a new constraint in the trajectory
generation process to achieve this purpose, as shown in (11).
This constraint effectively regulates the trajectories generated
by the variety loss mechanism to ensure that the generated
trajectories conform to the natural range of variability in the
natural behavior of pedestrians. The information entropy loss
prevents the model from generating trajectories that do not
conform to the pedestrian pattern, thus keeping the trajectories
reasonable for pedestrians.

Y; - Y}

\2 + [ Hpre — Hops| (1)

where H,,,.. represents the information entropy of the predicted
trajectory, and H s represents the information entropy of the
actual trajectory. The H,,.. and H,;s computations are shown
in (12) and (13) below:

Lentropy = mkm ’

Hype = |Hp, + Hpy + Hy,, | (12)
Hobs = |H¢T))bs + gbs + Hgbsl (13)

where p represents position, v represents velocity, and a
represents acceleration. L2 loss, variety loss, and variety
information entropy loss in the pedestrian trajectory prediction
task are schematically shown in Fig. 5.

The difference between different losses in pedestrian trajec-
tory prediction is demonstrated in Fig. 5, where the orange
solid line indicates the historical trajectory, the blue solid line
shows the actual future trajectory, and the blue dashed line
represents the predicted trajectory.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Dataset Introduction

The ETH [16], UCY [5], and SDD [58] datasets have
emerged as pivotal benchmarks in pedestrian trajectory pre-

diction. However, each dataset’s distinct characteristics and
scenarios highlight their unique applications and strengths.
The ETH dataset, collected by ETH Zurich, contains video
sequences captured from two different environments: a school-
yard and a street. The videos are recorded at a resolution of
640x480 pixels and a frame rate of 14 frames per second
(fps), providing moderate detail and smoothness in capturing
pedestrian movements. The dataset contains 1550 pedestrian
trajectories that reflect pedestrian behavior and interactions in
these environments.

The UCY dataset from the University of Cyprus provides
a wide variety of recording scenarios. Specifically, these
scenarios are university campuses, streets, and public squares.
These different scenarios have a large number of pedestrian
trajectories and social interactions. In addition, the video
resolution of the dataset varies from 720x576 to 1080x1920
pixels, with frame rates ranging from 25 to 50 fps. The
UCY dataset provides 7724 pedestrian trajectories that reflect
different pedestrian dynamics in various environments.

The SDD dataset was collected by researchers at Stan-
ford University and is based on real outdoor environments
such as campuses and streets, which highly reproduces the
complex behaviors of pedestrians and traffic conditions in
the real world. The dataset contains many high-definition
video frames captured by UAV-mounted cameras, which are
of high resolution and can present the appearance, posture,
and trajectory of pedestrians and other detailed information.
At the same time, the pedestrians in the video are thoroughly
and accurately labeled with various attributes such as location,
speed, direction of movement, and behavioral categories.

B. Experiment Environment

The experimental environment used in this paper consists
of an i7-11800H processor, NVIDIA GeForce RTX 3080
graphics card, Windows 11 operating system, and Python 3.8.
The hyperparameter settings employed in the experiments are
detailed as follows: the learning rate was set to 0.0015, the
number of epochs was fixed at 300, and the batch size was set
to 4 to optimize the training process. For the temporal aspects
of the proposed model, an observation time of 3.2 seconds
(equivalent to 8 frames), and a prediction time of 4.8 seconds
(equivalent to 12 frames) were used, with the sampling number
set to 20.
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TABLE I
COMPARISON OF EXPERIMENTAL RESULTS

Method (ADE/FDE) | ETH HOTEL ~ UNIV ~ ZARAI  ZARA2  Average | SDD
Vanilla LSTM [1] 1.09/2.41  0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11  0.70/1.52 x
Social LSTM [1] 1.09/2.35  0.79/1.76  0.67/1.40  0.47/1.00  0.56/1.17  0.71/1.53 | 31.19/56.97
SGAN [20] 0.87/1.62  0.67/1.37  0.60/1.26  0.34/0.69 0.42/0.84  0.58/1.12 | 27.23/41.44
SoPhie [59] 0.70/1.43  0.76/1.67 0.54/1.24  0.30/0.63  0.38/0.78  0.54/1.15 | 16.27/29.38
GAT [39] 0.68/1.29  0.68/1.40  0.57/1.29  0.29/0.60 0.37/0.75  0.52/1.07 x
Social BiGAT [39] 0.69/1.29  0.49/1.01  0.55/1.32  0.30/0.62  0.36/0.75  0.48/1.00 x
BR-GAN [56] 073/1.37  0.55/1.13  0.53/1.07  0.35/0.71  0.35/0.72  0.50/1.00 x
Social STGCNN [48] 0.64/1.11  0.49/0.85 0.44/0.79  0.34/0.53  0.30/0.48  0.44/0.75 x
EvoSTGAT [65] 0.64/1.19  0.35/0.51 0.44/0.82 0.31/0.50 0.28/0.47  0.41/0.70 x
AST-GNN [95] 0.66/1.02  0.37/0.61  0.46/0.83 032/052 0.28/045  0.42/0.69 x
LSTM-NLL+DE [53] 0.60/1.11  0.40/0.67 0.53/0.97 0.56/1.12 0.25/0.50  0.47/0.87

VIKT-D [104] 0.62/1.26  0.26/0.52  0.53/1.22  0.42/0.95 031/0.69 0.43/0.93 | 12.59/23.51
Social SAGAN [86] 0.65/1.19  0.36/0.70  0.54/1.14  0.33/0.66 0.29/0.61  0.43/0.86 x
SEEM [77] 0.48/0.86 0.52/1.18  0.35/0.65 0.28/047 0.24/050  0.38/0.71 x
TPPO [88] 075/1.27  0.36/0.70  0.39/0.74  0.22/0.37  0.23/0.45  0.39/0.71 x
Atten-GAN [19] 0.64/1.12  0.36/0.72  0.51/1.13  0.35/0.61  0.24/0.65 0.42/0.84 x
IA-LSTM [84] 0.43/0.77  0.50/0.80  0.48/0.73  0.44/046  0.36/0.55  0.44/0.66 x
E-SR-LSTM [98] 0.44/0.79  0.19/0.31  0.32/0.64 027/054 0.50/1.05 0.34/0.67 x
Social NSTransformers [42] | 0.40/0.71  0.29/0.47 0.39/0.73  0.34/0.62 0.31/0.57 0.35/0.62 | 10.92/18.01
RCPNet [106] 0.48/0.86  0.38/0.68 0.31/0.58  0.25/0.44 0.23/0.35 0.33/0.58 | 8.18/13.83
Social Entropy Informer 0.34/0.64  0.19/0.33  0.29/0.61 0.24/052 0.22/0.46 0.26/0.51 | 8.72/13.35

C. Evaluation Indicators

In this study, the evaluation metrics used are Average Dis-
placement Error (ADE) and Final Displacement Error (FDE),
hich are commonly used in similar studies [1], [20], [56], [59].
The formulations for these indicators are shown in (14) and
(15), respectively:

N tpre t_ Yyt
Zn:l t=tobs+1 HYn - Yn

N X (tpre — tobs — 1)

N
ZnZI ‘

ADE = z (14)

At

t, -~
Yy

N

where Y;! and Y} represent the actual and predicted trajectories
of pedestrian n at time ¢, and IV represents the current total
number of pedestrians.

FDE = 2 (15)

D. Comparative Experimental Results and Analysis

The experiments in this paper are performed on ETH, UCY,
and SDD datasets. ETH and UCY have five sub-datasets: ETH,
HOTEL, UNIV, ZARAO1 and ZARAOQ2. Table I demonstrates
the experimental results for the above public dataset. In this
table, bold denotes the best results, and underline denotes the
sub-optimal results. The numbers before and after the slash for
these results represent the ADE and FDE values, respectively.
As seen from Table I, SEI performs very well on all datasets.
Specifically, SEI exhibits low values on all evaluation metrics
(ADE and FDE), indicating its high accuracy and robustness in
the pedestrian trajectory prediction task. On the ETH dataset,
SEI has an ADE of 0.34 and an FDE of 0.64, showing
excellent prediction accuracy and trajectory stability. On the
HOTEL dataset, SEI has an ADE of 0.19 and an FDE of 0.33,
maintaining a low error and demonstrating high prediction
accuracy in complex environments. The ZARA?2 dataset results
in an ADE of 0.22 and an FDE of 0.46, proving SEI’s

effectiveness in handling social interactions and dynamic envi-
ronments. SEI performs consistently across multiple datasets,
effectively reducing prediction errors and improving trajectory
accuracy.

However, it is evident that the SEI model still does not
achieve optimal results on some datasets. In the Hotel scene,
the movement of pedestrians may be highly influenced by
a few key pedestrians around them. E-SR-LSTM performs
deeper mining of relationships between localized pedestrians
by state refinement for nodes and spatial edges to the best
performance on the FDE. In UNIV, ZARAI1, and ZARA2,
RCPNet estimates human’s goal intention through Destination
Variational Auto-Encoder (DVAE), which learns the future
path distribution and outputs multiple predictions so that the
predicted trajectories are more in line with the actual hu-
man intention. Conversely, SEI captures pedestrian behavioral
characteristics mainly through the social interaction module
and information entropy. It is less targeted than RCPNet
in intent modeling, making RCPNet more advantageous on
some datasets. In the ZARA1 dataset, pedestrians have diverse
behavioral patterns. TPPO is a model based on GAN, which
generates multimodal predictions by introducing potential vari-
ables that can be changed to deal with future uncertainty.
This multimodal output capability of TPPO allows it to cover
various possible trajectories better and more accurately predict
pedestrians’ future locations. SEI is relatively weak in dealing
with multimodality and cannot fully consider the diversity of
pedestrian trajectories as TPPO.

The performance of different behavioral prediction models
on multiple datasets is further illustrated using visualization
techniques, as shown in Fig. 6. The visualization results reveal
that our method exhibits higher adaptability and accuracy
in processing complex intersections than BRGAN and social
STGCNN models. Compared with E-SR-LSTM, SEI is less
affected by the disturbance of the surrounding environment
and can effectively predict the walking paths of pedestrians in
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BRGAN

Social STGCNN

E-SR-LSTM

Our Method

UNIV

Fig. 6. The comparison of experimental visualization results. Green represents the historical trajectory, blue represents the future labeled trajectory, and red

represents the predicted trajectory.

TABLE II
RESULTS OF ABLATION EXPERIMENTS

Method (ADE/FDE) \ S Vv 1 \ ETH HOTEL UNIV ZARAOl  ZARAO02 Average
Informer X X x | 0.64/1.22  0.24/0.56  0.38/0.77 0.31/0.68  0.26/0.56  0.37/0.76
Informer v X X | 0.41/0.79  0.23/0.55 0.35/0.75 0.27/0.63  0.23/0.53  0.30/0.65
Informer x v x| 044/0.77 0.23/0.49 0.38/0.75 0.26/0.56  0.22/0.51  0.31/0.62
Informer X v v ] 0390.70 0.21/043 0.36/0.69 0.27/0.57 0.24/0.51  0.30/0.58
Informer v v x| 0350.68 020037 0.31/0.67 0.25/0.53 0.22/048 0.27/0.55
Informer v v v | 034/0.64 0.19/0.33 0.29/0.61 0.24/0.52  0.22/0.46  0.26/0.51
dense crowds. In the SDD dataset experiments, X represents TABLE III
that no experimental comparison of the method was conducted. MATCHED SAMPLES T-TEST RESULTS
Overall, Social Entropy Informer achieves excellent results
. C 4. Index Mean diff.  Std. deviation diff. P-value
with an ADE of 8.72 and an FDE of 13.35, indicating that
s ot ADE -0.027 0.018288 0.001171
the method has significantly less error than other methods FDE pyet Py 0.000125

in predicting pedestrians’ future and final locations. This
advantage is not only reflected in the comparison with the
relatively weaker methods but also the comparison with the
better RCPNet (ADE: 8.18, FDE: 13.83), which is very
close to the optimal values in ADE and FDE, which fully
demonstrates the stability and efficiency of the method on
SDD dataset. The visualization of SEI on the SDD dataset
is shown in Figure 7.

E. Ablation Experimental Results and Analysis

In Table II, S stands for social interaction module, V stands
for variety loss, and I stands for information entropy. The
experimental results in the table show that the performance
of the informer method in several scenarios is significantly
improved with the introduction of the three key factors,
namely, social interaction module (S), variety loss (V), and

information entropy (I), in turn. The overall average ADE/FDE
value is 0.37/0.76 in the initial stage when no factor is
introduced. After introducing the S factor, the average value
drops to 0.30/0.65, indicating that the social interaction module
plays an important role in improving the model performance.
This significant change indicates that the social interaction
module is important in improving the model performance.
Next, when the V factor alone is introduced, the average index
also decreases to 0.31/0.62, which is strong evidence of the
positive effect of variety loss on the model performance.

When the V and I factors are introduced, the average index
decreases even further to 0.30/0.58. In the specific scenarios
where S and V are introduced but not I, the model already
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Fig. 7. SEI visualization results on the SDD dataset. Green represents the
historical trajectory, blue represents the future labeled trajectory, and red
represents the predicted trajectory

achieves good results, with some indicators reaching the
underlined superior levels. It is worth mentioning that when
all three factors are introduced, the ADE and FDE metrics
in all scenarios have reached the optimal state, which are
presented in bold in the table. It can be seen that the synergistic
effect of the three factors, namely social interaction module,
variety loss, and information entropy, is crucial for improving
the performance of the informer model, and their joint efforts
can effectively reduce the prediction error of the model and
significantly improve the accuracy and generalization ability
of the model.

Hence, it is imperative to test this statistically in the
present study. Besides, integrating information entropy into
variety loss transforms the underlying probability distribution,
initially represented by a standard Gaussian distribution. This
integration process involves adjusting the distribution based
on the difference between the entropies of predicted and
observed trajectories. The difference in entropies is computed
by subtracting the entropy of the predicted probabilities from
the entropy of the ground true probabilities. The logarithmic
function’s inherent nonlinearity introduces a deviation from
the standard Gaussian distribution in the original probability
distribution. Therefore, it is necessary to statistically test this
in the present study, and a matched samples T-test is utilized
to verify the validity of information entropy. The hypothesis
is that model A’s pedestrian trajectory prediction accuracy
(with information entropy) is higher than model B’s (without
information entropy). The two models were tested ten times
each, with the results of the matched samples t-test shown in
Table III.

The results in Table III demonstrate that the mean difference
between model A and model B is -0.027 for ADE and -0.041
for FDE. These negative differences suggest that incorporating
information entropy is effective in reducing prediction errors.
The p-values are notably low (0.001171 for ADE and 0.000125

for FDE), providing statistically robust evidence that these
differences are not coincidental but significantly enhance the
model’s predictive power by information entropy. While there
is some fluctuation in performance, the overall standard devi-
ations observed in the tests indicate that model A significantly
outperforms model B in both ADE and FDE metrics.

F. Detailed analysis of the diversity and naturalness of gen-
erated trajectories

The ADE and FDE often represent only the accuracy of
the trajectories, but this paper involves trajectory sampling,
so analyzing the accuracy alone is insufficient. In order to
comprehensively analyze the diversity and naturalness of the
generated trajectories, this paper analyzes the generated tra-
jectories in terms of both the Kolmogorov-Smirnov (KS) test
and the cosine similarity of the trajectories, and the specific
results are shown in the Table IV.

In Table IV, several trajectories were randomly selected for
this paper’s KS test and cosine similarity calculation. From the
results, it can be seen that almost all the trajectories generated
in this paper can pass the KS test, which can be regarded
as a small probability of observing a current difference or
a more extreme difference between these two samples when
the original hypothesis (the two samples come from the same
distribution) holds. This means there is strong evidence that
these two samples are not from the same distribution, i.e., the
generated trajectories are diverse. Besides, it is then clear from
the similarity calculations that the generated trajectories are
highly similar to the predicted trajectories, and the generated
trajectories are natural. The results of the related qualitative
analysis are shown in Figure 8.

In Figure 8, A represents the SEI realized based on variety
loss, and B represents the SEI realized based on variety infor-
mation entropy loss. Green represents the historical trajectory,
blue represents the future labeled trajectory, and red represents
the predicted trajectory. In B, the predicted trajectories are
more closely clustered around the accurate future trajectories
regarding spatial distribution than A. The predicted trajec-
tories are more closely clustered around the accurate future
trajectories regarding spatial distribution. This indicates that
the distribution of the prediction results of the SEI realized
based on the entropy loss of diversity information in predicting
the future trajectories of pedestrians or objects is closer to the
actual future trajectories, which suggests that the prediction
model of B performs better in capturing the characteristics and
trends of the future trajectories. The accuracy and reliability
of the predictions are relatively higher.

G. Experimental Results and Analysis of Local and Global
Perceptual Ranges in the Social Interaction Module

The experimental results on different pedestrian perception
ranges are shown in the Table V, involving the experimental
data of SEI at different perception ranges and the correspond-
ing average data. First, when only the local perceptual range
is turned on, the model performs more prominently in the
ETH scenario and achieves better results in some indicators.
However, in terms of the overall average data, the average
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TABLE IV
QUANTITATIVE RESULTS FOR DIVERSITY AND NATURALNESS OF THE GENERATED TRAJECTORIES

Evaluation indicators 1 2 3 4 5 6 7 Average
KS test (P vaule) 2.72%1071  226%1072% 9.35%10722 1.21%107%9 298%10"%° 6.81%107% 1.04%10721 9.73x10"7
Cosine similarity 0.9956 0.9946 0.9964 0.9956 0.9969 0.9907 0.9923 0.9952
TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT PEDESTRIAN PERCEPTION RANGE

Method ‘ Local  Global ‘ ETH HOTEL UNIV ZARAO1  ZARAO2 Average

Social Entropy Informer N X 0.41/0.69  0.32/0.85 0.36/0.69 0.27/0.58  0.25/0.51  0.32/0.66

Social Entropy Informer X v 0.39/0.71  0.20/0.42  0.32/0.66 0.26/0.53  0.22/0.44  0.28/0.55

Social Entropy Informer v v 0.34/0.64  0.19/0.33  0.29/0.61  0.24/0.52  0.22/0.46  0.26/0.51

achievement is 0.32/0.66, which is in the middle level. This
indicates that by relying only on the local sensing range, the
model can capture a specific range of pedestrian interaction in-
formation and better adapt to some particular scenes. Secondly,
when only the global perception range is turned on, the model
significantly improves some of the metrics of multiple scenes.
In terms of the average data, the average score improves to
0.28/0.55, indicating that the global perceptual range can help
the model to acquire a broader range of information and
thus achieve better results in multiple scenarios, which is a
significant performance improvement compared to relying on
the local perceptual range only.

Finally, when both local and global perceptual ranges are
turned on, the model achieves optimal results in all scenarios.
This demonstrates that combining local and global perceptual
ranges at the same time allows the model to synthesize the in-
formation from different scales to capture both local pedestrian
interaction details and global scene information. In summary,

the experimental results clearly show that considering both
local and global perceptual ranges in SEI can bring the optimal
performance for the model, which can deal with the pedestrian
interaction problem more efficiently and improve the accuracy
and stability of the model in different scenarios compared with
using local or global perceptual ranges alone.

H. Impact of Different Size of Convolution on Model Perfor-
mance and Analysis

In order to investigate the effect of convolutional kernel size
on model performance, this paper designs experiments with
different combinations of multi-scale convolutional kernels of
different sizes. The subsection selects several combinations
of convolutional kernel sizes and applies them to different
datasets to evaluate their impact on the model. The experi-
mental results are shown in Table VL.

From the experimental results in Table VI, it can be seen that
different combinations of convolutional kernels significantly

Fig. 8. Quantitative comparative analysis of the generated sampling trajectories results.
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TABLE VI
EXPERIMENTAL RESULTS FOR DIFFERENT CONVOLUTIONAL KERNEL SIZES

Method (ADE/FDE) ETH HOTEL UNIV ZARAO1  ZARAO02 Average
Multi-scale convolutional scales: 3 9 27 0.34/0.64  0.19/0.33  0.29/0.61 0.24/0.52  0.22/0.46  0.26/0.51
Multi-scale convolutional scales: 5 11 21~ 0.40/0.67  0.22/0.37  0.32/0.65 0.27/0.56  0.25/0.50  0.29/0.55
Multi-scale convolutional scales: 9 1525  0.41/0.71  0.23/0.39  0.34/0.68  0.29/0.59  0.26/0.52  0.31/0.58
Multi-scale convolutional scales: 7 13 23 0.38/0.71  0.21/0.35  0.30/0.62  0.26/0.55 0.24/0.49  0.28/0.54
4 \( N\ N B
\_ Normal Trajectory PAS X High Entropy Trajectory JAS V High Entropy Trajectory A High Entropy Trajectory )
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Fig. 9. Information entropy statistics results and trajectory schematics

affect the accuracy of the model. In this paper, we analyze the
effect of different combinations of convolutional kernel sizes
on the ADE and FDE of different datasets. The results show
that the multi-scale convolutional kernel (3 9 27) performs the
best on all the datasets, which indicates that this combination
has a strong feature extraction capability and can effectively
capture the spatio-temporal information of the trajectories. The
performance of other combinations is also closer, with certain
combinations performing better on specific datasets.

L. Detailed Analysis and Discussion of Information Entropy
in SEI

To summarize the relationship between information entropy
and pedestrian trajectory, the information entropy statistical
process is visualized in this paper, as shown in Figure 9.

Velocity Range

Acceleration Range

In Figure 9, the statistical results of this paper are shown,
where the probability densities of displacement, velocity, and
acceleration all show a rapid decrease with increasing variables
for a smaller range of values (0 - 1.5). This implies that smaller
displacement, velocity, and acceleration values are more com-
mon in this range, with a relatively low probability of larger
values occurring. In the more extensive range of values (1.5
- 20), the probability densities of all three are maintained
at a low level overall. The changes are relatively smooth,
indicating that larger displacement, velocity, and acceleration
values occur less frequently, and their distribution is somewhat
uniform.

Furthermore, several different pedestrian trajectories are
shown in the figure, with the typical trajectories exhibiting
smooth and stable characteristics with a low degree of fluctu-
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ation. In contrast, the high entropy trajectories all show signif-
icant fluctuations and irregularities. Combining the trajectory
schematic and probability density analysis results, there is
a clear difference between the normal motion state and the
high entropy motion state. The normal state has more stable
motion characteristics, while the high-entropy state shows
more substantial randomness and unpredictability. In addition,
the results of the probability density distribution provide a
quantitative basis for understanding the motion behavior of
the studied pedestrians and help to identify common and rare
states during motion.

J. Experimental results and analysis of model runtime perfor-
mance

TABLE VII
THE RESULTS OF MODELS RUNTIME PERFORMANCE

Method Model parameters  Inference time
Social LSTM [1] 0.26 Mb 0.04 s
STGAT [27] 0.0047 Mb 0.01 s
STGCNN [48] 0.01 Mb 2.05 s
MemoNet [79] 5.18 Mb 3.51s
STAR [82] 0.80 Mb 045 s
GE-Trans [50] 44.15 Mb 0.05 s
Social Entropy Informer 0.80 Mb 1.51s

As can be seen from the data in the Table VII, there are
significant differences between the different models regarding
parameter size and inference time. Regarding model param-
eters, the GE-Trans model has 44.15 Mb parameters, which
is the most parameterized among all models. In comparison,
the STGAT model has only 0.0047 Mb parameters, which is
the model with the fewest parameters, and it has a particular
advantage in scenarios with limited resources. In terms of
inference time, the STGAT model performs the best with
only 0.01 s, which can give the inference results quickly; the
inference time of STGCNN and MemoNet is longer with 2.05
s and 3.51 s, respectively, which may affect their use in real-
time demanding application scenarios. The model parameter
of SEI is 0.80 Mb, which indicates that it can be used in
real-time scenarios. Medium level indicates that it is in a
relatively balanced position regarding model complexity and
resource requirements. In the future, the model structure or
algorithm can be further optimized for this problem to improve
its inference efficiency.

VI. CONCLUSIONS

This paper proposes the SEI model, an excellent pedes-
trian trajectory prediction framework that skillfully integrates
the information entropy theory into the informer framework.
The SEI model enhances the accuracy and generalization of
pedestrian trajectory prediction by quantitatively analyzing
trajectory uncertainty and utilizing an innovative information
entropy-based loss function for optimizing model training.
Extensive experiments on multiple standard datasets verify the
SEI model’s excellent performance in predicting pedestrian
behavior in complex and dynamic environments.

Although SEI has shown some advantages in pedestrian
trajectory prediction, there are still significant limitations. In
complex indoor scenarios such as large shopping centers and
airport terminals, the complex spatial structure and various
pedestrian purposes make it difficult for SEI to capture the
pedestrian decision-making process accurately. In extreme
traffic conditions, such as high-density crowds and emergen-
cies at intersections or subway stations during rush hours,
as well as multi-modal interactions in comprehensive trans-
portation hubs, SEI’s ability to predict changes in pedestrian
behavior is insufficient. For pedestrians with unique behaviors,
including children, the elderly, and those carrying heavy or
unique objects, SEI lacks an effective response mechanism
due to their unique behavioral patterns, resulting in biased
predictions, and subsequent research needs to focus on solving
these problems in order to improve the effectiveness of the
model.

REFERENCES

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, F. Li and S. Savarese,
“Social LSTM: Human Trajectory Prediction in Crowded Spaces,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 2016, pp. 961-971.

[2] F. E. Alsaadi, Z. Wang, Y. Luo, N. S. Alharbi and F. W. Alsaade, “Hoo
State Estimation for BAM Neural Networks With Binary Mode Switching
and Distributed Leakage Delays Under Periodic Scheduling Protocol,”
1IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 9, pp. 4160-4172, 2022.

[3] A. Bera, T. Randhavane and R. Prinja and D. Manocha, “SocioSense:
Robot navigation amongst pedestrians with social and psychological con-
straints,” 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 7018-7025.

[4] D. E. Benrachou, S. Glaser, M. Elhenawy and A. Rakotonirainy, “Use
of Social Interaction and Intention to Improve Motion Prediction Within
Automated Vehicle Framework: A Review,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 23, no. 12, pp. 22807-22837, 2022.

[5] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by Example.”
Computer Graphics Forum, vol. 26, no. 3, pp. 655-664, 2007.

[6] Z. Chen, R. Yang, M. Huang, F. Li, G. Lu, and Z. Wang, “EEGProgress:
A Fast and Lightweight Progressive Convolution Architecture for EEG
Classification”, Computers in Biology and Medicine, vol. 169, pp. 107901,
2023.

[7]1 X. Chen, M. Treiber, V. Kanagaraj and H. Li, “Social force models for
pedestrian traffic — state of the art,” Transport reviews, vol. 38, no. 5, pp.
625-653, 2018.

[8] Z. Chen, R. Yang, M. Huang, Z. Wang and X. Liu, “Electrode Domain
Adaptation Network: Minimizing the Difference Across Electrodes in
Single-Source to Single-Target Motor Imagery Classification”, [EEE
Transactions on Emerging Topics in Computational Intelligence, vol. 8,
no. 2, pp. 1994-2008, 2023.

[9] W. Chen, H. Sang, J. Wang and Z. Zhao, “DSTIGCN: Deformable
Spatial-Temporal Interaction Graph Convolution Network for Pedestrian
Trajectory Prediction,” IEEE Transactions on Intelligent Transportation
Systems, early access.

[10] W. Chen, H. Sang, J. Wang and Z. Zhao, “DSTCNN: Deformable
spatial-temporal convolutional neural network for pedestrian trajectory
prediction,” Information Sciences, vol. 666, pp. 120455, 2024.

[11] X. Chen, H. Zhang, F. Deng, J. Liang and J. Yang, “Stochastic Non-
Autoregressive Transformer-Based Multi-Modal Pedestrian Trajectory
Prediction for Intelligent Vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 25, no. 5, pp. 3561-3574, 2024.

[12] Y. Chen, R. Yang, M. Huang, Z. Wang and X. Liu, “Single-Source
to Single-Target Cross-Subject Motor Imagery Classification Based on
Multisubdomain Adaptation Network,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 30, pp. 1992-2002, 2022.

[13] C. Zhou, M. Han, Q. Liang, Y. Hu and S. Kuai, “A Social Interaction
Field Model Accurately Identifies Static and Dynamic Social Groupings”,
Nature human behaviour, vol.3, no.8, pp. 847-855, 2019.

[14] W. Chen, P. Li, and H. Zhao, “Automatic Model-Based Dataset Gen-
eration for High-Level Vision Tasks of Autonomous Driving in Haze
Weather,” Neurocomputing, vol. 494, pp. 23-32, 2022.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TITS.2025.3572254, |IEEE Transactions on Intelligent Transportation Systems 14

[15] Ruth Conroy Dalton, “The secret is to follow your nose: Route path
selection and angularity,” Environment and Behavior, vol. 35, no. 1, pp.
107-131, 2003.

[16] S. Pellegrini, A. Ess, and L. Van Gool, “Improving data association
by joint modeling of pedestrian trajectories and groupings,” Computer
Vision—-ECCV 2010: 11th European Conference on Computer Vision
(ECCV), Heraklion, Crete, Greece, 2010, pp.452-465.

[17] L. Feng and B. Bhanu, “Understanding Dynamic Social Grouping
Behaviors of Pedestrians,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 2, pp. 317-329, 2015.

[18] Meiqing Fu, Rui Liu and Yu Zhang, “Do people follow neighbors? An
immersive virtual reality experimental study of social influence on indi-
vidual risky decisions during evacuations,” Automation in Construction,
vol. 126, pp. 103644, 2021.

[19] F.Fang, X. Wang, Z. Li, K. Qian and B. Zhou, “A Unified Framework for
Pedestrian Trajectory Prediction and Social-Friendly Navigation,” IEEE
Transactions on Industrial Electronics, vol. 71, no. 9, pp. 11072-11082,
2024.

[20] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese and A. Alahi, “Social
GAN: Socially Acceptable Trajectories with Generative Adversarial Net-
works,” 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR), Salt Lake City, UT, USA, 2018, pp. 2255-2264.

[21] M. Goldhammer, S. Kohler, S. Zernetsch, K. Doll, B. Sick and K.
Dietmayer, “Intentions of Vulnerable Road Users—Detection and Fore-
casting by Means of Machine Learning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 7, pp. 3035-3045, 2020.

[22] J. Gan, S. Li, C. Wei, L. Deng and X. Tang, “Intelligent Learning
Algorithm and Intelligent Transportation-Based Energy Management
Strategies for Hybrid Electric Vehicles: A Review,” IEEE Transactions
on Intelligent Transportation Systems, vol. 24, no. 10, pp. 10345-10361,
2023.

[23] Y. Gao, L. T. Yang, J. Yang, D. Zheng and Y. Zhao, “Jointly Low-
Rank Tensor Completion for Estimating Missing Spatiotemporal Values
in Logistics Systems,” IEEE Transactions on Industrial Informatics, vol.
19, no. 2, pp. 1814-1822, 2023.

[24] Adrien Gregorj, Zeynep Yiicel, Francesco Zanlungo, Claudio Feliciani
and Takayuki Kanda, “Social aspects of collision avoidance: a detailed
analysis of two-person groups and individual pedestrians,” Scientific
reports, vol. 13, no. 1, pp. 5756, 2023.

[25] C. Huang, H. Huang, J. Zhang, P. Hang, Z. Hu and C. Lv, “Human-
Machine Cooperative Trajectory Planning and Tracking for Safe Auto-
mated Driving,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 12050-12063, 2022.

[26] Dirk Helbing and Péter Molndr, “Social force model for pedestrian
dynamics,” Physical review E, vol. 51, no. 5, pp. 4282, 1995.

[27] Y. Huang, H. Bi, Z. Li, T. Mao and Z. Wang, “STGAT: Modeling
Spatial-Temporal Interactions for Human Trajectory Prediction,” 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Korea (South), 2019, pp. 6271-6280.

[28] N. Li, J. Zhong, X. Shu, and H. Guo, “Weakly-supervised anomaly de-
tection in video surveillance via graph convolutional label noise cleaning,”
Neurocomputing, vol. 481, pp. 154-167, 2022.

[29] J. Li, H. Dong, Z. Wang and X. Bu, “Partial-Neurons-Based Passivity-
Guaranteed State Estimation for Neural Networks With Randomly Occur-
ring Time Delays,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 9, pp. 3747-3753, 2020.

[30] J. Leng, H. Wang, X Gao, Y. Zhang, Y. Wang, and M. Mo,
“Where to look: Multi-granularity occlusion aware for video person re-
identification,” Neurocomputing, vol. 536, pp. 137-151, 2023.

[31] Jing Lin, Lijun Cao and Nan Li, “How the completeness of spatial
knowledge influences the evacuation behavior of passengers in metro
stations: A VR-based experimental study,” Automation in Construction,
vol. 113, pp. 103136, 2020.

[32] J. Lian, F. Yu, L. Li and Y. Zhou, “Causal Temporal-Spatial Pedestrian
Trajectory Prediction With Goal Point Estimation and Contextual Interac-
tion,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 12, pp. 24499-24509, 2022

[33] L. Li, B. Zhou, J. Lian, X. Wang and Y. Zhou, “Multi-PPTP: Multiple
Probabilistic Pedestrian Trajectory Prediction in the Complex Junction
Scene,” IEEE Transactions on Intelligent Transportation Systems, vol.
23, no. 8, pp. 13758-13768, 2022

[34] W. Li, Y. Zhang, L. Li, Y. Lv and M. Wang, “A Pedestrian Trajectory
Prediction Model for Right-Turn Unsignalized Intersections Based on
Game Theory,” IEEE Transactions on Intelligent Transportation Systems,
vol. 25, no. 8, pp. 9643-9658, 2024.

[35] F. Deng, Y. Ming and B. Lyu, “CCE-Net: causal convolution embedding
network for streaming automatic speech recognition,” International Jour-

nal of Network Dynamics and Intelligence, vol. 3, no. 3, art. no. 100019,
2024.

[36] R. Korbmacher and A. Tordeux, “Review of Pedestrian Trajectory
Prediction Methods: Comparing Deep Learning and Knowledge-Based
Approaches,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 12, pp. 24126-24144, 2022.

[37] M. Kang, S. Wang, S. Zhou, K. Ye, J. Jiang and N. Zheng, “FFINet:
Future Feedback Interaction Network for Motion Forecasting,” IEEE
Transactions on Intelligent Transportation Systems, vol. 25, no. 9, pp.
12285-12296, 2024.

[38] C. G. Keller and D. M. Gavrila, “Will the Pedestrian Cross? A
Study on Pedestrian Path Prediction,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 494-506, 2014.

[39] V. Kosaraju, A. Sadeghian, R. Martin-Martin, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-BiGAT: Multimodal Trajectory Forecasting using
Bicycle-GAN and Graph Attention Networks,” 2019 Advances in Neural
Information Processing Systems (NIPS), Vancouver, Canada, 2019, vol.32.

[40] Z. Jiang, B. Jin and Y. Song, “A Novel Pet Trajectory Prediction Method
for Intelligent Plant Cultivation Robot,” IEEE Sensors Letters, vol. 7, no.
2, pp. 1-4, 2023.

[41] Jolyon J. Faria, Stefan Krause and Jens Krause, “Collective behavior
in road crossing pedestrians: the role of social information,” Behavioral
Ecology, vol.21, no. 6, pp. 1236-1242, 2010.

[42] Z. Jiang et al., “Social NSTransformers: Low-Quality Pedestrian Trajec-
tory Prediction,” IEEE Transactions on Artificial Intelligence, vol. 5, no.
11, pp. 5575-5588, 2024.

[43] D. Field, A. Hayes and R. Hess, “Contour integration by the human
visual system: evidence for a local “association field”,” Vision research,
vol. 33, no. 2, pp. 173-193, 1993.

[44] K. Leng and S. Li, “Distribution Path Optimization for Intelligent
Logistics Vehicles of Urban Rail Transportation Using VRP Optimization
Model,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 2, pp. 1661-1669, 2022.

[45] Y. Li, X. -Y. Lu, J. Wang and K. Li, “Pedestrian Trajectory Predic-
tion Combining Probabilistic Reasoning and Sequence Learning,” IEEE
Transactions on Intelligent Vehicles, vol. 5, no. 3, pp. 461-474, 2020.

[46] J. Li, F. Jiang, J. Yang, B. Kong, M. Gogate, K. Dashtipour and A.
Hussain, “Lane-deeplab: Lane semantic segmentation in automatic driving
scenarios for high-definition maps,” Neurocomputing, vol. 465, pp. 15-25,
2021.

[47] K. Lyu, H. Chen and A. Che, “A Bid Generation Problem in Truck-
load Transportation Service Procurement Considering Multiple Periods
and Uncertainty: Model and Benders Decomposition Approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp.
9157-9170, 2022.

[48] A. Mohamed, K. Qian, M. Elhoseiny and C. Claudel, “Social-STGCNN:
A Social Spatio-Temporal Graph Convolutional Neural Network for
Human Trajectory Prediction,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp.
14412-14420.

[49] Mehdi Moussaid, Dirk Helbing and Guy Theraulaz, “How simple rules
determine pedestrian behavior and crowd disasters,” Proceedings of the
National Academy of Sciences, vol. 108, no. 17, pp. 6884-6888, 2011.

[50] J. Ma, C. Yang, S. Mao, J. Zhang, S. C. Periaswamy and J. Patton,
“Human Trajectory Completion with Transformers,” ICC 2022 - IEEE
International Conference on Communications, Seoul, Korea, Republic of,
2022, pp. 3346-3351.

[51] R. Quintero Minguez, I. Parra Alonso, D. Ferndndez-Llorca and M. A.
Sotelo, “Pedestrian Path, Pose, and Intention Prediction Through Gaussian
Process Dynamical Models and Pedestrian Activity Recognition,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 5, pp.
1803-1814, 2019.

[52] A. Mohammadi, K. Jamshidi, H. Shahbazi, and M. Rezaei, “Efficient
deep steering control method for self-driving cars through feature density
metric,” Neurocomputing, vol. 515, pp. 107-120, 2023.

[53] A. Nayak, A. Eskandarian, Z. Doerzaph and P. Ghorai, “Pedestrian Tra-
jectory Forecasting Using Deep Ensembles Under Sensing Uncertainty,”
IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 9,
pp. 11317-11329, 2024.

[54] Anna Sieben, Jette Schumann and Armin Seyfried, “Collective phe-
nomena in crowds—Where pedestrian dynamics need social psychology,”
PLoS one, vol.12 no. 6, pp. e0177328, 2017.

[55] R. Quintero Minguez, I. Parra Alonso, D. Ferndndez-Llorca, and M. A.
Sotelo, “Pedestrian Path, Pose, and Intention Prediction Through Gaussian
Process Dynamical Models and Pedestrian Activity Recognition,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 5, pp.
1803-1814, 2019.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TITS.2025.3572254, IEEE Transactions on Intelligent Transportation Systems 15

[56] S. Pang, J. Cao, M. Jian, J. Lai and Z. Yan, “BR-GAN: A Pedestrian
Trajectory Prediction Model Combined With Behavior Recognition,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no.
12, pp. 24609-24620, 2022.

[57] Karthika P. Sobhana and Ashish Verma, “Walking in Social Groups:
Role of Intra-Group Interactions,” Adaptive Behavior, vol. 32, no. 1, pp.
33-46, 2024.

[58] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning
Social Etiquette: Human Trajectory Understanding In Crowded Scenes,”
Computer Vision—ECCV 2016: 14th European Conference (ECCV), Am-
sterdam, North Holland, The Netherlands, 2016, pp. 549-565.

[59] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi and
S. Savarese, “SoPhie: An Attentive GAN for Predicting Paths Compliant
to Social and Physical Constraints,” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 2019, pp. 1349-1358.

[60] K Shen, R Quan, L Zhu, J Xiao and Y Yang, “Neural Interaction Energy
for Multi-Agent Trajectory Prediction,” Proceedings of the 32nd ACM
International Conference on Multimedia (ACM MM), Melbourne, VIC,
Australia, 2024, pp. 1952-1960.

[61] Armin Seyfried, Bernhard Steffen and Thomas Lippert, “Basics of
modelling the pedestrian flow,” Physica A: Statistical Mechanics and its
Applications, vol. 368, no. 1, pp. 232-238, 2006.

[62] M. Szankin and A. Kwasniewska, “Can Al see bias in X-ray images?,”
International Journal of Network Dynamics and Intelligence, vol. 1, no. 1,
pp. 48-64, 2022.

[63] Z. Su, C. Wang, H. Cui, N. Djuric, C. Vallespi-Gonzalez and D. Bradley,
“Temporally-Continuous Probabilistic Prediction using Polynomial Tra-
jectory Parameterization,” 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021,
pp. 3837-3843.

[64] L. Shi et al., “Representing Multimodal Behaviors With Mean Location
for Pedestrian Trajectory Prediction,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 9, pp. 11184-11202, 2023.

[65] H. Tang, P. Wei, J. Li, N. Zheng, “EvoSTGAT: Evolving Spatiotem-
poral Graph Attention Networks for Pedestrian Trajectory Prediction,”
Neurocomputing, vol. 491, page. 333-342, 2022.

[66] D. Vasquez, T. Fraichard and C. Laugier, “Incremental Learning of
Statistical Motion Patterns With Growing Hidden Markov Models,” IEEE
Transactions on Intelligent Transportation Systems, vol. 10, no. 3, pp.
403-416, 2009.

[67] A. Vaswani, N. Shazeer, N. Parmar, J. UszKkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All You Need,” Advances in
Neural Information Processing Systems (NIPS), Long Beach, CA, USA,
vol. 30, 2017.

[68] D. Wu, M. Shang, X. Luo and Z. Wang, “An L1-and-L2-Norm-Oriented
Latent Factor Model for Recommender Systems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5775-5788,
2022.

[69] C. Wong, B. Xia, Z. Zou, Y. Wang and X. You, “SocialCircle: Learning
the Angle-based Social Interaction Representation for Pedestrian Trajec-
tory Prediction,” 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 19005-19015.

[70] F. Wen, M. Li and R. Wang, “Social Transformer: A Pedestrian
Trajectory Prediction Method based on Social Feature Processing Using
Transformer,” 2022 International Joint Conference on Neural Networks
(IJCNN), Padua, Italy, 2022, pp. 1-7.

[71] W. Wu, M. Chen, J. Li, B. Liu and X. Zheng, “An Extended Social Force
Model via Pedestrian Heterogeneity Affecting the Self-Driven Force,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7,
pp. 7974-7986, 2022.

[72] W. Wu, M. Chen, J. Li, B. Liu, X. Wang and X. Zheng, “Visual
information based social force model for crowd evacuation,” Tsinghua
Science and Technology, vol. 27, no. 3, pp. 619-629, 2022.

[73] A. Dong, A. Starr and Y. Zhao, “Neural network-based parametric
system identification: a review,” International Journal of Systems Science,
vol. 54, no. 13, pp. 2676-2688, 2023.

[74] Y. Wang, Z. Liu, Z. Zuvo, Z. Li, L. Wang and X. Luo, “Trajectory
Planning and Safety Assessment of Autonomous Vehicles Based on
Motion Prediction and Model Predictive Control,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 9, pp. 8546-8556, 2019.

[75] W. Wu and X. Zheng, “A Systematic Analysis of Subgroup Research in
Pedestrian and Evacuation Dynamics,” IEEE Transactions on Intelligent
Transportation Systems, vol. 25, no. 2, pp. 1225-1246, 2024.

[76] Y. Wang, Y. Niu, W. Zhu, W. Chen, Q. Li and T. Wang, “Predicting
Pedestrian Crossing Behavior at Unsignalized Mid-Block Crosswalks
Using Maximum Entropy Deep Inverse Reinforcement Learning,” IEEE

Transactions on Intelligent Transportation Systems, vol. 25, no. 5, pp.
3685-3698, 2024.

[77] D. Wang, H. Liu, N. Wang, Y. Wang, H. Wang and S. McLoone, “SEEM:
A Sequence Entropy Energy-Based Model for Pedestrian Trajectory
All-Then-One Prediction,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 1, pp. 1070-1086, 2023.

[78] Y. Xue, R. Yang, X. Chen, Z. Tian and Z. Wang, “A Novel Local Binary
Temporal Convolutional Neural Network for Bearing Fault Diagnosis,”
IEEE Transactions on Instrumentation and Measurement, vol. 72, pp.
1-13, 2023.

[79] C. Xu, W. Mao, W. Zhang and S. Chen, “Remember Intentions:
Retrospective-Memory-based Trajectory Prediction,” 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New
Orleans, LA, USA, 2022, pp. 6478-6487.

[80] W. Yi, W. Wu, X. Wang and X. Zheng, “Modeling the Mutual Anticipa-
tion in Human Crowds With Attention Distractions,” IEEE Transactions
on Intelligent Transportation Systems, vol. 24, no. 9, pp. 10108-10117,
2023.

[81] X. Yan, J. Yang, L. Song and Y. Liu, “PSA-GRU: Modeling Person-
Social Twin-Attention Based on GRU for Pedestrian Trajectory Predic-
tion,” 2021 40th Chinese Control Conference (CCC), Shanghai, China,
2021, pp. 8151-8157.

[82] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,” Computer
Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XII 16.

[83] Y. Yang, Z, Fu, and SM. Naqvi, “Abnormal event detection for video
surveillance using an enhanced two-stream fusion method,” Neurocom-
puting, vol. 553, pp. 126561, 2023.

[84] J. Yang, Y. Chen, S. Du, B. Chen and J. C. Principe, “IA-LSTM:
Interaction-Aware LSTM for Pedestrian Trajectory Prediction,” IEEE
Transactions on Cybernetics, vol. 54, no. 7, pp. 3904-3917, 2024.

[85] Y. Wang, C. Wen and X. Wu, “Fault detection and isolation of floating
wind turbine pitch system based on Kalman filter and multi-attention
IDCNN,” Systems Science & Control Engineering, vol. 12, no. 1,
art. no. 2362169, 2024.

[86] C. Yang, H. Pan, W. Sun and H. Gao, “Social Self-Attention Generative
Adversarial Networks for Human Trajectory Prediction,” IEEE Transac-
tions on Artificial Intelligence, vol. 5, no. 4, pp. 1805-1815, 2024.

[87] Y. Wang, C. Shen, J. Huang and H. Chen, Model-free adaptive control
for unmanned surface vessels: a literature review, Systems Science &
Control Engineering, vol. 12, no. 1, art. no. 2316170, 2024.

[88] B. Yang, C. He, P. Wang, C. -Y. Chan, X. Liu and Y. Chen, “TPPO: A
Novel Trajectory Predictor With Pseudo Oracle,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 54, no. 5, pp. 2846-2859,
2024.

[89] B. Yu, K. Zhu, K. Wu and M. Zhang,“Improved OpenCL-Based Im-
plementation of Social Field Pedestrian Model,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 7, pp. 2828-2839, 2020.

[90] X. Yan, X. Zhong, Z. Yang, R. Zhang, W. Huang and Z. Wang, “Global
Temporal Attention Optimization for Human Trajectory Prediction,” 2022
IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Prague, Czech Republic, 2022, pp. 184-189.

[91] C.Zhang, J. Sprenger, Z. Ni and C. Berger, "Predicting Pedestrian Cross-
ing Behavior in Germany and Japan: Insights into Model Transferability,”
IEEE Transactions on Intelligent Vehicles, early access.

[92] C. Zhang and C. Berger, “Pedestrian Behavior Prediction Using Deep
Learning Methods for Urban Scenarios: A Review,” IEEE Transactions
on Intelligent Transportation Systems, vol. 24, no. 10, pp. 10279-10301,
2024.

[93] X. Zhou, W. Zhao, A. Wang, C. Wang and S. Zheng, “Spatiotemporal
Attention-Based Pedestrian Trajectory Prediction Considering Traffic-
Actor Interaction,” IEEE Transactions on Vehicular Technology, vol. 72,
no. 1, pp. 297-311, 2023.

[94] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond Efficient Transformer for Long Sequence Time-
series Forecasting,” Proceedings of the AAAI Conference on Atrtificial
Intelligence (AAAI), 2021, vol. 35, no. 12, pp. 11106-11115.

[95] H. Zhou, D. Ren, H. Xia, M. Fan, X. Yang and H. Huang, “AST-
GNN: An Attention-based Spatio-Temporal Graph Neural Network For
Interaction-Aware Pedestrian Trajectory Prediction,” Neurocomputing,
vol. 445, pp. 298-308, 2021.

[96] Y. Wu, X. Huang, Z. Tian, X. Yan and H. Yu, “Emotion contagion model
for dynamical crowd path planning,” International Journal of Network
Dynamics and Intelligence, vol. 3, no. 3, art. no. 100014, 2024.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TITS.2025.3572254, IEEE Transactions on Intelligent Transportation Systems 16

[97] R. Zhao, Q. Hu, Q. Liu, C. Li, D. Dong and Y. Ma, “Panic Propagation
Dynamics of High-Density Crowd Based on Information Entropy and Aw-
Rascle Model,” IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 10, pp. 4425-4434, 2020.

[98] P. Zhang, J. Xue, P. Zhang, N. Zheng and W. Ouyang, “Social-Aware
Pedestrian Trajectory Prediction via States Refinement LSTM,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no.
S, pp. 2742-2759, 2022.

[99] K. Zhu, Z. Wang, G. Wei and X. Liu, “Adaptive Set-Membership State
Estimation for Nonlinear Systems Under Bit Rate Allocation Mechanism:
A Neural-Network-Based Approach,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 34, no. 11, pp. 8337-8348, 2023.

[100] K. Zhu, Z. Wang, Y. Chen and G. Wei, “Neural-Network-Based
Set-Membership Fault Estimation for 2-D Systems Under Encod-
ing—Decoding Mechanism,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 34, no. 2, pp. 786-798, 2023.

[101] N. Zeng, P. Wu, Z. Wang, H. Li, W. Liu and X. Liu, “A Small-Sized
Object Detection Oriented Multi-Scale Feature Fusion Approach With
Application to Defect Detection,” IEEE Transactions on Instrumentation
and Measurement, vol. 71, pp. 1-14, 2022.

[102] H. Zhou, X. Yang, D. Ren, H. Huang and M. Fan, “CSIR: Cascaded
Sliding CVAEs With Iterative Socially-Aware Rethinking for Trajectory
Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol.
24, no. 12, pp. 14957-14969, 2023.

[103] P. Zhang et al., “Towards Trajectory Forecasting From Detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
45, no. 10, pp. 12550-12561, 2023.

[104] X. Zhong et al., “Visual Exposes You: Pedestrian Trajectory Prediction
Meets Visual Intention,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 9, pp. 9390-9400, 2023.

[105] S. Zhang, M. Abdel-Aty, Y. Wu and O. Zheng, “Pedestrian Crossing
Intention Prediction at Red-Light Using Pose Estimation,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2331-2339,
2022.

[106] W. Zhu, Y. Liu, M. Zhang and Y. Yi, “Reciprocal Consistency
Prediction Network for Multi-Step Human Trajectory Prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 6, pp.
6042-6052, 2023.

[107] Y. Zhang, X. Shi, S. Zhang and A. Abraham, “A XGBoost-Based
Lane Change Prediction on Time Series Data Using Feature Engineering
for Autopilot Vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 10, pp. 19187-19200, 2022.

Zihan Jiang (Student Member, IEEE) received the
B.Eng. degree from the Northeast Forestry Univer-
sity, Harbin, China, in 2022 and the M.Sc. degree
from the University of Liverpool, UK, in 2024. He is
pursuing a Ph.D. degree at Tongji University, Shang-
hai, China. His research interests include trajectory
prediction and computer vision.

Chengxuan Qin received the MRes degree in Pat-
tern Recognition and Intelligent Systems from the
University of Liverpool in 2023. He is pursuing a
Ph.D. degree at the University of Liverpool, China.

| His research interests include brain-computer inter-
bty - faces, temporal signal analysis, and machine learn-
ing.
- g

Rui Yang (Senior Member, IEEE) received the
B.Eng. degree in Computer Engineering and the
Ph.D. degree in Electrical and Computer Engineer-
ing from National University of Singapore in 2008
and 2013 respectively.

He is currently an Associate Professor in the
School of Advanced Technology, Xi’an Jiaotong-
Liverpool University, Suzhou, China, and an Hon-
orary Lecturer in the Department of Computer Sci-
ence, University of Liverpool, Liverpool, United
Kingdom. His research interests include machine
learning based data analysis and applications. He is the author or co-author of
several technical papers and also a very active reviewer for many international
journals and conferences. Dr. Yang is currently serving as an Associate
Editor for Neurocomputing, Cognitive Computation, and IEEE Transactions
on Instrumentation and Measurement.

Bingyu Shi (Student Member, IEEE) received the
B.Eng degree from Northeast Forestry University in
Harbin, China, in 2022, and is pursuing a Ph.D.
degree at Northeast Forestry University. Her research
interests include remote sensing data understanding
and wildfire prediction.

Fuad E. Alsaadi received the B.Sc. and M.Sc.
degrees in electronic and communication from King
AbdulAziz University, Jeddah, Saudi Arabia, in 1996
and 2002, respectively and the Ph.D. degree in
optical wireless communication systems from the
University of Leeds, Leeds, UK., in 2011. Between
1996 and 2005, he was with Jeddah as a Communi-
cation Instructor with the College of Electronics &
Communication. He is currently an Associate Pro-
fessor with the Electrical and Computer Engineering
Department within the Faculty of Engineering, King
Abdulaziz University, Jeddah, Saudi Arabia. He has authored or coauthored
widely in the top IEEE Communications Conferences and Journals. His
research interests include optical systems and networks, signal processing,
synchronization and systems design. He was the recipient of the Carter Award,
University of Leeds for the best Ph.D.

Zidong Wang (Fellow, IEEE) was born in Jiangsu,
China, in 1966. He received the B.Sc. degree
in mathematics from Suzhou University, Suzhou,
China, in 1986, and the M.Sc. degree in applied
mathematics and the Ph.D. degree in electrical en-
gineering from the Nanjing University of Science
and Technology, Nanjing, China, in 1990 and 1994,
respectively.

From 1990 to 2002, he held teaching and research
appointments in universities in China, Germany, and
the U.K. He is currently a Professor of dynamical
systems and computing with the Department of Computer Science, Brunel
University London, Uxbridge, U.K. He has published more than 600 articles
in international journals. His research interests include dynamical systems,
signal processing, bioinformatics, control theory, and applications.

Prof. Wang is a member of the Academia Europaea and the European
Academy of Sciences and Arts, an Academician of the International Academy
for Systems and Cybernetic Sciences, a fellow of the Royal Statistical Society,
and a member of the Program Committee of many international conferences.
He holds the Alexander von Humboldt Research Fellowship of Germany, the
JSPS Research Fellowship of Japan, and the William Mong Visiting Research
Fellowship of Hong Kong. He serves (or has served) as the Editor-in-Chief
for International Journal of Systems Science, Neurocomputing, and Systems
Science and Control Engineering; and an Associate Editor for 12 international
journals, including IEEE Transactions on Automatic Control, IEEE Transac-
tions on Control Systems Technology, IEEE Transactions on Neural Networks
and Learning Systems, IEEE Transactions on Signal Processing, and IEEE
Transactions on Systems, Man, and Cybernetics—Part C: Applications and
Reviews.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).





